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In this paper we propose the Quantum Data Center (QDC), an architecture combining Quantum Random

Access Memory (QRAM) and quantum networks. We give a precise definition of QDC and discuss its possible

realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication,

and quantum sensing, with a primary focus on QDC for T -gate resources, QDC for multiparty private quantum

communication, and QDC for distributed sensing through data compression. We show that QDC will provide

efficient, private, and fast services as a future version of data centers.
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I. INTRODUCTION

As. a frontier subject of physics and computer science,

quantum information science is currently a rapidly developing

and highly valued research area, with wide applications in

computation [1–4], data science and machine learning [5,6],

communication [7–13], and sensing [14–16]. In the near fu-

ture, quantum computation may bring significant advantages

to some specific algorithms; Quantum communication will

strictly guarantee data security and privacy and boost trans-

mission efficiency based on the laws of physics; and quantum

sensing may boost the measurement precision significantly.

The generation, processing, and application of quantum

data, and the treatment of those data together with their clas-

sical counterparts, are currently challenging theoretical and

experimental problems in quantum science.

In this paper we propose the idea of the so-called Quan-

tum Data Center (QDC), a unified concept referring to some

specific quantum hardware that could efficiently deal with

the quantum data and would provide an efficient interface

between classical data and quantum processors. The key com-

ponent of the proposed QDC is a Quantum Random Access

Memory (QRAM) [17–25], which is a device that allows a

user to access multiple different elements in superposition

from a database (which can be either classical or quantum). At

minimum, a QDC consists of a QRAM coupled to a quantum

network.

We construct a theory of QDCs associated with original

applications. We propose explicit constructions of examples,

including QDCs as implementations of data-lookup oracles
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in fault-tolerant quantum computations; QDCs as mediators

of so-called multiparty private quantum communications (de-

fined below), which combines the Quantum Private Query

(QPQ) [26] and Quantum Secret Sharing [8,9] protocols; and

QDCs as quantum data compressors for distributed sensing

applications. These three examples demonstrate that QDCs

can provide significant advantages in the areas of quantum

computing, quantum communication, and quantum sensing,

respectively (see Fig. 1), with all other technical details and

extra examples in the Appendixes.

II. GENERAL THEORY

A minimal definition of a QDC is a quantum or classical

database, equipped with QRAM, connected to a quantum

(communication) network. The minimal function of a QDC

is that Alice (the customer) is able to upload and download

information (classical or quantum) by providing the address

to the database (Bob), and Bob will provide the information

to Alice through QRAM, sending it via the quantum network

(see Fig. 2).

About the role of QRAM, there are numerous quan-

tum algorithms that claim potential advantages against their

classical counterparts, but those algorithms often implicitly

require an interface between classical data and the quantum

processor. The advantages of the computational complexity

are estimated usually from the query complexity where the

oracle provides this interface (see, for instance, [5]). Quan-

tum Random Access Memory (QRAM, see [17,25,27]) is a

general-purpose architecture that could serve as a realization

of such oracles. More specifically, QRAM allows a user to

perform a superposition of queries to different elements of

a data set stored in memory. The data itself can be either

classical or quantum. In the case where the data are classical,

the user provides an arbitrary superposition of addresses as
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FIG. 1. A quantum data center (QDC) could potentially provide

services about generation, processing, and application of quantum

data, which could have wide applications in quantum computation,

quantum communication, and quantum sensing.

input, and the QRAM returns an entangled state where the

addresses are correlated with the corresponding data:

N−1
∑

i=0

αi|i〉Q1 |0〉Q2 →
N−1
∑

i=0

αi|i〉Q1 |xi〉Q2 . (1)

Here the superscripts Q1 and Q2, respectively, denote the input

and output qubit registers, xi denotes the ith element of the

classical data set, αi are generic coefficients, and N is the

size of the database. We emphasize the distinction between

QRAM, defined via Eq. (1), and so-called random-access

quantum memories [28–30]; the latter do not allow for ac-

cessing a superposition of multiple different data elements and

hence are not sufficient for our purposes. Indeed, the ability to

perform a superposition of queries as in Eq. (1) is crucial to the

applications we describe below. Moreover, in the Appendixes

we will discuss in detail a quantum version of QRAM and a

formal definition of QDCs.

Note that our definition means that a quantum architecture

could be qualified as QDC only if it has both QRAM and

quantum networks implemented. Thus, if a device does not

have either of them, it cannot be called a QDC according

to our definition. For example, a standard quantum memory,

as described in, e.g., Refs. [29,30], coupled to a quantum

network cannot be called a QDC. This is because QRAM is

more than just a quantum memory; QRAM requires that dif-

ferent elements of the memory can be queried in superposition

as in Eq. (1) (and the quantum version in the Appendixes).

Moreover, there are extended parameters we could choose

FIG. 2. The minimal definition of QDC contains the quantum

network and QRAM. The data stored in QRAM can be either classi-

cal or quantum.

when we choose the circuit depth or the width of the QRAM

implementation (see [22,24,25,31–35]), but for latter applica-

tions, we assume our QRAM circuits to be shallow. Further,

we assume that QRAM has been built in the fault-tolerant

way and has been error corrected. Building large-scale fault-

tolerant QRAM is, in fact, a primary challenge in experiments

[20].

About the role of the quantum networks, they might be

realizable in the future due to the fast development of quan-

tum communication technology in recent years. Here we are

considering the service provided by QDC is centralized and

has some physical distances from users. Thus, quantum states

are supposed to be teleported through the quantum network

from the user to the QDC or vice versa, where quantum

teleportation technology includes the technologies of quantum

satellites [36–38], quantum repeaters [10,12,13,39–41], etc.

III. QDC FOR QUANTUM COMPUTING:

FAULT-TOLERANT RESOURCE SAVINGS

As the first example about QDCs applied for quantum com-

puting, we show how a QDC can provide resource savings in

a fault-tolerant cost model to users running query-based quan-

tum algorithms. There are two aspects of resource savings

induced by QDC: hardware outsourcing and communication

costs (see the Appendixes for an unification of space and time

costs). The reason for the hardware outsourcing is simple.

Imagine that we are doing fault-tolerant quantum computation

with a significant amount of T gates in the queries, which are

considered to be expensive and require the magic-state distil-

lation [42,43]. Rather than preparing the requisite magic states

themselves, the user could instead ask the QDC to prepare the

magic states, thereby reducing the resources required of the

user. This naive approach, however, has a high communication

cost since each magic state would need to be sent over the

quantum network from the QDC to the user.

In contrast to this naive approach, we propose that the

user outsources entire oracle queries to the QDC. Outsourcing

entire queries provides a particularly efficient way for users to

offload large amounts of magic-state distillation to the QDC

with minimal communication cost.

More specifically, without the aid of a QDC, a user would

be required to distill at least O(
√

N ) [32] magic states in order

to query a data set of size N as in Eq. (1). In contrast, with a

QDC, a user can outsource the query to the QDC: the QDC

is responsible for implementing the query and distilling the

associated magic states, while the user incurs only a O(log N )

(In this paper, log indicates log2) communication cost. This

communication cost is due to the fact that the input and out-

puts of the query must be sent between the user and the QDC.

The user also benefits in that they are no longer responsible for

the potentially large amount of ancillary qubits needed to im-

plement a query [22,32,33]; this hardware cost is paid by the

QDC. Thus, this approach of outsourcing full queries to the

QDC is exponentially more efficient than naive the approach

described previously in terms of communication cost.

Both the savings from the hardware and the communi-

cation costs could quantify this benefit by the following

example. Suppose, a user wishes to run a 100-qubit algorithm

that requires 108 T gates when decomposed into Clifford +T
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operations. Further, suppose that the user has a device with

physical error rates of p = 10−3 and that the target failure

probability for the entire computation is <1%. To achieve this

failure probability, we assume error correction is used, and

that gates are implemented fault tolerantly. Non-Clifford gates

are implemented fault tolerantly with the aid of magic-state

distillation.

A resource estimate for exactly this situation is performed

in [44] for surface codes (see the Appendixes for a detailed

review). The outsourcing can enable resource savings for the

user (potentially in both the overall algorithm runtime and

hardware cost). To estimate these savings, we suppose that

these queries are responsible for 99% of the algorithm’s T -

state consumption (this is not an unreasonable supposition;

see, for instance, [33]). According to [44] and the Appendixes,

we observe that the user can now use a 15-to-1 magic-state

distillation scheme, as the user need only produce ∼106 magic

states, and the total probability that any such state is faulty

is 106 × 35p3 ∼ 0.01, which is within the allowed error tol-

erance. As described in [44], the number of surface code

tiles required for computation and distillation with the 15-to-1

scheme is 164. With the distillation scheme selected, we can

now estimate the required code distance d and algorithm run

time. The code distance must satisfy

(No. of tiles = 164) × [No. of code cycles × (1 + delay)]

× pL(p, d ) < 1% (2)

to guarantee that that the total error probability remains

below 1%. Here pL is the logical error probability of a

distance d surface code with physical error probability p,

which is approximately given by [45]. The parameter No. of

code cycles is the number of surface code cycles required

to distill 106 magic states, i.e., the minimum number of cy-

cles required to run the algorithm assuming instantaneous

data center queries. In practice, however, the data center

queries will not be instantaneous. Thus we add a delay factor

to the total number of cycles. This delay is related to the

QDC’s latency, τ , and the exact amount of the delay depends

not only on how the oracle is implemented by the QDC,

but also on the communication time overhead. Moreover,

with the
√

N → log N arguments from the communication

cost, we could use assumptions, delay factor∼O(
√

N ), or

delay factor∼O(log N ), respectively, referring to the proto-

cols where oracle queries are implemented by the user (with

magic states sent one-by-one from the QDC) or where full

queries are implemented by the QDC. In Fig. 3 we plot

the relative time costs depending on the data size N of

QDCs, where we show that QDCs provide significant time

savings in some ranges of data sizes, where the communi-

cation cost savings could be exponential. Finally, although

our calculation is query-based, there are proposals where a

query-based approach could provide a unified framework for

all quantum algorithms [46], despite that the circuit depth

for QRAMs should be shallow. Finally, we emphasize that

the advantage is only for outsourcing users instead of users

combined with QDC. Moreover, the exponential savings of

communication costs are from QRAM, instead of specific

quantum or classical algorithms. As a summary, combinations

of QRAM and quantum networks might lead to significant
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FIG. 3. The QDC-assisted relative time cost (the time cost from

the user side with QDCs, divided by the one without QDCs) depend-

ing on the size of the data N . The dashed lines represent the threshold

where QDC has the comparable performance as the situation without

QDC, with the relative ratio 0.1, 1, and 10. Different thresholds

correspond to prefactors relating the delay factor and the data N ,

and the relative ratio choices might correspond to different physical

hardware. We consider the situations where two different methods of

usages of QDCs, and both of them prepare the magic-state distillation

in the QDC side. We replace the delay factor by the function
√

N or

log N directly where N is the size of the data in those two methods.

For the solid lines from up to down, we have naive (blue) and smart

(black) usages of QDCs. Some sudden jumps in the plot are because

of the even integer values of the code distance, and we defer more

precise discussions to the Appendixes.

benefits for outsourcing costs for T -gate preparations and

magic-state distillations from unique features of QRAM,

leading to useful applications in quantum computing.

IV. QDC FOR QUANTUM COMMUNICATION:

MULTIPARTY PRIVATE QUANTUM COMMUNICATION

Quantum Private Query (QPQ) [26], a protocol combining

QRAM and quantum networks, could already serve as an

important application of QDC for quantum communication.

Furthermore, the application of QDCs could be much broader

to provide the users with fast and secure service. Based on

QPQ and Quantum Secret Sharing from [8,9], we propose

an original protocol, so-called multiparty private quantum

communication, as an example of applications of QDCs. We

provide discussions of QPQ and related concepts in the Ap-

pendixes as well as [47].

We present a protocol for multiparty private quantum com-

munication using QDCs. We consider the situation in Fig. 4,

where many sending users (denoted A1, A2, etc.) want to com-

municate privately to a set of receiving users (denoted B1, B2,

etc.; Ai communicates with B j , where i �= j in general). The

communication occurs through two or more untrusted (but

noncooperating) QDCs. Importantly, it is assumed that the

users do not share any initial secret keys or entangled qubits,

and that the users do not possess any secure communication

links between them (either classical or quantum); all com-

munication takes place over the untrusted quantum network

shared with the QDCs.
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FIG. 4. Multiparty private quantum communication protocol. A

set of sending users Ai communicates privately to a set of receiving

users Bi through untrusted, noncooperating QDCs. The use of quan-

tum secret sharing and quantum private queries guarantees that no

QDC can learn what information was communicated or where the

information was sent.

The protocol is as follows. First, each sending user Ai

takes their quantum message, and decomposes it into several

distinct parts using a quantum secret sharing protocol [8,9].

In isolation, each part of the secret message looks like a

maximally mixed state, but when sufficiently many parts are

assembled together, the original message can be perfectly

recovered. Second, each sending user Ai sends parts of their

secrets to the QDCs, where they are stored in QRAM at

a publicly announced address. No one QDC should receive

enough parts of a secret to reconstruct the original message.

Finally, the receiving users interrogate the QDCs using the

quantum private queries protocol. Each user B j interrogates

sufficiently many QDCs in order to retrieve enough parts of

the secret to reconstruct A′
is original message. Advantages

of this protocol is explained in the Appendixes. Moreover,

a final note is that our protocol does not offer the commu-

nication between Ak and Bk protection from interception by

B j �=k , rather it only provides privacy from untrusted QDCs. As

a summary, combinations of QRAM and quantum networks

could lead significant benefits for secure and private quantum

communications, where quantum secret sharing and quantum

private queries could serve as components.

V. QDC FOR QUANTUM SENSING: DATA COMPRESSION

AND DISTRIBUTIVE SENSING

In the context of quantum sensing, QDCs can be used to

compress quantum data and signals, enabling more efficient

communication in distributed sensing tasks (see Fig. 5).

FIG. 5. Illustration of QDC for quantum sensing: we use QDCs

to perform quantum data compression that enables distributive

sensing.

To start, we illustrate how QDCs can be used to compress

quantum data through a simple example. Suppose that the

quantum data held by the QDC is confined to the single-

expectation subspace, spanned by states where only one of

the N qubits in the QDC’s quantum memory is in the |1〉 state

and all others are in |0〉. The state of the memory can then be

written as

|ψunary〉 =
N−1
∑

i=0

αi

N
⊗

j=1

|δi j〉D j , (3)

where D j indicates the jth qubit in the N-qubit quantum

memory, and δi j is the Kronecker delta (δi j = 1 for i = j and

δi j = 0 otherwise). Though the entire Hilbert space of the

N-qubit quantum memory has the dimension 2N , the single-

excitation subspace has only dimension N . Thus, one could

equivalently represent the above state using only log N qubits,

as

|ψbinary〉 =
N−1
∑

i=0

αi|i〉Q1 , (4)

where Q1 denotes a log N-qubit register, and |i〉Q1 denotes

the ith basis state of this register. The two states |ψunary〉 and

|ψboth〉 contain the same quantum information (the N complex

coefficients αi) but encode this information in different ways.

A QDC can be used to realize the unary-to-binary compres-

sion described above, where the precise form implemented

using QRAM is originally constructed in our work. The com-

pression proceeds in two steps: first, the QDC performs an

operation U (defined below) that encodes the location of the

single excitation into a log N-qubit address register, then a

single QRAM query is performed in order to extract the ex-

citation from the memory. In detail, the unitary U enacts the

operation

U

⎛

⎝|0〉Q1

N−1
∑

i=0

αi

⎡

⎣

N
⊗

j=1

|δi j〉D j

⎤

⎦

⎞

⎠ =
N−1
∑

i=0

αi|i〉Q1

⎡

⎣

N
⊗

j=1

|δi j〉D j

⎤

⎦.

(5)

We note that the operation U is not equivalent to a QRAM

query, so U falls outside the scope of operations that a QDC

can perform per the minimal definition. As we describe in

the Appendixes, however, the operation U can be straight-

forwardly implemented using only minor modifications to

standard QRAM architectures. Next, a QRAM query extracts

the single excitation from the quantum memory and stores it

in an output register Q2,

N−1
∑

i=0

αi|i〉Q1 |0〉Q2

⎡

⎣

N
⊗

j=1

|δi j〉D j

⎤

⎦

→
N−1
∑

i=0

αi|i〉Q1 |1〉Q2

⎡

⎣

N
⊗

j=1

|0〉D j

⎤

⎦. (6)

After this step, the Q2 and D j registers are disentangled from

the Q1 register. The state of the Q1 register is |ψbinary〉, which

constitutes the compressed representation of the quantum data

originally stored in the QDC’s memory. This compressed
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data may subsequently be stored, transmitted, or measured,

depending on the application [48]. Thus, QDCs can be used

to reduce the entanglement cost for distributed sensing ap-

plications. See details in the Appendixes for explanations.

As a summary, combinations of QRAM and quantum net-

works could lead significant benefits for distributed quantum

sensing, where QRAM designs could be helpful to perform

quantum data compression and benefit entanglement cost

reduction in distributive sensing applications.

VI. OUTLOOK AND CONCLUSION

Our research on QDCs opens up a promising direction in

quantum information science (see details in the Appendixes

for more applications). Recently we have analyzed the favor-

able error scaling of QRAM that only scales poly-log with the

size of the database [24], which implies that QDC might be an

intermediate-term application without the requirement of full

error correction. QDC provides an example of application-

specific efficient architectural design, taking full advantage

of shallow QRAM circuits and small overhead in quantum

communication. Given the treelike structure of QRAM, it will

be interesting to explore the future possibility of distributed

QDC so that we may decentralize the QRAM and perform the

entire QRAM over the distributed quantum networks.
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APPENDIX A: MORE ABOUT QDCs

In these Appendixes we provide necessary information and

related results about QDCs. Their structure is the following. In

Appendix A we give an introduction on several basic aspects

of QDCs. Specifically, in Sec. A 3 we give some perspectives

about the writing function in QDCs. In Appendixes B, C,

and D, we discuss several explicit examples of QDCs ap-

plied in quantum computing, quantum communication, and

quantum sensing, including Secs. B 1 and B 2 with a review

of quantum simulation and qubitization algorithms [57–59]

where QDCs are used to provide the oracle, Sec. B 3 with

QDCs for computing with multiple users, Sec. B 4 with a

short introduction of the surface code and T -gate counting

formalism developed in [44] and used in the T -gate example

FIG. 6. QDCs could allow quantum cloud computing on the

server.

in the main text, Secs. C 1 and C 2 with details of Quantum

Private Query and blind quantum computing, Sec. D 1 with

some details of quantum data compression, and Sec. D 2 with

channel discrimination in quantum sensing and QDCs.

1. Comments

Here we comment on some general perspectives about

QDCs. We note also that some architectures without either

QRAM or quantum networks could still be defined as QDCs.

In Sec. D 2 we describe an application in quantum sensing

where QRAMs are not necessarily used, but one could still

use QDC architectures to realize it.

One might be curious about how QDCs are different from

a generalized version of quantum computers. Here we should

clarify that, of course, we could develop a universal quan-

tum computing (UQC) device that is associated with QDC.

However, it is not necessary, and our QDC construction could

directly serve remote users with their own quantum computa-

tion architectures. In fact, some of our examples do not require

UQC power for QDC, for instance, QDCs for the T -gate

counting that have been discussed in the main text.

Moreover, QDCs could take not only just the above min-

imal definition, but also more general forms. For example,

QDCs equipped with UQC could also perform quantum cloud

computation (see Fig. 6). Quantum computers are hard to

realize, and it is natural to consider remote cloud services

running in QDCs and provide the results of computations to

remote users. Moreover, if users wish to keep the privacy,

quantum blind computation [60,61] could be performed in

QDCs with the help of quantum networks [61]; see further

discussion in Section C.

Finally, we also note that our proposal is also closely re-

lated to the idea of disposable quantum software proposed

in [62] by Preskill. This is a fragile quantum state that is

hard to maintain by users, so they prefer to buy such a

state through the quantum network. The early quantum tele-

portation scheme based on [63] provides significant power

for quantum devices by combining UQC and quantum com-

munication, inspiring the observation in [62] for quantum

software. Our definition of QDC, including the functioning

of UQC, could be a particular realization of disposable quan-

tum software systems. However, we are more emphasizing

the ingredient from QRAM, enabling extra capabilities for

computation, communication, and sensing.
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Finally, we give an explicit definition of QRAM for quan-

tum data and provide a formal definition of QDCs. In this

case, the user provides an arbitrary superposition of addresses

as input, but the QRAM now returns the quantum state that

was stored in the memory location specified by the address.

More precisely, if the QRAM holds an arbitrary product state,
⊗N

j=1 |ψ j〉D j , where D j denotes the jth cell of the memory,

then a QRAM query enacts the operation

N−1
∑

i=0

αi|i〉Q1 |0〉Q2

⎡

⎣

N
⊗

j=1

|ψ j〉D j

⎤

⎦

→
N−1
∑

i=0

αi|i〉Q1 |ψi〉Q2

⎡

⎣

N
⊗

j=1

∣

∣ψ
(i)

j

〉D j

⎤

⎦, (A1)

which, conditioned on register Q1 being in state |i〉, swaps the

state of register Q2 and the ith cell of the quantum memory.

Here |ψ (i)

j 〉 = |0〉 for i = j and |ψ (i)

j 〉 = |ψ j〉 otherwise. By

linearity, this definition also defines the query operation when

the QRAM holds an entangled state. Note that, when the data

are quantum, a QRAM query generally leaves the Q1 and Q2

registers entangled with the data. The difference between the

classical and quantum operations will be manifest when we

try to “write” the data in QDCs (see Appendix A for a detailed

discussion).

We now give a formal definition of a QDC, and we expand

on aspects of this definition below.

Definition 1. A QDC, D = {R, I}, consists of a QRAM,

R, coupled to a quantum communication network, I, and

queries to the QDC can be performed in three steps: (1) a

remote user uses I to send a quantum query to the QDC; (2)

the QDC executes query using R, as in either classical (in the

main text) or Eq. (A1); and (3) the QDC uses I to send input

and output qubit registers, Q1 and Q2, back to the user. D is

characterized by four key parameters: the size of the database

N , the error in the query ǫ, the latency τ (time cost of a single

query), and the throughput T (number of queries performed

per unit time).

2. Cost estimation for QDCs

For QDCs defined above, how could we estimate the cost

of time and hardware with a given requirement of error and

privacy? Here we establish a general theory to estimate the

hardware-time cost for QDCs and determine the optimal pa-

rameters according to the cost function.

In general, we define a cost function F
QDC

cost for a given QDC

architecture. The cost function could be written as

F
QDC

cost = F
QDC

cost (Ttotal, Ntotal, Ptotal). (A2)

Here the cost function F
QDC

cost includes the time cost Tcost,

space (hardware) cost Ncost, and the privacy cost Ptotal. (The

privacy cost here means a quantity the represents the level of

consumption for the QDC users. We will provide an example

in the situation of Sec. C 1.) For instance, one could simply

assume that the above cost function is linear,

F
QDC

cost = αT Ttotal + αN Ntotal + αPPtotal, (A3)

with fixed positive coefficients αT , αN , and αP. More gen-

erally, F
QDC

cost could be defined as a monotonic function of

Tcost, Ncost, and Ptotal. Moreover, Tcost, Ncost, and Ptotal are

given by one collection of throughput parameters and the

other collection of hyperparameters (latency) θ . The optimal

hyperparameters could be determined by

θ∗ = argminθF
QDC

cost (A4)

for given requirements of hardware. Similar analysis could be

done for their counterparts without QDC, with the cost func-

tion F
QDC

cost , and if QDCs have advantages, we want F
QDC

cost >

F
QDC

cost .

The cost analysis examples discussed later could be under-

stood as precise instances of the above framework. In Sec. B

we understand the hardware cost as the qubit cost, and we

manifest the contribution of both Ttotal and Ntotal. In the T -gate

example, we understand the entanglement cost as another

form of the hardware cost, and we find significant advantages

of QDCs in some cases. In Sec. C 1 we emphasize Ttotal, Ntotal,

and Ptotal, the privacy cost in quantum communication. In

general QDCs, all terms might be included based on the prac-

tical usage, time cost, and hardware. For a more systematic

mathematical treatment of privacy in the complexity theory,

see differential privacy discussed in the machine learning

community [64].

3. Writing data in QRAM

In this section we more precisely define what it means to

write data to QRAM. The definition of writing depends on

whether the data being written are classical or quantum, and

also on whether the addressing scheme is classical or quan-

tum. We elaborate on these four different situations below.

a. Classical data, classical addressing

In this situation the QRAM holds a classical data vector

x, and the writing operation consists of specifying a classical

address i and a new classical value yi, then overwriting the

value ith cell of the QRAM’s memory, xi → yi. This writing

process is entirely classical; it can be implemented simply by

performing classical operations on the classical data.

Even though this definition of writing to QRAM is com-

pletely classical, it is still useful in the context of quantum

algorithms. In particular, after writing, the modified classical

data in the QRAM can subsequently be read in superposition

(i.e., with quantum addressing). For example, if each element

in the database is replaced as xi → yi, then reading the QRAM

consists of the operation

N−1
∑

i=0

αi|i〉Q1 |0〉Q2 →
N−1
∑

i=0

αi|i〉Q1 |yi〉Q2 ; (A5)

cf. Eq. (1). Thus, the same QRAM can be reused to perform a

superposition of queries to a different data set. This is partic-

ularly useful in the context of QDCs, as multiple users could

be running different algorithms that require access to different

classical data sets. The QDC can cater to all of these users by

overwriting the QRAM’s classical data between queries from

different users.
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b. Classical data, quantum addressing

In contrast to the previous definition, writing to QRAM for

the case of classical data and quantum addressing is not well

defined. To illustrate this, we propose a possible definition for

writing in this situation, then show that it ultimately reduces

to a probabilistic version of the classical writing procedure

described above.

We suppose that the QRAM’s classical data are stored in

a quantum memory, i.e., each classical datum xi ∈ {0, 1} is

encoded in a qubit as |xi〉, so that the full database consists of

the product state
⊗

i |xi〉Di , where Di denotes the ith cell of the

memory. The writing procedure consists of first specifying a

quantum address
∑

i αi|i〉Q1 . Then, coherently conditioned on

the state of the Q1 register, one prepares another qubit Q2 in

the state |yi〉 with yi ∈ {0, 1}, then swaps this state with the ith

cell of the memory,

∑

i

αi|i〉Q1 |yi〉Q2

⎡

⎣

N
⊗

j=1

|x j〉D j

⎤

⎦

→
∑

i

αi|i〉Q1 |xi〉Q2

⎡

⎣|yi〉Di

⊗

j �=i

|x j〉D j

⎤

⎦. (A6)

In general, this operation leaves the data registers entangled

with the Q1 and Q2 registers. As such, tracing out the Q1 and

Q2 registers leaves the database in a mixed state, where with

probability |αi|2 one finds that ith entry has been overwritten

as xi → yi. To achieve the same result, one could instead

simply have randomly chosen to overwrite the ith element ac-

cording to the distribution |αi|2. Therefore, the use of quantum

addressing and classical data does not confer an advantage

over the case of classical addressing and classical data.

c. Quantum data, classical addressing

In this situation the QRAM holds quantum data, i.e., an

N-qubit quantum state. The writing operation consists of spec-

ifying a classical address i and a new single-qubit state |φ〉Q2 ,

then swapping this state with the ith qubit in the QRAM’s

memory. In particular, if the QRAM initially holds a product

state
⊗

j |ψ j〉D j , then this writing procedure enacts the opera-

tion

|φ〉Q2

⎡

⎣

⊗

j

|ψ j〉D j

⎤

⎦ → |ψi〉Q2

⎡

⎣|φ〉Di

⊗

j �=i

|ψ j〉D j

⎤

⎦. (A7)

Note that in the case where the quantum data consists of a

product state, this operation does not entangle the Q2 and Di

registers. For general quantum data, however, this operation

may leave these registers entangled, such that the data can be

left in a mixed state when the Q2 register is traced out.

d. Quantum data, quantum addressing

In this situation the QRAM holds quantum data, i.e., an

N-qubit quantum state. The writing operation consists of first

specifying a quantum address
∑

i αi|i〉. Then, coherently con-

ditioned on the state of the Q1 register, one prepares another

FIG. 7. QDC for a general algorithm U . In this example, QDC

could serve as a pool of the explicit oracle construction that is needed

for the algorithm U .

register Q2 in the state |φi〉, then swaps this state with the ith

cell of the memory. In the case where the QRAM initially

holds a product state
⊗

j |ψ j〉D j , then this writing procedure

enacts the operation

∑

i

αi|i〉Q1 |φi〉Q2

⎡

⎣

⊗

j

|ψ j〉D j

⎤

⎦

→
∑

i

αi|i〉Q1 |ψi〉Q2

⎡

⎣|φi〉Di

⊗

j �=i

|ψ j〉D j

⎤

⎦. (A8)

We note that reading quantum data is a special instance of

the above process where |φi〉 = |0〉 for all i. This operation

generally leaves the Q1 and Q2 registers entangled with the

data registers Di.

APPENDIX B: COMPUTING

1. General discussions about oracles

One of the most important applications of QDC is quantum

computation. In the minimal definition of QDCs, we could use

the QRAM as a remote service center providing oracles for

the user. Many famous quantum algorithms, such as Quantum

Principle Component Analysis, require the construction of

oracles to reach the quantum advantage [65]. QRAM could

provide substantial benefits regarding interfaces between the

classical and the quantum world, serving as a natural hard-

ware realization of the quantum oracle. Moreover, a hybrid

QRAM-QROM construction will provide an optimal choice

of the hardware-time overhead. Thus, one could imagine that

the quantum computation is performed on the user side, and

QDCs will serve as the source of the oracle. Connected by

quantum networks, the user will call QDCs multiple times to

complete the algorithm.

Here we will give a general discussion about the hardware-

time cost of using QDC as a resource of oracle in a minimal

setup (see Fig. 7).

If we assume that a general quantum algorithm U has the

time cost and the qubit cost given by

TU = TU (L, ǫ, θ0, θU ),

NU = NU (L, ǫ, θ0, θU ), (B1)

032610-7



JUNYU LIU, CONNOR T. HANN, AND LIANG JIANG PHYSICAL REVIEW A 108, 032610 (2023)

depending on the problem size L, the precision ǫ, and the col-

lections of other hyperparameters θU and problem parameters

θ0. Say that the time cost of the algorithm itself is expressed

by the query complexity, and the corresponding oracle is pre-

pared by QRAM itself multiple times. We assume the QRAM

cost as

TQ = TQ(L, ǫ, θQ),

NQ = NQ(L, ǫ, θQ), (B2)

with the QRAM parameter θQ. Finally, we define the quantum

network cost

TI = TI (L, ǫ, Ltot, θI ),

NI = NI (L, ǫ, Ltot, θI ), (B3)

with the total length Ltot and the quantum network parame-

ter θI . Here we are assuming that the oracles are prepared

remotely with the total length Ltot, and transformed to the user

with the quantum network. So the total cost is given by

Ttotal(L, ǫ, θ0, Ltot, θU , θQ, θI )

= TU (L, ǫ, θU ) × (TQ(L, ǫ, θQ) + TI (L, ǫ, Ltot, θI )),

Ntotal(L, ǫ, θ0, Ltot, θU , θQ, θI )

= NU (L, ǫ, θU ) + NQ(L, ǫ, θQ) + NI (L, ǫ, Ltot, θI ). (B4)

Note that TU is the query complexity for the quantum algo-

rithm U . The time cost is a product, and the qubit cost is

additive. Thus, for given L, ǫ, and θ0, we could determine the

optimal choice of QDC by

(L∗
tot, θ

∗
U , θ∗

Q, θ∗
I )L,ǫ,θ0

= argmin(Ltot,θU ,θQ,θI )Fcost, (B5)

where

Fcost = Fcost(Ttotal, Ntotal) (B6)

is a given cost function based on the architecture of QDC.

This is a specific example of the cost function algorithm

equation (A2) for quantum computation.

Here we maintain the quantum algorithm mentioned here

to be abstract. All quantum algorithms with the oracle re-

quired in the QRAM form could be adapted here. In Sec. B 2

we discuss a specific quantum algorithm, quantum signal

processing (QSP) for Hamiltonian simulation [57–59], where

quantum oracles are needed to address the information of the

Hamiltonian. According to Sec. B 2, if we use the qubitization

algorithm, and L is the number of Pauli terms appearing in the

Hamiltonian, we have

QDChardware cost

QDChardware cost

=
O(log L) + O(log maxi dim 	i )

O(log L) + O(log maxi dim 	i ) + O
(

L
M

+ log L
)

≈
O(M log L)

O(L)
. (B7)

We are comparing the hardware cost completely from the user

side: in the QDC case, since the user does not have QDC,

the user has to implement QRAM or QROM by himself or

herself. M is the parameter for the hybrid QRAM or QROM

architecture. Moreover, we assume that L is large (note that

this will happen if we are assuming nonlocal Hamiltonians

and the Hamiltonian might be dense, which is not always true

in the quantum chemistry tasks). In this case, using QDC, we

could provide a significant hardware cost saving from the user

side: when M does not scale with L, the saving could be even

exponential.

Moreover, we make some discussions about QDCs used

for multiple users in Sec. B 3. Furthermore, another potential

saving of the hardware could come from the fact that the

entanglement cost of accessing an N-element data set with

a QDC is only log N , where we have implicitly used in the

above example, and it has been already manifest in the T -gate

example.

2. Quantum simulation and oracles from QDCs

A perfect example of running QDCs as oracle resources

could be the quantum simulation algorithm, which has

wide applications in quantum many-body physics, quantum

field theory, and quantum computational chemistry with po-

tential advantages compared to classical computers. Aside

from the so-called Trotter simulation scheme [66–68], many

quantum simulation algorithms are oracle-based, such as algo-

rithms based on quantum walks [69,70], multiproduct formula

[71,72], Taylor expansion [73,74], fractional-query models

[75], and qubitization and quantum signal processing (QSP)

[57–59]. Those oracles could naturally be implemented by the

QRAM model (see, for instance, [25]).

We will give a short introduction to the qubitization and

QSP algorithms and discuss their costs. We will consider

the linear combination of unitaries (LCU) decomposition as

the input. We assume that the Hamiltonian is given by the

following unitary strings:

H =
L

∑

i=1

αi	i. (B8)

For simplicity, we will assume that αi > 0. This is called the

LCU model, and 	is are usually the Pauli matrices. We intro-

duce the ancilla states |i〉 : i = 1, 2, . . . , L with the number of

qubits log L. Furthermore, we implement the following state

|G〉:

|G〉 =
L

∑

i=1

gi|i〉, |gi|2 =
αi

λ
, λ =

L
∑

i=1

αi (B9)

and

R = 2|G〉〈G| − I,

U =
L

∑

i=1

|i〉〈i| ⊗ 	i,

W = RU . (B10)
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One could show that

H

λ
= (〈G| ⊗ I )U (|G〉 ⊗ I ),

〈G|W n|G〉 = Tn

(

H

λ

)

, (B11)

where Tn is the nth Chebychev polynomial. The Hamiltonian

evolution e−iHt could be given by

e−iHt = J0(−λt ) + 2

+∞
∑

n=1

inJn(−λt )Tn

(

H

λ

)

. (B12)

Namely, one could separately add all terms together, and it

requires

O

(

λt log
1

ǫ

)

, (B13)

number of queries to the operation U and |G〉. Here t is the

Hamiltonian evolution time, and ǫ is the error. Implementing

|G〉 is a quantum oracle operation, which could be operated

by QRAM or QROM. For simplicity, we will mostly discuss

the query complexity made by |G〉, and U itself would cost

O(LC1) primitive gates, where C1 is the maximal complexity

of implementing a single Pauli term 	i. In terms of gate

counting, G itself would cost O(L) primitive gates. A more

complicated construction, which is called the quantum signal

processing (QSP) [57], could reduce the above product in

query complexity to addition

O

(

λt + log
1

ǫ

)

. (B14)

Another ingredient of our analysis would combine the

quantum network. Quantum network, based on hardware real-

izations of quantum teleportation and quantum cryptography,

is expected to be efficient for transferring quantum states and

their associated quantum data across long distances with guar-

anteed security [10]. Specifically, we will discuss the quantum

repeaters, architectures that could significantly overcome the

loss errors and depolarization errors for quantum communica-

tion with photons (see, for instance, [12]). For cost estimation,

we will follow the discussion in [13]. There are three different

generations of quantum repeaters, and we will, for simplicity,

discuss them together. A universal measure of cost overhead

for those quantum repeaters is the cost coefficient C2 (C′ used

in [12]), which could be understood as the qubit × time cost

for the transmission of one Bell pair per unit length. Now,

we will assume that for the quantum teleportation task of the

data center, we use Ltot length. The characteristic time is given

by tch (which is different from three different generations of

quantum repeaters).

For our minimal definition of the quantum data center,

with QDCs serving as the remote oracle resources, one could

compute the total time cost Ttotal and the qubit cost Ntotal as the

following:

Ttotal = O

(

λt + log
1

ǫ

)

× [O(LC1) + O(M log2 L) + tch],

Ntotal = O(log L) + O(log max
i

dim 	i ) + O

(

L

M
+ log L

)

+ O

(

log L ×
C2

tch

Ltot

)

. (B15)

We will give the following explanations to the above formula:

(1) The first term in the time cost, O(λt + log 1
ǫ

), is

exactly the query complexity of QSP. Based on our mini-

mal definition of the quantum data center, the cost of each

query, including the quantum communication cost and the

QRAM/QROM cost.

(2) The term O(LC1) in the time cost corresponds to the

cost of each U in the QSP algorithm.

(3) The parameter M corresponds to the parameter of the

hybrid QRAM-QROM construction [24,25], which is a way to

unify the hardware-time cost. A pure QRAM would cost O(L)

qubits in O(log L) time, while QROM would cost O(log L)

qubits in O(L log L) time. With the tunable parameter M, the

hybrid construction would cost O(log L + L/M ) qubits within

O(M log L) time, which could reduce to QRAM with M = 1

and QROM with M = L. This is how the O( L
M

+ log L) term

comes in the second term.

(4) The form of the oracle |G〉 is identical to the amplitude

encoding oracle, which could reduce to the QRAM definition

(the data-lookup oracle) with O(log L) time cost overhead

(without postselection) or O(1) time cost overhead (with post-

selection) [25]. Here, for simplicity, we are using the case

without postselection. Thus, aside from the hybrid QRAM-

QROM time cost O(M log L), we have an extra O(log L)

factor, which gives the O(M log2 L) factor in Ttot.

(5) The term O(log L × C2

tch
Ltot ) comes from the definition

of C2 in quantum repeaters, followed by the actual qubits and

the corresponding maximal possible Bell pairs we are using

when doing teleportation [13].

As long as we know the exact setups of QDCs, we could

decide the resources easily based on our requirement as de-

scribed by the general setup. Assuming a cost function Fcost,

one could determine the set of hyperparameters both in quan-

tum communication and quantum simulation by

M∗, L∗
tot, other hyperparameters, . . . = arg min Fcost. (B16)

Finally, we mention that QDCs could potentially provide

transducers to transform different types of quantum data, for

instance, from digital qubits to analog qubits. Since various

different forms of qubits have their own advantages and chal-

lenges, it is necessary to consider hybrid quantum systems.

For example, if we wish to combine quantum computation

performed in the superconducting qubit systems, and quan-

tum communication provided by transformations of optical

photons across long distances in QDC and its users, quantum

transducers might be necessary; see, for instance, [76]. In

this example, since the quantum simulation algorithms could

be performed by superconducting qubits, while the quantum

network could be realized by optical photons, the quantum

transducer is needed.

Finally, we consider the case where we count only the

hardware cost from users. In the case where we do not have

QDCs, the users have to implement QRAM or QROM by

themselves in the quantum simulation algorithm. Thus, in the

case where users have access to QDCs, we could subtract

the hardware contribution from QDC. We could compute the

hardware cost ratio between the case where we have QDCs,
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and the case where we do not have QDCs (QDC). The answer

is

QDChardware

QDChardware

=
O(log L) + O(log maxi dim 	i )

O(log L) + O(log maxi dim 	i ) + O
(

L
M

+ log L
)

≈
O(M log L)

O(L)
, (B17)

where we take the large L limit. Thus the L-dependent term

will be dominant. We could see that, especially when M is

not scaling with L, this will be an exponential saving of the

hardware cost for QDC users.

3. QDC for computing: Multiple users

In this section we discuss a simple situation where QDC

has multiple users and discuss its usage.

Consider the case where multiple users want the same

answer of a quantum algorithm. For simplicity, we assume

the answer should be classical such that it is able to be

copied to multiple users (the result could also be quantum,

but then we have to use approximate quantum cloning). We

define the hardware cost of the quantum algorithm U for a

single user as fU (θ0, θU ) where θ0 is the problem parameter,

and θU is the hyperparameter of the algorithm. Say that we

have k users, and for each user, the network cost of the

hardware is fI (θ0, θI ) where θI is the hyperparameter of the

algorithm. Thus, without QDC, calculations are performed

independently from each user, and the total hardware cost

scales as

f (θ0, θU ) = k fU (θ0, θU ). (B18)

With the QDC, the hardware cost will scale as

f (θ0, θU , θI ) = fU (θ0, θU ) + k fI (θ0, θI ). (B19)

Thus, the condition of the advantage of QDC is given by

fI (θ0, θU )

fU (θ0, θI )
≪

k − 1

k
, (B20)

and so we could define the ratio

r =
k

k − 1

fI (θ0, θI )

fU (θ0, θU )
. (B21)

The smaller r is, the more useful QDC should be. The optimal

r could be given by

r∗(θ0, k) =
k

k − 1
min
θU ,θI

fI (θ0, θU )

fU (θ0, θI )
. (B22)

Here we make some comments about the above calcula-

tion. The observation of comparing the communication cost

and the computational cost is one of the original motivations

of QDCs: using teleportation, one could save computational

costs for multiple users. The r coefficient we defined here,

and its possible variant, could serve as a generic measure for

such observations. However, the task we described before is

not using the full features of QDCs. If we teleport quantum

states using the quantum network, the state itself is not copi-

able to multiple users (even though we could copy the state

approximately, but the error might be significant). One could

use classical networks instead, or encode the classical output

to quantum repeaters and make use of quantum networks.

Thus, in this case, the quantum network may not necessar-

ily be needed. It could serve as a version of QDC where

QRAM is used, but the quantum network is not (see another

example where we use the quantum network but not QRAM

in Sec. D 2). Moreover, we expect that the above generic

protocol could be improved and extended to more practical

applications in the real science or business situation, and the

simple analysis presented here could be general guidance

towards those applications.

4. Surface code and the T -gate counting

First, we give a brief comment on the alternative “smart”

usage of QDC-assisted quantum computing. In fact, the native

approach would incur a prohibitive O(
√

N ) communication

cost per query. In contrast, by outsourcing entire queries to

the QDC, one effectively funnels a large amount of “magic”

[the O(
√

N ) magic states required to implement a query] into

a very small number of transmitted qubits [the O(log N ) qubits

comprising the query’s output]. In this way, the user receives

maximal assistance from the QDC at minimal communication

cost.

Moreover, we give a brief review of the T -gate count-

ing techniques that are developed in [44] about surface-code

quantum computation. Those techniques are based on a

formalism of executions in a fault-tolerant surface-code ar-

chitecture from a given quantum circuit (quantum algorithm).

Estimations of hardware-time trade-off for given quantum al-

gorithms, using this formalism, are based on the hardware and

algorithm assumptions, which might be different compared to

other protocols (see, for instance, [77]). Further details can be

found in [44].

The formalism is established from making assumptions

about basic qubit manipulations. Simple operations such as

qubit initializations and single-patch measurements can be

regarded as easy, and they will cost 0 , while operations like

two or multiple-qubit measurements and patch deformation

will cost 1 . Here, the time unit 1 might be based on the

real hardware. In the examples of [44] we can set 1 = 1 µs.

The procedure of estimating the hardware-time cost for a

given quantum circuit is the following. First, we decompose

the target unitary operation as Clifford +T -gates. Usually,

we assume that the Clifford gates are cheap and T gates are

expensive. In fact, T gates could be regarded as classical

operations, but a given T -gate will require consumption of a

single magic state, |0〉 + eiπ/4|1〉. We need to use magic-state

distillation [42] to generate high-quality magic states in the

large-scale quantum computation.

Further treatment of a series of Clifford +T gates will

contain designing data blocks (blocks of tiles where the data

qubits live), distillation blocks (blocks of tiles to distill magic

states), and their combinations. In [44], several protocols

are concretely discussed for hardware-time costs. Finally, for

given large-scale quantum algorithms, precise designs are

presented to minimize the hardware-time cost, especially the

costs from T gates and magic-state distillation, and the costs

could be pinned down to the number of qubits, gates, and even
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FIG. 8. Dependence of the total error on the physical error rate

p for different magic-state distillation schemes according to the ap-

proximation in [44]. One could use this dependence to determine

the optimal magic-state distillation scheme for a given number of

T -gate costs. In our example we want the total error to be smaller

than 10−2 (desired). Following the orders from up to down, we have

14-2 (blue), 15-1 (red), 116-12 (brown), and 225-1 (green) different

distillation protocols showing in the plot as solid lines, compared to

the dashed line 10−2.

hours of time costs from assumptions of . In the T -gate

example in the main text, we point out that QDCs could

serve as a T -gate factory and could reduce the T -gate counts

significantly.

Moreover, we discuss some details about the calculation in

the main text with the help of [44]. Based on the setup of qubit

numbers and the required target failure probability, the main

takeaways from this analysis are as follows. First, a 116-to-12

magic-state distillation scheme is sufficient, as the probability

of logical error in the distilled magic state is <10−10, hence

the total probability that any of the 108 magic states is faulty is

<1%. Once the distillation scheme is chosen, the total number

of surface code tiles (210) and cycles (11d × 108) required

by the algorithm can be determined, and hence the minimum

code distance can be calculated. For the above parameters,

a distance d = 27 is required to keep the total logical error

probability below 1%. This translates into a cost of 306 000

physical qubits and a runtime of 7 h (assuming each surface

code cycle takes 1 µs). These costs constitute a baseline for

our later comparisons. In Fig. 8 we are presenting the total

failure probability of computations for different magic-state

distillation schemes, depending on different error rates of de-

vices p. Following [44], we are using the following formulas

to estimate the total error:

total error(p)14−2 ≈ 7p2,

total error(p)15−1 ≈ 35p3,

total error(p)116−12 ≈ 41.25p4,

total error(p)225−1 ≈ 35(35p3)3, (B23)

before the total error meets 1. This figure could directly reveal

the proper choice of the magic-state distillation schemes. For

instance, in our case, we are demanding the total error to be

smaller than 10−2. When the number of T gates is 108, the

116-to-12 magic-state distillation scheme is sufficient.

Now, in the same situation of the main text, we make

an analysis on the pure hardware savings depending on the

FIG. 9. QDC-assisted code distance (a) and the relative running

time (b) depending on the delay time. The relative quantities are

measured against the situation without QDC. The red dashed line

represents the threshold where QDC has the same performance as

the situation without QDC.

delay factor and the delay time. In Fig. 9 we investigate

the code distance d , the hardware cost ratio (the number of

qubits used in the QDC situation divided by the one without

QDC), and the time cost ratio (the time cost used in the QDC

situation divided by the one without QDC), depending on the

delay factor or the actual delay time, assuming 1 µs per code

cycle. Since the delay factor is not related to the choice of

magic-state distillation schemes, in the QDC situation, we

keep the scheme the same (the 15-1 protocol). We could see

that when the delay factor is high, namely, we have a relatively

large waiting time from the quantum communication, we are

not able to obtain a significant advantage from using QDC.

However, if we assume that the quantum communication is

fast and the delay factor is small, we are able to save more

hardware and time by using QDC. For instance, when the

delay factor � 21 [� O(10 µs) for the delay time], we could

set the code distance from d = 27 to d = 25. When the delay

factor � 1910 (� O(1 ms) for the delay time), the QDC could

outperform the situation without QDC measured by hardware

overhead. When the delay factor � 83 [� O(100 µs) for the

delay time], the QDC could outperform the situation without

QDC measured by time overhead.

APPENDIX C: COMMUNICATION

In the context of quantum communication, QDCs can be

used to guarantee privacy, with a variety of potential appli-

cations. The essential feature of the QDC that enables this

privacy is the ability of QRAM to perform queries to data

032610-11



JUNYU LIU, CONNOR T. HANN, AND LIANG JIANG PHYSICAL REVIEW A 108, 032610 (2023)

in superposition. By secretly choosing to perform classical

queries or superposed queries, then examining the results,

users can determine whether other parties (including the

QDC) may have tampered with the queries.

This basic idea is operationalized in the Quantum Private

Queries (QPQ) protocol of [26], which we describe below.

This protocol allows users to access classical data with privacy

guarantees, and this same idea can be applied to enable effi-

cient blind quantum computation [60] (also described below).

Both of these protocols can be directly implemented using a

QDC.

1. Quantum Private Queries

A QDC can be directly used to implement the quantum

private queries protocol of [26]. In the protocol, a user (Alice)

wants to access some classical data that is stored in a remote

database (held by Bob). Alice wishes to access the data with-

out revealing to Bob which data elements she has accessed.

At the same time, Bob wants to maintain the privacy of his

database, sending Alice only the information she requests.

The protocol of [26], Quantum Private Query (QPQ), guar-

antees both user and database privacy by storing the data in

QRAM. To access the ith element of a length-N database,

Alice prepares a log N-qubit register in the state |i〉 and trans-

mits this state to Bob. Then Bob uses this state as input to

a QRAM query, so that the corresponding classical data, xi,

are encoded in an output qubit register. Both the input and

output registers are then returned to Alice. As such, database

privacy is guaranteed because Bob must transmit only one

element of the data back to Alice. To guarantee user privacy,

Alice randomly chooses to send either initial state |i〉 or a lure

state (|i〉 + |0〉)/
√

2 to Bob (which she chooses is unknown to

him). By performing measurements on the states Bob returns,

Alice can ascertain whether or not Bob has attempted to learn

the value of i. Thus, Alice can guarantee her privacy.

The implementation of this protocol with a QDC is not

hard. The QDC consists of a QRAM, so the QDC simply

plays the role of Bob in the protocol. Moreover, QDC pro-

vides an application of the QPQ protocol through the quantum

network.

Now we quantify the protocol more precisely. In fact, in-

stead of considering the states |i〉 and (|i〉 + |0〉)/2, we could

consider more general states [26]. Bob needs to make choices

in one of the two following scenarios:

|SA〉 = | j〉Q1
⊗

1
√

2
(| j〉Q2

+ |r〉Q2
),

|SB〉 =
1

√
2

(| j〉Q1
+ |r〉Q1

) ⊗ | j〉Q2
, (C1)

where SA,B are made by the joint states of two queries: Q1 and

Q2. All possible operations from Bob could be summarized

by two unitaries: U1 and U2. U1 (U2) acts on the query space

Q1 (Q2), the associated register system R1 (R2), and Bob’s

ancillary system B (now we could understand it as Bob’s

QDC). If Bob is honest, the algorithm of Bob is to make use of

QRAM, uploading the information from Q2 to registers, and

the states in Q2 will not be changed. If not, Bob’s remaining

system Q2 will be entangled with the rest at the end. One could

compute the final state of Alice:

ρℓ( j) ≡ TrB[U2U1|�ℓ( j)〉〈�ℓ( j)|U †
1 U

†
2 ], (C2)

where ℓ = A, B, and

|�ℓ( j)〉 = |Sℓ〉Q1Q2
|0〉RB. (C3)

Moreover, the final state of Q2 is given by

σℓ( j) ≡ TrQ1Q2R1R2
[U2U1|�ℓ( j)〉〈�ℓ( j)|U †

1 U
†
2 ]. (C4)

One could quantify the amount of information Bob could ob-

tain from Alice by the mutual information IB. We will use the

Holevo information associated with the ensemble {p j, σ ( j)},
where p j = 1/N is the probability for choosing j, and σ ( j) =
[σA( j) + σB( j)]/2 is the final state of Q2, since Alice has an

equal probability to choose ℓ = A, B. Thus one could obtain

[78]

IB � cǫ1/4
p log2N. (C5)

Here c is a constant, c � 631, and ǫp is the maximal probabil-

ity where Alice finds that Bob is not cheating. Namely, if we

use 1 − Pℓ( j) to denote the probability where Bob will pass

Alice’s test, then Pℓ( j) � ǫp. As a summary, I is a measure of

how honest Bob could actually be, and ǫp is a result of Alice’s

test. The above inequality is originated from the information-

disturbance trade-off and the Holevo bound [27]. The ǫ1/4
p

dependence is coming from repetitively taking the square root

between amplitudes and probabilities in quantum mechanics.

Now we relate ǫp by the number of queries appearing in

the QPQ protocol. Let us assume that Alice has Q queries

independently sent to Bob. Note that for multiple queries,

if there is at least one time when Alice finds that Bob is

cheating, Alice will know that privacy is not guaranteed. So

the probability of Alice cannot find Bob is cheating among QB

times in all Q times, is given by (1 − ǫp)QB , where ǫp is the

maximal probability where Alice finds that Bob is cheating in

a single time. When QB increases, (1 − ǫp)QB = a will decay

from 1 to an O(1) number a where 1 − a is not ignorable, and

we assume that QB ≪ 1/ǫp. In this case, we have

QB =
log a

log(1 − ǫp)
≈

log 1
a

ǫp

= O

(

1

ǫp

)

. (C6)

Now, we get

IB � O
(

Q
−1/4
B log N

)

. (C7)

Thus, we see that for larger QB, if Alice does not find Bob

is cheating, then Alice could be more confident that Bob has

less mutual information. One can also assume that Bob picks

a cheating strategy by QB ∼ Qα , where 0 � α � 1 will imply

how many times Bob is cheating during the whole process. So

we have

IB � O(Q−α/4 log N ). (C8)

When designing the QDC associated with QPQ, we could

introduce a joint cost measurement among time, space, and

privacy. Similar to the analysis about quantum signal process-

ing, we write the costs for the QDC when implementing QPQ
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as

Ttotal = O(QM log N ) + O(Qtch ),

Ntotal = O

(

N

M
+ log N

)

+ O

(

log N ×
C2

tch

Ltot

)

, (C9)

where N is the number of qubits, Q is the total number of

queries Alice has sent, M is the parameter in the hybrid

QRAM/QROM construction, tch is the teleportation time per

query, C2 is the teleportation qubit × time cost for the trans-

mission of one Bell pair per unit length, and Ltot is the total

length during teleportation. For the mutual information IB, one

could understand IB as the privacy cost, by defining Ptotal as a

monotonically decreasing function of IB, since the smaller IB,

the larger privacy we are requiring. For simplicity, we could

define Ptotal = 1/IB. It does not matter how we choose the

monotonic function, since a redefinition of the function could

be absorbed to the definition of the cost function Fcost. More-

over, one could also understand IB as part of the hardware and

the time cost, since we could write

Q = O
(

I
−4/α

B log4/αN
)

. (C10)

If we demand a fixed value of IB, we could adapt Q into the

hardware and the time cost. The larger Q is, the higher costs

are required:

Ttotal = O
(

M × I−4
B log4/α+1N

)

+ O
(

tch × I−4
B log4/αN

)

,

Ntotal = O

(

N

M
+ log N

)

+ O

(

log N ×
C2

tch

Ltot

)

. (C11)

The total cost estimation of QDC associated with QPQ will be

a joint measurement among Ttotal, Ntotal, and Ptotal.

Note that in the main text, we discuss the combination

of QPQ with the quantum secret sharing protocol. The orig-

inal proposal about quantum secret sharing given in [9]

is based on the entanglement property of the Greenberger-

Horne-Zeilinger (GHZ) state, and it is a quantum scheme for

sharing classical data since it relies on the measurement result.

Moreover, in [8], a quantum scheme for sharing quantum data

has been proposed, which is more suitable in our context.

The paper [8] constructs a [(k, n)] threshold scheme, where

a quantum state is divided into n shares, while any k of them

could completely reconstruct the state, but any k − 1 of them

cannot. It was shown that as long as n < 2k, the construction

is possible, and the explicit scheme has been constructed. In

our case, a single Alice could divide the information to n

QDCs. We could assume arbitrary k such that n < 2k. Based

on the practical purposes, a more specific setup of k might be

used. A joint analysis of the multiparty quantum communica-

tion parameters might set the security standard for a given set

of hardware, which we defer for future research.

Finally, we mention that there are studies about limitations

and insecurity concerns about concepts that are related to

QPQs. In fact, there are no-go theorems [49–51] about the

imperfection of certain quantum computation and communi-

cation schemes. The QPQ protocol does not violate the no-go

theorems [51] since the setup is different. In QPQ, we do not

have the security requirement required for the no-theorem,

where the user Alice cannot know the private key of QDCs,

since QDCs do not have private keys. On the other hand, it will

be interesting to understand better how those studies could

potentially improve the capability of QDCs.

2. Efficient blind quantum computation

A QDC can be directly used to implement the efficient

blind quantum computation protocol of [60]. In blind quantum

computation, a user, Alice, wants to perform a quantum com-

putation using Bob’s quantum computer without revealing to

Bob what computation has been performed. Reference [60]

shows how this is possible through a simple application of

the QPQ protocol. Bob holds a length-N database stored in

QRAM, where each entry in the database corresponds to a

different unitary operation that he can perform on his quan-

tum computer. Alice tells him which operation to perform

by sending a log N-qubit quantum state |i〉, indicating that

Bob should apply the ith unitary operation, Ui. Bob applies

the operation without measuring the register (i.e., he applies

a coherently controlled operation UBob =
∑

i |i〉〈i| ⊗ Ui) and

then sends the state back to Alice. To protect her privacy, Alice

periodically sends lure states and measures the states returned

to her. If Bob attempts to cheat, Alice will be able to detect it.

The implementation of this protocol with a QDC is simple,

as we have already shown that a QDC can implement the

QPQ protocol. In this case, though, the QDC also requires a

universal quantum computer in order to perform the computa-

tion. Thus, the efficient blind quantum computation protocol

could be understood as an extension of QPQ with extra powers

in quantum computation. When estimating the computational

cost for QDC, one should include the computational complex-

ity of the quantum operation Ui, while other analyses stay the

same as QDC associated with QPQ.

3. Final comments on multiparty private

quantum communication

Private quantum communication refers to the possibil-

ity of transmitting quantum information without revealing

this information to eavesdroppers. If multiple parties are

communicating over a quantum network, eavesdroppers may

nevertheless be able to learn who has sent information and

who has received it, even if they cannot determine what that

information was. Multiparty private quantum communication

refers to a stronger notion, where eavesdroppers can neither

learn what information was communicated nor which users

were communicating to which others. To our knowledge, this

notion of multiparty private quantum communication and the

corresponding protocol is unique in our paper.

This protocol constitutes private multiparty quantum com-

munication because (1) the use of secret sharing means that

no QDC can learn what information is being communicated,

and (2) the use of Quantum Private Queries means that no

QDC can learn which user B j is accessing the information

transmitted by Ai. A crucial assumption in the protocol is that

the QDCs are noncooperating. If the QDCs cooperate, they

could work together to reconstruct the secret. To mitigate this

problem, the number of parts each secret is divided into can

be increased (along with the number of QDCs). In this way,
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FIG. 10. Quantum compression with QRAM. (a) Compression procedure. The bucket-brigade QRAM consists of a binary tree of quantum

routers [24], with the N-qubit quantum memory located at the bottom of the tree. An excitation initially stored in the memory is routed up and

out of the tree, such that its initial position is first encoded in the states of the quantum routers, then in the state of an external register. The

excitation is routed up through the tree using the routing circuit shown in (b). The action of this circuit is shown diagrammatically in (c). We

note that this compression procedure is a straightforward extension of the routing procedure described in Ref. [24], which provides a more

detailed description of QRAM and quantum routing.

revealing the secret would require cooperation between an

increasingly large number of QDCs. We comment on the dif-

ference between multiparty private quantum communication

and so-called covert quantum communication [79]. Covert

quantum communication refers to a stronger notion, where

eavesdroppers cannot even detect whether any information

has been transmitted in the first place. In the protocol of [79],

Alice and Bob are assumed to share a random, secret key,

and the quantum information is sent via optical photons from

Alice to Bob at one of N times specified by the key. The

probability that an eavesdropper can distinguish between this

situation and that where no information is communicated at all

(i.e., when no photons are sent) is shown to decrease as 1/
√

N .

In the limit of large N , the eavesdropper cannot determine

whether any information has been sent.

Note that the multiparty private quantum communication

scheme is teleporting quantum states, not classical informa-

tion. Those quantum states are naturally merged with quantum

private queries where the security is guaranteed quantumly,

making the usage of superposition of addresses in QRAM.

Moreover, an important technicality regarding the last step

of the protocol is that the QDCs are storing quantum data,

and, in general, the act of accessing these data can perturb the

quantum database (a consequence of the no-cloning theorem).

The QDC could, in principle, detect this perturbation and use

this information to infer which user B j is accessing the infor-

mation transmitted by Ai. To prevent this, we suppose that the

quantum data are accessed as follows. In addition to sending a

state |i〉 specifying which element to access, each user B j also

sends a quantum state ρ j to the QDC. The QDC then swaps ρ j

with the state stored at location i in the memory. If ρ j is chosen

to be a maximally mixed state, this data access procedure has

no backreaction on the database; from the perspective of each

QDC, the states stored in the database always look maximally

mixed.

APPENDIX D: SENSING

1. Quantum data compression

In this section we describe how QRAM architectures can

be used to implement the unary-to-binary compression de-

scribed in our main text, which could be used for quantum

sensing. In particular, we show that the compression oper-

ation can be implemented using a modified version of the

bucket-brigade QRAM archiecture [17,18]. In the following,

we assume familiarity with this QRAM architecture; we refer

unfamiliar readers to Ref. [24], which provides a recent, self-

contained review.

The basic compression scheme is illustrated in Fig. 10.

Suppose a single excitation is stored in one of N different

cells in the QRAM’s quantum memory (or in a superposition

of multiple different cells). The procedure in the figure allows

one to coherently extract the position of the excitation using

a modified version of the bucket-brigade QRAM’s binary-tree

routing scheme. Specifically, the excitation is routed upward

from the quantum memory at the bottom of the tree to the

root node at the top. As the excitation is routed upward, its

original position is encoded into the states of the quantum

routers comprising the tree. This encoding is accomplished

using a simple modification to the quantum routing circuit of

Ref. [24], shown in Figs. 10 (b) and 10(c). Subsequently, the

position information is extracted from the routers and stored

in an external log N-qubit register, exactly as in the usual

bucket-brigade approach [17,18,24].

In this way, QRAM enables us to convert the unary infor-

mation of the photon’s position into a more compact binary

representation of log N qubits. That is, the scheme in Fig. 10

implements the mapping |ψunary〉 → |ψbinary〉 described in this

Appendix. As a result, the state of N-mode memory (as-

sumed to lie within the single-excitation subspace) can be

compressed to log N qubits. Generalization to multiexcitation

subspaces is straightforward; the procedure can be repeated

to extract multiple excitations from the memory, such that the

k-excitation subspace can be compressed into k log N qubits.

Additionally, the scheme in Fig. 10 can also be used to im-

plement the operation U that coherently extracts the address of

an excitation stored in the QRAM’s quantum memory. To do

so, first, the compression of procedure in Fig. 10(a) is applied:

N−1
∑

i=0

αi|i〉Q′
1 |0〉Q2

⎡

⎣

N
⊗

j=1

|δi j〉D j

⎤

⎦

→
N−1
∑

i=0

αi|i〉Q′
1 |1〉Q2

⎡

⎣

N
⊗

j=1

|0〉D j

⎤

⎦, (D1)

where here the labels Q1, Q2, and D j , respectively, denote the

external log N-qubit register, an external qubit used to hold

the extracted excitation (not shown in Fig. 10), and the jth

cell of the quantum memory. Then a series of CNOT gates are

used to copy the address information stored in register Q1 into
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another external log N-qubit register, denoted Q1,

→
N−1
∑

i=0

αi|i〉Q1 |i〉Q′
1 |1〉Q2

⎡

⎣

N
⊗

j=1

|0〉D j

⎤

⎦. (D2)

Finally, the compression procedure is run in reverse in order

to return the excitation to its original location in memory:

→
N−1
∑

i=0

αi|0〉Q1 |i〉Q′
1 |0〉Q2

⎡

⎣

N
⊗

j=1

|δi j〉D j

⎤

⎦. (D3)

The Q′
1 and Q2 registers can subsequently be discarded.

Finally, we comment on how QDC-assisted distributed

sensing could provide benefits on the entanglement cost.

Suppose that two or more physically separated users probe

some system, such that a quantity of interest is encoded in

an entangled state shared between them. If local operations

do not suffice to measure this quantity, then quantum in-

formation must be transmitted between the users. If each

user has N qubits of quantum data, then N entangled pairs

will be required to transmit the information in general. In

certain situations, this entanglement cost can be greatly re-

duced using a QDC. For example, if the N-qubit states are

guaranteed to lie in the single-excitation subspace, then they

can be transmitted using only log N entangled pairs using the

unary-to-binary compression described above. This is the case

for quantum-assisted telescope arrays [80], where quantum

networks are used to enable optical interferometry. In this

context, a single optical photon arrives at one of multiple

telescopes in superposition, with its arrival time and frequency

unknown. Supposing that the photon arrives at one of N

unknown time-frequency bins, Refs. [81,82] show that unary-

to-binary compression enables the optical phase difference to

be extracted using only log N entangled pairs. QDCs could

be directly used to implement this compression. In fact, using

a QDC to implement the compression is more hardware ef-

ficient than the approach proposed in Ref. [82]. In that work

the authors consider the case where a photon arrives at one

of Tbin different time bins and in one of R different frequency

bands, and they describe a procedure that uses O(R log Tbin)

qubits to compresses the photon’s arrival time and frequency

information. The same compression can be achieved with

a QDC using only O(R) + O(log Tbin) qubits as follows. At

each time step, any incoming photon is stored in one of

R different memory qubits according to its frequency band.

These R qubits constitute the QDC’s quantum memory, and

the QDC performs unary-to-binary compression scheme de-

scribed above to compress this which-frequency information.

If the photon arrived at the present time step, it is now stored

at a definite location [namely, register Q2 in Eq. (6)]. The

presence of this photon can then be used to control the binary

encoding of the which-time information, as in Ref. [81]. Alto-

gether, this procedure requires O(R) qubits for the QDC and

its quantum memory, plus an additional O(log Tbin) qubits to

hold the compressed which-time information, hence the total

hardware cost is O(R) + O(log Tbin) qubits. When counting

the communication time cost, the savings will be more drastic.

More sophisticated compression protocols can enable further

reduction in entanglement cost. If each mode of an M-mode

system is populated with a photon with probability p, then

the quantum data can be transmitted as few as MH (p) qubits,

where H (p) is the binary entropy, using a scheme for Schu-

macher coding [52]. Such schemes would further reduce the

entanglement cost. Moreover, a QDC equipped with quantum

sorting networks (a generalization of QRAM) can implement

Schumacher coding in polylogarithmic time [56], enabling

improved detector bandwidth.

2. Channel discrimination using QDCs

In the main text, we discuss various aspects of QDC re-

alizations with both QRAM and quantum communications.

However, QDCs could still be made without either QRAM

or quantum communications. Here we give a simple exam-

ple from quantum sensing, where QRAM is not necessarily

needed.

The estimation and discrimination of quantum channels are

natural problems in quantum sensing (see [83–87]). Following

[87], one of the simplest problems is the following channel

discrimination problem: say that we have two distributions �b

with b = 0, 1. For a given b, we wish to find out the value of

b by accessing the quantum channel

Eb = exp(iθbH ) θb ∼ �b, (D4)

with minimal numbers of times. (For the qubit setup in this

paper, we could specify H as Pauli X . For higher dimen-

sional channel discrimination, see [85].) One could define

the channel discrimination protocol by the following circuits.

The quantum (coherent) protocol corresponds to the following

circuit:

Q = Eb,N

N−1
∏

ℓ=1

(VℓEb,ℓ), (D5)

where N is the total number of queries, and Eb,ℓ corresponds to

ℓth copy of the channel Eb. A series of unitaries Vℓ will define

the protocol (one could specify it by QSP angles; see [87]).

Say that we define the input state to be |ψinput〉 and the output

state to be |ψoutput〉, the success probability is

p = max
V,ψinput,ψoutput

|〈ψoutput|Q|ψinput〉|2. (D6)

For the incoherent (classical) protocol, we could perform N

different measurement. Say that for the ℓth measurement, we

expect the input |ψinput,ℓ〉 and the output |ψoutput,ℓ〉, and we

will have the ℓth probability,

pℓ = |〈ψoutput,ℓ|VℓEb,ℓ|ψinput,ℓ〉|2, (D7)

and the protocol could be specified by the majority vote

[87]. Moreover, one could specify the ξ -hybrid protocol as

performing a length-ξ coherent protocol N/ξ times, and the

result could be determined by the majority vote of N/ξ tri-

als. It is shown that when the channel is noiseless (�′
bs are

Dirac function distributions), coherent protocols always have

the advantage over incoherent protocols. However, when the

channel is too noisy, incoherent protocols might be better

[87]. Thus, the hybrid protocols might be useful when we

increase N .

If the user wants the quantum sensing to have high pre-

cision, they might have to go to the large N regime. In the
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above example, precision δ is the difference between the mean

of the distribution �1 and �2. It is proved that [87] in the

noiseless case, the optimal N scales as 1/δ. Moreover, the

unitaries V = {Vℓ} might be hard to construct and design. In

those cases, QDC might be useful.

The protocol with QDC could be defined as the follow-

ing. On the user side, the user could generate the channel

Eb, j , and the user could also send the information about the

distribution �b to a QDC. The QDC could generate a series

of unitaries {Vℓ} and design the optimal hybrid ξ protocol.

Each time when the state passes through the channel Eb, j ,

one could teleport the state by the quantum network to the

QDC, and QDC will apply Vℓ on the state and teleport it

back. The measurement could be done either by the QDC or

by the user. The majority vote could either be done classi-

cally with O(N/ξ ) complexity, or quantumly by measuring

O(N/ξ ) times in the computational basis. The QDC-assisted

channel discrimination protocols will have advantages when

the user finds it hard to design the optimal circuits

V = {Vℓ}.
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