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progress toward their realization, are reviewed. Various near-term proposals to overcome the limits
to the communication rates set by point-to-point quantum communication are also discussed.
Finally, the manner in which quantum repeaters fit within the broader challenge of designing and
implementing a quantum internet is overviewed.
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I. INTRODUCTION

Following its rapid growth this century, the Internet has
become an invaluable socioeconomic fixture, inextricable
from almost all facets of day-to-day life. Access to high-
speed Internet, the ability to send and receive digital infor-
mation across the globe at almost the speed of light, has
transformed from a luxury to a utility. However, the current
Internet will not be sustainable or scalable without future
innovation (Leon-Garcia and Steenstrup, 2021). It was esti-
mated in 2022 that there are currently 7 × 109 connected
internet of things devices online. This number is projected to
increase to 2.54 × 1010 by 2030 (Howarth, 2021). As the
number of devices increases exponentially over time, the
energy consumption in optical communication also grows
exponentially, thereby contributing to climate change. The
amount of local computing power needed to monitor and
control network traffic also grows exponentially. The task of
service and network management is thus becoming more and
more complex. To move things forward, new concepts such as
distributed intelligence and distributed trust (such as block-
chain) are probably needed. On the other hand, in the longer
term it is widely recognized that a quantum internet and
distributed quantum computing will complement the classical
Internet. The quantum internet will be provably secure and
could provide exponentially more computational power and
sensing capability for specific tasks.
Indeed, analogously to the Internet, a new system is steadily

emerging in theoretical literature and early experiment: the
quantum internet (Kimble, 2008), a means of transmitting
quantum information globally. While serving a different
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purpose from the classical Internet, this new paradigm may
prove disruptive in its own way. We dedicate this review to the
progress that has been made in designing and building the
quantum internet, focusing largely on its main building block,
quantum repeaters. In addition to the basic theoretical concepts
required to understand the components of the quantum internet,
we survey its more technical architectural requirements as well
as the experimental advances toward its implementation.
While classical information is often encoded digitally (as

sequences of 0s and 1s, usually represented in electronic
signals), it can also be housed in quantum mechanical states,
which abide by different rules. The quantum states encoding the
bits 0 and 1,mathematically represented by vectors and denoted
as j0i and j1i (the computational-basis states), can correspond
to a variety of physical systems. Among the most popular and
useful quantum information carriers is light, the state of the
electromagnetic field associated with one or multiple photons.
Unlike the analogous classical states, quantum states

can be superposed like waves. For instance, equal combina-
tions of j0i and j1i include jþi≡ð1=

ffiffiffi
2

p
Þðj0iþj1iÞ and j−i≡

ð1=
ffiffiffi
2

p
Þðj0i − j1iÞ, the conjugate-basis states. Measuring a

conjugate-basis state in the computational basis collapses
the superposition, resulting in j0i or j1i at random with equal
probability, a manifestation of a more general postulate of
quantum mechanics known as Born’s rule. The fact that the
outcome of this measurement is probabilistic rather than
deterministic is predicted byHeisenberg’s uncertainty principle.
In addition to quantum superposition, Born’s rule, and

Heisenberg’s uncertainty principle, the formalism of quantum
mechanics allows for subtle quantum correlations, named
entanglement, to exist between remote physical systems. For
instance, two distant photons that are entangled may be in a
so-called singlet state ð1=

ffiffiffi

2
p

Þðj01i − j10iÞ, which can exhibit
stronger-than-classical correlations upon measurement. Not
only is it impossible to independently describe the state of each
photon in the singlet, but when measured along any common
axis the two photons always show opposite results. According
to Schrödinger, entanglement is the essence of quantum theory,
but it is far from a theoretical curiosity. The existence of
nonclassical correlations associated with entangled states has
been proven in several experiments via Bell tests (Brunner
et al., 2014; Miller, 2016), which led to three experimental
physicists, Alain Aspect, John Clauser, and Anton Zeilinger,
being awarded the Nobel Prize in Physics in 2022.
Furthermore, in the last few decades researchers have shown
that entanglement is a powerful resource in quantum informa-
tion processing, enabling many unusual applications that are
impossible or impractical with only classical resources.
The quantum technologies enabled by our continuously

evolving ability to understand, generate, manipulate, and
entangle delicate quantum systems are the premise behind
what is commonly referred to as the second quantum revolution
(Berry, 1998;Dowling andMilburn, 2003). In the first quantum
revolution, which occurred in the last century, lasers and
transistors (devices built upon the underlying principles of
quantum mechanics) played a crucial role in global economic
growth. Now we are already able to demonstrate primitives or
complete protocols for the quintessential applications of
quantum information: quantum cryptography, which is the
unconditionally secure communication between parties, and

quantum computation, which is a computing method for
exceeding the best-known scaling of certain classes of classical
algorithms.
These and other quantum information tasks can be accessed

remotely if embedded within a quantum internet: a global
network of quantum information processors, namely, sources
of quantum states, executors of quantum gates, and devices for
quantum measurements (Wehner, Elkouss, and Hanson, 2018;
Awschalom, 2020). Such a network can also provide secure
access and enhance the performance of these applications of
quantum information.
The security underlying the classical Internet is based on

computational conjectures, which makes it vulnerable to
hacking and eavesdropping. A quantum computer poses a
threat to the contemporary cryptosystem because Shor’s
factoring algorithm (Shor, 1997) offers a way to break
standard public-key encryption schemes, including Rivest-
Shamir-Adleman (RSA), Diffie-Hellman, and elliptic curve
cryptosystems within short timescales. Owing to the extensive
experimental progress in quantum computing over the last few
decades, its threat is now widely acknowledged by many
governments and organizations (NIST, 2021). While certain
classical solutions have been proposed to counter the threat,
such as postquantum cryptographic systems, these are still
conjectured to be secure only against quantum attacks. Indeed,
three candidate postquantum cryptosystems in the National
Institute of Standards and Technology (NIST) competition
have already been easily cracked by a personal computer
(Townsend, 2022). In reality, quantum key distribution (QKD)
is the only known way to allow the unconditionally secure
transmission of information, that is, a security founded in
tested laws of physics and mathematical proofs (Bennett and
Brassard, 1984; Ekert, 1991; Xu et al., 2020; Curty, Azuma,
and Lo, 2021). However, commercialized fiber-based point-
to-point QKD is limited to a distance of less than 500 km,
whereas satellite-to-ground QKD, which is intended to extend
the communication distances, requires expensive components
such as satellites and large telescopes. The quantum internet
promises to significantly extend the range of QKD and other
cryptographic protocols, thereby securing global communi-
cation and transactions.
In particular, a quantum internet will permit secure access to

cloud-based quantum computing. Major information technol-
ogy firms such as Google, IBM, Intel, Microsoft, and Amazon
are actively constructing their own quantum processors on the
way to universal, scalable, and fault-tolerant quantum com-
puters. These companies are working toward this goal along-
side dedicated quantum-computing start-up companies, which
belong to a newly forming ecosystem of quantum startups.
Companies such as IBM1 have already put small-scale quantum
processors online for external access (Castelvecchi, 2017). The
history of conventional computers suggests that the first few
years in the quantum-computing epoch will see only a few
large-scale quantum computers in the world. This means that
users will have to engage with the devices through classical

1This was followed by other companies (including ionQ, Quan-
tinuum, Quandela, and Xanadu) proposing cloud accessible plat-
forms based on either ion traps or photonics, which are potentially
more promising platforms for remote access using quantum channels.
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or quantum networks. With the help of innovative protocols for
blind quantum computing (Broadbent, Fitzsimons, and
Kashefi, 2009), a future quantum internet will allow users to
submit their jobs anywhere in the world privately and securely.
Quantum networking is also a crucial ingredient in distrib-

uted quantum computing, which allows separate quantum
computers to cooperate on an algorithm. At their early stages,
quantum processors will be limited in size and complexity; to
achieve greater computing power, they will likely need to be
networked through quantum channels, with quantum infor-
mation flowing between them. In this way, quantum network-
ing is important even for short-distance communication
between quantum computers. Other protocols enabled or
improved by the quantum internet include quantum telepor-
tation (Bennett et al., 1993), quantum fingerprinting
(Buhrman et al., 2001), quantum sensing, clock synchroniza-
tion (Jozsa et al., 2000; Komar et al., 2014), and the linking of
distant optical telescopes for sharper images (Gottesman,
Jennewein, and Croke, 2012).
Conceptually it is known that sending quantum information

(i.e., qubits) can lower the amount of required communication
in distributed information processing tasks, in comparison to
sending classical information (bits). The study of the amount
of required quantum communication is called quantum
communication complexity (Brassard, 2003). Incidentally,
the classical communication cost required in quantum infor-
mation processing is also an important subject (Lo, 2000).
Building a quantum internet requires harnessing quantum

states of light. Even in the distant future, the photon (or a state
of multiple photons) will likely be the information carrier of
choice in quantum communication, as it can function as a
“flying” qubit (as opposed to matter-based qubits, which are
fixed in space)whileminimally interactingwith its environment.
By encoding information in photonic degrees of freedom,
quantum information can be transmitted through optical fibers
or in free space over long distances with little decoherence.
Despite the advantages of light, there is enough absorption

and scattering of photons in the media where they propagate
(processes that lead to optical attenuation) that makes loss the
key physical hurdle in the construction of a quantum internet.
In a standard single-mode optical fiber close to the standard
telecommunication wavelength of 1550 nm, the attenuation is
0.2 dB=km (Fibre Optic Association, 2019). This means 1 of
every 100 photons survives a journey of 100 km on average.
Recently ultralow-loss (ULL) optical fibers were commer-
cialized with a loss as low as 0.15 dB=km (Corning, 2021).
These sorts of losses in optical channels yield fundamental
limits to the rate at which two parties can establish a secret
key with a point-to-point QKD protocol, given by the
Takeoka-Guha-Wilde (TGW) bound (Takeoka, Guha, and
Wilde, 2014a) and the Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound (Pirandola et al., 2017), which are discussed in
Secs. IV and VI.
Nevertheless, quantum networks based on such point-

to-point QKD links have already been built all over the
world. Examples of ground-based fiber networks include
the Tokyo QKD network in Japan (Sasaki et al., 2011), the
Secure Communication Based on Quantum Cryptography
(SECOQC) network in Europe (Peev et al., 2009), the
2000 km Shanghai-Beijing network in China (Y.-A. Chen

et al., 2021), and the European Quantum Communication
Infrastructure network by the 27 European Union (EU)
member states (European Commission, 2022). Additionally,
ground-to-satellite quantum transmission has been performed
over thousands of kilometers of free space. This line of
research has demonstrated that long-distance quantum com-
munication on a global length scale is feasible with current
satellite technology; see Y.-A. Chen et al. (2021). Several
theoretical papers envisioned a satellite-based quantum
repeater network (Boone et al., 2015; Gündoğan et al.,
2021; Khatri et al., 2021). However, because their foundation
is point-to-point QKD, existing quantum networks rely on
trusted relay nodes to achieve information-theoretically secure
communication. In these nodes, optical signals are measured
to yield a classical output, and new optical signals are then
generated and sent out. This classical output is vulnerable to
hacking and eavesdropping, meaning security is achieved only
if the nodes can be trusted.
The architectural challenge of a long-distance quantum

network is therefore to overcome the fundamental limit of
point-to-point quantum communication, achieving high-rate
secure communication without using trusted relay nodes. Note
that conventional signal boosters, repeaters, extenders, and
amplifiers do not work for quantum signals because of the
well-known quantum no-cloning theorem (Dieks, 1982;
Wootters and Zurek, 1982), which states that an unknown
quantum state cannot be reliably copied. However, it is still
possible to combat loss and noise without cloning quantum
states; this is achieved with the help of quantum repeaters.
In quantum repeater protocols, instead of sending quantum

signals (photons) directly from one user to another, a sequence
of intermediate nodes are set up. There certain strategies can
be used to combat errors induced by losses and other forms of
noise, including entanglement distillation or purification,2 as
well as quantum error detection and correction. While
practical quantum repeaters are not possible with existing
technology, research toward this goal is active and involves
many different fields of inquiry. Several matter-based systems
exist to facilitate their implementation, including atomic
ensembles, which can function as quantum memories; quan-
tum dots, which can be used as on-demand sources of a host of
photonic states; and cavity QED, which can be used to
enhance light-matter interactions. Since photons are often
used as flying qubits and quantum memories often involve
matter, the quantum interface between light and matter is
regarded as a key ingredient in quantum repeaters.
In addition to the many subfields of physics involved in the

effort to build quantum repeaters, the pursuit of a quantum
internet more generally is an interdisciplinary theoretical and
experimental endeavor involving mathematicians, computer
scientists, and engineers. Classical tools from network top-
ology, protocol design, information theory, and error correc-
tion, in addition to topics within quantum information such as
state preparation, quantum channels and measurements, and
quantum error correction, are all needed for investigations into
the quantum internet.

2
“Entanglement distillation” and “entanglement purification”

are used to refer to the same operation; see Secs. III.A.4.a.ii
and III.A.4.b.iii for the definition of the operation.
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Several of the topics discussed in this review have been the
focus of (or at least have gotten a mention in) previous
reviews. We build on this body of work while discussing
newer theoretical and experimental developments to keep pace
with the dynamic field of quantum communication. For
instance, the review by Sangouard et al. (2011) chiefly
covered quantum repeaters whose memories were imple-
mented with atomic ensembles, while Munro et al. (2015)
focused on the primitives used in quantum repeaters. Munro
et al. (2015) and Muralidharan et al. (2016) also categorized
quantum repeater protocols into relevant generations that
differ in performance and technological requirements. In
our review we revisit this categorization, sorting repeaters
based on the associated mechanisms for suppressing losses
and errors. This gives us a more natural structure to understand
newly emerging classes of repeaters, notably memoryless,
error-corrected, and all-photonic repeaters, which have not
been extensively featured in the literature. In addition to our
discussion of full-fledged repeaters, we dedicate a portion of
our review to simpler protocols believed to be sufficient to
beat repeaterless bounds, an important milestone for long-
distance quantum communication. Xu et al. (2020) already
tackled some of these ideas with an approach centered around
their security in realistic implementations; in our review, we
focus on performance, chiefly in terms of key distribution
metrics. Kimble (2008) and Wehner, Elkouss, and Hanson
(2018) reviewed the progress toward the realization of the
quantum internet. Notably Wehner, Elkouss, and Hanson
(2018) introduced stages of development for the quantum
internet, aligning with applications that grow in technological
complexity. Here we continue this discussion but also intro-
duce an information-theoretic framework to derive fundamen-
tal limits of quantum communication over a quantum network,
with views that differ from Pirandola et al. (2020) and Azuma
et al. (2021). In Table I, we provide a list of the previously
mentioned reviews together with other works on applications
of quantum communication that are not covered here.
The rest of this review is organized as follows. In Secs. II

and III.A, we present the preliminaries required to understand
quantum repeaters and the physics behind the quantum
internet. In Sec. III.B, we overview the conceptual

frameworks of quantum repeaters and use them to organize
the existing proposals. In Sec. III.C, we discuss an important
class of memoryless repeaters that intersect with the latest
generations of theoretical proposals. In Sec. IV, we review
various near-term protocols, such as an adaptive version of
measurement-device-independent QKD (Lo, Curty, and Qi,
2012) and twin-field QKD (Lucamarini et al., 2018), which
are regarded as milestones in the path to outperforming the
PLOB bound en route to quantum repeaters. In Sec. V, we
describe experimental advances toward optical-fiber-based
quantum communication schemes featuring quantum repeat-
ers. Section VI is dedicated to a discussion of the quantum
internet, including the quantum and private capacities of
quantum networks and upper bounds on the capacities.
Some concluding remarks are provided in Sec. VII. For
clarity, we present a List of Symbols and Abbreviations.

II. PRELIMINARIES

In this section, we summarize relevant background con-
cepts, including qubits, entanglement, and possible photonic
encodings. Repeater primitives, including teleportation and
entanglement swapping, are left to Sec. III.A. Standard
references, including Nielsen and Chuang (2010), can be
used to supplement this part of the review.

A. Qubits

A qubit, the quantum mechanical analog of the classical bit
and the fundamental unit of quantum information, is another
name for a two-dimensional complex Hilbert space. A pure
state jψi of any qubit can be written in the computational basis
through

jψi ¼ aj0i þ bj1i; ð1Þ

where a; b∈C and jaj2 þ jbj2 ¼ 1. Setting a ¼ 1=
ffiffiffi
2

p
and

b ¼ �1=
ffiffiffi

2
p

gives the following states in the conjugate basis:

j�i≡ 1
ffiffiffi

2
p ðj0i � j1iÞ: ð2Þ

TABLE I. Related reviews.

Reference Topic

Sangouard et al. (2011) Quantum repeaters based on atomic ensembles and linear optics
Reiserer and Rempe (2015) Cavity-based quantum networks with single atoms and optical photons
Heshami et al. (2016) Quantum memories and applications
Atatüre et al. (2018) Material platforms for spin-based photonic quantum technologies
Awschalom et al. (2018) Quantum technologies with optically interfaced solid-state spins
Ruf et al. (2021) Quantum networks based on color centers in diamond
Munro et al. (2015) Primitives of quantum repeaters
Muralidharan et al. (2016) Generations of quantum repeaters
Kimble (2008) Introductory work to the quantum internet
Wehner, Elkouss, and Hanson (2018) Developmental stages of the quantum internet
Xu et al. (2015) Measurement-device-independent quantum cryptography
Xu et al. (2020) Realistic QKD
Broadbent and Schaffner (2016) Quantum cryptography beyond QKD
Fitzsimons (2017) Blind quantum computing
Pirandola et al. (2020) Advances in quantum cryptography
Azuma et al. (2021) Tools for quantum network design

K. Azuma et al.: Quantum repeaters: From quantum networks to the …

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045006-5



In quantum mechanics, the global phase of a state is irrelevant;
thus, one can parametrize any pure qubit through two
parameters a ¼ cosðθ=2Þ and b ¼ eiϕ sinðθ=2Þ, revealing its
Bloch sphere representation (illustrated in Fig. 1), where θ and
ϕ are the polar and azimuthal angles, respectively. A qubit is
realized experimentally by associating it with a two-dimen-
sional space or subspace of a physical system. Although we
encounter matter (chiefly spin) qubits in this review, we are
particularly interested in encodings in photonic systems,
which we survey in Sec. II.E.
Interactions with the environment or preparation errors can

diminish the purity of a qubit, that is, introduce classical
uncertainty. In this case, we must turn to a representation of
the qubit as a statistical mixture of pure quantum states. The
general description of a state, which includes mixed states, is
given by a positive operator ρ with unit trace, called a density
operator. The density operator of a pure state jψi is
ρ ¼ jψihψ j, with Tr½ρ2� ¼ 1, while a density operator ρ with
Tr½ρ2� < 1 describes a mixed state. In the case of a qubit, it can
be written as

ρ ¼ ρ00j0ih0j þ ρ01j0ih1j þ ρ10j1ih0j þ ρ11j1ih1j; ð3Þ

where the populations ρ00 and ρ11 are real and add to unity
(ρ00 þ ρ11 ¼ 1), the coherences ρ01 and ρ10 are complex
conjugates (ρ01 ¼ ρ�10), and det½ρ� ¼ ρ00ρ11 − ρ01ρ10 ≥ 0.
Unitary transformations, operators U with U†U¼UU†¼1,

describe reversible, probability-preserving operations on
qubits, i.e., quantum gates. The Pauli gates are defined through

X ¼ j0ih1j þ j1ih0j; ð4Þ

Y ¼ −ij0ih1j þ ij1ih0j; ð5Þ

Z ¼ j0ih0j − j1ih1j: ð6Þ

Z, X, and Y effect a phase flip, a bit flip, and a combination
of the two on the qubit, respectively. A unitaryU is a Clifford

gate if it maps any Pauli gate P onto a Pauli gate under
conjugation; that is,UPU† is also a Pauli gate. An example of
a non-Pauli Clifford gate is the Hadamard gate, which is
defined by

H ¼ 1
ffiffiffi

2
p ðj0ih0j þ j0ih1j þ j1ih0j − j1ih1jÞ: ð7Þ

An example of a non-Clifford gate is the π=8 or T gate, which
is given through

T ¼ j0ih0j þ eiπ=4j1ih1j: ð8Þ

The previous discussion is generalizable to systems of
multiple qubits by taking tensor products; see Sec. II.C.
A measurement process on a quantum system in a state

ρ is generally described by a set of Kraus (linear) operators
fMigi satisfying M†

iMi ¼ 1. Performing the associated
measurement results in an outcome i with probability pi ¼
Tr½M†

iMiρ� and leaves the state in MiρM
†
i =pi. This is a

formalization and generalization of Born’s rule. For the
particular case of a destructive Pauli measurement on a qubit,
we can associate M0 ¼ hv0j and M1 ¼ hv1j with the eigen-
states jv0i and jv1i of the corresponding operator; Z-basis
measurements (corresponding to the Pauli Z) are specified by
the Kraus operators fh0j; h1jg, while X-basis measurements
(corresponding to the Pauli X) are specified by the Kraus
operators fhþj; h−jg.
We also consider a quantum channel N that deterministi-

cally converts a given state ρ into a state σ. This kind of
transformation is useful for describing the actions of noise and
transmission channels on quantum systems. Any quantum
channel has an operator-sum representation σ ¼ N ðρÞ ¼
P

iMiρM
†
i specified by a set of Kraus operators fMigi.

Another representation is

σA0 ¼ N A→A0ðρAÞ ¼ TrE0 ½UAEðρA ⊗ j0ih0jEÞU†

AE�; ð9Þ

where UAE is a unitary operator acting on Hilbert spaceHA ⊗

HE ¼ HA0 ⊗ HE0 and j0iE is a state of an auxiliary system
(environment) E. The mapN must be completely positive and
trace preserving (CPTP).
Three examples of common qubit errors described by

channels are phase-flip, bit-flip, and depolarizing noise,
written as

N ðρÞ ¼ ð1 − pÞρþ pZρZ; ð10Þ

N ðρÞ ¼ ð1 − pÞρþ pXρX; ð11Þ

N ðρÞ ¼ ð1 − pÞρþ p

3
ðXρX þ YρY þ ZρZÞ; ð12Þ

respectively, where 0 ≤ p ≤ 1 corresponds to an error prob-
ability or channel strength. A pure-loss bosonic channel is
written by using a unitary operator UAE defined as

UAEaAU
†

AE ¼ ffiffiffi
η

p
aA0 þ

ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

aE0 ð13Þ

FIG. 1. Bloch sphere representation of a qubit. The ðx; y; zÞ
components of a Bloch vector (displayed as an arrow) give the
expectation values of the Pauli observables X, Y, and Z. For
instance, points ð0; 0; 1Þ, ð1; 0; 0Þ, and ð0; 1; 0Þ correspond to
eigenstates j0i; jþi ¼ ðj0i þ j1iÞ=

ffiffiffi

2
p

and j þ ii ¼ ðj0i þ
ij1iÞ=

ffiffiffi

2
p

of the Pauli operators Z, X, and Y with the eigenvalue
of þ1, respectively.
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in the Heisenberg representation. In Eq. (13) ax is the
annihilation operator on bosonic system x and 0 ≤ η ≤ 1 is
the transmittance of the channel. The pure-loss bosonic
channel is described as the CPTP map that is obtained by
regarding UAE of Eq. (9) as the one defined in Eq. (13) and
j0iE of Eq. (9) as the vacuum state of the bosonic system E.
The pure-loss bosonic channel is used as a model for an
optical fiber: in this case, the transmittance η is related to the
length L of the fiber through η ¼ e−L=Latt , with the constant
Latt denoting the attenuation length.

B. Quantum no-cloning theorem

The quantum no-cloning theorem (Dieks, 1982; Wootters
and Zurek, 1982) entails that it is impossible to create a copy
of unknown quantum states. More precisely, given an
unknown state jψiA, the theorem states that there is no
deterministic quantum operation that can copy jψiA onto
system B to obtain jψiA ⊗ jψiB. Originally demonstrated for
pure states, the no-cloning theorem was later extended to
mixed states through the no-broadcasting theorem (Barnum
et al., 1996). This no-go theorem has profound implications
(helpful and unhelpful) for quantum information technologies.
While it is at the core of the security of quantum key
distribution (Bennett, Brassard, and Mermin, 1992; Koashi
and Imoto, 1998, 2002), it also precludes building quantum
repeaters analogously to classical signal extenders and,
furthermore, creates challenges in the design and performance
of quantum error-correcting codes. For example, the no-
cloning theorem makes it impossible to use a classical-like
repetition code to correct for errors acting on quantum states
and implies an upper bound of 50% on the loss that any
quantum error-correcting code can tolerate. This directly
impacts the performance of quantum repeater protocols based
on quantum error correction, as addressed in Sec. III.A.4.

C. Entanglement

Here we present the formal definition of entanglement and
introduce several important classes of entangled states.

1. Definition and properties

Entanglement [per Schrödinger, a defining feature of quan-
tum theory (Schrödinger, 1935)] refers to the impossibility of
describing certain composite quantum states through indepen-
dent specifications of their constituents. The existence of
entanglement, as guaranteed by the formalism and postulates
of quantum theory and confirmed by many experiments, has
profound physical and metaphysical repercussions, as exem-
plified by Einstein, Podolsky, and Rosen (EPR) (Einstein,
Podolsky, and Rosen, 1935) and by Bell (Bell, 1964), and since
then by numerous physicists investigating its repercussions on
increasingly rigorous footing. There are several equivalent
formulations of entanglement; see Horodecki et al. (2009). A
useful formulation for our purpose is the view of entanglement
as a resource for quantum information tasks. Entanglement
plays a central role in virtually every primitive and application
of quantum information; for us, itsmost relevant uses are for the
protocols we describe in Sec. III.A: quantum teleportation
and entanglement swapping, entanglement purification or

distillation, and quantum error correction, all of which underlie
quantum repeaters. As a nontrivial resource with respect to
local operations and classical communication (LOCC), entan-
glement cannot be increased by performing local operations
(including local quantum gates and measurements), classical
communication (including increase of classical correlation and
adaptive schemes based on classical outputs from other
parties), or a combination of the two. One can establish
quantum entanglement by interacting systems via coupling
Hamiltonians, physically distributing entangled states between
parties (such as by sending photons over fiber channels), or
performing collective measurements of observables from
different parties. The entanglement generation process depends
on the details of the physical system, as discussed in Sec. V.

2. Entanglement in bipartite states

The Hilbert space H of a bipartite system is the tensor
product of the subsystem spaces H ¼ HA ⊗ HB. A separable
bipartite pure state is a tensor product of pure states in HA

and HB,

jΨiAB ¼ jφiA ⊗ jϕiB
≕ jφiAjϕiB ≕ jφ;ϕiAB ≕ jφϕiAB; ð14Þ

with reduced density operators ΨA ≔ TrB½jΨihΨjAB� ¼
jφihφjA on subsystem A and ΨB ≔TrA½jΨihΨjAB� ¼ jϕihϕjB
on subsystem B, obtained by tracing out the nonsubscripted
system. By contrast, an entangled bipartite pure state cannot
be described as a product of states from the individual
subsystems; that is, it cannot be written in the form of Eq. (14).
Generally we can write any bipartite pure state as

jΨiAB ¼
X

i;j

cijjiiA ⊗ jjiB; ð15Þ

where cij are complex numbers with
P

i;jjcijj2 ¼ 1, fjiiAg,
and fjjiBg are orthonormal bases of the two subsystems. With
the Schmidt decomposition, we can find convenient orthogo-
nal bases fjviiAg and fjwjiBg for the two subsystems such
that the bipartite pure state can be expressed in a standard form
with a single index,

jΨiAB ¼
Xr

j¼1

ffiffiffiffiffi
pj

p jvjiA ⊗ jwjiB; ð16Þ

where pj > 0 for j ¼ 1;…; r and
P

r
j¼1pj ¼ 1. The

integer r is called the Schmidt rank. The reduced density
operators for the two subsystems are ΨA¼TrB½jΨihΨjAB�¼P

r
j¼1pjjvjihvjjA and ΨB¼TrA½jΨihΨjAB�¼

P
r
j¼1pjjwjihwjjB.

For r ¼ 1, Eq. (16) reduces to a separable bipartite pure state.
For r ≥ 2, the state jΨiAB is entangled.
In the setting of mixed states, the definition of separability

must be changed to include classical mixtures of tensor
product states,

ρAB ¼
X

j

pjσ
ðjÞ
A ⊗ τ

ðjÞ
B ; ð17Þ
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where fpjg is a probability distribution and σ
ðjÞ
A and τ

ðjÞ
B are

density operators. Since ρAB can freely be generated by Alice
and Bob with LOCC, the state must include only classical
correlations and no entanglement. This definition includes
pure-state separability as a special case; therefore, one can say
that any state that cannot be written in the form of Eq. (17)
(that is, as a convex combination of product states) is
entangled.
Quantifying the degree of entanglement in a mixed quan-

tum state, finding an entanglement measure or monotone that
does not confuse entanglement for classical correlations and
does not increase over arbitrary LOCC operations, is a
difficult problem. For this purpose there is at one’s disposal
the Schmidt rank, concurrence, negativity, or various entropic
functions of the density operator, such as the von Neumann
entropy (Bennett, Bernstein et al., 1996). For mixed states of
two qubits, one can umambiguously compute the entangle-
ment using one of the aforementioned tools, the concurrence
(Wootters, 1998). However, characterizing entanglement for
general mixed states of higher dimensions is still an important
and active area of research; see Plenio and Virmani (2007) and
Horodecki et al. (2009) for detailed discussions of the
difficulties of quantifying entanglement and of existing
entanglement measures.
The simplest example of useful entanglement for quantum

networks is that between two qubits associated with two
parties, with HA ¼ spanfj0iA; j1iAg and HB ¼ spanfj0iB;
j1iBg. The space H is then spanned by the four orthogonal
Bell states or EPR pairs:

jΦ�iAB ¼ 1
ffiffiffi

2
p ðj0iAj0iB � j1iAj1iBÞ;

jΨ�iAB ¼ 1
ffiffiffi
2

p ðj0iAj1iB � j1iAj0iBÞ: ð18Þ

These four Bell states are equivalent up to Pauli gates:
jΦþiAB ¼ZBjΦ−iAB ¼ iYBjΨ−iAB ¼XBjΨþiAB. Tracing out
one of the qubits from any Bell state leaves the remaining
qubit in a maximally mixed state, which implies that the Bell
states are maximally entangled. We often use the Bell state to
calibrate the amount of entanglement shared between two
parties; each Bell state counts as one entangled bit or ebit of
entanglement, which can be used to teleport one qubit of
quantum information (Bennett et al., 1993); see Sec. III.A.1 for
a description of quantum teleportation.

D. Entanglement in multipartite states

We can generalize the definitions of entanglement in
Sec. II.C to systems with more than two parties. In this
setting, there are several notions of separability. For example,
a fully separable state defined over multiple subsystems
(A; B; C;…) can be written as a convex combination of
product states

ρABC��� ¼
X

j

pjσ
ðjÞ
A ⊗ τ

ðjÞ
B ⊗ γ

ðjÞ
C ⊗ � � � : ð19Þ

As in the bipartite case, a multipartite state is entangled when
the state cannot be written in the form of Eq. (19).

Two well-known families of entangled states of M > 2

parties are the Greenberger-Horne-Zeilinger (GHZ) state

jGHZMi ¼
1
ffiffiffi

2
p ðj00…0

zfflffl}|fflffl{
M

i þ j11…1
zfflffl}|fflffl{

M

iÞ

¼ 1
ffiffiffi
2

p ðj0i⊗M þ j1i⊗MÞ ð20Þ

and the W state

jWMi ¼
1
ffiffiffiffiffi
M

p ðj100…0i þ j010…0i þ � � � þ j000…1iÞ: ð21Þ

The GHZ and W states cannot be transformed into each other
through LOCC, thereby representing two different kinds of
entanglement for three or more parties (Dür, Vidal, and Cirac,
2000); see Horodecki et al. (2009).
A broad and useful class of multipartite entangled states are

the cluster states or, more generally, the graph states, which we
now describe.

1. Graph states

A graph state jGi is a multipartite entangled state associated
with an undirected graph G ¼ ðV; EÞ, with V a set of vertices
and E a collection of undirected edges fijg ¼ fjig for
i; j∈V. jGi is then defined through

jGi≡
Y

e∈E

CZ
e ð ⊗

v∈V
jþivÞ; ð22Þ

where the controlled-Z (CZ or controlled-phase) gate is a
Clifford gate defined on qubits i and j through

CZ
ij ¼ j0ih0ji ⊗ 1j þ j1ih1ji ⊗ Zj: ð23Þ

CZ
ij is symmetric over i ↔ j, i.e., CZ

ij ¼ CZ
ji ¼ CZ

fijg, and CZ
ij

and CZ
i0j0 commute for any i; j; i0, and j0.

A cluster state is a special kind of graph state whose
underlying graph G forms a lattice. Performing single-
qubit adaptive measurements on a cluster state allow for the
execution of a measurement-based quantum computation
(MBQC) (Raussendorf and Briegel, 2001). Whereas one-
dimensional (linear) cluster states allow for universal
operations on a single qubit, a cluster state of a minimum of
two dimensions is necessary to implement a universal set of
multiqubit gates, and additional dimensions are normally
needed for error correction and fault tolerance (Raussendorf,
Harrington, and Goyal, 2006, 2007; Raussendorf and
Harrington, 2007); see Terhal (2015).
An alternative specification of the graph state is given by

the stabilizer formalism: jGi is the unique simultaneous
eigenstate of all the stabilizer generator operators in S ¼
fXa ⊗ ZNa

ja∈Vg of commuting operators, where ZNa
≔

⊗v∈Na
Zv and Na is the set of all the vertices adjacent to

vertex a∈V in the graphG. We say that jGi is stabilized by S,
making it a stabilizer state analyzable within the stabilizer
formalism (Gottesman, 1997).
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A thorough and important review of discrete-variable qubit
graph states was given by Hein, Eisert, and Briegel (2004) and
Hein et al. (2006). We now distill their basic properties, which
are illustrated in Fig. 2.

• Application of local Clifford gates to a graph state is
equivalent to that of a sequence of local complementa-
tions on the underlying graph (where a local complement
of a graph G at a node a∈V is obtained by comple-
menting the subgraph of G induced by the neighborhood
Na and leaving the rest of the graph unchanged).

• Pauli Z measurement on a node decouples the node and
breaks off its incident edges.

• Pauli Y measurement on a node takes the local com-
plementation at the node and decouples the node.

• Pauli X measurement on two neighboring qubits in a
linear-cluster state decouples them but connects their
other neighbors with an edge.

• The entanglement in a connected graph state is local-

izable, meaning that it is possible to project any two
qubits in the graph into a Bell pair by performing single-
qubit (in particular, Pauli Z or X) measurements on the
other qubits.

The concept of the graph state can be generalized to
continuous-variable (CV) bosonic systems, describable in
the phase space formalism of the quantum harmonic oscillator
with position operator q and momentum operator p such that
½q; p� ¼ i (ℏ ¼ 1). In this case, there is a wealth of possible

encodings to choose from. For example, for a Gaussian graph
state (Menicucci et al., 2006) the plus state becomes the zero-
momentum eigenstate of the momentum operator p,

jþi → jp ¼ 0i; ð24Þ

while for the Gottesman-Kitaev-Preskill (GKP) encoding
(Gottesman, Kitaev, and Preskill, 2000), discussed in
Sec. II.E, the plus state becomes

jþi → jþGKPi ¼
X∞

n¼−∞

jp ¼ 2n
ffiffiffi
π

p
i; ð25Þ

where jp ¼ 2n
ffiffiffi
π

p i is the eigenstate corresponding to the
eigenvalue 2n

ffiffiffi
π

p
of the momentum operator p. For both of

these CV encodings, the CZ gate can be written as

CZ
ij → eiðqi⊗qjÞ; ð26Þ

with the position operator qi for bosonic system i. Clifford
operations on these encodings correspond to certain Gaussian
operations in phase space, which are composed of squeezing,
displacements, and rotations. In either case, one uses finitely
squeezed approximations of these states in practice. We give
more details on these states in our discussions of photonic
encodings in Sec. II.E and bosonic repeaters in Sec. III.C.2.c.

E. Photonic encodings

There are several degrees of freedom that one can exploit
when encoding quantum information into light. Each one has
its advantages and challenges. In this section we review some
well-known photonic encodings, summarizing some of this
information in Table II.
There are a few ways to categorize photonic encodings. One

is through the cardinality of the used Hilbert space. The state
space of discrete-variable (DV) encodings is spanned by a
finite number of orthogonal (more generally, linearly inde-
pendent) states, whereas continuous-variable (CV) or bosonic
encodings are spanned by infinitely (possibly countably)
orthogonal (more generally, linearly independent) states.
However, the line between the two kinds of encodings may
not always be clear: DV systems can be viewed as finite

TABLE II. Descriptions of selected photonic encodings, including the associated gate implementations. LO here means linear optics.

Single-rail encodings Dual-rail encodings

Fock state
Coherent
or cat GKP Time bin Path Polarization

Cardinality DV CV CV DV DV DV
Physical basis Vacuum,

single photon
Coherent states:
j � αi

GKP 0 and 1:
Eqs. (27) and (28)

Orthogonal
temporal modes

Orthogonal
spatial modes

Orthogonal
polarizations

Entanglement w/ LO Deterministic Deterministic Deterministic Probabilistic Probabilistic Probabilistic
Single-mode Clifford

gates w/ LO
Probabilistic Probabilistic Deterministic

(w/ squeezing)
Deterministic Deterministic Deterministic

Single-mode
non-Clifford
gates w/ LO

Probabilistic Probabilistic Probabilistic Deterministic Deterministic Deterministic

FIG. 2. Graphical rules for operations on graph states. The
effects of Pauli operations on the connections in the graph states
are shown.
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subspaces of CV spaces, and our interest in CV systems may
chiefly be to identify two-dimensional qubit subspaces.
Furthermore, in practice various imperfections and inter-
actions with the environment increase the effective dimen-
sionality of DV systems.
Another characterization of photonic encodings is in the

number of “rails.” In the more restrictive definition, a single-
rail qubit is associated with the presence or absence of a single
photon in an optical (spatial or temporal) mode. More broadly,
however, one can view single-rail encodings as those where
each state, including states of multiple photons, occupies a
single optical mode. On the other hand, a dual-rail qubit is
associated with the presence of a single photon in one of two
orthogonal modes. For a single-rail encoding, it is possible to
generate entanglement deterministically with linear-optical
resources, while linear-optical entangling operations are
necessarily probabilistic in dual-rail encodings. On the other
hand, single-qubit rotations for certain single-rail encoded
qubits may necessitate nonlinearlity (because the encoding
can be based on a superposition of different photon-number
states, i.e., energy eigenstates), while there are dual-rail
encodings where arbitrary single-qubit rotations are possible
only with linear-optical elements. See Kok et al. (2007).
The following photonic encodings have frequently been

considered within quantum information protocols:
• Time bin. A photon takes one of two paths for interfer-
ometers of different lengths. Specifically, j0i is associ-
ated with one path and j1i is associated with the other.
This encoding is suited for fiber-based communication,
as it is unaffected by birefringence in optical fibers;
however, it is difficult for two time-bin qubits to interact,
making the encoding preferred for quantum communi-
cation over computation.

• Polarization. As a dual-rail encoding, a qubit is encoded
into the polarization states of a single photon. Conven-
tionally j0i is associated with a horizontally polarized
photon, and j1i is associated with a vertically polarized
photon. All single-qubit gates can be performed deter-
ministically with wave plates and phase shifters, while
linear-optical entangling gates are probabilistic, requir-
ing beam splitters, wave plates, measurements, and
postselection. As an example of a two-qubit operation,
an implementation of the Bell measurement is given in
Fig. 3(a). This encoding prefers free-space over fiber-
based communication, as it is vulnerable to birefringence
within optical fibers.

• Path. Computational-basis states are associated with
orthogonal spatial modes. All single-qubit gates can be
performed deterministically with beam splitters
and phase shifters; as with the polarization encoding,
entangling gates with linear-optical resources are prob-
abilistic, requiring beam splitters, phase shifters, mea-
surements, and postselection. As with time-bin encoding,
path-encoded photons prefer fiber-based over free-space
communication.

• Fock. A qubit is encoded into the Hilbert subspace of a
single mode spanned by the vacuum state j0i and the
single-photon state j1i, which corresponds to a single-
rail qubit. With a phase shifter, we can rotate its Bloch
vector along the Z axis freely, but we cannot do so along

the X axis since j0i and j1i have different energies.
However, a Bell state [such as jΨ�i¼ ðj01i� j10iÞ=

ffiffiffi
2

p
]

can be deterministically obtained with a single photon
incident on a 50∶50 beam splitter. However, we can
discriminate only Bell states jΨ�i from the others, with a
50∶50 beam splitter followed by two photon detectors;
see Fig. 3(b). This encoding is sensitive to phase drifts in
a transmission channel, and thus it is preferred in free-
space over fiber-based communication.

• Coherent or cat. A qubit is encoded in the Hilbert
subspace of a single mode spanned by coherent states jαi
and j − αi, with α > 0, corresponding to a single-rail
qubit. The qubit basis states j�i are associated with cat
states ðjαi� j−αiÞ=2 ffiffiffiffiffiffi

p�
p

, with p� ≔ ð1� h−αjαiÞ=2.
They are distinguished using a photon-number-resolving
detector. This encoding is also sensitive to phase drifts in
a transmission channel, and thus it prefers free-space
over fiber-based communication.

• GKP. The computational-basis states are coherent super-
positions of infinitely many regularly spaced position
eigenfunctions (i.e., infinitely squeezed states):

j0GKPi ¼
X∞

n¼−∞

jq ¼ 2n
ffiffiffi
π

p
i; ð27Þ

j1GKPi ¼
X∞

n¼−∞

jq ¼ ð2nþ 1Þ
ffiffiffi
π

p
i; ð28Þ

where jq ¼ n
ffiffiffi
π

p i is the eigenstate corresponding to the
eigenvalue n

ffiffiffi
π

p
of the position operator q. In realistic

BS
BS

PBS

(b)(a)

DcH

DcV

DdH

DdV

Dc Dd

FIG. 3. Examples of implementations of Bell measurements.
(a) Bell measurement for polarization-encoded qubits, spanned
by horizontally and vertically polarized single-photon states jHi
and jVi. This is implemented using the application of a 50∶50

beam splitter (BS) on optical modes, followed by a polarization
beam splitter (PBS) on each of the two output modes and then by
photon counting at all the output modes. Clicks in detectors DcH
and DcV or in DdH and DdV project the received pair of the qubits
into the Bell state jΨþi ¼ ðjHijVi þ jVijHiÞ=

ffiffiffi

2
p

, while clicks
in detectors DcH and DdV or in DcV and DdH project the received
pair of the qubits into the Bell state jΨ−i ¼ ðjHijVi − jVijHiÞ=
ffiffiffi

2
p

. Notice that this Bell measurement can succeed only when the
input two optical pulses have two or more photons in total.
(b) Bell measurement for Fock-encoded qubits, spanned by the
vacuum state j0i and the single-photon state j1i. This is
implemented by the application of a 50∶50 BS on optical modes,
followed by photon counting at the output modes. A click in the
detector Dc (or Dd) at the constructive-interference (destructive-
interference) mode projects the received pair of the qubits into the
Bell state jΨþi¼ðj0ij1iþj1ij0iÞ=

ffiffiffi

2
p

[jΨ−i ¼ ðj0ij1i − j1ij0iÞ=
ffiffiffi

2
p

]. Both implementations can distinguish jΨ�i from the other
states only, and the success probabilities are thus 1=2 even in the
ideal cases.
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implementations, these unphysical infinite-energy states
are replaced by their normalizable, finitely squeezed
counterparts. All single-qubit (many-qubit) Clifford
gates, including entangling gates, are implementable
deterministically through single-mode (multimode)
Gaussian operations. Non-Clifford gates can be imple-
mented with the help of ancillary states and gate
teleportation, i.e., they are deterministic only conditional
to the availability of the ancillae.

The aforementioned encoding schemes are “digital”
because they encode a DV quantum system with a finite-
dimensional Hilbert subspace of photonic modes, even if they
are combined (Kwiat, 1997; Barreiro et al., 2005). In contrast,
we can also use the photonic modes for “analog” encoding, to
store a CV analog quantum system with an infinite-dimen-
sional Hilbert space. For example, we can encode continuous-
variable quantum information using squeezed states, which
can be measured via homodyne and heterodyne detectors with
a continuous-variable output. For quantum communication,
the continuous-variable output can be used to generate secure
secret keys (Grosshans and Cerf, 2004).
One major challenge in using CV encodings for quantum

repeaters is the suppression of loss errors. Because of the
theorem stating that Gaussian operations are of no use for
protecting Gaussian states against Gaussian errors (including
loss errors) (Niset, Fiurášek, and Cerf, 2009), we have to
introduce non-Gaussian operations [for instance, “quantum
scissors” to truncate the number-state expansion (Pegg,
Phillips, and Barnett, 1998)] or non-Gaussian ancillary
resources [for instance, GKP stabilizer codes to encode an
oscillator in many oscillators assisted by GKP ancillae (Noh,
Girvin, and Jiang, 2020)] to overcome loss errors.

III. QUANTUM REPEATERS

This section begins with a review of primitives for quantum
repeaters. This is followed by an explanation of quantum
repeater protocols through a conceptual classification based
on methods to suppress loss and operation errors. We also
review all-optical implementations of quantum repeaters.

A. Repeater primitives

Here we review quantum teleportation and entanglement
swapping as primitives for quantum repeaters. We also
summarize various tools for error suppression that are neces-
sary for quantum repeaters.

1. Quantum teleportation

Quantum teleportation is a procedure for transferring
quantum information from a sender to a distant receiver
without transferring the physical system in which it is encoded
(Bennett et al., 1993). To accomplish this, the two parties must
establish a classical communication link and preshare a
maximally entangled state. The teleportation consists of
two steps. First, the sender locally performs a joint measure-
ment between the state that she wants to transfer and her
portion of the preshared entangled state. Second, she com-
municates the measurement outcome via the classical channel
to the receiver, who must apply a local unitary operation to his

quantum state to recover the original state. There are quantum
teleportation protocols for qudits3 (Werner, 2001) and CV
systems (Braunstein and Kimble, 1998); here we focus on
qubits to illustrate the concept.
Suppose that Alice has a qubit in an arbitrary state jψiA1

that
she wants to send to Bob. Suppose also that she has already
shared a Bell state jΦþiA2B

with Bob from Eq. (18). By
performing a Bell-state measurement on her two qubits A1

and A2, that is, a projection onto one of the Bell states of
Eq. (18), shewill project Bob’s qubit onto some state. This state
of Bob’s qubit B is equal to the initial state jψi up to local
rotations that are determined by the random outcome of Alice’s
measurement as

jΦþiA1A2
→ jψiB;

jΦ−iA1A2
→ ZBjψiB;

jΨþiA1A2
→ XBjψiB;

jΨ−iA1A2
→ ZBXBjψiB: ð29Þ

To conclude the teleportation, Alice must transfer the outcome
of her measurement to Bob through a classical channel so that
Bob can undo the Pauli by-product and recover the original state
jψi. Even though Bob has a state that is locally equivalent to
Alice’s immediately after the Bell measurement, his ignorance
at that point of the precise Pauli gate he has to apply means that
Alice cannot transfer quantum information instantly toBob.The
quantum teleportation protocol therefore crucially needs
classical communication, making it limited by the speed of
light. This impossibility of faster-than-light communication
assisted by quantum entanglement is known as the no-signaling
principle (Eberhard and Ross, 1989).
Quantum teleportation allows a sender to send arbitrary

quantum information encoded into a qubit by consuming an
ebit (preshared with the receiver) and by sending 2 bits of
classical information to the receiver. This implies that dis-
tributing ebits efficiently or quickly using a quantum com-
munication network is a fundamental question.

2. Entanglement swapping

Entanglement swapping (Zukowski et al., 1993) can be
thought of as an extension of quantum teleportation where
Alice and Bob each share a two-qubit maximally entangled
state with Charlie: jΦþiAC1

and jΦþiC2B
. After Charlie

performs a Bell measurement on his systems C1 and C2,
Alice’s and Bob’s qubits end up in one of the four Bell states,
depending on the measurement outcome, as

jΦþiC1C2
→ jΦþiAB;

jΦ−iC1C2
→ jΦ−iAB ¼ ZBjΦþiAB;

jΨþiC1C2
→ jΨþiAB ¼ XBjΦþiAB;

jΨ−iC1C2
→ jΨ−iAB ¼ ZBXBjΦþiAB: ð30Þ

Although their qubits have not directly interacted, Alice and
Bob have established a maximally entangled state. This is

3Recently such high-dimensional teleportation is refocused in the
context of quantum networks (Bacco et al., 2021) thanks to
experimental progress (Luo et al., 2019; Hu et al., 2020).
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particularly useful in the context of quantum communication,
as it means that entanglement can be propagated through a
quantum network even between stationary nodes. Indeed,
entanglement swapping is the crux of quantum repeater
schemes based on heralded entanglement generation4; see
Secs. III.A.3, III.B.1, and III.B.2.

3. Idealized quantum repeaters

As shown in the quantum teleportation protocol of
Sec. III.A.1, once Alice and Bob share a Bell pair (an ebit),
Alice can send anunknown state of a qubit toBobbyLOCC; i.e.,
they can achieve quantum communication. Thus, the challenge
of quantumcommunication reducesmainly tohow todistribute a
Bell pair between Alice and Bob in practice. Flying qubits
(photons) appear to be the medium of choice for this. However,
the transmittance η of an optical fiber (and hence the ratio of
photons sent to photons received) decreases exponentially
with its length L according to η ¼ e−L=Latt of Eq. (13). In fact,
the transmittance decreases as though it is multiplied by 0.1
every 50 km in the case of typical optical fibers with an
attenuation length Latt ¼ 22 km [and even the quantum and
private capacities of the pure-loss bosonic channel (13) are
now known to both be described by − log2ð1 − ηÞ (≈η for
η ≪ 1) (Pirandola et al., 2017); see Secs. IV and VI]. Hence,
simply linking Alice and Bob directly with an optical fiber is
not enough to achieve efficient quantum communication,
especially if they are far apart.5

Here we introduce a simple example to show how a
quantum repeater protocol overcomes such an exponential
increase of photon loss with the length of an optical fiber. The
example is based on heralded entanglement generation and
entanglement swapping; it is a simplified protocol designed to
capture the main concept of the first-generation quantum
repeater protocols (Briegel et al., 1998; Duan et al., 2001;
Sangouard et al., 2011), which appears in Sec. III.B.1. The
technique is based on a concatenation allowed by the
entanglement swapping of Sec. III.A.2 that is similar to
the Duan-Lukin-Cirac-Zoller (DLCZ) protocol (Duan et al.,
2001). For simplicity, we assume that the fiber attenuation is
the only error and that all other operations are perfect.
Suppose that we have a quantum memory X that can

establish a Bell state jΦþiXx ≔ ðj0iXjHix þ j1iXjVixÞ=
ffiffiffi
2

p

with an optical pulse x, where fj0iX; j1iXg is the computa-
tional basis of the quantum memory, while jHix and jVix are

horizontally polarized and vertically polarized single-photon
states of the pulse x, respectively. We also assume that an
arbitrary state aj0i þ bj1i of the quantum memory can be
converted into the state ajHi þ bjVi of a polarization qubit if
needed. This kind of memory is an idealized version of a
quantum memory, which can be realized using two atomic
ensembles (Sangouard et al., 2011) (for example, we ignore
any multiphoton excitations that arise in practice). We also use
a linear-optical Bell measurement for polarization-encoded
qubits in Fig. 3(a). This implementation works as a probabi-
listic Bell measurement.
We can generate a Bell state between stations X and Y,

separated by a distance l, by combining such a quantum
memory, the Bell measurement, and optical fibers. To achieve
this, the party X (as well as the party Y) first establishes a Bell
state jΦþiXx (jΦþiYy) between her own (his own) quantum
memory X (Y) and an optical pulse x (y) locally and then
sends the single photon x (y) to a measuring station in the
middle of the parties over an optical fiber [modeled by
Eq. (13)]; see the schematic for entanglement generation
(EG) in Fig. 4. On receiving the pulses from the separated
parties, the measuring station performs the linear-optical Bell
measurement of Fig. 3(a) on those pulses. This Bell meas-
urement succeeds when both single photons x and y from the
separated parties arrive at the measuring station without
having been lost (during their travel over the lossy optical
fiber), and the surviving photons are projected into a Bell
state jΨþixy or jΨ−ixy, which occurs with the probability

FIG. 4. Idealized quantum repeater protocol. Three quantum
repeater nodes (corresponding to the case ofNQR ¼ 3) are located
at regular intervals between Alice and Bob, who are separated by a
distance L, with L0 ¼ L=4. The protocol starts by entanglement
generation (EG) based on the application of the linear-optical Bell
measurement of Fig. 3(a) to polarized single photons from
adjacent repeater nodes with success probability pgðL0Þ ¼
e−L0=Latt=2, followed by entanglement swapping (ES) with success
probability ps. The EG protocol establishes a Bell pair between
adjacent repeater nodes after a number of trials of the order of
hTgðL0Þi ¼ p−1

g ðL0Þ. Given halves of a pair of Bell states, the ES
protocol succeeds in swapping the entanglement after a number of
trials of the order of hTsi ¼ p−1

s . If a trial ofES fails,we need to start
again from EG to go back to the trial. Therefore, in this figure the

average of the total number of trials T
ð3Þ
tot needed to establish a

Bell pair between Alice and Bob is hTð3Þ
tot i∼hTgðL0ÞihTsi2¼

p−2
s p−1

g ðL0Þ¼2p−2
s eL=ð4LattÞ. This is of the order of the square root

of hTð1Þ
tot i, which is further of the order of the square root of hTð0Þ

tot i.

4Entanglement swapping was first experimentally demonstrated
by Pan et al. (1998); see Sec. V.H.3 for an up-to-date demonstration.
The entanglement swapping operation can also be achieved using
quantum Zeno effect, with no controlled gates required (Bayrakci and
Ozaydin, 2022).

5Note that the transmittance η of a typical fiber with a length of
500 km is about 10−10. Therefore, even if the system is designed to
achieve a private capacity − log2ð1 − ηÞ per mode with a clock rate of
10 GHz, the possible key rate is of the order of 1 bit/s, which seems to
be slow for practical applications. For instance, by consuming a
secret key obtained by running this system for 24 hours, we can send
a secret email with a size of 20 kbytes, securely, at best. Hence, about
500 km is sometimes said to be a practical distance limit of a fiber-
based point-to-point quantum communication.
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pgðlÞ ¼ e−l=Latt=2. This success event entangles the quantum
memories XY of the separated parties into jΨþiXY or jΨ−iXY
according to Eq. (30). This is called a heralded entanglement
generation protocol.
If Alice and Bob, separated by distance L, run this

entanglement generation protocol between them without
any quantum repeater, the average of the number TgðLÞ of
trials needed to obtain a Bell pair will be

hTð0Þ
tot i ≔ hTgðLÞi ¼ p−1

g ðLÞ ¼ 2eL=Latt ; ð31Þ

which grows exponentially with the distance L.
We now introduce an entanglement swapping protocol. For

simplicity, suppose that a single quantum repeater node C is
located at the midpoint between Alice and Bob, and that it
runs the aforementioned entanglement generation protocols in
parallel with Alice and Bob. Each of these entanglement
generation protocols then gives a Bell pair after trials of the
order of hTgðL=2Þi ¼ 2eL=ð2LattÞ. Once it succeeds, the
obtained Bell pair can be kept in quantum memories until
both of the parallel protocols succeed. Thus, they can obtain
Bell pairs not only between Alice and the node C but also
between the node C and Bob, after trials of the order of
hTgðL=2Þi ¼ 2eL=ð2LattÞ, thanks to the parallelization. After
receiving a classical signal to herald this successful sharing of
Bell pairs, the node C converts states of local quantum
memories into polarization qubits and then implements the
linear-optical Bell measurement of Fig. 3(a) [corresponding to
a schematic for entanglement swapping (ES) in Fig. 4]. This
works as entanglement swapping to provide a Bell state
between Alice and Bob with a success probability ps ¼
1=2 of the Bell measurement (in the ideal case). Hence, the
average of the number Ts of trials needed for the entanglement
swapping to succeed (after the success of the entanglement
generation protocols) is hTsi ¼ p−1

s . However, if the Bell
measurement fails, Alice and Bob start from scratch, i.e., from
the parallel entanglement generation protocols. Thus, the

average of the total number of trials Tð1Þ
tot needed to establish

a Bell pair between Alice and Bob is

hTð1Þ
tot i∼ hTgðL=2ÞihTsi¼p−1

s p−1
g ðL=2Þ¼ 22eL=ð2LattÞ. ð32Þ

See Sangouard et al. (2011) and Azuma et al. (2021) for
discussions on the validity of this approximation. Therefore,
by comparing Eqs. (32) and (31), we can conclude that, for a
large distance L, the existence of a single quantum repeater
node C can provide a square-root improvement over the direct
entanglement generation between Alice and Bob in the
number of trials needed.
The process for achieving this square-root improvement

with entanglement swapping can be concatenated. If Alice and
Bob use three equally spaced quantum repeater nodes, they
can achieve further square-root improvement (see Fig. 4); if
they use seven, they can have further square-root improve-
ment, etc. In particular, if Alice and Bob have NQR ¼ 2n − 1

quantum repeater nodes equally spaced between them, the

average of the total number T
ðNQRÞ
tot of trials needed to have a

Bell pair between Alice and Bob will be

hTðNQRÞ
tot i ∼ p−n

s p−1
g ðL=2nÞ ¼ 2p−n

s eL=ð2
nLattÞ

¼ 21þlog2ðNQRþ1Þe
L

ðNQRþ1ÞLatt ð33Þ

[see again Sangouard et al. (2011) and Azuma et al. (2021) for
details regarding this approximation]. This shows the ultimate
advantage of utilizing quantum repeaters: the exponential
improvement in the number of trials needed to establish
entanglement with the number of quantum repeater nodes
NQR. Even if ps < 1=2 for practical reasons, as long as ps is
independent of the distanceL, namely, constant, this exponential
improvement holds, which enables Alice and Bob to perform
quantum communication efficiently over long distances.
This simple model does not include realistic imperfections

such as memory errors and imperfect entanglement generation
and swapping operations. In practice, these errors will
accumulate and become non-negligible over longer distances.
However, thanks to the existence of error suppression mech-
anisms explained in Sec. III.A.4, we can devise several kinds
of quantum repeaters that work in the presence of not only loss
but also other such imperfections.

4. Tools for error suppression

As shown in Sec. III.A.3, there is a quantum repeater protocol
that enables Alice and Bob to achieve efficient long-distance
quantum communication, even with the use of optical fibers
impacted by photon loss. However, this protocol was idealized;
we assumed that the optical attenuation in fiber is the only
source of error and that all other operations are perfect. In
practice, there are many physical imperfections that compro-
mise the quality of the resulting entanglement. Therefore,
quantum repeater protocols need to be equipped with error
suppression mechanisms, which we discuss in this section.
It is helpful to classify error suppression techniques into

two categories: those employing deterministic error suppres-
sion [including quantum error correction (Lidar and Brun,
2013) and one-way entanglement distillation (Bennett,
DiVincenzo et al., 1996)] and those leveraging probabilistic
error suppression [including quantum error detection (Lidar
and Brun, 2013) and two-way entanglement purification
(Bennett, Brassard et al., 1996; Deutsch et al., 1996;
Briegel et al., 1998)]. The former class of techniques succeed
deterministically, meaning they do not require users to share a
heralding signal alerting each other of the success or failure of
the error suppression; note that the probabilistic nature of the
latter class necessitates users to alert each other of success or
failure via classical communication and discard the failed
instances. For networks with large spatial separation between
the nodes, the time delay associated with this classical
heralding signaling is highly relevant to the performance
of the network; for reference, a photon takes roughly 0.5 ms
to travel 100 km in an optical fiber. While deterministic
error suppression has an advantage in this regard, probabilistic
error suppression works even for states that are too noisy
to be recovered through deterministic techniques. That is,
the probabilistic techniques tend to have higher thresholds
on tolerable error or loss probabilities (Bennett, DiVincenzo
et al., 1996). We now summarize these two types of
approaches for suppressing errors.
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a. Deterministic error suppression

i. Quantum error correction

The essence of quantum error correction (QEC) is to use the
redundancy in the entanglement of many physical qubits to
encode a logical state and correct for errors. In particular, a
qubit is encoded into a two-dimensional subspace of a large
Hilbert space composed of many physical qubits rather than
directly into a single physical system. Quantum error correc-
tion is a deterministic process; it is not impacted by the delays
associated with classical heralding signals. For large-scale
quantum networks, having this determinism favorably affects
communication rates; however, physical implementations of
QEC codes are demanding due their complexity and exhibit
lower thresholds (to work) on the errors affecting the physical
qubits. These thresholds become more stringent as the variety
and magnitude of errors increase.

ii. One-way entanglement distillation

The purpose of one-way entanglement distillation protocol
(1EDP) for two distant parties is to obtain an almost
maximally entangled Bell pair from a set of noisier entangled
pairs by applying direct one-way LOCC between them. Here
one-way means that only one party has to communicate the
results during the distillation process via classical communi-
cation; there is no backward classical communication. 1EDP
is closely connected to quantum error correction (Horodecki
et al., 2009). Since there is a direct mapping from a one-way
hashing protocol (Bennett, DiVincenzo et al., 1996) [or a one-
way breeding protocol (Bennett, Brassard et al., 1996)] to a
quantum error-correcting code, we treat them as equivalent at
the protocol level. In practice, there may be subtle differences
in the error accumulation and resource counts between one-
way hashing protocols and quantum error correction.

b. Probabilistic error suppression

i. Quantum error detection

QEC codes can also be used simply to detect errors: that is,
to herald the presence of error and discard the state without
correcting the error. Quantum error detection is a probabilistic
process; as a result, it takes time to inform the relevant parties,
through a classical signal, about the outcome of the error
detection, causing additional delay.

ii. Heralded entanglement generation protocol

A widely used error detection scheme is the heralded
entanglement generation protocol (HEGP), which can gen-
erate entanglement on success and detect loss errors on failure.
Since entanglement cannot be generated under LOCC, a party
needs to generate an entangled state between a local qubit and
a flying qubit locally and to then send the flying qubit over a
quantum channel. A typical choice of a flying qubit is a
bosonic system such as a photonic state; its quantum channel
(a bosonic channel) has loss as the dominant noise process.
The goal of HEGP, then, is to generate high-quality entangle-
ment between separated parties in a heralded manner, not-
withstanding losses in the channel.
Depending on how the quantum information is encoded in

the optical modes or how the local stationary qubits are
entangled with the optical modes, one ought to choose
appropriate schemes to detect loss errors. For dual-rail

(single-rail) discrete-variable encodings, one generates entan-
glement using two-photon (single-photon) interference of
incoming optical modes from neighboring stations while
detecting loss errors according to the click patterns of the
photon detection (Duan et al., 2001; Barrett and Kok, 2005;
Childress, Taylor et al., 2006; Sangouard et al., 2011; Azuma
and Kato, 2012; Azuma et al., 2012) after the interference; see
examples in Secs. III.A.3, IV.B, and V.C. For continuous-
variable [for instance, GKP (Gottesman, Kitaev, and Preskill,
2000)] encoding, one can generate entanglement by combin-
ing the two incoming optical modes from neighboring stations
followed by homodyne measurements at the output ports. The
outcomes from the homodyne measurements provide infor-
mation about the likelihood of loss errors, which can be used
to determine whether or not the entanglement generation is
successful (Fukui, Alexander, and Van Loock, 2021).
If loss errors are detected, the heralded entanglement

generation procedure is simply repeated until the two adjacent
stations receive the confirmation of certain successful detection
patterns via two-way classical signaling. Instead of using this
time multiplexing, we could use spatial or frequency multi-
plexing to run the heralded entanglement generation protocol in
parallel so that one of the multiplexed trials will succeed with a
high probability within a constant time (Sinclair et al., 2014).

iii. Two-way entanglement distillation protocol

The purpose of two-way entanglement distillation
protocol (2EDP) or purification protocol for two distant
parties is to produce an almost maximally entangled pair
from noisier entangled pairs by using two-way LOCC
between them. 2EDP allows both parties to communicate
with each other using a classical channel, which enables them
to compare measurement results or adaptively perform oper-
ations conditioned on the outcomes from the other party.
For example, if the Bell states suffer from bit-flip errors,
ρAB ¼ ð1 − ϵÞjΦþihΦþjAB þ ϵjΨþihΨþjAB, separated parties
can use two copies of the states to obtain one pair with a
suppressed error of Oðϵ2Þ by comparing measurement out-
comes of a parity-check measurement on their own halves
(Bennett, DiVincenzo et al., 1996; Deutsch et al., 1996; Briegel
et al., 1998).We can also extend the result to suppress dephasing
errors. For general depolarization errors, we can use twirling
(Bennett, Brassard et al., 1996) or switching between phase and
bit errors (Deutsch et al., 1996) to suppress the errors.
For ideal operations, we can quickly converge to perfect

Bell pairs. In principle, we can extract entanglement with a
rate limited by the two-way distillable entanglement (Bennett,
DiVincenzo et al., 1996). In practice, however, operation
errors limit the ultimate fidelity of the distilled Bell pairs.
Various protocols have been proposed to distill entanglement
(Bennett, Brassard et al., 1996; Deutsch et al., 1996; Jiang,
Taylor, Sørensen, and Lukin, 2007; Fujii and Yamamoto,
2009; Nickerson, Li, and Benjamin, 2013; Krastanov, Albert,
and Jiang, 2019; Zhou, Zhong, and Sheng, 2020; Riera-Sàbat
et al., 2021). For example, one can use multiple copies of
imperfect Bell pairs to purify a Bell pair (Fujii and Yamamoto,
2009; Nickerson, Li, and Benjamin, 2013). One can also use a
genetic algorithm to find the optimal 2EDP (Krastanov,
Albert, and Jiang, 2019). Existing entanglement can also
enhance the performance of 2EDP (Riera-Sàbat et al., 2021).
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Since there is a direct mapping from 2EDP to quantum error
detection (Dür and Briegel, 2007), we can treat them as
equivalent at the protocol level. In practice, just as in the
relationship between QEC and 1EDP, there may be subtle
differences in error accumulation and resource counts between
quantum error detection and 2EDP.
For CV encoding, due to the Gaussian entanglement

distillation no-go theorem (Eisert, Scheel, and Plenio, 2002;
Fiurášek, 2002; Giedke and Cirac, 2002), the CV repeaters use
non-Gaussian operations in the entanglement distillation
protocols (Ralph and Lund, 2009; Fiurášek, 2010) to suppress
loss errors. Instead, we can distill entanglement using non-
deterministic noiseless linear amplification (NLA) with quan-
tum scissors (Pegg, Phillips, and Barnett, 1998; Ralph and
Lund, 2009) or other non-Gaussian filtering with single-
photon addition and subtraction operations (Fiurášek, 2010).

c. Comparison of deterministic and probabilistic quantum error

suppression

Deterministic error suppression has no corresponding
classical signaling delay. However, it imposes a threshold
of 50% on the loss of qubits or bosonic systems [associated
with the transmittance η as η > 1=2 if they are sent over a
pure-loss channel, as in Eq. (13)] (Bennett, DiVincenzo et al.,
1996; Bennett, DiVincenzo, and Smolin, 1997; Giovannetti
et al., 2003a, 2003b). Furthermore, this category of protocols
will not work at all for qubits sent over a depolarizing channel
[Eq. (12)] with a strength p > 1=4 (Bennett, DiVincenzo
et al., 1996; Bennett, DiVincenzo, and Smolin, 1997; Knill
and Laflamme, 1997), although they work for p ≲ 0.18929
with the hashing protocol (Bennett, DiVincenzo et al., 1996),
and even for p≲ 0.19130 with a concatenated coding scheme
(Fern and Birgitta Whaley, 2008). Probabilistic error suppres-
sion has an associated classical signaling delay, but it can
tolerate larger errors. In principle, it works if the transmission
probability of qubits or bosonic systems is nonzero (Bennett,
DiVincenzo, and Smolin, 1997; Pirandola et al., 2017) or if
qubits are sent over a depolarizing channel with p < 1=2
(Bennett, DiVincenzo et al., 1996; Deutsch et al., 1996). We
summarize and compare the properties of deterministic and
probabilistic error suppression protocols in Table III.

B. Generations of quantum repeaters

There are two major challenges for fiber-based quantum
communication over long distances. First, as pointed out in
Sec. III.A.3, fiber attenuation during transmission leads to an
exponential decrease in the entangled-pair generation rate.
Second, several operational errors, such as channel errors, gate
errors, measurement errors, and quantum memory errors,

severely degrade the quality of the obtained entanglement.
Unlike classical information, quantum information is encoded
as quantum states that cannot be amplified or duplicated
deterministically due to the quantum no-cloning theorem;
see Sec. II.B.
To overcome these challenges, quantum repeaters (QRs)

have been proposed for the faithful realization of long-
distance quantum communication (Briegel et al., 1998). As
exemplified in Sec. III.A.3, the essence of QRs is to divide the
total distance of communication into shorter intermediate
segments connected by QR stations, in which loss errors from
fiber attenuation can be corrected. Active error suppression
schemes are also employed at every repeater station to correct
operation errors, i.e., imperfections induced by the channel,
measurements, and gate operations. In the following, we
classify quantum repeaters according to how one suppresses
loss and operation errors [using probabilistic error suppres-
sion (Sec. III.A.4.b) or deterministic error suppression
(Sec. III.A.4.a)], which will lead to a different scaling of
quantum communication rates.
For probabilistic error suppression protocols, we need two-

way classical signaling to inform relevant repeater nodes
whether to proceed to the next step (if error suppression
succeeds) or to make another attempt (if error suppression
fails). A widely used error detection scheme to suppress loss
errors is the HEGP, as exemplified by dual-rail photonic
encoding in Sec. III.A.3. For single-rail or CVencoding, photon
click patterns or other non-Gaussian operations [such as non-
deterministic NLAwith quantum scissors (Pegg, Phillips, and
Barnett, 1998; Ralph and Lund, 2009)] may not immediately
identify loss events, but they inform us of successful sharing of
high-quality entanglement with suppression of loss errors. If
loss errors are detected or not suppressed, one simply repeats the
heralded entanglement generation procedure until the two
adjacent stations receive the confirmation of certain successful
detection patterns via two-way classical signaling. Similarly, to
achieve probabilistic suppression of operation errors, a popular
error detection scheme is the 2EDP, which consumes several
low-fidelity Bell pairs to probabilistically generate a smaller
number of higher-fidelity Bell pairs (Deutsch et al., 1996; Dür
et al., 1999). As in the HEGP, to confirm the success of
distillation or purification two-way classical signaling between
repeater stations for exchanging measurement results is
required. The time delays from the two-way classical signaling
may decrease the communication rates.
To achieve deterministic error suppression of loss errors or

operation errors, we can use quantum error correction
(Jiang et al., 2009; Fowler et al., 2010; Munro et al.,
2010; Li et al., 2013; Muralidharan et al., 2014; Azuma,
Tamaki, and Lo, 2015) or one-way entanglement distillation
(Bennett, DiVincenzo et al., 1996; Zwerger et al., 2018). The

TABLE III. Comparison between deterministic and probabilistic error suppression protocols.

Deterministic error suppression Probabilistic error suppression

Schemes Quantum error correction Quantum error detection
One-way entanglement distillation Two-way entanglement distillation

Signaling No delay Delay
Threshold to work η > 1=2 for loss of qubits or bosons η > 0 for loss of qubits or bosons

p < 1=4 at least for depolarization of qubits p < 1=2 for depolarization of qubits
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key idea is to encode a logical qubit into a block of
physical qubits that are sent through the lossy channel,
and then to use quantum error correction to restore the logical
qubit. One can also include one-way classical signaling to
assist the deterministic one-way entanglement distillation
protocols (Bennett, Brassard et al., 1996; Bennett,
DiVincenzo et al., 1996), but the additional one-way (for-
ward) classical signaling from the sender does not affect the
quantum channel capacity. Hence, all the deterministic error
suppression (even when assisted by one-way forward signal-
ing) can correct no more than a 50% loss, which is consistent
with the no-cloning theorem (Stace, Barrett, and Doherty,
2009; Muralidharan et al., 2014), and not more than 25%
depolarizing errors; see Table III. The existence of these finite
thresholds itself implies the need for quantum repeater nodes
in the case using deterministic error suppression, as such
errors tend to depend on the communication distance (Briegel
et al., 1998).
Based on the methods adopted to suppress loss and

operation errors, we can classify various QRs into three
categories, as shown schematically in Table IV. We refer to
these as first, second, and third generations of QRs
(Muralidharan et al., 2014, 2016; Munro et al., 2015) to
imply the increasing difficulty in technology with improved
performance.6 Note that the combination of deterministic
suppression of loss errors and probabilistic suppression for
operation errors, which does not appear in Table IV, is
suboptimal compared to the other three combinations.
Each generation of QRs performs best for a specific regime

of operational parameters, such as local gate speed, gate
fidelity, and coupling efficiency. We consider both the
temporal and physical resources consumed by the three
generations of QRs and identify the most efficient architec-
tures for different parameter regimes. The results can guide the
design of efficient long-distance quantum communication
links that act as elementary building blocks for future quantum
networks.

1. First-generation repeaters

The first generation of QRs uses probabilistic error sup-
pression to overcome practical imperfections; for example,
HEGP can herald successful entanglement generation while
overcoming loss errors, and 2EDP can use two-way classical

signaling to recognize successful entanglement distillation to
suppress operation errors (Briegel et al., 1998; Kok, Williams,
and Dowling, 2003; Childress, Taylor et al., 2006; Van Loock
et al., 2006; Munro et al., 2008; Sangouard et al., 2011;
Azuma et al., 2012). Since we have explained the principle of
QRs by exemplifying a simplified first-generation QR proto-
col in Sec. III.A.3, here we start by summarizing how QRs
from this generation can be used to correct losses with a
simple example in which we assume there are no operation
errors. Alice and Bob, separated by a distance Ltot, want to
share a maximally entangled qubit pair that they can use, for
instance, to teleport a quantum state or to distill a private key.
They are connected by a lossy medium such as a telecom-
munication (telecom) fiber, having the typical loss of
0.2 dB=km (that is, an attenuation length Latt ≈ 22 km).
Supposing that Ltot ≫ Latt, the direct transmission of a photon
between Alice and Bob succeeds with a vanishingly small
probability of the order of e−Ltot=Latt ≪ 1.
The solution provided by first-generation QRs is to divide

the total distance L between Alice and Bob into smaller
lengths with the help of NQR ¼ Ltot=L0 − 1 quantum repeater
nodes. Here we assume that the nodes are evenly separated by
an internodal distance L0, with L0 ¼ Ltot=2

n for simplicity.
The role of each QR node is to share entanglement with its
adjacent nodes: we use an HEGP strategy to create high-
quality entanglement between a quantum memory and its
counterpart to the immediate left, and between another
memory and its counterpart in the adjacent QR node to the
right. Each HEGP trial also takes a time T trial ¼ top þ tc,
which depends on the total time top of operations and on the
time tc ¼ L0=c for photons to arrive at the central measuring
station and the classical signaling back to the QR node.
A typical HEGP procedure has a success probability Pent

that depends on the photon collection efficiency, fiber trans-
mission efficiency, and photon detection efficiency. For the
dual-rail encoding, without ancillary photons Pent ≤ 1=2 even
in the lossless limit, limited by linear optics and by the photon
loss probability (Calsamiglia and Lütkenhaus, 2001).
However, we can use more advanced encoding to achieve a
higher success probability (Pent > 1=2) (Azuma et al., 2009,
2012; Martin and Whaley, 2019). In any case, if it succeeds,
the HEGP tends to present high-quality entanglement
between nearest-neighbor nodes, even under the existence
of photon loss. Owing to the probabilistic nature of the
HEGP, for the first-generation QR protocol to proceed, it is
necessary to inform the adjacent nodes whether the HEGP
has succeeded or not. In the case of a failure, the process is
repeated until it succeeds. The entanglement generation

TABLE IV. Three generations of quantum repeaters classified according to probabilistic or deterministic suppression of loss and operation
errors. The timescale (key generation rate) and cost coefficient scale differently with the total distance L, repeater spacing L0, and gate time t0.

Errors Error suppression 1G 2G 3G

Loss error Probabilistic ✓ ✓

Deterministic ✓

Operation error Probabilistic ✓

Deterministic ✓ ✓

Timescale max ðL=c; t0Þ max ðL0=c; t0Þ t0
Cost coefficient poly ðLÞ polylog ðLÞ polylog ðLÞ

6We can also classify QRs using other criteria, such as the
physical platforms and different operations; see Razavi (2018). We
discuss various physical platforms and implementations in Sec. V.
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procedure therefore succeeds in an average time hTenti ¼
P−1
entT trial ¼ P−1

entðL0=cþ topÞ. In a successful case, the entan-
glement can be stored in the quantum memories.
At each QR node, we can store entangled qubit pairs shared

with an adjacent node, say, the node on the immediate left,
during the time required to produce an entangled pair with the
adjacent QR node on the right. Thanks to this functionality of
quantum memories, we see that not all of the entanglement
needs to be generated at the same time throughout the
network; this is why this strategy can outperform direct
photon transmission and a quantum relay protocol (Jacobs,
Pittman, and Franson, 2002; Waks, Zeevi, and Yamamoto,
2002; de Riedmatten et al., 2004) (which uses repeater nodes
but distributes photonic Bell pairs only from sending repeater
nodes to their adjacent receiver nodes, in which Bell meas-
urement is performed soon after receiving halves of the Bell
pairs). When a QR node finally shares an entangled pair of
qubits with each of its adjacent nodes, it performs entangle-
ment swapping between its two quantum memories such that
if it succeeds, a high-quality entangled pair is now shared
between its two adjacent nodes. After repeating these entan-
glement swapping steps at each QR node, Alice and Bob end
up with a high-quality entangled pair at a rate much higher
than what is achievable with direct fiber transmission; see
Sec. III.A.3 for details.
Thus far we have considered only loss errors and have thus

assumed that information can be manipulated, transferred, and
stored faithfully. In practice, this is not the case: we ought to
also handle operation errors, which eventually reduce the
fidelity of the two qubits shared by Alice and Bob. This is
achieved through an entanglement distillation scheme, which
can be incorporated into first-generation QRs, for example,
using a nested purification QR scheme, which we now
introduce.
As illustrated in Fig. 5, we start with distilled high-fidelity

entangled pairs with separation L0 ¼ Ltot=2
n, created and

stored in adjacent stations. At the kth nesting level
(k ¼ 1; 2;…; n), two entangled pairs of distance Lk−1 ¼
2k−1L0 are connected by entanglement swapping to extend
entanglement to a distance Lk ¼ 2kL0 (Zukowski et al.,
1993). As practical gate operations and entanglement swap-
ping [Figs. 5(b)–5(d)] inevitably cause the fidelity of
entangled pairs to drop, 2EDP may be incorporated at each
level of entanglement extension [Figs. 5(e)–5(g)] (Deutsch
et al., 1996; Dür et al., 1999). With n nesting levels of
connection and distillation, a high-fidelity entangled pair over
distance Ln ¼ Ltot can be obtained. Suppose that Tk−1 is the
average time needed to prepare a distilled entangled pair over
distance Lk−1, the average time to prepare a distilled entangled
pair over distance Lk is

Tk ¼ αkTk−1 þ βkLk=c ¼ αkTk−1 þ βk2
ktc; ð34Þ

where tc ¼ L0=c is the communication time between neigh-
boring repeater stations, αk and βk are dimensionless numbers
capturing the time overhead associated with the entanglement
swapping, distillation, and multiple rounds of classical com-
munication. For simplicity, we assume that each nesting level
has similar overheads αk ≈ α and βk ≈ β for k ≥ 1. The

average time to generate distilled entangled pairs between
neighboring repeaters is T0 ¼ β0tc, with the time overhead β0
associated with photon efficiency, entanglement generation,
and purification between neighboring repeater stations. From
the recursive relation, we can obtain the average time to
generate a distilled entangled pair over distance Ln ¼ Ltot is

T tot ¼ Tn ∼ ðLtot=L0Þlog2 ½max ðα;2Þ� max ðβ; β0Þtc; ð35Þ

which increases polynomially with Ltot, depending on the
value of α.
For the simple mode of a loss-only channel α ≈

ð3=2Þð1=PswapÞ with prefactor 3/2 for the time overhead
associated with the requirement that two entangled pairs on
both sides should be ready for entanglement swapping (Jiang,
Taylor, Khaneja, and Lukin, 2007; Sangouard et al., 2011;
Azuma et al., 2021), and Pswap for the success probability of
entanglement swapping. For example, Pswap ≤ 1=2 for the
Duan-Lukin-Cirac-Zoller quantum repeater protocol based on
atomic ensembles and linear optics (Duan et al., 2001). To
overcome operation errors, we need entanglement distillation
from at least two copies of entangled pairs, and hence α ≥ 2

for all entanglement distillation schemes [for instance, the
Briegel-Dür-Cirac-Zoller (BDCZ) protocol (Briegel et al.,

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

(a)

(b) (c) (d)

(e) (f) (g)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

FIG. 5. First-generation repeater protocol [BDCZ scheme
(Briegel et al., 1998)]. (a) In a realization based on the pumping
protocol with N þ 1 ¼ 9 nodes, the number of qubits per node is
bounded by 2 log2 2N ¼ 8. Each orange oval surrounding two
vertices (or two qubits) describes an application of a Bell
measurement to the two qubits for entanglement swapping.
(b)–(d) Two entangled pairs with distance 1 are connected
through entanglement swapping (orange oval) at node 1 to
produce an entangled state with distance 2 that is stored in the
qubits (as described by the purple arrows) at a higher level. (e)–
(g) Another entangled state with distance 2 is produced to purify
the entangled state (as described by purple arrows) stored in
qubits at a higher level. Similarly, entangled states with distance
2n can be connected to produce entangled states with distance
2nþ1, which can be further purified, as indicated in (a). From
Jiang, Taylor, Khaneja, and Lukin, 2007.
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1998) and the Childress-Taylor-Sørensen-Lukin protocol
(Childress, Taylor et al., 2006)], unless we use multiplexing
in generating entangled pairs (Dür et al., 1999).
The first generation of QRs reduces the exponential over-

head in direct state transfer to only polynomial overhead,
which is limited by the two-way classical signaling required
by the HEGP between nonadjacent repeater stations. The
communication rate still decreases polynomially with distance
and thus becomes slow for long-distance quantum commu-
nication. The communication rate of first-generation QRs can
be boosted using temporal, spatial, and/or frequency multi-
plexing associated with the internal degrees of freedom for the
quantum memory (Bonarota, Le Gouët, and Chanelière, 2011;
Sangouard et al., 2011).
The first generation of QRs can also be efficient in

entanglement resources. As shown in Fig. 5, the BDCZ
protocol (Briegel et al., 1998; Dür et al., 1999) has a self-
similar structure with n ¼ log2ðLtot=L0Þ nesting levels. We
start with the elementary entangled pairs with initial fidelity7

F and distance L0 between neighboring repeater nodes. In the
jth nesting level (with j ¼ 1; 2;…; n), a repeater node
performs entanglement swapping to convert two initial
entangled pairs with fidelity F and length 2j−1L0 into an
entangled pair with fidelity F0 (≤ F in general) and length
2jL0. The extended entangled pairs with fidelity F0 are
collected, and M pairs of them are used to distill a purified
entangled pair with an initial fidelity F and length 2jL0

through an entanglement distillation protocol. These imply
that each purified entangled pair with fidelity F and length
2jL0 can be regarded as having been made from 2M entangled
pairs with fidelity F and length 2j−1L0. Therefore, an
entangled pair with fidelity F and length Ltot ¼ 2nL0 can
be made up from ð2MÞn ¼ ðLtot=L0Þ1þlog2 M elementary
entangled pairs.
In addition, the first generation of QRs can be highly

efficient, even in terms of quantum memory resources, if the
purification of an unpurified entangled pair with length 2jL0

ðj ¼ n; n − 1;…; 0Þ can be done using a sequential applica-
tion of the pumping protocol that “pumps” entanglement to
the entangled pair out of a fixed unpurified auxiliary entangled
pair with the same length (2jL0); see Fig. 5 (Briegel et al.,
1998; Dür et al., 1999). Here how much entanglement is
purified depends on both the initial fidelity and the shape of
the fixed auxiliary pair. During the purification, we need only
two pairs of memories, one for storing the entangled pair to be
pumped and the other for storing the auxiliary entangled pair
for each round, and the purification is regarded as having
started from two unpurified pairs with length 2jL0. One of
these two unpurified pairs, as the auxiliary entangled pair,
should be prepared repeatedly during the pumping purifica-
tion, and it can be regarded as having been obtained by
connecting two purified entangled pairs with length 2j−1L0

through entanglement swapping. As a result, a purified
entangled pair with the length of 2jL0 can be regarded as
having been made from an unpurified entangled pair (to be
pumped at the jth nesting level) with length 2jL0 and from
two purified pairs with length 2j−1L0. By considering this
recursively from j ¼ n to j ¼ 1, a purified entangled pair with
length 2nL0ð¼ LtotÞ is regarded as having been made from
one unpurified entangled pair (to be pumped at the nth nesting
level) with length 2nL0, two unpurified pairs [to be pumped at
the (n − 1)th nesting level] with length 2n−1L0;…; 2n−1

unpurified pairs (to be pumped at the second nesting level)
with the length of 2L0, and 2n purified pairs with length L0.
Since each of these entangled pairs needs two quantum
memories, the maximum number of memories Ntot required
during the protocol is Ntot ¼ 2

P
n
j¼02

j ¼ 2ð2nþ1 − 1Þ ¼
2ð2Ltot=L0 − 1Þ ¼ 4Ltot=L0 − 2. For example, we have n ¼
3 in Fig. 5(a), where 30 quantum memories are written,
corresponding to Ntot memories.
There are different variations of the BDCZ protocol. Its

measurement-based implementation using graph states was
given by Zwerger, Dür, and Briegel (2012). The DLCZ
protocol simplifies it with the use of atomic ensembles and
linear optics (Duan et al., 2001). Room-temperature quantum
repeaters have also been proposed using nitrogen-vacancy
defect centers in diamond (Childress, Taylor et al., 2006; Ji
et al., 2022). Sangouard et al. (2011) provided a review on
various first-generation quantum repeaters based on atomic
ensembles and linear optics, where HEGPs are based on Fock-
state encoding, polarization encoding, and time-bin encoding.
The concept of nested purification in the BDCZ protocol, as
well as the concatenation of quantum error-correcting codes
(Knill and Laflamme, 1997), is generalized to distribute
entangled pairs with fixed error to clients in a quantum
network with arbitrary topology, regardless of their distance,
across its multiple subnetworks (Azuma, 2023).
We can further generalize the BDCZ protocol by introduc-

ing CV encoding. For example, we can take a hybrid CV-DV
approach by interfering optical coherent-state signals to
generate DV entanglement between repeater stations
(Childress, Taylor et al., 2006; Van Loock et al., 2006;
Munro et al., 2008; Azuma et al., 2012). Moreover, we
can design CV quantum repeaters to efficiently distribute CV
entangled states with high fidelity over long distances (Dias
and Ralph, 2017; Furrer and Munro, 2018; Seshadreesan,
Krovi, and Guha, 2020). Owing to the Gaussian entanglement
distillation no-go theorem (Eisert, Scheel, and Plenio, 2002;
Fiurášek, 2002; Giedke and Cirac, 2002), CV repeaters use
non-Gaussian operations in entanglement distillation proto-
cols (Ralph and Lund, 2009; Fiurášek, 2010) to suppress loss
errors.

2. Second-generation repeaters

The second generation of QRs uses probabilistic error
suppression (see Sec. III.A.4.b) for loss errors and determin-
istic error suppression (see Sec. III.A.4.a) for operation errors
(Jiang et al., 2009; Munro et al., 2010; Li et al., 2013;
Mazurek et al., 2014). For example, we can first prepare the
encoded states j0iL and jþiL using Calderbank-Shor-Steane
(CSS) codes and then store them at two adjacent stations. CSS

7A general definition of the fidelity between states ρ and σ

is given by Fðρ; σÞ ≔ k ffiffiffi
ρ

p ffiffiffi
σ

p k2, where kXk ≔ Tr
ffiffiffiffiffiffiffiffiffi

X†X
p

is
the trace norm (Jozsa, 1994). The “initial fidelity” here means the
fidelity of an initial state ρ to a Bell state jΦþi, i.e.,
F ¼ Fðρ; jΦþiÞ ¼ hΦþjρjΦþi.
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codes are considered because of their fault-tolerant imple-
mentation of preparation, measurement, and encoded CNOT

gates (Jiang et al., 2009; Nielsen and Chuang, 2010). An
encoded Bell pair jΦþiL¼ð1=

ffiffiffi

2
p

Þðj0;0iLþj1;1iLÞ between
adjacent stations can then be created via teleportation-based
nonlocal CNOT gates (Gottesman and Chuang, 1999; Jiang
et al., 2009) applied to each physical qubit in the encoded
block using the entangled pairs generated through the HEGP
process. Finally, QEC is carried out when entanglement
swapping at the encoded level is performed to extend the
range of entanglement. Second-generation QRs use QEC to
replace 2EDP and therefore avoid the time-consuming two-
way classical signaling between nonadjacent stations. The
communication rate is then limited by the time delay asso-
ciated with two-way classical signaling between adjacent
stations and local gate operations. If the probability of
accumulated operation errors over all repeater stations is
sufficiently small, we can simply use the second generation
of QRs without encoding. For instance, proposals based on
single ion qubits, to which we can apply deterministic Bell
measurements, fall into this category (Sangouard, Dubessy,
and Simon, 2009; Kimiaee Asadi et al., 2018; Asadi, Wein,
and Simon, 2020).
We can generate entangled pairs through an HEGP process

that is adapted for different photonic encoding schemes; see
Sec. II.E. For dual-rail photonic encoding (time bin, polari-
zation, or path), we can use linear optics and photon detectors
to herald the successful Bell measurement and also detect
photon loss errors [Fig. 3(a)]. The potential limitation is that
the success probability of the Bell measurement will be upper
bounded by 50% for dual-rail encoding. Alternatively, we can
use bosonic encodings such as GKP states for the HEGP
(Fukui, Alexander, and Van Loock, 2021). Unlike the dual-rail
encoding schemes, GKP encoding can achieve deterministic
Bell measurements with linear optics and homodyne detection
(Gottesman, Kitaev, and Preskill, 2001). In the presence of
loss errors, there will be vacuum noise added to the system,
which can be detected by the homodyne measurement. GKP
encoding can correct small added vacuum noise up to certain
level, above which it is better to report the presence of large
noise and restart the process.
As with the first-generation repeaters, we can also give

bounds on the achievable communication rate for the
second-generation repeaters, which is limited by the
HEGP and 2EDP between neighboring repeater stations.
For example, for the case of dual-rail encoding, we have
R ≤ hTenti−1 ≤ ½2ðL0=cþ topÞ�−1. By reducing the distance
L0 to zero and neglecting top, we see that this bound can in
principle go to infinity. Yet, assuming L0 → 0 would require
infinitely many QR nodes (NQR →∞), and thus an infinite
amount of resources (quantum memories).
The physical resources required for the second generation

of QRs depend on the size of the CSS code ncode. At
each repeater station, we need at least 2ncode qubits for
storing the encoded states j0iL and jþiL, and we also need
additional memory qubits to store and purify entanglement
between neighboring repeater stations (Jiang et al., 2009).
Hence, the total number of quantum memory qubits
is Ntot ∼ ncodeLtot=L0.

The size of the encoding block ncode only needs to
increase polylogarithmically with the total distance Ltot.
Asymptotically there are CSS codes with ncode ≤ 19t that
can correct up to t bit-flip and dephasing errors [obtained
from the Gilbert-Varsharov bound; see Eq. (30) of
Calderbank and Shor (1996)]. This implies that we only
need a result for ncode ∝ t ∼ lnðLtot=L0Þ that increases log-
arithmically with Ltot (Jiang et al., 2009). In practice,
however, it might be challenging to initialize large CSS
encoding blocks fault tolerantly with imperfect local oper-
ations. To avoid complicated initialization, we can construct
larger CSS codes by concatenating smaller codes with r
nesting levels, and the code size scales polynomially with the
code distance ncode ∝ tr ∼ ½lnðLtot=L0Þ�r. Alternatively, we
can consider the Bacon-Shor code (Bacon, 2006); the
encoding block scales quadratically with the code distance
ncode ¼ ð2tþ 1Þ2 ∼ ½lnðLtot=L0Þ�2, and the initialization can
be reduced to the preparation of (2tþ 1)-qubit GHZ states.
For finite total distance Ltot, a more useful performance
metric for comparing the QR protocols should quantify both
the amount of physical resources and the communication
rate; see Sec. III.B.4.

3. Third-generation repeaters

The third generation of QRs relies on deterministic error
suppression, such as QEC and one-way hashing (see
Sec. III.A.4.a), to correct both loss and operation errors
(Fowler et al., 2010; Munro et al., 2012; Muralidharan et al.,
2014). The quantum information can be directly encoded in a
block of physical qubits that is sent through the lossy channel.
If the loss and operation errors are sufficiently small, the
received physical qubits can be used to restore the entire
encoding block, which is retransmitted to the next repeater
station. The third generation of QRs only needs one-way
signaling and thus can achieve high communication rates, just
like classical repeaters that are limited only by local operation
delays.
Various choices of quantum error-correcting codes can be

used for the third generation of QRs (Knill and Laflamme,
1996). For qubit-based quantum error correction, we can use
quantum parity codes (Ralph, Hayes, and Gilchrist, 2005)
with moderate coding blocks (∼200 qubits) to efficiently
overcome both loss and operation errors (Munro et al.,
2012; Muralidharan et al., 2014). The surface code
(Raussendorf and Harrington, 2007; Raussendorf,
Harrington, and Goyal, 2007) or the tree-cluster code
(Varnava, Browne, and Rudolph, 2006) can suppress more
loss errors (up to 50%) with larger encoding blocks. For
quantum codes based on d-level quantum systems (for
instance, based on time-bin encoding), we can implement
quantum polynomial codes (Cleve, Gottesman, and Lo, 1999)
to approach loss tolerances of up to 50% (Muralidharan et al.,
2017) and quantum Reed-Solomon codes (Li, Xing, and
Wang, 2008) to further improve the key generation rate
(Muralidharan et al., 2018). If we treat each optical mode
as a continuous-variable system, we can use bosonic quantum
error-correcting codes [such as cat codes (Leghtas et al., 2013;
Mirrahimi et al., 2014), binomial codes (Michael et al., 2016),
and GKP codes (Gottesman, Kitaev, and Preskill, 2001; Albert
et al., 2018; Noh, Albert, and Jiang, 2019)] to correct the loss
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errors. The advantage of bosonic codes is that they can
efficiently use the large Hilbert space of bosonic systems
and reduce the number of bosonic modes, which might be
advantageous for maximizing the usage of our optical quan-
tum channel bandwidth (Li et al., 2017). To further suppress
the residual errors from the first-level bosonic codes, we can
concatenate it with a second-level DV encoding, which leads
to a concatenated CV-DV encoding scheme. To reduce the
resource cost with respect to an architecture for which all
repeaters are the same, we can introduce two different types of
repeaters, correcting errors at two different levels (Rozpędek
et al., 2021).
Note that the second and third generations of QRs can

achieve communication rates much faster than the first
generation over long distances, but they are technologically
more demanding. For example, they require high-fidelity
quantum gates, as QEC works well only when operation
errors are below the fault-tolerance threshold. The repeater
spacing for the third generation of QRs is smaller than
that of the first two generations of QRs because error
correction can correct only a finite amount of loss errors
deterministically [up only to 50% loss error rates determin-
istically (Stace, Barrett, and Doherty, 2009; Muralidharan
et al., 2014)].
As with the second generation of QRs, the physical

resources required for the third generation of QRs depend
on the size of the quantum error-correcting code. We can use
ncode to characterize the size of the encoding blocks based on
qubits or bosonic modes. At each repeater station, we need
OðncodeÞ quantum memories to perform error correction
suppressing not only operation errors but also loss errors.
The total number of quantum memories (in terms of qubits or
bosonic modes) needed is Ntot ∼ ncodeLtot=L0. In principle we
can use QEC over optical modes to fully replace the need for
traditional atomic or solid-state quantum memory, which
inspires the design of all-photonic quantum repeaters, as
discussed in Sec. III.C.
For the specific application of quantum key distribution,

we can use QRs to generate random secret classical bits
shared by remote parties. Since the ultimate goal is to
generate secret keys rather than the entangled states, we
might slightly relax the requirement of quantum memories.
In particular, in this case, even for first- and second-
generation repeaters, there is no need for long-lived quantum
memories to store the entangled states at the end stations
because they can be measured simultaneously and immedi-
ately after starting the protocol (Jiang et al., 2009); see
Secs. III.C.1 and VI.A.2. However, notice that first- and
second-generation QRs still need quantum memories at
repeater nodes, whose required memory time is longer than
that of third-generation QRs.

4. Comparison of three generations of QRs

To present a systematic comparison of different QRs in
terms of efficiency, we need to consider both temporal and
physical resources. The temporal resource depends on the rate,
which is limited by the time delay from the two-way classical
signaling (in first- and second-generation repeaters) and the
local gate operation (in the second and third generations)

(Jiang, Taylor, Khaneja, and Lukin, 2007). The physical
resources depend on the total number of qubits needed for
the HEGP (first and second generations) and QEC (second
and third generations) (Bratzik, Kampermann, and Bruss,
2014; Muralidharan et al., 2014). One can quantitatively
compare the three generations of QRs using a cost function
(Muralidharan et al., 2014) related to the required number of
qubit memories to achieve a given transmission rate. If a total
of Ntot qubits are needed to generate secure keys at R bits per
second, a cost function is defined as

CðLtotÞ ¼
Ntot

R
¼ Ns

R

Ltot

L0

; ð36Þ

where Ns is the number of qubits needed per repeater station,
Ltot is the total communication distance, and L0 is the spacing
between neighboring stations. Since the cost function scales at
least linearly with Ltot, to demonstrate the additional overhead
associated with Ltot a cost coefficient can be introduced as

C0ðLtotÞ ¼
CðLtotÞ
Ltot

; ð37Þ

which can be interpreted as the resource overhead (qubits
times time) for the creation of one secret bit over 1 km (with
the target distance Ltot). Besides the fiber attenuation [which is
chosen as Latt ¼ 20 km in Fig. 6 by Muralidharan et al.

FIG. 6. Bubble plot comparing various QR protocols in the
three-dimensional parameter space spanned by coupling effi-
ciency ηc, gate error probability ϵG, and gate time t0 for
(a) Ltot ¼ 1000 km and (b) Ltot ¼ 10 000 km. The bubble color
indicates the associated optimized QR protocol, and the bubble
diameter is proportional to the cost coefficient. Region plots show
the distribution of different optimized QR protocols in the three-
dimensional parameter space for (c) Ltot ¼ 1000 km and
(d) Ltot ¼ 10 000 km. A yellow region of the second generation
with encoding is contained in (c), which can be verified in a
bubble plot with a finer discretization of ϵG. From Muralidharan
et al., 2016.
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(2016)], the cost coefficient also depends on other exper-
imental parameters, in particular, the coupling efficiency ηc,
the gate error probability ϵG, and the gate time t0.
We can summarize the analysis of QRs based on the cost

coefficient (Muralidharan et al., 2016) using bubble and
region plots in the three-dimensional parameter space, as
shown in Fig. 6, which compares representative protocols
from three generations of quantum repeaters (Briegel et al.,
1998; Jiang et al., 2009; Muralidharan et al., 2017).8 The
bubble color indicates the associated optimized QR protocol,
and the bubble diameter is proportional to the cost coefficient.
The parameter space can be divided into the following
regions: (I) For high gate error probability (ϵG ≳ 1%), the
first generation dominates. (II.A) For intermediate gate error
probability but poor coupling efficiency or slow local oper-
ation (0.1Latt=Ltot ≲ ϵG ≲ 1% and ηc ≲ 90% or t0 ≳ 1 μs), the
second generation with encoding is more favorable. (II.B) For
low gate error probability but low coupling efficiency or slow
local operation (ϵG ≲ 0.1Latt=Ltot and ηc ≲ 90% or t0 ≳ 1 μs),
the second generation without encoding is more favorable.
(III) For high coupling efficiency, fast local operation, and low
gate error probability (ηc ≳ 90%, t0 ≲ 1 μs, and ϵG ≲ 1%), the
third generation becomes the most favorable scheme in terms
of the cost coefficient.

C. All-optical repeaters

While the traditional repeater protocol necessitates physical
memories (stationary quantum systems) to store quantum
information during the long waits associated with long-
distance entanglement generation, it is fairly nontrivial
whether the protocol can be implemented all optically solely
by replacing the memories with all-optical memories like
those proposed by Leung and Ralph (2006). Note, however,
that repeaters featuring QEC codes could preclude the
necessity of such memories, as QEC codes can instead
deterministically suppress the noise and loss affecting qubits.
Indeed, error-corrected repeaters, which intersect with the
previously discused second and third generations, are shown
to be implementable all optically; in this case, the significant
differences in analysis and implementation compared to
matter-based repeaters warrant special attention, which we
now provide.
To better understand all-optical or all-photonic repeaters,

we first review the operating principle of another quantum
information protocol MBQC (sometimes referred to as one-
way computation9), which is especially relevant for optical
implementations. In a measurement-based quantum computer
(Raussendorf and Briegel, 2001), in contrast to a gate-based
computer, an entangled resource state, namely, a cluster (or
graph) state (Sec. II.D.1), is initially prepared and the
computation proceeds by way of adaptive single-qubit

measurements on this state. For physical platforms suffering
from probabilistic entangling gates, among them discrete-
variable dual-rail photonics (see Sec. II.E), this type of
computer has the advantage that such probabilistic gates
are involved only in the preparation of the initial resource
states and are not necessary during the computation. This
circumvents the exponential decay of the computational
success with the number of entangling operations and dra-
matically reduces the resource costs (Nielsen, 2004; Browne
and Rudolph, 2005; Kok et al., 2007) compared to the gate-
based scheme (Knill, Laflamme, and Milburn, 2001).
Furthermore, the measurement-based approach allows for
fixed-depth circuits where a physical qubit undergoes only
a finite (and generally small) number of gate operations before
being consumed by a single-qubit measurement. This
approach therefore accords well with flying qubits; it helps
to overcome the weakness of probabilistic entangling gates for
certain photonic encodings and drastically cuts down on the
amount of loss each photon experiences.
In measurement-based computation, universality (the abil-

ity to approximate any unitary on any number of data qubits
arbitrarily well) is achieved through an appropriate choice of
cluster state (Briegel and Raussendorf, 2001), as well as
access to non-Clifford operations. Fault tolerance (the expo-
nential suppression of state preparation and gate and meas-
urement errors) is obtained through an error-correcting code
(Sec. III.A.4.a.1), which translates to a cluster state with a
special shape and structure (the encoding); a prescription for
implementing logical operations through adaptive single-qubit
measurements; and a means of detecting and correcting the
error, including an algorithm for extracting the outcomes of
logical measurements (the decoding and recovery).
A common feature of recent architectures of all-optical

repeaters is that they are realizable through measurement-
based implementations of QEC codes. A measurement-based
quantum repeater operates in much the same way as a
measurement-based computer; however, there is a handful
of salient distinctions, which is emblematic of the differences
between computation and communication. First, gate-set
universality is not necessary for communication, meaning
that Clifford operations suffice. Second, the dominant source
of errors for the photonic states constituting optical repeaters,
namely, loss, is an even larger threat. Third, in contrast to
computation, which can be done locally, the goal of commu-
nication is inherently nonlocal: to entangle spatially distant
objects. Since noise for physical qubits generally increases
with time, it is important to take the classical communication
time into account.
With these general notions out of the way, in Secs. III.C.1–

III.C.3 we overview the workings of several protocols for all-
optical repeaters and describe promising schemes for the
preparation of repeater graph states. We begin with a summary
of the first all-photonic repeater proposal (Azuma, Tamaki,
and Lo, 2015) as an instructive example.

1. Original all-photonic repeaters

The review of the all-photonic repeaters by Azuma, Tamaki,
and Lo (2015) begins with a description of the repeater graph
state (RGS). The ideal RGS that they proposed has two layers.

8The communication rate for the first generation of QRs can be
boosted using temporal, spatial, and/or frequency multiplexing
associated with the internal degrees of freedom for the quantum
memory (Afzelius et al., 2009; Sangouard et al., 2011).

9
“One-way” has a special meaning in quantum communication,

so we forego this terminology.

K. Azuma et al.: Quantum repeaters: From quantum networks to the …

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045006-21



The inner or core layer is a complete graph or clique (Fig. 7)
that is locally equivalent to a GHZ state of n qubits from
Eq. (20). The qubits in the inner layer are tailored to play the
same role as quantum memories in a second-generation
quantum repeater protocol. Recall the (implicit) assumption
of the second-generation QR protocol about quantum memo-
ries that allows us to apply deterministic Bell measurements
on quantum memories that have successfully shared entan-
glement with adjacent repeater nodes; see III.B.2. To make
photonic qubits play this role, the core qubits in the RGS of
Fig. 8 are prepared in a complete-graph state10 as in Fig. 7 (to
overcome the probabilistic nature of the linear-optical Bell
measurements). In particular, if we apply X-basis measure-
ments to two of them and Z-basis measurements to the other
qubits, it works as the Bell measurement on the two qubits and
decouples the others (although we only use single-qubit
measurements). To achieve these X-basis or Z-basis measure-
ments deterministically even under photon loss, the qubits in
the inner layer are encoded into a larger graph state with
sufficient redundancy. Azuma, Tamaki, and Lo (2015) con-
sidered a tree-graph QEC code proposed by Varnava, Browne,
and Rudolph (2006) for this purpose, as demonstrated
schematically in the right graphic of Fig. 8. This code places
a qubit to be encoded at the root of a tree-graph state
composed of physical qubits. It then allows one to execute
an arbitrary logical single-qubit measurement on the encoded
qubit deterministically, even under loss, via single-qubit
measurements on the physical qubits. Increasing the size of
the tree-graph state with increasing losses will ensure that the
correction succeeds as long as the loss probability per physical
qubit is less than 50%, a threshold consistent with the no-
cloning theorem.
The other layer of the RGS consists of outer qubits or leaves

appended to the vertices of the core graph (Fig. 8); these are
analogous to photons entangled with quantum memories for
the purpose of the HEGP in the second-generation QR
protocol. In fact, a pair of outer qubits, each of which belongs

to a different RGS, will be subject to a linear-optical Bell
measurement in order to entangle their neighboring core
qubits. Combining these layers of the RGS, the final state
proposed byAzuma, Tamaki, and Lo (2015) is shown in Fig. 8.
With an understanding of the RGS, we can now overview

the precise operations required for Alice and Bob to establish
an entangled pair in a given clock cycle of the all-photonic
repeater protocol. The scheme is illustrated in Fig. 9. We use
the notation from before: L is the total channel length; N is the
number of repeater stations (sources or major nodes), not
including Alice and Bob; and m is the number of parallel
pulses. This means that there are N þ 1 measurement stations
(receivers or minor nodes), andM ¼ 2m is the number of core
qubits of the RGS if it is symmetric.
We assume that an RGS is available at each source node

(leaving the various preparation mechanisms for Sec. III.C.3).
Each of the two (minor) nodes neighboring the source node
receives half of the photons in the RGS prepared and sent by
the source. Upon arrival of the photons, every receiver first
conducts simultaneous Bell-state measurements (BSMs)
[Fig. 3(a)] on m pairs of leaf photons of RGSs from different
source nodes; this connects their adjacent inner qubits.
Although each such BSM can succeed with a probability
of at most only 1/2 (and it is less than 1/2 in practice because
of the losses experienced by the leaves), with m large enough
at least one BSM per station would be guaranteed to have
succeeded. Depending on the outcomes of the BSMs, every
receiver node applies X-basis measurements on a pair of the
inner qubits whose adjacent leaves have been subject to a
successful BSM, and Z-basis measurements on the other
inner qubits. Since inner qubits are encoded in the tree-graph
code, these single-qubit measurements succeed almost

FIG. 7. Left graphic: clique. Right graphic: biclique. In the
clique, each vertex is connected with every other. In the biclique,
each vertex from the left set is connected with a vertex on the
right, but the sets are internally disconnected. These graphs can
underlie repeater graph states. See Sec. II.D.1 for more on graph
states.

FIG. 8. Encoded RGS proposed by Azuma, Tamaki, and Lo
(2015). Left graphic: the two layers of the RGS. The inner layer is
composed of core qubits (large red vertices, closer to the center),
while the outer layer is composed of outer qubits (or leaves)
(small blue vertices, farther from the center). Each vertex in the
clique (left graphic) is a logical qubit, which can be encoded in,
for instance, the Varnava tree code (right graphic) (Varnava,
Browne, and Rudolph, 2006) to protect itself from loss (as well as
general errors under the restriction of Pauli measurements).
Displayed are the levels and branching parameters
fb0; b1;…; bd−1g of the tree (d ¼ 2 here). Note the root and
zeroth-level qubits (the two upper red qubits) in the tree will be
measured out in the X basis, connecting the qubits in the first
level with all of the neighbors of the root qubit. The inner logical
qubits, which are conduits for the entanglement swapping, are
connected to outer unencoded physical leaf qubits, which help
effect the entanglement generation.

10However, Russo, Barnes, and Economou (2018) and Tzitrin
(2018) showed that some of the connections in the clique composing
the RGS are unnecessary, so some variant, such as the biclique in
Fig. 7, is sufficient as core qubits.
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deterministically (as long as the loss is below the threshold of
50%). Effectively, the Z-basis measurements transform the
total state into a linear-cluster state between Alice and Bob,
which is then converted into a Bell pair between them by the
X-basis measurements, according to the effects detailed in
Sec. II.D.1.
Note that the choice of the measurement on an inner

encoded qubit, and accordingly on the physical qubits
composing the tree cluster, depends on the measurement
outcomes from the outer qubits. This means that it is necessary
to convey classical information from the outer qubits to the
inner qubits. However, this can be done locally at each
receiver node (that is, simply by using a local active-feed-
forward technique), as the inner qubits are transmitted
together with their adjacent outer qubits. Therefore, the
amount of necessary signaling is designed to be minimal,
reducing time-dependent loss and errors for the photons.
Although loss is the dominant source of noise, one cannot

dismiss other sources of error. Aided by a majority vote
protocol, the tree-graph code of Varnava et al. was robust
against general errors under the restriction of X-basis or Z-
basis measurements on the encoded qubit, in contrast to other
single-qubit measurements. In Sec. III.C.2, we overview an
optical repeater protocol that instead makes use of parity codes
(Ewert, Bergmann, and Van Loock, 2016). The existence of a
better code specifically suited to an all-photonic repeater (in
terms of error tolerance and overheads) is an important open
question.
The all-optical protocol needs no quantum memories,

including qubits held by Alice and Bob, for the applications
in which entanglement for Alice and Bob, once generated, is
consumed immediately to generate classical output strings
such as QKD (Bennett, Brassard, and Mermin, 1992; Lo and
Chau, 1999; Shor and Preskill, 2000; Mayers, 2001; Renner,
2008; Koashi, 2009; Portmann and Renner, 2022), nonlocal
measurements (Vaidman, 2003; Clerk et al., 2010), and
cheating strategies in position-based quantum cryptography
(Buhrman et al., 2011; Kent, Munro, and Spiller, 2011; Lau
and Lo, 2011). However, for applications that demand a
strictly quantum output state to Alice and Bob, such as
quantum teleportation and distributed quantum computation
(Gottesman, 1999; Eisert et al., 2000; Collins, Linden, and
Popescu, 2001), the applications themselves require Alice and
Bob to have quantum memories with memory time on the
order of classical communication time between Alice and Bob

because of the necessity of classical signaling. See
Sec. VI.A.2 or Azuma, Tamaki, and Lo (2015) for details.

2. Other optical repeaters

a. Modified all-photonic repeaters

Although Pant et al. (2017) aimed to analyze the perfor-
mance of the all-photonic repeaters of Azuma, Tamaki, and Lo
(2015), they made several modifications that warrant
discussion.
First, so-called boosted Bell-state measurements (BBSMs)

were employed by Pant et al. (2017). The previously cited
maximal linear-optical Bell measurement success rate of 1/2
can be increased with additional resources, such as ancillary
photons in separable (Ewert and Van Loock, 2014) or
entangled states (Grice, 2011), weak nonlinearities (Barrett
et al., 2005), and predetection squeezing (Zaidi et al., 2015;
Kilmer and Guha, 2019). However, BBSMs are no panacea:
they increase experimental complexity and overhead, and
infinite resources are still needed for unity success probability,
which is in line with a no-go theorem (Lütkenhaus,
Calsamiglia, and Suominen, 1999). The specific BBSMs
(Ewert and Van Loock, 2014) employed by Pant et al.

(2017) succeed 3/4 of the time. The analysis shows that they
result in a net improvement to the overheads.
A more crucial design change is in the treatment of the inner

qubits. In the original proposal, photons forming the clique of
the RGS (the encoded inner qubits) are sent to neighboring
receiver nodes together with their adjacent leaves, while Pant
et al. (2017) assumed that they are stored locally at the source
nodes in fiber spools. In the original proposal, signaling from
the leaves to the inner qubits can be done via local active feed
forward; however, all the physical qubits in the encoding must
be sent, necessitating a large number of fiber connections.
While resulting in fewer fiber connections, the approach of
Pant et al. comes at the expense of an increased loss, which
stems from the necessity of signaling from the leaves to the
inner qubits over the associated distance. Finally, there is also
a modification of the original scheme in Pant et al. with regard
to the multiplexing strategy in state generation, which is
discussed in Sec. III.C.3.

b. Repeaters based on encoded Bell measurements

Ewert, Bergmann, and Van Loock (2016) and Lee, Ralph,
and Jeong (2019) presented all-optical repeater protocols

m = 3

B
C3

r
C1

r
C2

r I

J

H

G

encoded

C1
sA

C2
s

Gc
3

Bell M

FIG. 9. Summary of the original all-photonic repeater scheme (Azuma, Tamaki, and Lo, 2015). Alice (A) and Bob (B) want to establish
one entangled pair; each prepares m Bell pairs (m ¼ 3 here) and sends them to a nearby receiver. Repeater graph states are created at Cs

1

and Cs
2 and their qubits are sent to adjacent receivers Cr

1 and Cr
2 and the ones Cr

2 and Cr
3, respectively. The receivers perform m

simultaneous Bell-state measurements on the outer qubits. In every receiver node, X-basis measurements are performed on a pair of
inner qubits adjacent to outer qubits, to which the Bell measurement is successfully applied, while Z-basis measurements are conducted
on the other inner qubits. From Azuma, Tamaki, and Lo, 2015.
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based on parity codes (Ralph, Hayes, and Gilchrist, 2005).
Specifically, Ewert, Bergmann, and Van Loock (2016) made
use of Bell states with parity encoding. The graph states
locally equivalent to the encoded Bell states look much like
the RGS from the original protocol: they are bicliques
(complete bipartite graphs) with multiple leaves per node
(Ewert and Van Loock, 2017). However, the protocol of Ewert
et al. itself is conceptually different from the all-photonic
repeaters of Azuma, Tamaki, and Lo (2015), as also men-
tioned by Zwerger, Briegel, and Dür (2016); it sends an
encoded qubit directly from a sender to a receiver, which
makes it closer to the third-generation schemes of Knill and
Laflamme (1996), Varnava, Browne, and Rudolph (2007),
Muralidharan et al. (2014), Zwerger, Briegel, and Dür (2014),
and Munro et al. (2015) based on quantum error correction
than the protocol of Azuma, Tamaki, and Lo (2015), which
can be regarded as a time-reversed version of a second-
generation quantum repeater protocol. In their protocol
(Ewert, Bergmann, and Van Loock, 2016), Bell measurement
efficiency and loss tolerance improves as the size of the parity
code increases. Furthermore, their scheme does not require
active-feed-forward techniques, lowering local operation
times, reducing losses, and facilitating on-chip integration.
The concatenated Bell measurement scheme of Lee, Ralph,
and Jeong (2019) reached the fundamental limits for Bell
measurement efficiency and loss tolerance under the con-
straints of linear optics and the no-cloning theorem. Regarding
loss tolerance, this scheme also saturates the fundamental loss-
tolerance limits for logical Bell measurements based on
adaptive linear-optical physical Bell measurements (Hilaire,
Castor et al., 2023). However, recent Bell measurement
schemes (Hilaire et al., 2021; Bell, Pettersson, and Paesani,
2023), based on an adaptive combination of physical two-
photon Bell measurements and single-qubit measurements,
exhibit an even stronger loss tolerance (saturating the no-
cloning limit). The performances of these new logical Bell
measurement schemes remain to be evaluated in a quantum
repeater scheme. In a recent development (Niu et al., 2023),
the all-photonic quantum repeater concept has been expanded
to low-density-parity-check codes with linear encoding rates.
The consequential linear scaling of logical transmitted qubits
with code size was to significantly enhance end-to-end
communication rates.

c. Bosonic repeaters

Certain repeaters based on continuous-variable states have
been proposed (Fukui, Alexander, and Van Loock, 2021;
Rozpędek et al., 2021). They leverage the inherent error-
correction properties of bosonic encodings along with higher-
level qubit codes to create what can be viewed as concatenated
CV-DV error-correcting codes. Recall from Sec. II.E that
there are several advantages to the GKP encoding, in
particular. For one, it can tolerate small displacement errors;
since any continuous error can be decomposed into displace-
ments, it can natively treat loss errors as well. In fact, it was
discovered that GKP states fare better against loss errors in
certain settings than codes tailored to handle losses (Albert
et al., 2018). Furthermore, for GKP states entangling gates
and Bell measurements are deterministic contingent on
the availability of Gaussian resources, with the only prob-
abilistic component being state generation. Finally,

additional analog information obtained from GKP-level error
correction can be used to improve the logical error rates at
the qubit code level (Fukui, Tomita, and Okamoto, 2017;
Noh and Chamberland, 2020).
The repeater architecture given by Rozpędek et al. (2021)

leveraged the aforementioned advantages of GKP encodings
and used two types of repeaters: those consisting purely
of GKP states, which can correct small displacement errors,
and those comprising GKP states concatenated with small
qubit-level codes. In a related work, Fukui, Alexander, and Van
Loock (2021) compared the use ofGKP encoding on its own, in
a one- or two-way scheme, and with higher-level encodings.

3. Repeater graph state generation

Producing a large, high-quality optical graph state for
measurement-based quantum information protocols is a tall
order. In all-optical approaches, the stochasticity of entangling
operations in some encodings (such as dual-rail ones) and of
state preparation in others (such as GKP states) can result in
large overheads; in matter-based approaches, effects like
decoherence and inhomogeneity between emitters can result
in a significant decay of entanglement with the size of the
target state. Nevertheless, there has been steady theoretical
and experimental progress toward high-probability, high-
fidelity cluster state generation. We now discuss some
promising ways of preparing optical graph states.

a. General framework

Optical graph state generation can be understood in a general
framework that involves the “stitching” of smaller resource
states into iteratively larger states. Measurement-based entan-
gling operations, such as those used for dual-rail encodings, are
more formally referred to as fusion gates (Browne and
Rudolph, 2005); they were introduced by Pittman, Jacobs,
and Franson (2001). Fusion gates on two spatial modes, each of
which may have a single photon in the polarization or path
degrees of freedom, come in two varieties: type-I fusions,
which consume a single photon to create larger one-dimen-
sional cluster states, and type-II fusions (essentially, rotated
Bell measurements), which consume two photons to grow
cluster states in higher dimensions. As with BSMs, fusion
probabilities may also be boosted with additional resources, a
fact thatwas exploited forRGSgeneration byPant et al. (2017);
as before, this introduces trade-offs with experimental com-
plexity and overheads (Gimeno-Segovia, 2016). For complete-
ness, we also mention fusion-based quantum computation
(Bartolucci et al., 2023), a proposed alternative framework
to MBQC where the fusion operations serve to both create
entanglement and perform logical operations.
The schema for generating optical graph states is as follows:
(1) Unit resource production. First, an optical circuit

produces the smallest unit states. These can be
single-qubit states or small entangled states such as
Bell pairs, n-partite GHZ states for n ≥ 3, and few-
qubit linear-cluster states.

(2) Growth into metaunits. As an optional intermediary
step, the unit resources can be combined into larger
metaunits. The utility of this extra step is to leave open
the possibility, for example, of generating dual-rail n-
partite GHZ states directly from single photons, or
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instead from photonic Bell pairs; see Gimeno-Sego-
via (2016).

(3) Stitching. Units or metaunits are entangled iteratively
until the desired graph state is created. For dual-rail
encodings, this can be achieved with type-II fusions;
for GKP states, this can be done with continuous-
variable CZ gates.

A few notes are in order. First, the framework accommo-
dates matter-based optical graph state generation; in this case,
the entanglement in the growth or stitching stages can be
achieved either directly at the optical level or with the
assistance of the interaction between emitters. Second, each
step carries an associated probability and fidelity that depends
on the choice of encoding, the scheme for generating and
entangling the resources, and the particular hardware imple-
mentation. Other considerations that will affect the architec-
tural design include how much of the state can be made
spatially (i.e., with the state composed of single photons
generated at the same time but spread over space) or
temporally (i.e., with the state composed of single photons
generated at different time steps). This is related to the
question of how much of the graph state (for instance, how
many layers in a regular cluster state) must exist at one time.

b. Dual-rail graph states

We review two different approaches to produce a graph
state of dual-rail encoded qubits: one all optical but probabi-
listic, the other relying on matter qubits but deterministic.

i. Probabilistic (optical) generation

The original all-photonic repeater proposal (Azuma,
Tamaki, and Lo, 2015) relies on the approach taken by
Varnava, Browne, and Rudolph (2007, 2008) for generating
a tree-graph state specified by a branching parameter
fb0; b1;…; bd−1g (Fig. 8), where the root qubit of the tree-
graph state is connected to a zeroth-level qubit, the zeroth-
level qubit is connected to b0 first-level qubits by edges and
every ith-level qubit is connected to bi (iþ 1)th-level qubits
by edges ði ¼ 0; 1;…; d − 1Þ. As the encoding, the root and
the zeroth-level qubits are measured off line in the X basis.
The tree-graph state can be transformed into an RGS. The
protocol of Varnava et al. proceeds as follows.
To begin, six single photons are prepared with single-

photon sources. The photons are then sent to an optical circuit
composed of beam splitters, a type-I fusion gate, and a type-II
fusion gate, which produces a tripartite GHZ state with
probability 1=32. Thanks to the design of this circuit, even
if single-photon sources and detectors do not have unity
efficiency, the generated tripartite GHZ state is affected only
by individual (uncorrelated) loss (Varnava, Browne, and
Rudolph, 2008). This GHZ state then becomes the unit
resource to produce the RGS. In particular, two tripartite
GHZ states are converted to a four-partite GHZ state by a
type-II fusion gate, and this four-partite GHZ state corre-
sponds to a three-qubit tree, i.e., a f2g tree, with a redundant
root qubit composed of two qubits. From these elementary
f2g trees, one can efficiently generate an arbitary
fb0; b1;…; bd−1g tree from the bottom (dth level) to the
top (zeroth level) with the help of type-II fusion gates.

Several generalizations or modifications are possible for
this procedure. Pant et al. (2017) chose the more efficient
generation scheme of Li et al. (2015), considered boosted
fusion gates, improved the multiplexing strategy, and reor-
dered the local measurements unconditioned on BSM out-
comes. Furthermore, it is possible to create n-partite GHZ
resource states with probability 1=22n−1, and this number can
theoretically be increased with Bell-state inputs rather than
single-photon inputs, as well as boosted BSMs (Joo et al.,
2007; Varnava, Browne, and Rudolph, 2008; Zhang et al.,
2008; Gimeno-Segovia, 2016). For optical repeaters based on
other error-correcting codes, which correspond to other graph
states, these resource states can be stitched according to the
different, tailored procedures.

ii. Deterministic (matter-based) generation

Unlike fusion-based approaches, which are fundamentally
probabilistic, the protocol of Buterakos, Barnes, and
Economou (2017), which uses emitter and ancilla qubits to
generate the RGS, is (at least in principle) deterministic. The
generation of linear-cluster states from a single emitter was
proposed by Schön et al. (2005) for atomic systems and by
Lindner and Rudolph (2009) for quantum dots (QDs). More
complex graph states, including a 2D square lattice cluster
state, can be created by a linear chain of emitters with nearest-
neighbor coupling (Economou, Lindner, and Rudolph, 2010;
Gimeno-Segovia, Rudolph, and Economou, 2019). Indeed,
any graph state can be created with these ingredients (Russo,
Barnes, and Economou, 2019). Buterakos, Barnes, and
Economou (2017) found that the keymechanism for generating
the RGS is to entangle the emitter with an ancilla and pump it to
produce one arm of the RGS, which emerges entangled to both
the emitter and the ancilla. The emitter is then measured and
thus removed from the graph, and the process is repeated until
all the photonic arms are connected to the ancilla, which is
assumed to have a longer coherence time than the emitter.
Measurement on the ancilla in the Y basis disentangles it from
the graph and connects all the inner photons to each other,
completing the RGS.
An attractive feature of the protocol of Buterakos, Barnes,

and Economou (2017) is that it is economical in terms of
resources, which are quantified by the number of required
matter qubits: To generate the unencoded version of the
RGS, only one emitter and one ancilla are needed, regardless
of the size of the graph. In addition to the unencoded version,
Buterakos, Barnes, and Economou (2017) provided a recipe
for the deterministic creation of arbitrarily large encoded
RGSs in which the inner qubits are encoded using trees of
depth 2 or 3. These protocols require only three matter
qubits, including two emitters and one ancilla. Hilaire,
Barnes, and Economou (2021) gave a more general recipe
for generating RGSs with arbitrarily deep tree encodings of
the core photons in which the requisite number of matter
qubits scaled linearly with the tree depth d (d − 1 emitters
and two ancilla qubits). In this case, the number of required
CZ gates is 2mð2þP

d−2
k¼0

Q
k
j¼0bjÞ, where bj denotes the

branching vector component of the tree at level j and 2m is
the number of arms in the RGS. These ideas for the
deterministic generation of entangled photonic states were
generalized by Li, Economou, and Barnes (2022), who
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provided a recipe for the generation of an arbitrary graph
using the minimal number of emitters.
Buterakos, Barnes, and Economou (2017) also introduced a

recipe for producing tree graphs of arbitrary depth d with k

arms at each vertex using d − 1 emitters and one ancilla. The
number of CZ gates required in this case is ½bd þ ð−1Þdþ1�=
ðkþ 1Þ − 1. This approach for creating tree-encoded photonic
qubits is a powerful capability in its own right and can be
applied to quantum repeaters of any generation. For example,
Borregaard et al. (2020) employed this tree generation
procedure in their proposed scheme to implement third-
generation repeaters using silicon-vacancy (Si-V) defects in
diamond as memory qubits.
The deterministic RGS protocol can be applied to any type

of dual-rail encoding. Many of the proposals for graph state
generation, especially with quantum dots, consider photon
polarization encoding, but time-bin encoding has also been
proposed in these systems (Lee et al., 2019). In the case of
time-bin encoding, an alternative deterministic way of gen-
erating graph states is to use a single emitter and time-delayed
feedback, as proposed by Pichler et al. (2017) and as adapted
for RGS generation by Zhan and Sun (2020). To implement a
maximally entangling gate, however, these approaches require
the experimentally challenging capability of strong coupling
between the emitter and the photonic waveguide where the
photons propagate.
For the physical implementation of deterministic RGS

generation schemes, modest-sized registers of well-controlled
emitters and ancilla qubits are needed. The emitters need to be
of high quality, especially in terms of brightness, so that the
photon is emitted in the desired mode and successfully
collected. This is critical for the protocol to be classified as
deterministic. The register should also feature ancilla qubits
with long coherence times, albeit not as long as what is
required for quantum memories in first- and second-gener-
ation repeaters, along with the ability to perform high-fidelity
gates between emitters and ancillae.
Self-assembled QDs are leading contenders for RGS gen-

eration. Indeed, the first experimental demonstration of an
emitter-based cluster state generation protocol (Schwartz et al.,
2016) employed exciton-biexciton transitions in these sys-
tems. QDs are excellent photon emitters. They have an
efficient optical (excitonic) transition with a timescale of
1 ns (100 ps) without (with) coupling to a cavity. The QD
community has made rapid progress over the last several years
to improve the brightness, indistinguishability, and purity of
QD photon sources (Senellart, Solomon, and White, 2017).
Note, however, that QDs have relatively low coherence times
compared to point defects and atomic qubits and lack a long-
lived quantum memory to act as the ancilla. Nevertheless,
promising recent work (Gangloff et al., 2019; Jackson et al.,
2021) suggests that the dense nuclear spin environment (more
than 104 spinful nuclei) could potentially be cooled and
controlled enough to play this role.
Other candidates for deterministic RGS generation are

optically active point defects in wide band gap materials,
such as the nitrogen-vacancy or silicon-vacancy centers in
diamond and the silicon-carbon divacancy or silicon vacancy
in silicon carbide. These systems have longer coherence times

than quantum dots and feature a small number of nuclear spins
(natural abundance ∼1% in C and ∼4% in Si), which can be
isolated and controlled well and are thus already being
explored as memory registers for quantum repeater nodes
(Taminiau et al., 2012; Nguyen et al., 2019a; Bourassa et al.,
2020). However, defects are not as efficient and bright as QDs,
and they tend to emit into unwanted modes a large fraction of
the time. Atomic systems, such as trapped ions and atoms in
optical lattices or cavities, have long coherence times and can
be controlled with high fidelity. While their photon emission is
not as fast, their other attractive properties could possibly
compensate for the lower rates (Thomas et al., 2022). Hybrid
strategies combining deterministic generation based on quan-
tum emitters and linear-optical fusion are particularly appeal-
ing when quantum emitters cannot interact with each other
(Herrera-Martí et al., 2010; Hilaire, Vidro et al., 2023). In that
setting, we can use quantum emitters to generate one-dimen-
sional clusters and GHZ states deterministically and fuse them
probabilistically using linear-optical boosted fusion gates to
generate graph states of arbitrarily complex topologies.

c. GKP-encoded graph states

While entangling gates for GKP encodings are determin-
istic and readily accessible experimentally, state preparation is
a greater challenge. There are several existing proposals to this
end, with a recent focus on modified Gaussian boson sampling
devices, which use Gaussian optics combined with photon-
number-resolving detection (Quesada et al., 2019; Sabapathy
et al., 2019; Su, Myers, and Sabapathy, 2019; Tzitrin et al.,
2020). Once the GKP states are produced, they can be stitched
together deterministically with passive and static optical
resources, namely, beam splitters, phase shifters, and delay
lines (Tzitrin et al., 2021).

d. Performance and overheads

The overheads of the various optical repeater protocols are
highly sensitive to the chosen state generation scheme. Here
we review the resource requirements and performances of the
repeaters discussed in this section.
In the original all-photonic repeater protocol (Azuma,

Tamaki, and Lo, 2015), the total number of photons consumed
to produce an entangled pair between Alice and Bob scales
polynomially with the total distance. The average rate to
produce an entangled pair with a single-repeater system is on
the order of the repetition rate of the slowest device among
single-photon sources, photon detectors, and active-feed-
forward techniques. The resource costs for the repeaters
discussed by Ewert, Bergmann, and Van Loock (2016) and
Ewert and Van Loock (2017) scale linearly or less than
quadratically per the number of photons per encoded qubit.
Hilaire, Barnes, and Economou (2021) analyzed the per-

formance of repeaters based on the deterministic RGS gen-
eration of Buterakos, Barnes, and Economou (2017) by
calculating a bound on the secret key rate per matter qubit
and comparing it to direct transmission and to “memory-
based” (i.e., first- and second-generation) repeaters. To com-
pare to the latter, the figure of merit is defined as the rate of a
Bell-state generation between the end nodes (Alice and Bob)
divided by the number of matter qubits per node. In the case of
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memory-based repeaters, there is an upper bound on this
quantity that originates from the need for classical heralding
between nodes and that is given by c=4L. This bound is used
by Hilaire, Barnes, and Economou (2021) for memory-based
repeaters; further reductions in the rate originating from SWAP

gates between the emitter and memory qubits are ignored.
The deterministic RGS generation based on matter qubits

discussed by Buterakos, Barnes, and Economou (2017) relies
on entangling CZ gates between emitter and ancilla qubits,
which enable us to create complicated photonic graph states.
For realistic systems, the longest timescale in the deterministic
RGS generation is the duration of these gates TCZ, compared
to which the photon generation and single-qubit gate times are
negligible. It is therefore TCZ that sets the bound for the secret
key rate for repeaters based on deterministic RGS generation.
Hilaire, Barnes, and Economou (2021) fixed the tree encoding
depth to 2 for the inner RGS photons and optimize over the
RGS size (number of arms), the branching vector b0; b1 of the
tree encoding, and the number of nodes to maximize the key
rate for a total distance of 103 km. For these distances, it is
found that for TCZ ≤ 60 ns the RGS approach always outper-
forms memory-based repeaters. In this case, the distance
between adjacent nodes is approximately 3.5 km. These are
most likely conservative estimates since memory-based
repeaters also require entangling gates between matter qubits,
which will further lower their rates. More research into
quantifying the performance of deterministic RGS protocols
is needed. For example, Hilaire, Barnes, and Economou (2021)
kept the tree encoding depth fixed throughout their treatment
(d ¼ 2). While deeper trees offer higher protection against
photon loss, contributing to an increase of the rate, they also
require a larger number of emitter-ancilla CZ gates, thus
decreasing the rate. An analysis of optimal encoding depths is
an open problem associated with deterministic RGS generation.
Sometimes one is limited not by the number of photons

but rather by the number of optical modes available for
communicating between neighboring repeater stations (i.e.,
by the optical channel bandwidth, as in classical communi-
cation). Thus, it is important to choose good mode-efficient
encoding schemes. In the low-loss regime, we can use
continuous-variable codes to encode multiple qubits per
bosonic mode; for example, the GKP encoding can almost
approach the quantum channel capacity of the one-way pure-
loss channel (Noh, Girvin, and Jiang, 2020). In addition,
other CV codes, like cat codes, can also boost the secure
communication rate per mode when compared to DV
encodings (Li et al., 2017). Moreover, for CV-DV concat-
enated encoding we can further reduce the resource overhead
by optimizing the distribution of two different types of
repeaters associated with CV and DV error correction,
respectively (Rozpędek et al., 2021).

IV. MILESTONES: OUTPERFORMING POINT-TO-POINT

OPTICAL COMMUNICATION

Point-to-point communication schemes allow for quantum
communication over intracity distances even with the use of
a standard optical fiber, and they are ready for practical use;
see Lo, Curty, and Tamaki (2014) and Xu et al. (2020).
However, those schemes have a fundamental limitation on

their achievable distances [which are about 500 km in
practice, i.e., in the case of the use of a standard optical
fiber (Boaron et al., 2018); see Sec. III.A.3]. This limitation
is now explicitly given as the form of upper bounds
(Takeoka, Guha, and Wilde, 2014a; Pirandola et al., 2017)
on the two-way private and quantum capacities of a lossy
bosonic channel, which are proportional to the transmittance
η of the channel for small η. The two-way private (quantum)
capacity represents how many private bits (ebits) can be
obtained, in principle, per use of a given channel, in an
asymptotically faithful manner, with the free use of LOCC.
In the case of the lossy bosonic channel of Eq. (13), these
quantities are given by the PLOB bound − log2ð1 − ηÞ
(Pirandola et al., 2017); see Sec. VI.
As one can see from Sec. III, a quantum repeater scheme

has no fundamental limitation on its achievable distances.
Indeed, it enables us to perform quantum communication
efficiently even over intercontinental distances, but its reali-
zation is still challenging. This means that there is a techno-
logical gap between quantum repeater schemes for
intercontinental distances and point-to-point communication
schemes for intracity distances.
To bridge the gap, intermediate quantum communication

schemes, especially for the application to QKD, for intercity
distances have been proposed (Abruzzo, Kampermann, and
Bruß, 2014; Panayi et al., 2014; Azuma, Tamaki, and Munro,
2015; Bäuml et al., 2015; Luong et al., 2016; Lucamarini
et al., 2018; Rozpędek et al., 2019; Xie et al., 2022). In
particular, the schemes use only a single node C that is
located at the center between a sender Alice and a receiver
Bob and is connected to them with optical fibers. The goal of
the schemes is basically to double the achievable distances
of point-to-point QKD schemes by making the secret key
rate proportional to

ffiffiffi
η

p
, outperforming the two-way private

and quantum capacities proportional to η (for small η),
where η is the transmittance of a pure-loss channel between
Alice and Bob [see also Curty, Azuma, and Lo (2021), who
contextualized this approach from the viewpoint of security
for QKD]. This expected secret key rate has the same scaling
as the private capacity of single-repeater communication
schemes with the use of pure-loss channels (Azuma,
Mizutani, and Lo, 2016; Azuma and Kato, 2017;
Rigovacca et al., 2018; Pirandola, 2019); see Sec. VI for
details. The schemes are divided into three categories: one is
based on two-photon interference with dual-rail encoded
qubits (Secs. IV.A and IV.D) at the central node C, another is
based on single-photon interference with single-rail encoded
qubits (Sec. IV.B), and the third one is a time-reversed
version of these (Sec. IV.C) that works without optical Bell
measurements. In this section, we review these schemes,
whose realizations are regarded as good and natural mile-
stones toward quantum repeaters.

A. Adaptive measurement-device-independent QKD

To double the communication distance by utilizing a central
node C between communicators, an adaptive measurement-
device-independent (MDI) QKD scheme was proposed with
matter quantum memories (Abruzzo, Kampermann, and Bruß,
2014; Panayi et al., 2014) and with all-optical quantum
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nondemolition (QND) measurements (Azuma, Tamaki, and
Munro, 2015) based on a dual-rail encoding. Although these
schemes were originally proposed to perform QKD, its use as
an entanglement generation protocol (or a coherent version)
can be summarized as follows (Figs. 10 and 12): (i) Both Alice
and Bob send m optical polarization qubits (using 2m bosonic
modes), each of which is maximally entangled with a local
qubit, to the central node C. (ii) Upon receiving the pulses,
node C essentially performs QND measurements to the pulses
to confirm the arrival of single photons over lossy channels.
(iii) Qubits of single photons that have successfully arrived
from Alice are then paired with ones from Bob at node C.
(iv) Node C then performs a linear-optical Bell measurement
of Fig. 3(a) relying on two-photon interference on each of
these pairs. (v) Node C then announces the pairings and the
measurement outcomes of the Bell measurements. (vi) Finally,
Alice and Bob keep their local qubits, which are supposed to
be entangled with each other according to the announcement
of step (v). The essence of this protocol is to perform the Bell
measurement only on pairs of pulses that still have single
photons even after the travel over the lossy optical channels.
If the protocol is used for QKD as in the original proposals

(Abruzzo, Kampermann, and Bruß, 2014; Panayi et al., 2014;
Azuma, Tamaki, and Munro, 2015), Alice and Bob perform at
random a Z-basis or X-basis measurement on each of their
local qubits just after step (i), and their measurement outcomes
are regarded as their choice of random bits in QKD. Step (i) is
then replaced by the random preparation of BB84 signals
fj0i; j1i; jþi; j−ig (Bennett and Brassard, 1984). This also
implies that Alice and Bob could use phase-randomized weak
coherent states emitted by lasers, instead of single-photon
sources, using the decoy-state method (Hwang, 2003; Lo, Ma,
and Chen, 2005; Wang, 2005). The security simply follows
from that for the original MDI QKD (Lo, Curty, and Qi, 2012;
Curty et al., 2014) because it relies only on the trust of Alice
and Bob.
The communication efficiency of the aforementioned pro-

tocol scales with
ffiffiffi
η

p
rather than η, where η is the transmittance

of a direct lossy bosonic channel between Alice and Bob. This
can be understood as follows. Notice first that the success
probability of the QND measurement in step (ii) is propor-
tional to

ffiffiffi
η

p
because the polarization qubit emitted by Alice

(or Bob) simply travels over a lossy bosonic channel

connecting the central node C to Alice (between the central
node C and Bob), rather than between Alice and Bob. This
means that if the numberm of multiplexing, defined in step (i),
is of the order of ð ffiffiffi

η
p Þ−1, the probability with which the QND

measurement in step (ii) finds the arrival of nonzero single
photons from Alice and Bob is fairly high. Node C can have
nonzero pairs in step (iii), to which the Bell measurements are
applied in step (iv). Thus, as long as the inherent success
probabilities of the QND measurement and the Bell meas-
urement are constant (or, precisely, independent of the trans-
mittance

ffiffiffi
η

p
of the channels), Alice and Bob would have an

entangled pair with a finite probability through steps (v) and
(vi). Therefore, m ∼ ð ffiffiffi

η
p Þ−1 is enough to present an entangled

pair to Alice and Bob, implying that the communication
efficiency, that is, the secret key rate per pulse,11 of the
protocol scales with

ffiffiffi
η

p
.

1. Memory-assisted implementation

The memory-assisted MDI QKD protocol (Abruzzo,
Kampermann, and Bruß, 2014; Panayi et al., 2014) corre-
sponds to an implementation of the protocol mentioned in
Sec. IV.A by utilizing the functionality of matter quantum
memories (Fig. 10). In particular, the protocol assumes that the
central nodeC uses matter quantum memories to achieve steps
(ii)–(iv), and m optical polarization qubits in step (i) are
sent by Alice and Bob in a time-multiplexing manner. If we
can use a matter quantum memory that heralds the successful
storing of a received optical polarization qubit, this heralding
signal is regarded as the signal of the success of the QND
measurement in step (ii). To achieve step (iii), the node C

simply uses one memory for Alice and one memory for Bob.
Each of these memories receives optical pulses from Alice or
Bob until it successfully stores a single photon. Once this
storage succeeds, each memory keeps the qubit information
until the other memory heralds the successful storage. If both
memories herald the successful storage of a single photon,
they load the stored photons to perform the linear-optics-based
Bell measurement of Fig. 3(a) on them as step (iv). The secret
key rate of this protocol is exemplified in Fig. 11, which
shows

ffiffiffi
η

p
scaling when the required memory time in the

protocol is shorter than the coherence time of the quantum
memories.
Although we have assumed that the matter quantum

memories have a function of heralding the storage, this
method works even with a matter quantum memory that
can only compose a Bell state with an optical polarization
qubit. In particular, in this case, as in step (ii), node C simply
needs to perform the linear-optical Bell measurement of
Fig. 3(a) on this polarization qubit emitted by a quantum
memory and a received pulse from Alice (or Bob). Since this

QNDQND

QNDQND

QND

QND

QNDQND

QNDQND

QND

BM

A BC

M=1

M=2

M=3

M=m

Q

QQ

QM

Time

FIG. 10. The concept of memory-assisted MDI QKD. In this
protocol, once node C confirms the arrival of an optical
polarization qubit either from Alice’s side or from Bob’s side
with QND measurement (which is indicated by a red flag on a
box labeled “QND”), it keeps it in a quantum memory (QM) until
an optical polarization qubit arrives at node C from the other side,
followed by its release to be subjected to Bell measurement (BM).

11Notice that an optical pulse here is regarded as being composed
of two bosonic modes, i.e., a mode for horizontally polarized photons
and a mode for vertically polarized photons. Hence, for this optical
pulse the PLOB (upper) bound on achievable secret key rates of
point-to-point QKD between Alice and Bob per pulse (composed of
the two bosonic modes) is −2 log2ð1 − ηÞ, which is approximated as
2η= ln 2 ≈ 2.89η for small η.
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Bell measurement provides the signal of the success only
when it receives two or more photons, the signal of the success
of this Bell measurement implies that the qubit information
held by the pulse from Alice (or Bob) is successfully tele-
ported into the other half of the Bell state, i.e., into the matter
quantum memory. That is, this is essentially the success of the
QND measurement required in step (ii). Hence, a matter
quantum memory that can compose a Bell state with an optical
polarization qubit allows node C to implement the QND
measurement in an indirect manner, which is also enough to
implement the memory-assisted MDI QKD protocol.
This memory-assisted implementation uses time multiplex-

ing by utilizing matter quantum memories. The dominant
noise of matter quantum memories is dephasing and/or
amplitude damping (which is sometimes treated as a depola-
rizing channel to simplify theoretical treatment), both of
which increase exponentially with time. Therefore, the noise
would significantly limit the allowed number m of time
multiplexing in the memory-assisted MDI QKD protocols.
In fact, the secret key rate of a memory-assisted MDI QKD

protocol using matter quantum memories with dephasing is
limited by the allowed number m of multiplexing, that is, by
T2=T in Fig. 11, which corresponds to how many attempts
(each of which needs time T) are possible for the matter
quantum memory to successfully store a single photon within
its coherence time T2. In the figure, as η decreases the secret
key rate scales linearly with

ffiffiffi
η

p
as long as T2=T ≥ ð ffiffiffi

η
p Þ−1,

but it then converges to η. This implies that the required
coherence time T2 is of the order of ð ffiffiffi

η
p Þ−1T ¼ eL=ð2LattÞT

with η ¼ e−L=Latt (Latt ¼ 22 km), and thus it scales exponen-
tially with L=2. However, as long as the period T of Alice’s
and Bob’s pulse generation can be taken to be small, the
required coherence time could be smaller (Panayi et al., 2014)
than even the minimum coherence time L=c required by
multiplexed first-generation quantum repeaters (Razavi, Piani,
and Lutkenhaus, 2009).

2. All-optical implementation

The all-photonic adaptive MDI QKD protocol could be
understood as an all-optical implementation of the aforemen-
tioned protocol in Sec. IV.A (Fig. 12) (Azuma, Tamaki, and
Munro, 2015). In the protocol, the QND measurement in step
(ii) is assumed to be performed using a quantum teleportation,
as in the memory-assisted MDI QKD protocol, but it is
implemented using only optical devices.12 In particular, to
achieve the QND measurement in step (ii), node C first
prepares optical polarization qubits in a Bell state locally, then
applies the linear-optical Bell measurement of Fig. 3(a) on the
half of this Bell pair and the optical pulse sent by Alice or Bob.
The success of this Bell measurement teleports the qubit
information of the surviving single photon into the other half
of the Bell pair, corresponding to the success of the QND
measurement. Since this protocol does not assume the use of
matter quantum memories, m optical polarization qubits in
step (i) of this protocol are assumed to be sent by Alice and
Bob simultaneously in a spatial-multiplexing manner. Thus,
the all-optical QND measurements referenced in step (ii) are
performed at the same time on all the pulses sent by Alice and
Bob, and the pairing in step (iii) is then made using an optical
switch. The performance of this protocol is exemplified in
Fig. 13, which shows

ffiffiffi
η

p
scaling of the secret key rate.

This all-optical implementation uses spatial multiplexing
by utilizing optical switches. The dominant noise of
optical switches is the photon loss. However, in contrast to
memory-assisted implementation, this loss increases only
logarithmically with the number m of spatial multiplexing

FIG. 11. Secret key rate (per pulse) of an adaptive MDI QKD
protocol based on matter quantum memories with heralding
storage and on Alice’s and Bob’s use of ideal single-photon
sources. The secret key rate of the ideal BB84, which scales
linearly with η ¼ e−L=Latt (Latt ¼ 22 km), is also shown as a
reference. T2 is the dephasing time for the matter quantum
memories, 1=T is the pulse generation rate of Alice and Bob, and
e11;X is the phase error rate for Alice’s and Bob’s raw keys. T2=T

corresponds to how many attempts, each of which needs time T,
are possible for the matter quantum memory to successfully store
a single photon within its coherence time T2, that is, the allowed
number m of time multiplexing in the protocol. The secret key
rate scales linearly with

ffiffiffi
η

p
as long as T2=T ≥ ð ffiffiffi

η
p Þ−1, but it then

converges to η as η decreases. This is because the increase of
phase error e11;X for the case of T2=T ≤ ð ffiffiffi

η
p Þ−1 nullifies the

benefit of time multiplexing from the use of matter quantum
memories, as shown. From Panayi et al., 2014.
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FIG. 12. The concept of all-photonic adaptive MDI QKD. In
this protocol, node C first performs QND measurements to
confirm the successful arrival of single photons (which is
indicated by a red flag on a box labeled QND in the figure),
followed by optical switches (SWs) to send the surviving
photons to BM modules. Adapted from Azuma, Tamaki, and
Munro, 2015.

12An idea similar to this, called a qubit amplifier, is also used
in the context of the device-independent QKD in order to close the
detection loophole problem (Gisin, Pironio, and Sangouard, 2010;
Curty and Moroder, 2011).
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(Azuma, Tamaki, and Munro, 2015). Note that the all-optical
protocol can achieve the

ffiffiffi
η

p
scaling even if it uses only an

m × 1 optical switch and a Bell measurement module at the
middle nodeC. Thus, if we implement anm × 1 optical switch
by concatenating 2 × 1 optical switches with transmittance
ηsw in a knockout tournament manner with depth ⌈ log2 m⌉,
the transmittance of the m × 1 optical switch decreases as

η
⌈ log2 m⌉
sw , and it thus scales only logarithmically with the
number m. This is a merit of using spatial multiplexing rather
than time multiplexing. This combination of an m × 1 optical
switch and a Bell measurement module is also implementable
without using such a large-scale optical switch, that is, using
only single-mode on-off switches, a passive Hadamard linear-
optical circuit, and single-photon detectors (Azuma, Tamaki,
and Munro, 2015). The performance in this case is also
described in Fig. 13.

3. Challenges

The question as to whether a two-mode squeezed state,
which can be produced with practical systems, can be directly
used as the Bell state to implement the teleportation-based
QND measurement in step (ii) has been answered in the
negative thus far. For instance, if we use atomic-ensemble
quantum memories for the memory-assisted MDI QKD
protocol, the memory can naturally compose a two-mode
squeezed state with an optical pulse (Duan et al., 2001;
Sangouard et al., 2011). However, this entanglement cannot
be directly used as a resource to implement the teleportation-
based QND measurement in step (ii) (Piparo, Razavi, and
Panayi, 2015), because the multiphoton component of the
two-mode squeezed state makes the success probability of
the QND measurement dependent on the transmittance

ffiffiffi
η

p
of

the channels. This result is made stronger by assuming that
node C is allowed to use photon-number-resolving detectors
(Trényi, Azuma, and Curty, 2019) rather than the threshold
detectors assumed by Piparo, Razavi, and Panayi (2015). In
particular, they showed, by deriving necessary conditions on
photon-number statistics of the entanglement photon sources,
that the polarization entanglement produced by a spontaneous
parametric down-conversion process cannot be directly used
to implement the QND measurement in step (ii) of the all-
photonic adaptive MDI QKD protocol.
As a result, a single matter qubit, such as a single ion, a

quantum dot, or a nitrogen-vacancy center in a diamond,
inside a cavity has been proposed as a candidate for the
memory to realize the memory-assisted MDI QKD protocol
(Piparo, Razavi, and Munro, 2017a, 2017b), while a source
emitting an entangled photon pair with a low multiphoton
component, such as one assumed in the original paper (see the
caption of Fig. 13) (Azuma, Tamaki, and Munro, 2015) or an
entanglement photon source (Eisaman et al., 2011), is needed
to implement the all-photonic adaptive MDI QKD protocol. In
the case where multiphoton emission is highly suppressed,
threshold detectors without the function of photon-number
resolving are sufficient for implementing the teleportation-
based QND measurement.
As for the all-photonic adaptive MDI QKD protocol, since

it needs only QND measurements on the photon number, it
could adopt different types of QNDmeasurements, such as the
one proposed by Imoto, Haus, and Yamamoto (1985) based on
an optical Kerr effect and the type proposed by Brune et al.

(1990) based on a dispersive atom-field coupling; see Scully
and Suhail Zubairy (1997) and Walls and Milburn (2007). It is
thus an important open question as to whether the all-photonic
adaptive MDI QKD keeps its merit on communication
efficiency even if we replace the teleportation-based QND
measurement with an alternative one. As for the memory-
assisted MDI QKD, a proof-of-principle experiment of the key
element has been performed with a single solid-state spin
memory integrated into a nanophotonic diamond resonator
(Bhaskar et al., 2020), based on an encoding on the phase
difference between two sequential pulses [like one used in a
differential phase shift QKD (Inoue, Waks, and Yamamoto,
2002; Sasaki, Yamamoto, and Koashi, 2014)]; see also
Sec. V.H.2.
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FIG. 13. Secret key rate (per pulse) G of an all-photonic
adaptive MDI QKD protocol. η is rephrased by the distance L

between Alice and Bob, with η ¼ e−L=Latt (Latt ¼ 22 km) and
c ¼ 2.0 × 108 m=s. Lines (I)–(IV) represent the performance of
the protocol with active optical switches, that of the protocol with
a passive Hadamard linear-optical circuit, that of the original
MDI QKD protocol (Lo, Curty, and Qi, 2012), and that of the
TGW bound, respectively (Takeoka, Guha, and Wilde, 2014a).
This graph is described under the following assumptions (Azuma,
Tamaki, and Munro, 2015): a single active feed forward can be
completed within time τa, during which photons run in optical
fibers and are subject to the corresponding photon loss; heralded
single-photon sources emit pulses with duration τs and efficiency
ηs, and they are multiplexed (Migdall, Branning, and Castelletto,
2002; Ma et al., 2011; Christ and Silberhorn, 2012; Collins et al.,
2013; Bonneau et al., 2015) to produce high-fidelity telecom
single photons with the repetition rate of the slowest optical
device at the expense of the use of at least one active feed
forward; single-photon detectors have a quantum efficiency ηd and
a dark count rate νd; Bell pairs for the all-photonic QND
measurements can be generated in a constant time τa with single-
photon sources rather than a Bell-pair photon source by paralleling
a probabilistic procedure (Browne and Rudolph, 2005) with the
active-feed-forward technique. In particular, they are assumed
to be ηs ¼ 0.90 (Migdall, Branning, and Castelletto, 2002;
Christensen et al., 2013; Giustina et al., 2013), τs ¼ 100 ps
(Shibata, Honjo, and Shimizu, 2014), ηd ¼ 0.93 (Marsili et al.,
2013), νd ¼ 1 s−1 (Shibata et al., 2010; Marsili et al., 2013), and
τa ¼ 67 ns (Ma et al., 2011). From Azuma, Tamaki, and
Munro, 2015.
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B. Twin-field QKD

To double the communication distance by utilizing a central
node C between communicators, another idea is also focused
on, especially in the field of QKD, thanks to the proposal of a
twin-field (TF) QKD protocol based on a single-rail encoding
(Lucamarini et al., 2018). The scaling improvement of the TF
QKD protocol is essentially explained by the following point:
like entanglement generation processes in quantum repeater
protocols (Duan et al., 2001; Childress, Taylor et al., 2006;
Azuma et al., 2012), the protocol makes node C use a simple
linear-optical Bell measurement of Fig. 3(b) based on single-
photon interference rather than the two-photon interference
used in the original MDI QKD (Lo, Curty, and Qi, 2012), and
Alice and Bob encode their qubit information into a single
optical mode (i.e., a single-rail encoding), rather than two
modes (i.e., a dual-rail encoding such as a polarization or a
time bin). This aims to utilize the feature that this Bell
measurement [to project a given state into a Bell state
ðj0ij1i � j1ij0iÞ=

ffiffiffi

2
p

with the vacuum state j0i and the
single-photon state j1i as shown in Fig. 3(b)] succeeds if a
single photon reaches node C either from Alice or from Bob.
For instance, in the case of the DLCZ protocol (Duan et al.,
2001), states of each local memory of Alice and Bob are
entangled with the number states (i.e., the Fock states) of a
single optical mode, while in the case of hybrid quantum
repeater protocols (Childress, Taylor et al., 2006; Azuma
et al., 2012) the computational-basis states of each of Alice’s
and Bob’s local qubits are entangled with two coherent states
of a single optical mode (corresponding to a cat-state encod-
ing). As a result, the efficiency of this type of entanglement
generation scheme (Duan et al., 2001; Childress, Taylor et al.,
2006; Azuma et al., 2012) scales with

ffiffiffi
η

p
rather than η

without requiring any challenging devices at node C thanks to
the use of single-photon interference. This scaling improve-
ment in entanglement generation might be reasonable because
it relies on the following technical challenges:

(a) Those entanglement generation schemes need intense
phase stabilization regarding the channels between
Alice and node C and between Bob and node C, in
contrast to ones based on two-photon interference at
node C.

(b) Those schemes require Alice and Bob to use matter
quantum memories that could be used to prepare
nontrivial optical states, such as number states (Duan
et al., 2001) and cat states (Childress, Taylor et al.,
2006; Azuma et al., 2012).

A bold claim was given in the original proposal of the TF
QKD protocol (Lucamarini et al., 2018). It argued that, if we
borrow the idea of the decoy-state method (Hwang, 2003; Lo,
Ma, and Chen, 2005; Wang, 2005), coherent states are enough
to achieve QKD with

ffiffiffi
η

p
scaling without requiring any device

that has the potential to prepare nontrivial optical states [in
contrast to the entanglement generation schemes having
requirement (b)]. The idea (Lucamarini et al., 2018) stemmed
from making a decoy-state phase-encoding BB84 protocol be
in the form of an MDI QKD setup, namely, attaching the
decoy-state method to a phase-encoding MDI QKD protocol
(Tamaki et al., 2012). However, despite this extremely
appealing claim, a rigorous security proof against the most

general type of eavesdropping strategies was missing in the
original proposal (Lucamarini et al., 2018): only security
over restricted eavesdropping was proven. This triggered
much interest in developing variants of the TF QKD
protocol, as well as their security proofs over arbitrary
eavesdropping attacks in asymptotic scenarios (Lin and
Lütkenhaus, 2018; Ma, Zeng, and Zhou, 2018; Tamaki et al.,
2018; Wang, Yu, and Hu, 2018; Cui et al., 2019; Curty,
Azuma, and Lo, 2019) and in finite-size scenarios (Jiang
et al., 2019; Maeda, Sasaki, and Koashi, 2019; Yu et al.,
2019; Xu et al., 2020; Currás-Lorenzo et al., 2021). Here we
focus on a variant (Curty, Azuma, and Lo, 2019) of the TF
QKD protocol, as it is explicitly related to entanglement
generation protocols in quantum repeaters, to see why
coherent states are enough to achieve QKD.
Before introducing the variant protocol, we introduce its

coherent version, which is essentially equivalent to an
entanglement generation protocol (Azuma et al., 2012).
The coherent version is described as follows. (i) Both Alice
and Bob prepare an optical pulse entangled with a local qubit,
whose state is described as ðj0ijαi þ j1ij − αiÞ=

ffiffiffi

2
p

, where j0i
and j1i are orthogonal states of the local qubit and j � αi are
coherent states of the optical pulse with an amplitude α > 0.
(ii) Each of them sends the prepared optical pulse to node C

over a lossy bosonic channel [Eq. (13)] with the transmittance
ffiffiffi
η

p
. (iii) Upon receiving the pulse a in coherent states

j � η1=4αia from Alice and the pulse b in coherent states
j � η1=4αib from Bob, node C performs a linear-optical Bell
measurement of Fig. 3(b) relying on single-photon interfer-
ence on them. (iv) Node C then announces the measurement
outcome of the Bell measurement. (v) Finally, Alice and Bob
keep their local qubits if they know that one of two detectors
for the Bell measurement announces arrival of photons
through the announcement in step (iv).
Notice that the 50∶50 beam splitter of the Bell

measurement in step (iii) [Fig. 3(b)] converts received states
j � η1=4αiaj � η1=4αib into coherent states j �

ffiffiffi
2

p
η1=4αicj0id

and j � η1=4αiaj ∓ η1=4αib into coherent states
j0icj �

ffiffiffi
2

p
η1=4αid, respectively, where c and d are the outputs

having received constructive interference and destructive inter-
ference, respectively. Since the detection of photons in the
number basis erases the phase information � of the coherent
states j �

ffiffiffi
2

p
η1=4αi, the successful detection of photons defined

in step (v) effectively works as the nondestructive parity
measurement, i.e., projection measurement j00ih00j þ
j11ih11j or j01ih01j þ j10ih10j on Alice’s and Bob’s local
qubits (with phase errors in the case of η < 1) (Azuma et al.,
2012), which entangles their local qubits in the protocol.
To see the scaling, suppose that the Bell measurement

is performed using ideal threshold detectors, for simplicity.
The success probability of the Bell measurement is
r ¼ 1 − e−2

ffiffi
η

p
α2 , while the Bell pair obtained at step (iv)

includes only the phase error with probability eZ ¼
ð1 − e−2α

2ð2− ffiffi
η

p ÞÞ=2 (Azuma et al., 2012). This performance
as entanglement generation has been shown to be optimal in
various scenarios (Azuma et al., 2009, 2010; Azuma and
Kato, 2012; Azuma, Imoto, and Koashi, 2022). If we
maximize an asymptotic key rate formula G ¼ r½1 − hðeZÞ�
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with the binary entropy function h over α, we can easily
confirm that G scales with

ffiffiffi
η

p
. However, this merely means

that the key rate G could scale
ffiffiffi
η

p
when Alice and Bob use

matter quantum memories to realize their local qubits, as
considered by Azuma et al. (2012).
To make the protocol composed of steps (i)–(iv) a prepare-

and-measure scheme, Alice and Bob are supposed to perform
Z-basis or X-basis measurements randomly on each of their
local qubits just after step (i) and before step (ii). Here the
Z-basis measurement prepares the optical pulse in coherent
state jαi or j − αi at random, while the X-basis measurement
prepares it in cat state jCþi ≔ ðjαi þ j − αiÞ=2 ffiffiffiffiffiffi

pþ
p

with
probability pþ or jC−i ≔ ðjαi − j − αiÞ=2 ffiffiffiffiffiffi

p−

p
with proba-

bility p−, where p� ¼ ð1� h−αjαiÞ=2. The random prepara-
tion of coherent states j � αi regarding the Z-basis
measurement can be easily done. In contrast, the preparation

of cat states jC�i regarding the X-basis measurement is
problematic because it requires a challenging device in prac-
tice. However, this preparation is not necessary if Alice and
Bob will distill a key only from the outcomes of the Z-basis
measurements. In particular, in the case of this QKD the X-
basis measurements are used only to estimate the actual phase
error rate eZ for privacy amplification, and estimation of its
upper bound by Alice and Bob through a protocol is enough to
prove the security (Bennett, Brassard, and Mermin, 1992; Lo
and Chau, 1999; Shor and Preskill, 2000; Mayers, 2001;
Renner, 2008; Koashi, 2009; Tamaki et al., 2014; Portmann
and Renner, 2022). In fact, it turns out that the estimation of an
upper bound on the phase error eZ can be done simply by
sending phase-randomized coherent states in the case of the
choice ofX basis and by invoking a decoy-statemethodwithout
preparing the cat states jC�i (Curty, Azuma, and Lo, 2019). As
a result, the protocol is described in Fig. 14, and the conjecture
in the original proposal that the coherent states (and their phase-
randomized ones) are enough to achieve QKDwith

ffiffiffi
η

p
scaling

is concluded to be true, as shown in Fig. 15.
The TF QKD protocol and its secure variants omit technical

challenge (b) as unnecessary for QKD, but they still include
technical challenge (a). Nonetheless, various experiments
(Minder et al., 2019; S. Wang et al., 2019; Zhong et al.,
2019, 2021, 2022; Chen et al., 2020; J.-P. Chen et al., 2021;
Pittaluga et al., 2021; Clivati et al., 2022; Wang et al., 2022) to
overcome this have been performed toward the full imple-
mentation of the TF-type QKD protocols in practical scenar-
ios. These trials are important even for quantum repeaters
because they represent a good milestone toward the realization
of a quantum repeater protocol based on single-photon
interference, which involves the same technical challenge
(a) (Duan et al., 2001; Childress, Taylor et al., 2006; Azuma
et al., 2012).
In TF QKD, to achieve the phase stability required for

entanglement swapping based on single-photon interference,
there are two general strategies. The first strategy is to use only
one laser and employ autocompensation with a Sagnac loop
where optical signals go through the same path either clock-
wise or counterclockwise (Zhong et al., 2019, 2021, 2022).
The second strategy allows two independent lasers to be used
but may require a combination of techniques including, for
example, frequency locking, using a reference pulse for
compensation, and ensuring that the optical path lengths of
the two optical fibers do not differ too drastically (Minder
et al., 2019; S. Wang et al., 2019; Chen et al., 2020; J.-P. Chen
et al., 2021; Pittaluga et al., 2021; Clivati et al., 2022; Li
et al., 2023).

C. Single sequential quantum repeater

A third alternative is to invert the previous schemes and
place a quantum device with a quantum memory in the central
node and two detectors in the end nodes. This scheme was
proposed by Luong et al. (2016).
In this scheme, the central node sends a photon entangled

with a memory qubit to one of the end nodes until the end
node confirms successful detection of the photon. The central
node then repeats the same process with the other end node
and thus emits a photon entangled with a memory qubit until

FIG. 14. Schematic of a TF-type QKD protocol (Curty, Azuma,
and Lo, 2019). Both Alice and Bob choose the Z or X basis
randomly. If the Z basis is selected, Alice and Bob prepare
coherent state jαi or j − αi at random and send it to the central
node C. If the X basis is selected, Alice and Bob prepare a phase-
randomized coherent state (PRCS) whose intensity is chosen
randomly from a predefined set [so as to be able to use the decoy-
state method (Hwang, 2003; Lo, Ma, and Chen, 2005; Wang,
2005)] and send it to the central node C. Upon receiving pulses
from Alice and Bob, the central node C performs the Bell
measurement based on single-photon interference [Fig. 3(b)]. The
secret key is distilled only from instances where both Alice and
Bob choose the Z basis and the Bell measurement at node C
succeeds. Adapted from Currás-Lorenzo et al., 2021.

FIG. 15. Secret key rates (per pulse) of a TF-type QKD protocol
for different dark count rates pd in logarithmic scale as a function
of the overall loss between Alice and Bob. The PLOB bound is
the private capacity of a lossy bosonic channel (Pirandola et al.,
2017). Assume a misalignment of 2% in each of the channels
between Alice and the central node C and between Bob and C,
and also the inefficiency function for the error-correction process
f ¼ 1.16. Adapted from Curty, Azuma, and Lo, 2019.
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success. Once the second end node confirms the successful
detection of a photon, the central node performs a Bell
measurement and heralds the measurement outcome to the
two end nodes.
The advantage of this scheme is the simplicity of the setup,

requiring a single node holding two memory qubits and no
optical Bell measurement. However, this setup is not meas-
urement-device independent and it requires qualitatively long
coherence times compared to memory-based adaptive MDI
QKD. In particular, the coherence time should be large
compared to the sum of the travel time of a photon from
the center node to an end node plus the corresponding
heralding signal, multiplied by the average number of times
required for a successful event.
The feasibility of this setup for outperforming the point-to-

point limits was analyzed for different hardware parameters by
Luong et al. (2016) and Rozpędek et al. (2018, 2019). An
experimental demonstration of the setup was recently reported
by Langenfeld et al. (2021) with rubidium atoms in an optical
cavity. While below the fundamental limit for direct trans-
mission, the scaling of the key rate in the experiment was
shown to be proportional to the square root of the trans-
mittance of an optical fiber connecting two end parties.

D. Postpairing measurement-device-independent QKD

Recently Xie et al. (2022) and Zeng et al. (2022) proposed a
variant of the MDI QKD protocol that can be conceptually
intermediate between adaptive MDI QKD and TF QKD and
whose secret key rate can scale with

ffiffiffi
η

p
rather than η, where η

is the transmittance of a pure-loss channel between Alice and
Bob. In this protocol (Fig. 16), the middle node C still uses the
linear-optical Bell measurement of Fig. 3(b) based on single-
photon interference like TF QKD, while Alice and Bob send
N optical pulses in coherent states to the middle node
sequentially, that is, in a time-multiplexing manner like
adaptive MDI QKD. The main aim here is to make a protocol
rely on the application of a Bell measurement to project onto

Bell states ðj01iaiaj j10ibibj � j10iaiaj j01ibibjÞ=
ffiffiffi
2

p
based on

two-photon interference between ith and jth time bins
(i; j ¼ 1; 2;…; N and i ≠ j) at the middle node C, where
ai and bi are ith time bins sent by Alice and Bob, respectively.
This is implemented by postselecting time slots i and j, to
which the Bell measurements based on single-photon inter-
ference at node C are successfully applied, under the
assumption that the phase correlation between such possibly
long-time separated ith and jth time bins is kept in the
implementation. This keeping of the phase correlation is a
technological challenging part if the number N of multi-
plexing is large. Nonetheless, since this protocol can be
regarded as relying on two-photon interference at the middle
node C rather than single-photon interference (like adaptive
MDI QKD), an intense phase stabilization regarding the
channels between Alice and node C and between Bob and
node C could be unnecessary, in contrast to the case of TF
QKD. In the protocol, Alice and Bob send Charlie optical
pulses in coherent states whose phases are chosen randomly
from ½0; 2πÞ and whose intensities are chosen randomly from a
predefined set. This is designed so that time bins aiaj and
bibj, postselected by the middle node C, can be regarded as a
BB84 signal and a decoy state, that is, a signal used in the
normal MDI QKD with time-bin encoding (Ma and Razavi,
2012). This postselection includes the matching between
Alice’s and Bob’s random choices of phases in some cases
[although, in contrast, it was shown to be unnecessary in the
case of TF QKD (Lin and Lütkenhaus, 2018; Cui et al., 2019;
Curty, Azuma, and Lo, 2019; Maeda, Sasaki, and Koashi,
2019; Currás-Lorenzo et al., 2021)].
For a large number N of the multiplexing n ¼ OðN ffiffiffi

η
p Þ,

where
ffiffiffi
η

p
represents the transmittance of pure-loss channels

between Alice and the middle node C and between the middle
node C and Bob, Bell measurements based on single-photon
interference would succeed. Hence, there would beOðn=2Þ ¼
OðN ffiffiffi

η
p

=2Þ instances to which the target Bell measurements
based on two-photon interference are deemed to be success-
fully applied. Since the success of the target Bell measurement
could produce an entangled state between Alice’s virtual qubit
and Bob’s virtual qubit, the secret key rate of the protocol
could scale with

ffiffiffi
η

p
.

According to the proposals, called mode-pairing QKD
(Zeng et al., 2022) and asynchronous MDI QKD (Xie et al.,
2022), experimental demonstrations were performed by Zhu
et al. (2023) and Zhou et al. (2023), respectively.

V. EXPERIMENTAL PROGRESS TOWARD REPEATERS

Long-distance quantum communication is enabled by low-
loss media for photon transfer. Free-space communication
(Ursin et al., 2007) and satellite-based communication (Liao
et al., 2017; Yin et al., 2017) have unique experimental
challenges; in this section, we chiefly describe the practical
advances toward optical-fiber-based quantum communication
schemes featuring quantum repeaters. We organize our dis-
cussion roughly according to the requirements of each
generation of repeaters from Sec. III.B and of memoryless
repeaters from Sec. III.C.

FIG. 16. Postpairing measurement-device-independent QKD.
In this protocol, Alice and Bob send N pulses to the middle
node C (Charlie) to perform the linear-optical Bell measurement
of Fig. 3(b) based on single-photon interference (SPI), and a two-
photon Bell state is obtained by postmatching two successful SPI
events. Here n represents the number of successes of the Bell
measurement based on SPI and

ffiffiffi
η

p
represents the transmittance

of pure-loss channels between Alice and Charlie and between
Charlie and Bob. Adapted from Xie et al., 2022.
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Almost all quantum repeater architectures require the
implementation of efficient interfaces between quantum
memories and photons. In first-generation repeaters, a quan-
tum memory must be capable of storing quantum information
for a long time (Sec. V.A) and of emitting photons that are
entangled with the memory degrees of freedom (Sec. V.B).
These photons are then coupled into optical fibers that connect
distant repeater nodes. The intermediate entanglement
between distant quantum memories (Sec. V.C) is finally used
to create end-to-end entanglement links between Alice and
Bob with a rate ideally much higher than direct transmission
over fibers.
In first-generation repeaters, unavoidable memory errors

are dealt with through entanglement distillation (Sec. V.D).
In the second generation of quantum repeaters, memory
errors are corrected through quantum error correction.
Therefore, quantum registers of many quantum memories
are required at each repeater node to encode logical memory
qubits (Sec. V.E). In the third generation of repeaters, loss
errors are also dealt with through QEC. Since any QEC code
can tolerate a probability of erasure (a common model for
loss) of only 50% (see Secs. II.B and V.E), advanced
engineering is required to obtain high transmissivities as
well as collection, coupling, and detection efficiencies for the
photons (Sec. V.F). In addition to the experimental progress
aligning with the three generations, we review the headway
that has been made toward memoryless repeaters (Sec. V.G),
whose all-photonic implementations require the efficient
generation of highly entangled states of many photons.
Finally, we overview the experimental demonstrations of
trusted QKD networks and small quantum networks
(Sec. V.H) that exist as important milestones on the way
to a quantum internet.

A. Long-lived quantum memories

The success of most quantum repeater schemes critically
relies on the performance of their quantum memories. The
coherence time T2 of the memory (sometimes called the
memory time) is the relevant figure of merit: it characterizes
the time during which quantum information can be stored in
the memory before being degraded by the environment. For
example, when generating entanglement between two quan-
tum memories at nodes separated by a distance L0 in a
heralded manner (Sec. III.A.4.b.2), high entanglement fidel-
ities can be achieved only if L0 ≪ cT2, with c the speed of
light in fiber. A quantum memory also needs to have
characteristics beyond the coherence time, namely, fast,
efficient, and high-fidelity initialization, gate application,
and photon retrieval and readout. For brevity we restrict
our discussion to the coherence time and refer interested
readers to Lvovsky, Sanders, and Tittel (2009), Simon et al.

(2010), and Heshami et al. (2016) for discussions of other
important features of quantum memories.
Several candidates for quantum memories are under devel-

opment, among them atomic ensembles [T2 ¼ 0.2–16 s
(Dudin, Li, and Kuzmich, 2013; Yang et al., 2016)] including
Bose-Einstein condensates (Riedl et al., 2012) and single
natural or artificial atomic systems such as cold atoms, trapped
ions [T2 ¼ 4 ms for 128Baþ (Inlek et al., 2017)], color centers

in diamond [T2 ¼ 1 s (Bar-Gill et al., 2013; Abobeih et al.,
2018)], and quantum dots [T2 ¼ 3 μs (Greilich et al., 2007)].
All of these platforms are also quantum emitters, making them
suitable candidates for atom-photon interfaces; other systems
may have superior coherence times but cannot emit photons.
To benefit from these extremely long-lived memories, hybrid
strategies can be chosen in which the quantum memory is
indirectly interfaced with photons through its coupling to an
efficient quantum emitter. This occurs naturally in nitrogen-
vacancy (N-V) centers, for example, where the electron spin is
coupled via hyperfine interaction with nearby 13C nuclear
spins (T2 ¼ 75 s) (Bradley et al., 2019). The same strategy is
also taken with trapped ions, where ionic species with good
emission properties, such as 128Baþ, are interfaced at the same
quantum node with 171Ybþ, the latter of which has much
longer coherence times [T2 > 1 h (Wang et al., 2017, 2021)].
Using these ions, Hucul et al. (2015) showed two-ion
entanglement that persists over more than 1 s. Recent results
have also shown that a typically short-lived quantum dot spin
can be efficiently coupled to a single magnon excitation of its
nuclear environment, which consists of 104–105 nuclear spins
that behave as a long-lived memory [T�

2 ≈ 1 μs (Gangloff
et al., 2019; Jackson et al., 2021), compared to T�

2 ¼ 39 ns for
the electron spin (Éthier-Majcher et al., 2017)]. Rare-earth
Eu3þ ions in Y2SiO5 crystals have the longest coherence time
experimentally observed with T2 ¼ 6 h (Zhong, Hedges et al.,
2015). This platform has an optical memory that can store a
time-bin-encoded photonic qubit for 1 h (Ma et al., 2021).
Another important criterion for these platforms is the

temperature at which they operate. It potentially implies
the use of different cooling strategies that can be techno-
logically demanding, from dilution refrigerator or liquid
helium temperature cryostats to laser cooling. Several
studies proposed softening this requirement through the
use of “room-temperature” quantum repeaters based on
either hybrid optomechanical systems with N-V centers
(Ji et al., 2022) or warm atomic vapors (Borregaard et al.,
2016; Katz and Firstenberg, 2018; Pang et al., 2020;
Dideriksen et al., 2021; Li et al., 2021; Shaham, Katz,
and Firstenberg, 2022).
In Table V, we summarize the experimental performance

of long-lived quantum memories together with their emission
properties. In addition to the coherence time, several other
figures of merit are also important for quantum repeater
applications. These include the quantum emitter control gate
fidelity (F) and dephasing and relaxation times (T�

2; T1), as
well as the availability of an additional quantum register and
its properties. The photonic properties of the quantum
emitters are also important, namely, the photon collection
efficiency (ηeff), the Debye-Waller factor in the case of solid-
state defect qubits (i.e., the probability of emitting a photon
into the zero-phonon line) ηDW, the indistinguishability ι, and
the quality of the spin-photon entanglement [F (atom-phot)].
The photon wavelength also plays a crucial role in quantum
communication since the best transmission rates are achieved
for telecom wavelengths. We include well-established quan-
tum emitters alongside more recent but promising systems,
such as rare-earth ions and new defects in diamond and
silicon.
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B. Emission of photons entangled with the quantum memory

Quantum memories should have (or should be coupled to
quantum emitters that have) optical transitions that allow the
emission of photons entangled with the memory qubits.
The emitted photonic qubits are to be encoded in one of
the degrees of freedom discussed in Sec. II.E. The emission of
spin-entangled qubits encoded in photonic frequency, polari-
zation, emission time-bin, and spatial modes has already been
experimentally demonstrated with the help of trapped ions,
N-V centers, and quantum dots. Many schemes exist for the
production of photons entangled with the memory’s degrees
of freedom, varying in details depending on the photonic
encoding and the energy-level structure of the emitter. For
concreteness, we review two of the most common examples of
such schemes here.
Polarization-entangled photons can be produced in a system

with a Λ-shaped level structure (that is, a Λ system), where the
qubit ground states j0i and j1i are both optically coupled to a
single excited state jei by orthogonally polarized transitions
(say, horizontally polarized and vertically polarized photons,
respectively). This type of level structure is present in most
quantum emitters, including some species of trapped ions
(Blinov et al., 2004) and atoms (Volz et al., 2006), in atomic
ensembles (Chen et al., 2007), N-V centers (Togan et al.,
2010), and in quantum dots when a transverse magnetic field
is applied (De Greve et al., 2012; Gao et al., 2012; Schaibley
et al., 2013). A quantum memory prepared in the excited state
will spontaneously emit a single photon with either horizontal
or vertical polarization (jHi or jVi), as shown in Fig. 17(a).
After this emission, the total memory-photon system is in the
entangled state j0; Hi þ j1; Vi. For this scheme to success-
fully produce such a maximally entangled state, the coupling
strength of the two optical transitions ought to be the same. If
the transitions differ in energy (EH ≠ EV), as in quantum dots,
the final state might instead be j0; ðH;EHÞi þ j1; ðV; EVÞi,
where jðA; EAÞi for A ¼ H and V denotes the redundant
encoding of the photonic qubit on its polarization and
frequency degrees of freedom. The demonstration of bipartite
entanglement is therefore challenging in this case since it

requires that this redundancy be erased. Such a quantum
erasure of the photon frequency was demonstrated by Yu
et al. (2015).
Despite its relative simplicity, the previous scheme may not

be available for all quantum memories, as it requires a lambda-
level structure. There is an alternative approach (Hensen et al.,
2015; Lee et al., 2019; Tchebotareva et al., 2019; Vasconcelos
et al., 2020) requiring only one strong optical transition that
results in a photon whose emission time bin is entangled with
the memory qubit. The minimal-level structure required for
this scheme is illustrated in Fig. 17(b); it corresponds to a
three-level system (j0i, j1i, and jei) where only one state of
the qubit states, for instance, j0i, is optically coupled to the
excited state jei. The memory is initialized in a superposition
state j0i þ j1i, and the optical transition 0 ↔ e is then excited
by a π pulse such that the system ends up in jei þ j1i. If in the
excited state the memory emits a photon in the early time bin
jt1i; otherwise, it emits no photons, resulting in the state jvaci:
j0; t1i þ j1; vaci. The memory qubit is then flipped in its qubit
subspace (yielding j1; t1i þ j0; vaci) and the 0 ↔ e transition
is excited again, leading to the emission of a photon in the time
bin t0 if the excited state is populated: j1; t1i þ j0; t0i. We see
that a single photon is always emitted, and that its emission
time bin is indeed entangled with the quantum memory. This
strategy requires the preparation of the memory in a super-
position state and more control pulses; however, it has the
advantage of operating with only a single optical transition,
making it particularly convenient in cases such as N-V centers
(Bernien et al., 2013) in which one specific optical transition
has better properties than the others. This approach has also
been demonstrated for quantum dots, where a certain tran-
sition is made more favorable through cavity (Purcell)
enhancement (Lee et al., 2018).

C. Distant entanglement generation

It is possible to generate heralded entanglement between
distant qubits mediated by the detection of photons. The
implementation of these schemes is usually based on the
interference of photons within a linear-optical setup. To
optimally interfere and hence create high-quality entangle-
ment, the photons emitted by two distant quantum memories
should be perfectly indistinguishable (Aharonovich, Englund,
and Toth, 2016; Senellart, Solomon, and White, 2017).
The scheme of Cabrillo et al. (1999) based on single-photon

interference [see Bose et al. (1999) for a similar proposal] for
distant entanglement generation has been demonstrated with
trapped ions (Slodička et al., 2013), quantum dots (Delteil
et al., 2016; Stockill et al., 2017), N-V centers in diamond
(Humphreys et al., 2018), and atomic ensembles (Chou et al.,
2007). The experiment conducted by Stockill et al. (2017),
which was based on two quantum dot spins separated by a few
meters, resulted in a postselected entanglement generation rate
of 7.3 kHz (Stockill et al., 2017).
We now illustrate how the scheme works experimentally.

Two quantum dots A and B situated at two separated nodes are
prepared in a Voigt configuration (in-plane magnetic field) to
exhibit a Λ-level structure with similar optical transition
energies. The two quantum dots are prepared initially in
the state j↓A;↓Bi and are excited by the same weak

FIG. 17. Level structure and heralded entanglement generation.
(a) Lambda-level structure with states jei (excited), j0i (con-
nected to jei by horizontally polarized light jHi), and j1i
(connected to jei by vertically polarized light jVi). (b) Level
structure for time-bin entanglement, where jei is connected
only to j0i; control of the qubit states is required. (c) Setup
for spin-spin heralded entanglement generation. From
Stockill et al., 2017.
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phase-stabilized laser such that a photon can be produced by
each quantum dot through Raman scattering with a probability
p ≪ 1; see Fig. 17(c). The photonic modes are then mixed on
a 50∶50 beam splitter at a central node to erase the which-path
information: that is, to make it impossible to tell which
quantum dot emitted the photon [essentially to perform the
Bell measurement of Fig. 3(b)]. The state before the photon
detection is

jΨi ¼ ð1 − pÞj↓A;↓Bij01; 02i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞ=2
p

ðeiΦA j↑A;↓Bi þ eiΦB j↓A;↑BiÞj11; 02i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 − pÞ=2
p

ðeiΦA j↑A;↓Bi − eiΦB j↓A;↑BiÞj01; 12i
þ p=

ffiffiffi

2
p

eiðΦAþΦBÞj↑A;↑Biðj01; 22i − j21; 02iÞ; ð38Þ

where ji1; j2i (with i and j integers) corresponds to the
number of photons in the first and second output modes of
the beam splitter and ΦA and ΦB are the optical phases along
the different optical paths corresponding to qubits A and B. If
a single photon is detected, the quantum dot system is
projected with a probability ≈p onto the maximally entangled
state eiΦA j↑A;↓Bi � eiΦB j↓A;↑Bi, with the sign depending on
the output mode of the beam splitter in which the photon was
detected. In practice p cannot be as high as desired, because
the quantum dot spins undergo two spin flip processes with
probability p2, resulting in the emission of two photons. In
that case, if only one of the two photons is detected (due to
either imperfect collection and detection efficiencies or trans-
mission losses) the heralding single-photon process leads to a
state with fidelity that decreases with higher p. Stockill et al.
(2017), Yu et al. (2020), Lago-Rivera et al. (2021), and
Pompili et al. (2021) used this method to demonstrate
heralded entanglement generation. Stockill et al. (2017)
demonstrated the highest rate for distant spin-spin entangle-
ment with postselection, and Yu et al. (2020) demonstrated the
longest fiber distance between two remotely entangled quan-
tum memories using atomic ensembles. However, while the
two memories were separated by 50 km of fiber, this was
achieved using a spooled fiber of that length; the actual
distance between the systems was a meter.
There are other methods for generating distant heralded

entanglement, namely, the Barrett and Kok scheme (Barrett
and Kok, 2005) based on two-photon detection. This scheme
has been demonstrated with N-V centers (Bernien et al., 2013)
and trapped ions (Moehring et al., 2007). The longest-distance
entanglement between separated systems reached using this
approach (1.3 km) was also achieved with N-V centers, in a
loophole-free Bell test experiment (Hensen et al., 2015). Yu
et al. (2020) also demonstrated a field-deployed heralded
entanglement generation between two atomic ensembles
separated by 11 km (22 km of fibers) using two-photon
interference. The latter was achieved by increasing the
collection and detection efficiencies of the photons as well
as converting the optical photons to the telecommunication
frequency, which enjoys the highest transmissivity in optical
fibers; see Sec. V.F for more details.
The scheme of Cabrillo et al. (1999) is required to operate

in the low photon emission probability regime to obtain high-
fidelity heralded entanglement. In comparison, Barrett and
Kok’s scheme can operate in the high-fidelity regime even

with high emission probability. Therefore, it should be better
suited for efficient quantum emitters and a short distance
between the nodes. However, for longer distances the fiber
losses becomes dominant and having a single-photon herald-
ing like the protocol of Cabrillo et al. leads to a better scaling
with distance than the two-photon heralding of the Barrett and
Kok scheme (in alignment with the relationship discussed in
Sec. IV.B between TF QKD and the original MDI QKD).

D. Entanglement distillation

During the generation of entanglement between remote
nodes, operation errors or the decoherence of quantum
memories can lead to a reduced fidelity of Bell states shared
between distant nodes. For first-generation quantum repeaters,
the fidelity of Bell pairs can be increased through entangle-
ment distillation (Sec. III.B.1). Starting with two imperfect
copies of a Bell pair, it is possible to produce a single Bell pair
with an improved fidelity with a success probability of at best
50%. Entanglement distillation has been demonstrated with
photonic Bell pairs (Pan et al., 2001, 2003; Yamamoto,
Koashi, and Imoto, 2001; Yamamoto et al., 2003), atoms
(Reichle et al., 2006), and N-V centers (Kalb et al., 2017).
Photonic realizations differ in success rate because it is

impossible to perform a deterministic CNOT gate with linear
optics. Instead, the entanglement distillation protocols are
performed using solely linear optics with a success rate limited
to 25% at best (Pan et al., 2001; Yamamoto, Koashi, and
Imoto, 2001). Reichle et al. (2006) demonstrated the first
experimental entanglement distillation with quantum memo-
ries. They distilled two Bell pairs of 9Beþ ions, confined in the
same Paul trap, with an overall success probability above
35%. Yet, because the pairs of entangled atoms were not
spatially separated, this scheme is not particularly useful to
enable long-distance quantum communication applications.
Using two N-V centers with two 13C nuclear spins, Kalb et al.
(2017) demonstrated entanglement distillation of a
(65� 3%)-fidelity Bell state in N-V centers that were spatially
separated by 2 m. The highest reported heralded entanglement
rate was 182 Hz (Stephenson et al., 2020), with trapped ions
separated by 2 m using a two-photon interference scheme.
Stephenson et al. expected a distilled Bell-pair fidelity of 99%
is within experimental reach.
There are also distillation schemes (Sheng and Deng, 2010;

Sheng, Zhou, and Long, 2013) that utilize specific properties
of encodings. For instance, Hu et al. (2021) demonstrated
entanglement distillation by utilizing hyperentanglement
(Kwiat, 1997; Barreiro et al., 2005).

E. Multiqubit quantum registers and error correction

Multiple memory qubits will be required per repeater node,
either for increasing the communication rate via multiplexing
(Collins et al., 2007) or for enabling error correction in
repeaters beyond the first generation. A quantum register
extends the architecture from Sec. V.A to a quantum emitter
with good optical properties coupled to a large number of
long-lived quantum memory qubits. This arrangement natu-
rally occurs in color centers in diamond, where the defect is
coupled by hyperfine interaction to tens of 13C nuclear spins
(Bradley et al., 2019), forming the register of qubits. There
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have been several advances in this line of research, such as in
experiments where the nuclear spins are individually con-
trolled using the electron spin (Childress, Gurudev Dutt et al.,
2006; Gurudev Dutt et al., 2006; Balasubramanian et al., 2009;
Fuchs et al., 2011; Taminiau et al., 2012; Bradley et al., 2019).
Similarly, in the trapped ion setting a quantum register of
many qubits has been realized using one quantum emitter
coupled to many memory qubits in the same optical trap. For
example, dual species quantum nodes based on pairs of
different ionic species such as 128Baþ-171Ybþ (Inlek et al.,
2017) and 25Mgþ-9Beþ (Tan et al., 2015) are being investigated.
In a quantum dot, however, the spin is coupled to only one (or
potentially two) different magnon species (Jackson et al.,
2021), imposing limits on the size of the register. An alternative
strategy for obtaining more qubits at each repeater node could
be to vertically stack quantum dots (Stinaff et al., 2006).
For repeaters from the second and third generation, a

quantum register at each node can be seen as a quantum
processor used to logically encode the quantum information
transferred between nodes and to correct errors. A QEC code
was recently implemented in trapped ions (Egan et al., 2021).
Here nine physical 171Ybþ qubits (with four additional qubits
for stabilizer measurements) are associated with one logical
qubit of the Bacon-Shor code in a fault-tolerant design. A
recent experiment using superconducting qubits (Google
Quantum AI, 2023) demonstrated a logical error rate reduc-
tion through increasing the size of the QEC code being used.
There is also an effort to pursue error-corrected repeater nodes
with solid-state spins (Waldherr et al., 2014; Cramer et al.,
2016). In particular, with defects in diamond (Abobeih et al.,
2022) it was recently shown the experimental fault-tolerant
operation of a logical qubit using the five-qubit code together
with a flag protocol (Chamberland and Beverland, 2018; Chao
and Reichardt, 2018) requiring a total of seven qubits. Yet, this
proof-of-principle demonstration remains above the break-
even point for which logical qubit operations have higher
fidelities than physical qubit operations.
The logical qubits in error-corrected repeaters must be

interfaced optically. For several platforms investigated for the
realization of multiqubit processors, such as superconducting
circuits, a major challenge for quantum communication
applications revolves around the emission of optical photons,
which requires quantum transduction from microwave to
optical energies (Lauk et al., 2020; Mirhosseini et al.,
2020; Ang et al., 2022).
The realization of logical photonic qubits is also being

pursued; they are required in the third generation of repeaters
and in all-photonic quantum repeaters in order to correct for
loss errors. Error detection has been demonstrated on a
photonic platform (Bell et al., 2014), and recently a proof-
of-concept photonic nine-qubit Shor code was experimentally
implemented together with an all-photonic quantum repeater
proposal (Zhang, Liu et al., 2022).

F. Loss mitigation, quantum frequency conversion, and photonic

source efficiency

A stringent requirement on correcting photonic errors is
imposed by the no-cloning theorem (Sec. II.B), which implies
that it is impossible to correct physical qubit losses of more

than 50% with QEC. In light of this, reducing the photon
losses throughout a quantum network is critical for the
implementation of repeaters where the loss is handled via
QEC. Loss occurs at every optical component, with the main
sources being propagation and coupling losses due to the
intrinsic properties of fibers and photonic chips. Loss also
occurs at the detectors and during the collection of photons
produced by quantum emitters.
Losses in fibers are caused chiefly by infrared absorption

and Rayleigh scattering, as well as imperfections introduced
in manufacturing. Minimal loss is obtained at the telecom
wavelength (1550 nm), where the loss coefficient is 0.2 dB/
km, with few prospects for improvement. Even though there
are ultralow-loss fibers with losses of 0.16 dB/km (Boaron
et al., 2018), they are not widely available and would require
complete modification of the existing infrastructure. It is
therefore crucial to use quantum emitters that emit at the
telecom wavelength, such as some engineered quantum dots
(Benyoucef et al., 2013) or rare-earth ions (Zhong et al., 2019)
and color centers in silicon (Bergeron et al., 2020; Redjem
et al., 2020).
An alternative strategy consists of using a quantum fre-

quency converter. The objective is to change the frequency of
the photonic qubits while preserving the quantum information
encoded into them (and the single-photon statistics if they are
required for the scheme) (Tanzilli et al., 2005; McGuinness
et al., 2010; Ikuta et al., 2011). Frequency converters are
generally based on a nonlinear χð2Þ crystal (or possibly χð3Þ)
pumped by a laser pulse with frequency ωl chosen such that
the frequency ωi of an input photon is modified into
ωf ¼ ωi − ωl. This strategy has been used to convert the
frequency to a telecom wavelength of photons emitted by N-V
centers (Tchebotareva et al., 2019), quantum dots (De Greve
et al., 2012; Zaske et al., 2012), single atoms (Van Leent et al.,
2020, 2022), ions (Bock et al., 2018; Krutyanskiy et al., 2019,
2023), rare-earth-doped crystals (Maring et al., 2017), and
atomic ensembles (Dudin et al., 2010; Ikuta et al., 2018; Yu
et al., 2020).
The efficient collection of light produced by quantum

emitters is another important technological challenge. Since
spontaneous emission is nondirectional, photon collection
efficiencies tend to be low. To obtain a high efficiency source
of single photons, the electromagnetic environment of the
quantum emitter ought to be engineered to force its emission
into one specific mode, which can then be coupled into a fiber.

FIG. 18. State-of-the-art cavity-QED devices. (a) A quantum
dot coupled deterministically to an open Fabry-Perot cavity. From
Tomm et al., 2021. (b) A silicon-vacancy center in diamond in a
photonic crystal cavity evanescently coupled to a fiber. From
Bhaskar et al., 2020.
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This can be achieved using waveguides, which inhibit the
emission outside of the waveguide mode (Arcari et al., 2014),
or with microcavities, which enhance the coupling between
the quantum emitter and the electromagnetic mode confined in
the cavity. In these two cases, the emission of a single photon
is much more probable inside a particular mode (of the cavity
or the waveguide) than in all the others. This photonic mode
can then be efficiently coupled to the transmission fiber.
Cavity enhancement also has the important advantage of
increasing the probability of emission of indistinguishable
coherent photons (Riedel et al., 2017) as compared to
incoherent phonon-assisted emission. Two examples of
state-of-the-art cavity-QED devices are reviewed in Fig. 18.
The single-photon collection efficiency has drastically
improved over the years for all quantum emitters through
technological and material improvement of cavity-QED devi-
ces (Barros et al., 2009; Maiwald et al., 2012; Somaschi et al.,
2016; H. Wang et al., 2019; Bhaskar et al., 2020; Uppu et al.,
2020; Tomm et al., 2021); in quantum dots, trapped ions, and
defects in diamond, the collection efficiency has now risen
above the 50% threshold.
While it does not make use of quantum emitters, note that

spontaneous parametric down-conversion sources have seen
their effective collection efficiency increase to 67% through
large-scale multiplexing and active switching (Kaneda and
Kwiat, 2019). Although it is not possible to use these sources
to realize an efficient light-matter interface in quantum
repeater protocol based on matter qubits, they nevertheless
show great potential for all-photonic approaches, as detailed
in Sec. V.G.
The single-photon detection efficiency (Hadfield, 2009) has

also been significantly increased through the development of
superconducting nanowire single-photon detectors. Devices
with detection efficiencies as high as 95% are now commer-
cially available, and superconducting nanowire detectors with
efficiencies as high as 99% have been demonstrated at telecom
frequencies (Hu, Li et al., 2020; Chang et al., 2021).
Transition edge sensors also enjoy high detection efficiencies,
with the added benefit that they can resolve photon numbers
(Lita, Miller, and Nam, 2008), which can be useful for some
heralded entanglement generation schemes.

G. Progress toward memoryless quantum repeaters

In all-photonic quantum repeaters, error correction and loss
tolerance should be achieved through photonic codes, instead
of using quantum memories. The technological requirements
of such repeaters are therefore considerably different than the
other approaches. The primary challenge revolves around the
creation of large, highly entangled photonic states, namely,
graph states.
Several different approaches have been suggested for

photonic graph state generation. Until recently, the largest
entangled states of photons were produced experimentally
using spontaneous parametric down-conversion sources and
fusion gates (Browne and Rudolph, 2005). The probabilistic
nature of fusion gates is the main limitation to the number of
photons in the graph state that can be produced using this
approach, with the current maximum being 12 (Zhong
et al., 2018).

Proof-of-principle experiments of all-photonic quantum
repeaters have already been realized (Hasegawa et al.,
2019; Li et al., 2019). In both cases, the original protocol
given by Azuma, Tamaki, and Lo (2015) was replaced by a
variant in order to facilitate its experimental realization. In this
new all-photonic communication scheme, which was intro-
duced by Hasegawa et al. (2019), Alice and Bob prepare n

photonic Bell pairs each, sending half of every one of them
through a lossy fiber to a central node (Charlie). Prior to the
arrival of the photons, Charlie prepares a 2n-qubit GHZ state
(equivalent to the complete-graph state in Sec. III.C.1 under
local unitaries) and performs photonic Bell-state measure-
ments between the incoming photons and the corresponding
photons in the GHZ state. The first key concept behind this
scheme is a time-reversed adaptive Bell measurement, which
Li et al. (2019) referred to as a passive choice measurement. If
the photon ai (i ¼ 1; 2;…; n) emerging from Alice arrives at
Charlie’s node and the joint measurement with photon ci from
Charlie’s GHZ state is successful, then Charlie achieves a
Bell-state projection. However, if the photon ai does not make
it to Charlie’s node or if the measurement is unsuccessful, the
Bell-state analyzer passively adapts to an X-basis measure-
ment on ci that disconnects photon ci from the GHZ state.
This leads to the second important idea given by Hasegawa
et al. (2019): the outer qubits from the original repeater graph
state given by Azuma, Tamaki, and Lo (2015) can be
removed, leaving a bare GHZ state in its place.
Li et al. (2019) demonstrated the aforementioned scheme

with a four-qubit GHZ state and n ¼ 2 multiplexed commu-
nication channels. We now examine the experiment in Fig. 19.
Alice, Bob, and Charlie each prepare two Bell pairs using
spontaneous parametric down-conversion sources. Alice and
Bob send one qubit from each Bell pair (each corresponding to
transmission over a communication channel) to Charlie’s
node. Charlie mixes his two Bell pairs to produce a four-
qubit GHZ state and the protocol proceeds as previously
explained with n ¼ 2. Although the experiment did not
surpass the PLOB bound (Pirandola et al., 2017), Li et al.

FIG. 19. A proof-of-principle experiment for an all-photonic
quantum repeater. Passive choice measurement (PCM) automati-
cally performs an entangling Bell measurement (in the case of a
coincidence detection) or a disentangling local X measurement
(in the case of a single-photon detection or the failure of the Bell
measurement). From Li et al., 2019.
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demonstrated an enhancement in communication rates
between Alice and Bob compared to the case where
Charlie uses a Bell pair for each communication channel
(that is, does not multiplex the channels). These results
attested to the interest and experimental feasibility of all-
photonic solutions for quantum communication.
In principle, the aforementioned modifications simplify the

original all-photonic repeater, making it attainable with
current technology. However, the protocol works only if a
single QR node is used, consequently leading to an η1=2

scaling at best, and limiting the communication distances to at
most about 1000 km in practice13 (in the sense explained in
footnote 5). Going beyond this limit would require one to
cascade multiple QR nodes and use photonic states with many
more photons, such as the RGS in the original protocol
(Sec. III.C.1). Furthermore, the protocol is particularly sensi-
tive to local losses at Charlie’s node, as demonstrated by
Hasegawa et al. (2019). Delaying the preparation of the GHZ
state only partially mitigates this issue, with a more complete
scheme requiring loss-tolerant error correction. Recently
Zhang, Liu et al. (2022) demonstrated a nine-qubit Shor
code, with a new all-photonic quantum repeater approach that
could be cascaded. They also showed its tolerance to single-
photon losses. Among the steps remaining for it to be fully
operable, this Shor code should be generated in a heralded
fashion rather than being postselected.
To move to higher photon numbers, the all-optical strategy

requires probabilistic fusion gates combined with high-speed
feed forward (Sec. III.C.3) to grow larger and larger graphs
based on small graph resources. Having efficient feed forward
techniques is thus crucial (Zanin et al., 2021). This is
achievable only with ultrafast optical switches and electronics.
The technological challenges of bosonic repeaters

(Sec. III.C.2.c) are somewhat different than the discrete-variable
repeater that we have focused on. For the particular case of
encoding qubits into momentum-squeezed or GKP states, one
can deterministically combine modes into large graph states
with Gaussian operations (linear optics and squeezing).
However, the production of GKP states is challenging, with
only a single early demonstration in the photonic platform
(Konno et al., 2023). However, Gaussian states of light are now
a well-mastered technology (Asavanant et al., 2019).
An alternative strategy for producing photonic graph states

is to use light-matter interfaces in generation procedures in the
manner of Buterakos, Barnes, and Economou (2017) or
Pichler et al. (2017), Zhan and Sun (2020), and Zhan et al.

(2023), whose approach was based on the initial work of
Schön et al. (2005), Lindner and Rudolph (2009), and
Economou, Lindner, and Rudolph (2010). This strategy is
more demanding experimentally but has the advantage of
being deterministic in principle. Indeed, with unity collection
efficiency of the photons and perfect control of the quantum
emitters, the generation procedure does become completely

deterministic: the entanglement between photons is produced
through the control of the quantum emitter rather than through
probabilistic fusion gates. A proof-of-concept experiment was
realized by Schwartz et al. (2016), who produced a linear-
cluster state by manipulating and optically pumping the spin
of a quantum dot. They produced a three-qubit linear-cluster
state and showed that entanglement persists for up to five
photons. More recently Cogan et al. (2023) showed that
entanglement persists over ten photons, with indistinguish-
ability above 90%, also using the deterministic generation
from a hole spin quantum dot emitter. Quantum-dot-based
sources of entangled photons have also been inserted inside
microcavities to generate linear-cluster states at much higher
rates (Coste et al., 2023). A similar generation scheme using a
single atom trapped in a cavity was used to demonstrate a
12-photon linear-cluster state and a 14-photon GHZ state
(Thomas et al., 2022), which to date constitutes the record
largest experimentally demonstrated entangled photonic state.
In those experiments the emitters produced polarization-
entangled photons, but strategies involving time-bin entangle-
ment have also been explored (Lee et al., 2018; Vasconcelos
et al., 2020; Appel et al., 2022; Vezvaee et al., 2022).
To go beyond linear-cluster state generation, one can use

either multiple solid-state qubits or the strong nonlinear
interaction induced by atoms for light to effect entangling
gates. For the generation procedures of Pichler et al. (2017)
and Zhan and Sun (2020), one needs to implement spin-
photon CZ gates, where a phase shift is induced in a photon
that depends on the spin state. Cavity-QED devices increase
the spin-photon interaction such that such spin-photon gates
are within reach with many cavity-QED platforms (Arnold
et al., 2014; Reiserer et al., 2014; Sun et al., 2016; Javadi
et al., 2018; Androvitsaneas et al., 2019; Wells et al., 2019;
Bhaskar et al., 2020).

H. Experimental realization of quantum networks

In this section, we review experiments that go beyond two-
node quantum communication to inch closer to the quantum
internet. We start by presenting the experimental realizations
of trusted large-scale repeater networks for QKD applications
based on trusted relays. We then discuss experimental
progress toward the realization of quantum repeaters to
actualize long-distance quantum communication over
untrusted nodes. Finally, we discuss the experimental reali-
zation of untrusted quantum networks.

1. Trusted large-scale repeater networks

Several intercity QKD networks have already been realized,
such as the SECOQC network in Austria (Peev et al., 2009),
the Tokyo QKD network in Japan (Sasaki et al., 2011), the
SwissQuantum network in Switzerland (Stucki et al., 2011),
the Illinois Express Quantum network in the U.S. (Chung
et al., 2021), and the Shanghai-Beijing QKD network in
China (Y.-A. Chen et al., 2021). In all of these networks,
cryptographic keys are distributed between nodes separated
by long distances using relay nodes. Assuming that the relay
nodes are trusted, a secure key can be established at rates
much higher than are possible through direct fiber

13For instance, with a twin-field-type QKD protocol that utilizes a
single node between communicators, Wang et al. (2022) successfully
generated a secret key with 4.572 × 10−1 secret bits per second over
786.67 km of fiber, and 1.399 × 10−2 secret bits per second over
833.80 km of fiber experimentally.
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transmission (Pirandola et al., 2017), thereby enabling effi-
cient QKD over long distances.
In Fig. 20(a), we illustrate the Shanghai-Beijing QKD

network, the largest QKD network to date. This network
links four metropolitan areas (Shanghai, Hefei, Jinan, and
Beijing) using a backbone of 32 trusted relays in a linear
topology. If any one of the 32 relay nodes is compromised, the
generated key may be insecure. The trusted relays allow for
efficient long-distance QKD between these metropolitan
areas. Each of these cities comprises small QKD networks
with different topologies, where end users with reduced
capabilities (requiring only a QKD source) can connect to
the network. This network incorporates both fiber- and
satellite-based communication: the nodes at Nanshan and
Xinglong are separated by 2600 km, communicating through
free space via a satellite node that also acts as a trusted relay. A
similar strategy has been used to distribute a secret key over
intercontinental distances: between Graz in Austria and
Nanshan and Xinglong in China, covering a total distance
of 7600 km (Liao et al., 2018). Thanks to this combination of
fiber- and satellite-based quantum communication, the
Shanghai-Beijing QKD network covers a total distance of
4600 km and provides a typical secret rate between each node
of 50 kbits/s and a minimum internode secret key rate of
28 kbits/s in the entire network. The large key rates achieved
at such distances are completely out of reach for direct
transmission over a fiber. Given its covered distance, complex
topology, and the different quantum channels used, this QKD
network can be considered a genuine prototype of the
quantum internet for QKD applications, albeit at the cost
of having to trust the network provider.

2. Proof of concept of a quantum repeater

Improving on a trusted repeater network is required to
implement device-independent QKD, which can be realized
through the distribution of Bell pairs to the end nodes. Recent
experimental demonstrations of fibered device-independent
QKD based on quantum memories [single 87Rb atoms (Zhang
et al., 2022) and 88Srþ ions (Nadlinger et al., 2022)]
constituted significant improvements as they closed the
detection loophole in the violation of Bell’s inequality. In
an experiment using an untrusted satellite node to share

private keys with the help of the Ekert 91 protocol (Ekert,
1991), Yin et al. (2017) set the record distance of 1200 km
for a distribution of entangled photons. Realizing a long-
distance device-independent multinode network would also
crucially require the practical implementation of efficient
quantum repeaters in real networks. However, this major
milestone is the subject of active research and remains to be
demonstrated. Note, however, that device-independent QKD
still suffers from attacks14 such as memory attacks (Barrett,
Colbeck, and Kent, 2013) and covert channels (Curty and
Lo, 2019).
Bhaskar et al. (2020) demonstrated that the use of a single-

repeater node in an experiment increases the communication
rate of MDI QKD compared to repeaterless communication.
Like Li et al. (2019), Bhaskar et al. used a repeater scheme
with a single-repeater node; however, they were able to
demonstrate improvement over the PLOB bound in terms
of a key rate in bits per channel use versus an effective channel
transmission: a fourfold secret key rate increase over the
original MDI QKD (Lo, Curty, and Qi, 2012). The repeater
node consists of a single silicon-vacancy center embedded in a
diamond photonic crystal cavity. The cavity mode of this
device is efficiently evanescently coupled to a fiber to
minimize the photonic losses. A significant improvement
toward the photon collection efficiency was also demon-
strated, reaching 85%. The silicon-vacancy system is posi-
tioned in a dilution refrigerator to achieve a coherence time
T2 ¼ 0.2 ms. In their experiment, the quantum memory at
Charlie’s node does not emit photons but receives weak
coherent time-bin-encoded pulses from Alice and Bob.
Using electromagnetically induced transparency of their
cavity-QED device, these weak pulses are reflected or not
depending on the electronic spin state. The reflected photonic
pulses are then detected by superconducting single-photon

FIG. 20. Quantum networks. (a) Shanghai-Beijing QKD network. From Y.-A. Chen et al., 2021. (b) Experimental quantum
network composed of N-V centers acting as quantum memories. From Pompili et al., 2021.

14This is because once a key has been generated it is classical, and
as such is subject to copying. Therefore, if a QKD system is reused in
future QKD sessions, then the key generated in a previous session
might be stored in some memories and be leaked. Moreover, not only
the QKD devices but also the conventional computers used in the
classical postprocessing (for instance, error correction and privacy
amplification) can leak key information via covert channels.
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detectors. If a photonic pulse coming from Bob is detected
shortly after a pulse from Alice, a key bit can be distributed
between Alice and Bob when Charlie communicates the two-
photon and spin measurement results. With these experiments
it is possible to achieve a

ffiffiffi
η

p
scaling because the two coherent

pulses do not need to arrive simultaneously at the repeater
node, thanks to the quantum memory; see Sec. IV for details.
The role of the memory is to store the information of the first
pulse during the time it remains coherent while waiting for the
second pulse to be detected. While operating with only one
quantum memory per node for the moment, these results
foresee a promising route toward long-distance quantum
communication. Indeed, a silicon-vacancy color center can
in principle make use of their 13C neighbors to effect a quantum
register of long-lived memories (Nguyen et al., 2019b). This
may increase the performance of the protocol by enabling
longer storage times as well as the concatenation of multiple
repeater nodes, in principle paving the way to obtain a
polynomial scaling of the rate with the communication dis-
tance. This Si-V-center system will be integrated in the future
50-km-long Boston quantum network (Bersin et al., 2023).
In a more recent experiment, Langenfeld et al. (2021)

demonstrated a memory-enhanced quantum repeater node
based on two 87Rb atoms in an atomic cavity. This node can in
principle be cascaded at the core of a quantum repeater
scheme that overcomes the previous

ffiffiffi
η

p
limits of a repeater

node with a single memory such as that discussed by Bhaskar
et al. (2020). Moreover, the single-qubit error rate was below
11%, ensuring that a secure key can indeed be transferred
using this repeater node. Such a memory-enhanced repeater
has also been demonstrated by performing entanglement
swapping with two 87Rb atomic-ensemble memories (Pu et al.,
2021).

3. Untrusted quantum networks

Since a quantum internet for applications beyond QKD
may look like amultinode networkwhere quantum information
is stored and processed by quantum memories, a complemen-
tary route toward the development of long-distance multinode
networks is to create multiqubit quantum networks at a small
distance and to progressively increase their size when the
quantum repeater technology becomes more mature. The work
of Pompili et al. (2021) is the first realization of such a small
quantum network, where each node includes a quantum
memory to process quantum information locally. This network
is based on three nodes, with an internode distance of a
maximum of 7 m; see Fig. 20(b). Each node includes one or
two quantum memories based on an N-V center electron spin,
and potentially another proximal 13C nuclear spin.
Pompili et al. (2021) used their network to perform non-

trivial multinode operations such as the generation of a three-
qubit GHZ state with a memory qubit at each node and the
generation of a Bell pair between quantum memories situated
at nodes that were not directly connected. After the generation
of heralded entanglement between an N-V electron spin at
Alice’s node and the electron spin at Charlie’s node, the
information encoded in Charlie’s electron spin qubit was
swapped to a 13C nuclear spin so that the electron spin could
be used again to generate entanglement with Bob’s N-V

center. This entanglement generation step could be realized
with the strategies introduced in Sec. V.C. The entanglement
was swapped by performing a Bell measurement between the
electron and the nuclear spins at Charlie’s node. This was the
first demonstration of deterministic entanglement swapping in
a heralded fashion between distant nodes that were not
originally connected. The work required the cooperation of
a multitude of experimental components. Pompili et al. (2021)
used the single-photon detection scheme proposed by Cabrillo
et al. (1999) to herald entanglement generation between
distant spins with 80% fidelity and at rates of 7 and 9 Hz,
using phase-stabilized links between the three nodes. The
quantum information initially stored in Charlie’s electron spin
qubit needed to be swapped into one of its proximal nuclear
spins, thereby requiring a nuclear spin register and a high level
of control. In addition, since the entanglement ought to be
stored for the time the three nodes were connected, dynamical
decoupling sequences were used to further isolate the spins
from their environment. Finally, an electron-nuclear spin Bell
state was used to swap the entanglement at the central node
and produce a Bell state between Alice’s and Bob’s spin qubits
at a rate of 25 mHz. This protocol had an overall fidelity of
55%, which could potentially be improved by using better
photonic interfaces, spin control, and readout techniques, as
well as by reducing the infidelities and increasing the rate of the
distant spin-spin entanglement generation. Such a network has
also been used to teleport quantum information between two
nodes that are not immediate neighbors (Hermans et al., 2022).
The interest of these results is also to provide a test bed for

real-life applications and to prepare the other technological
aspects of the implementation of a quantum network, such as
the communication protocols. There is also a considerable
development of quantum network simulator software
(Matsuo, Durand, and Meter, 2019; Coopmans et al., 2021;
Wallnöfer et al., 2022) to assist in this goal, for example, to
envision a city-scale network (Yehia et al., 2022).

VI. QUANTUM INTERNET

The goal of this section is to look beyond linear networks,
i.e., chains of quantum repeaters, and discuss how they blend
into the vision of a future quantum internet. First, we present a
set of communication tasks that can be implemented over a
quantum network, and we link these sample communication
tasks with experimental requirements and associate the tasks
with a taxonomy of stages of the quantum internet that
summarizes the discussion of Wehner, Elkouss, and
Hanson (2018). Second, we introduce the elements of a
quantum network and place repeaters in the larger context
of a quantum network architecture. Finally, we investigate
how to evaluate the usefulness of quantum networks for these
different tasks. For this we introduce a simplified model of a
network in terms of a graph. The evaluation is phrased in the
form of network capacities, quantities that can be achieved in
an idealized situation. We observe that, in spite of the apparent
additional difficulty of dealing with a network, in this abstract
setting many of the tools from point-to-point links carry to the
network setting; see Azuma et al. (2021) for a review on tools
for predicting quantum network performance.
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A. Applications of the quantum internet

1. A set of representative communication tasks

Before we discuss how to quantify the usefulness of a
quantum network, it is relevant to discuss the potential
applications of quantum networks and more generally of
the quantum internet. In the following we discuss a repre-
sentative set of the applications that we know today divided by
area. However, as in the early days of the Internet, we should
expect many new applications to be found as the number of
users increases.
First, a quantum internet can be used for transmitting

information. The nodes in the network might want to transmit
classical information or quantum information. The latter is not
possible without a quantum network, but for the former the
quantum internet can offer an advantage with respect to a
classical network. In particular, both entangled channel inputs
(Hastings, 2009) and joint quantum measurements (Sasaki
et al., 1998; Guha, 2011) can enhance the transmission rate of
classical communication. A quantum internet can also be used
to transmit classical information between two parties that is
kept secret from any third party (Devetak, 2005). In turn this
enables secret key distribution, a task that is possible with
classical means only if the parties are willing to make
assumptions on the communication channel [for example,
wireless physical layer security relies on a model of the
conditional probability distribution associated with the wire-
less channel (Bloch et al., 2008)] or on the capabilities of a
potential eavesdropper [for example, the security of the RSA
cryptosystem (Rivest, Shamir, and Adleman, 1978) relies on
the difficulty of the factoring problem].
Second, a quantum network can be used to implement

several cryptographic tasks beyond private communication,
with qualitative advantages with respect to classical net-
works. The best-known one is QKD. Some other tasks are
byzantine agreement (Ben-Or and Hassidim, 2005), certi-
fied deletion (Broadbent and Islam, 2020), conference key
agreement (Chen and Lo, 2007; Augusiak and Horodecki,
2009; Murta et al., 2020), distribution of money (Wiesner,
1983), leader election (Tani, Kobayashi, and Matsumoto,
2005), and secret sharing (Cleve, Gottesman, and Lo, 1999;
Hillery, Bužek, and Berthiaume, 1999). There are some
important cryptographic tasks that cannot be implemented
either with classical or with quantum resources, such as
information-theoretically secure quantum bit commitment
and two-party secure computation (Lo, 1997; Lo and Chau,
1997; Mayers, 1997; Lo and Chau, 1998). But, if one is
willing to make an assumption on the amount of storage
(Damgård et al., 2008) or on the quality (Konig, Wehner,
and Wullschleger, 2012) of the storage of a potential
attacker, then implementing these tasks with quantum
resources is advantageous. In this category fall quantum
protocols for bit commitment (Kent, 2011; Konig, Wehner,
and Wullschleger, 2012), oblivious transfer (Schaffner,
2010; Wehner et al., 2010), and secure identification
(Damgård et al., 2007; Dupuis, Fawzi, and Wehner,
2015). Strikingly, a quantum network offers the possibility
of implementing most of these cryptographic tasks without
making any assumptions on the behavior of the devices held

by the legitimate parties (Mayers and Yao, 1998). In
consequence, these so-called device-independent imple-
mentations close by construction one of the most important
sources of side channel attacks.
Third, as noted in Sec. I, the study of quantum commu-

nication complexity tells us that by sending quantum
information (qubits) we can dramatically lower the amount
of communication required compared to sending classical
information (bits). Quantum fingerprinting (Buhrman et al.,
2001) is an example of the quantum advantage in
communication.
Fourth, another important application of quantum net-

works is computation. In its more direct sense, an alternative
paradigm to the monolithic construction of a quantum
computer is the so-called modular or distributed quantum
computer (Nickerson, Fitzsimons, and Benjamin, 2014). In
this paradigm high-quality small quantum computers are
linked via entanglement to build a larger quantum computer.
A quantum network can also be used to perform quantum
computation on a remote quantum computer without
revealing information about the computation or the under-
lying data (Childs, 2005; Broadbent, Fitzsimons, and
Kashefi, 2009; Aharonov et al., 2017), to perform multi-
partite computation (Cleve and Buhrman, 1997), or to obtain
a computational advantage in distributed computation tasks
(Le Gall, Nishimura, and Rosmanis, 2019).
Finally, the entanglement distributed by a quantum network

can boost the performance of sensing applications (Degen,
Reinhard, and Cappellaro, 2017). Notable examples in this
domain are in clock synchronization (Komar et al., 2014) and
in interferometry, where entanglement can be used to extend
the baseline of telescopes (Gottesman, Jennewein, and Croke,
2012; Khabiboulline et al., 2019).

2. Stages of the quantum internet

The path to building the quantum internet will be long and
difficult. The current standard viewpoint is that the quantum
internet will probably develop in stages. There are different
ways to divide it into stages. The classification proposed by
Wehner, Elkouss, and Hanson (2018) is based on the network
functionality available to the end nodes.
Quantum networks where nodes have limited functionality

are already useful for applications, and new tasks can be
implemented as the functionality of the end nodes increases.
This means that, even at the early stages of development, we
expect quantum networks to be useful. We later recap the
discussion given by Wehner, Elkouss, and Hanson (2018),
linking the communication tasks introduced in Sec. VI.A.1 to
development stages.
In the first stage trusted repeater networks are built. In this

stage, the nodes can prepare and transmit quantum states to
adjacent nodes in the network. This functionality allows one to
implement prepare-and-measure quantum key distribution
protocols between adjacent nodes. In this way, it is possible
to construct a network of individual quantum key distribution
links, but it is not a fully quantum network in the sense that
quantum information cannot be transmitted to nonadjacent
nodes. This limited functionality is nonetheless useful: in such
a network, if two end nodes trust the behavior of the nodes in a

K. Azuma et al.: Quantum repeaters: From quantum networks to the …

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045006-43



path connecting them, then they can exchange keys that are
secure under this assumption (Salvail et al., 2010). Existing
quantum networks such as the Tokyo QKD network (Sasaki
et al., 2011), the SECOQC network (Peev et al., 2009), and
the Shanghai-Beijing network (Y.-A. Chen et al., 2021) are at
this stage; see Sec. V.H.1.
In the second stage, end-to-end prepare-and-measure net-

works are built. In this stage, the nodes can prepare single
qubits and transmit them to any other node in the network
without any trust assumption and on the receiving side, nodes
can measure incoming qubits. A potential price to pay is the
postselection of the transmitted signals. Nonetheless, prepare-
and-measure networks can still be useful for various addi-
tional applications, including secure identification in two-
party cryptography with noisy quantum memories and key
distribution. This includes protocols where entanglement is
used as a proof technique in the virtual protocol to guarantee
security but the nodes do not share an entangled state at any
moment. Instead, it is sufficient that the nodes can confirm
whether entanglement could have been shared if the end nodes
had run a coherent version of a prepare-and-measure protocol.
For instance, communicators in a time-reversed entanglement
distribution protocol (Biham, Huttner, and Mor, 1996), a
measurement-device-independent quantum key distribution
(MDI-QKD) (Lo, Curty, and Qi, 2012), and a TF QKD
(Lucamarini et al., 2018) fall into this category, which
removes assumptions about the measurement devices and
highly limits the feasibility of side channel attacks; see Curty,
Azuma, and Lo (2021).
In the third stage, entanglement distribution networks are

achieved where two users can obtain end-to-end quantum
entanglement in either a deterministic or a heralded fashion. In
this stage, the end nodes require no quantum memories. This
added functionality enables, for example, device-independent
QKD when the loss is sufficiently low.
In the following we discuss the final three stages. These

stages differ in regard to the quality of the quantum computa-
tional capabilities of the nodes.
In the fourth stage, quantum memory networks are built. In

this stage, the end users can store quantum information in
their memories and teleport quantum information to each
other. The minimum storage time is determined by the transit
time between the two end nodes. Note that in this stage the
operations are done directly on the physical qubits. There is
no fault tolerance. This functionality enables some blind
quantum computation schemes provided that there is a
remote quantum computer (Broadbent, Fitzsimons, and
Kashefi, 2009; Aharonov et al., 2017). It also enables
protocols for extending the baseline of telescopes
(Gottesman, Jennewein, and Croke, 2012; Khabiboulline
et al., 2019); protocols for cryptographic tasks such as
anonymous quantum communication (Christandl and
Wehner, 2005), secret sharing (Cleve, Gottesman, and Lo,
1999; Hillery, Bužek, and Berthiaume, 1999), and simple
leader election (Ambainis et al., 2004); and some protocols
for clock synchronization (Komar et al., 2014).
In the fifth stage, few-qubit fault-tolerant networks are built.

Here the end nodes can perform local quantum operations
fault tolerantly on a few logical qubits. This ability allows
more complex protocols to be executed. More concretely an

end node can perform a fault-tolerant execution of a universal
gate set on q logical qubits such that the number q ≥ 1 is small
enough that the local quantum processors can still be
simulated efficiently by a conventional computer. Since
conventional computing power tends to increase exponentially
with time, which value of q remains simulatable is a function
of time and technology. This functionality enables the
implementation of a distributed quantum computer by linking
the end nodes.
In the sixth and final stage, quantum-computing networks

are built and large-scale fault-tolerant quantum computation
can be performed. The end node can perform large-scale
quantum computation that cannot be simulated efficiently by
any conventional computer. This will be the ultimate quantum
internet. With this functionality it is possible to implement
protocols for leader election (Tani, Kobayashi, and
Matsumoto, 2005), fast Byzantine agreement (Ben-Or and
Hassidim, 2005), quantum money (Gavinsky, 2012), and
weak coin flipping with arbitrarily small bias (Mochon,
2007; Chailloux and Kerenidis, 2009).
We end the recap of the stages by noting that the placement

of the tasks in a stage given by Wehner, Elkouss, and Hanson
(2018) corresponds to the current theoretical state of the art.
Future protocol proposals might allow one to reduce the
requirements to implement a given task. For a more thorough
description of existing protocols and their relation to the
development stages, investigate the quantum protocol zoo
(Quantum Protocol Zoo, 2019).

B. Quantum networks

1. Elements of a quantum network

The Internet connects user devices that we call end systems
or hosts. These devices are linked by communication channels
to other nodes in the network. However, the hosts are not
directly linked. Instead, they are connected via intermediate
devices that are called routers. Routers in the Internet receive
packets of information on incoming links and, depending on
the content of the packet, forward it through one outgoing
link. Devices situated in a communication link that passively
amplifies the signal and does not take routing decisions are
called relays.
Similarly, a quantum network (Van Meter, 2014) connects

end systems linked by quantum channels. Intermediate nodes
in quantum networks, in addition to taking routing decisions,
participate in the generation of long-distance entanglement.
The responsibilities associated with entanglement generation
depend on the technology; see Sec. III.B. They might include
generating entanglement with adjacent nodes, implementing a
purification protocol, swapping entanglement, or processing
encoded quantum information. Moreover, quantum networks
will also require classical nodes and links for their operation.
In this review, we have used the term quantum repeaters to

denote all intermediate nodes in a quantum network. However,
it is possible to make a finer classification. In analogy with
classical networks, Munro et al. (2022) differentiated between
quantum relays and quantum repeaters depending on whether
they processed quantum information passively or actively.
Another distinction can be made, depending on whether or not
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the intermediate nodes participate in network management
and decide how to swap entanglement. The former are called
quantum routers and the latter are referred to as automated
quantum nodes (Dahlberg et al., 2019; Kozlowski
et al., 2020).

2. Network architecture

The Internet provides an information-transmission ser-
vice to the end systems. To implement this service,
most communication networks rely on a layered approach.
Each layer of the so-called network stack uses the service
from the layer below without requiring any knowledge about
how it is implemented or what hardware components it
relies upon and provides a more complex service to the
layer above.
A priori the main service of the quantum internet will be the

delivery of remote bipartite entanglement, which can then be
used as a resource for applications (Van Meter, 2014). Other
proposals posit that the delivery of graph states will be the
fundamental primitive of the quantum internet (Pirker and
Dür, 2019). Independently of the main service, for the
quantum internet we can expect a layered architecture similar
to that of the Internet (Van Meter et al., 2009; Van Meter and
Touch, 2013; Dahlberg et al., 2019; Pirker and Dür, 2019;
Cacciapuoti et al., 2020; Kozlowski, Dahlberg, and Wehner,
2020; Kozlowski et al., 2020); see Illiano et al. (2022) for a
survey on protocol stack proposals. Recently Pompili et al.
(2022) experimentally demonstrated entanglement delivery
using a network stack.
The quantum internet architecture will not be independent

of the Internet since it is clear that the quantum internet will
rely on classical communication for its functionality.
However, the quantum internet could also support the func-
tionality of the classical Internet, thereby creating a complex
interplay (Cacciapuoti et al., 2022).

C. The fundamental limits of communications over network

In the following we discuss the usefulness of quantum
networks from an information-theoretic point of view. First,
we introduce a model of a network in terms of a graph and the
relevant notation. We then define the quantities that character-
ize the fundamental limits for communicating over quantum
networks, i.e., the quantum network capacities. In the network
setting there is a richer set of quantities than with direct
transmission, depending, for instance, on how the communi-
cation rates are defined or whether several sets of users
concurrently want to perform a communications task.
Second, we show how to bound the network capacities both

from above and from below. These bounds take a particularly
simple form in some relevant cases, for instance, for general
linear networks (Pirandola, 2019) or for bounding the per-
formance of DLCZ-like protocols (like the one in Sec. III.A.3)
in the presence of noisy memories (Azuma, Mizutani, and Lo,
2016). We end by discussing the computability of these
bounds and show that, given bounds on the individual channel
capacities, the bounds on the network capacities can be
efficiently derived.

1. An abstract depiction of networks

Like classical networks, quantum networks consist of
many different components: end nodes, communication
channels, routers, switches, multiplexers, etc. However,
for analysis purposes it is more convenient to restrict net-
works to two different components: nodes and communica-
tion channels.
We can represent this abstract network by G ¼ ðG; gÞ,

where G ¼ ðV; EÞ is a directed graph [see Fig. 21(a)] and
g is a map from edges in the graph to quantum channels, i.e.,
CPTP maps.
We denote by V the set of nodes in the graph and by E the

set of edges. Letting e∈E be a directed edge from node u to

FIG. 21. Quantum and Bell-pair networks. (a) A quantum
network as a graph. A quantum network can be abstracted using
a directed graph G ¼ ðV;EÞ, with V and E the sets of vertices
and edges. We associate with each vertex v∈V a node in the
quantum network, and with each edge e∈E a quantum channel
N e. In this example, Alice’s node A and Bob’s node B are part
of a network with seven nodes that also include the intermediary
nodes C1, C2, C3, C4, and C5. (b) A network of maximally
entangled states. One approach to entanglement distribution
between distant parties in a quantum network is the aggregated
repeater protocol (Azuma and Kato, 2017). In this protocol,
adjacent nodes prepare maximally entangled states that can then
be transformed into end-to-end entanglement between two
distant parties by swapping the entanglement. The quantum
network in (a) has been used to generate entanglement between
adjacent nodes. Each edge is annotatedwith a fraction x=y, where
the denominator y denotes the number of entangled pairs, while
the numerator x denotes the number of entangled states used to
establish entanglement between the end parties A and B. In this
example, the minimum cut ΔðVÞ over y is given for the choice of
V ¼ fA;C1; C3g ⊂ VA;B, and a total of eight Bell pairs could be
distributed between A and B. Adapted from Azuma and Kato,
2017.
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node v, we say that the tail and head of the directed edge e are
u and v, respectively. We denote the edge by uv whenever it is
useful to specify the tail and head of the edge.
We associate with each node v∈V a quantum information

processing device. The capabilities of the quantum infor-
mation processing devices sitting at network nodes can
range from a source that can prepare a predefined set of
quantum states to a fully fledged universal quantum com-
puter. For the rest of the section, we assume that nodes can
perform noiselessly arbitrary local operations (LOs). Since
classical communication is qualitatively cheaper than quan-
tum communication, it is common to assume free classical
communication between nodes connected by a quantum
channel, and sometimes between any two nodes in the
network. With this additional assumption, the nodes in the
network can implement LOCC without cost.
Finally, we associate with each edge uv a quantum channel

that receives a quantum system as the input from node u
and outputs a quantum system to node v via the map:
gðuvÞ ¼ N u→v. To simplify the notation, when possible we
denote the channel at edge e by N e.
This abstract depiction of a network as a graph allows us to

leverage tools from graph and network theory. One concept
that is useful in the following is a cut. Given a bipartition of
the vertex set V, i.e., two sets V 0 ⊂ V and V 00 ¼ VnV 0, the
associated cut set or cut ΔðV 0Þ is the set of edges connecting
V 0 with V 00. In particular, the cut associated with V 0 is given by

ΔðV 0Þ ≔ ΔþðV 0Þ ∪ Δ−ðV 0Þ; ð39Þ

with the outcut ΔþðV 0Þ associated with V 0,

ΔþðV 0Þ ≔ fuv∈E∶u∈V 0; v∈VnV 0g; ð40Þ

and with the incut Δ−ðV0Þ associated with V 0,

Δ−ðV 0Þ ≔ fuv∈E∶u∈VnV 0; v∈V 0g: ð41Þ

Given two different vertices A; B∈V, we denote by VA;B

the set of all bipartitions of V separating A and B, i.e., the set
of all the subsets of V that include node A but not node B.

2. Quantum network capacities

While the applications of the quantum internet are much
different, most of them can be implemented if the relevant
nodes in the network share an appropriate entangled state. For
instance, to transmit a d-dimensional quantum state, it is
sufficient to distribute a d-dimensional bipartite maximally
entangled state,

jΦdi≡
1
ffiffiffi

d
p

Xd

i¼1

jiii; ð42Þ

called an edit (called an ebit when d ¼ 2), which then can be
consumed to teleport the desired state; see Sec. III.A.1.
Similarly, to secretly transmit a message from a set of d

possible messages, it suffices to distribute a d-dimensional
bipartite private state (Horodecki et al., 2005) or pdit (called a
pbit when d ¼ 2). The family of private states consists of the

states that can be used to generate a d-dimensional secret key,
i.e., a uniform probability distribution over d values shared
between two honest parties Alice and Bob and secret to any
other user. The class of private states includes the class of
maximally entangled states but is strictly larger. In fact, there
are states that cannot be distilled into a maximally entangled
state but nonetheless can be used to distill a pdit (Horodecki
et al., 2005).
Formally, a pdit is a state shared between Alice, who holds

the systems a1a2, and Bob, who holds b1b2, in the following
form:

γd ≡UtwistðjΦdihΦdja1b1 ⊗ σa2b2ÞU
†

twist; ð43Þ

where σa2b2 is an arbitrary bipartite state and Utwist ¼
P

d
i¼1jijihijja1b1 ⊗ U

ðijÞ
a2b2

is a so-called twisting controlled

FIG. 22. Linear network and general protocol. (a) A repeater
chain or linear quantum network is associated with a linear graph,
i.e., a graph that can be described by a sequence of edges
connecting distinct nodes. The linear network in the panel may be
a subnetwork of the network shown in Fig. 21(a). (b) General
adaptive protocol illustrated over the linear network in (a). The
goal of the protocol is to distribute Bell pairs between A and B.
The protocol begins with the network joint state represented by a
separable state and proceeds iteratively until meeting a termi-
nation condition. On each round a node transmits a local
subsystem through a quantum channel. All nodes then perform
an LOCC operation. The LOCC operation, the choice of channel,
and the transmitted subsystem can depend on the history of the
measurement outcomes [such as k1 and k2 in (b)] of the protocol.
The nodes of the linear network can be divided into two disjoint
virtual nodes: VA [nodes in the left (pink) box] including A and
VB [nodes in the right (green) box] including B. The intuition
behind the capacity upper bounds in Eqs. (47) and (49) is that
distributing entanglement between these two virtual nodes is an
easier task than distributing entanglement between A and B over
the network. Adapted from Azuma, Mizutani, and Lo, 2016.
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unitary: the systems a1b1 control the application of U
ðijÞ
a2b2

,
arbitrary unitary operators on the systems a2b2.
GHZ states and multipartite private states (Augusiak and

Horodecki, 2009) play a similar role as a resource for
multiuser tasks such as secret sharing and conference key
agreement. Hence, to study the usefulness of a quantum
network for a given application, it suffices to study the rate at
which the network can produce the desired resource state. In
fact for many tasks of interest both problems are equivalent.
For simplicity, we restrict the following discussion to

bipartite target states, which we denote by θ
ðdÞ
AB. Typically

the target state is a maximally entangled state or a private state:

θ
ðdÞ
AB ¼ jΦdihΦdjAB or θðdÞAB ¼ γd.
As mentioned, we assume that the nodes can noiselessly

apply any LOCC operation. We now discuss a general
protocol for distributing entanglement in a quantum network
between nodes A and B; see Fig. 22. Before the protocol, there
is no entanglement between different nodes in the network.
Therefore, the joint state is represented by a separable state as
in Eq. (19). Iteratively, first a node transmits a local subsystem
through a quantum channel and then all nodes perform an
LOCC operation. The LOCC operation, the choice of a
channel, and the transmitted subsystem can depend on the
history of the protocol, for instance, on the measurement
outcomes obtained through LOCC in previous rounds.
We denote the reduced state between A and B at the end

of the protocol by σAB. It will be within a trace distance

ϵð≥ 0Þ from a target state θ
ðdÞ
AB, i.e., kσAB−θ

ðdÞ
ABk1≤ϵ, where

kXk1¼Trð
ffiffiffiffiffiffiffiffiffi

X†X
p

Þ. We say that a protocol is a Pfnege∈E;ϵ

adaptive protocol if the average number of uses of channel
N e is upper bounded by ne for all edges and the protocol

produces a state at most at a distance ϵ from a target state θðdÞAB,
where dð≥ 1Þ can depend on the outcome of the protocol.
The figure of merit of Pfnege∈E;ϵ

protocols is the average
amount of the target entanglement produced, which is
quantified by log2 d for the mentioned states. From an
operational point of view, a d-dimensional maximally
entangled state or private state enables, respectively, the
transmission of log2 d qubits or the private communication
of log2 d bits. We denote the average entanglement produced
(it might vary from round to round) by hlog2 di.
We obtain the rate by dividing the average entanglement

(produced by the protocol) by the appropriate quantity of
resources used; as this quantity, in contrast with the single
channel case, one can consider several metrics: the number of
channels used, the number of full uses of the network, or the
number of times a path of channels connecting A with B was
used. These metrics could be related to time, which is for
engineering purposes a more convenient figure of merit; see
Azuma and Kato (2017), Bäuml et al. (2020), and Azuma
et al. (2021) for details.
The capacity of the quantum network is the optimal

asymptotic rate for producing a target entangled state θ at
which the error parameter ϵ can be made arbitrarily small.
Following our previous discussion on the rate, each choice of
rates gives rise to a different type of network capacity.
We denote by n ¼ P

ene an upper bound on the total
number of channel uses and by pe ¼ ne=n the frequency that
the protocol uses channelN e. Given a fixed set of frequencies,

we define the capacity per channel use (Azuma, Mizutani, and
Lo, 2016) as

Cθ
cðG; fpege∈EÞ ¼ lim

ϵ→0
lim
n→∞

1

n
sup

Pfnege∈E;ϵ

hlog2di: ð44Þ

Depending on the network scenario, the usage frequencies
of the channels in the network can be free parameters. In this
case, Eq. (44) can be maximized over the set fpege∈E of
frequencies to give a unique network capacity per channel use
(Bäuml et al., 2020),

Cθ
cðGÞ ¼ max

pe≥0;
P

e

pe¼1

Cθ
cðG; fpege∈EÞ: ð45Þ

To capture the capacity per network use, which we denote
by Cθ

nðGÞ, we let all upper bounds on the average number of
channel uses be equal (ne ¼ ne0 ∀ e; e0 ∈E), and we let m
denote the number of network uses; i.e., we letm ¼ ne, which
then implies Cθ

nðGÞ ¼ jEjCθ
cðG; fpe ¼ 1=jEjge∈EÞ (because

n ¼ jEjm). This quantity corresponds to the notion introduced
by Pirandola (2019) to capture the limits of so-called flooding
protocols. A third important scenario is to be able to use only a
single path among possible paths between nodes A and B
(Pirandola, 2019), where the goal is to find the maximum
possible rate per use of a single path, called the single-path
capacity. This quantity can be obtained by maximizing Cθ

nðPÞ
over arbitrary paths P in G between nodes A and B, where
P ¼ ðP; gÞ and g is the same map from edges to quantum
channels as for G; see Sec. VI.C.1.
If the target state θ is a maximally entangled state [see

Eq. (42)], then each of these expressions represents a quantum
capacity of the quantum network G. If θ is a private state [see
Eq. (43)] it represents a private capacity.
The distribution of entanglement between a single set of

users is but one of many possible measures of usefulness of a
quantum network. Networks typically serve many users and
one might be interested in understanding the capacity of the
network for distributing entanglement to multiple sets of users.
Equation (44) can be adapted to capture multiuser setups by
modifying appropriately the figure of merit of the protocol
hlog2 di and the definition of Pfnege∈E;ϵ

protocol (Bäuml et al.,
2020). For instance, givenm sets of users and letting hlog2 dðiÞi
be the average amount of entanglement that a Pfnege∈E;ϵ

protocol produces for set i of users, then the maximization
of minmi¼1hlog2 dðiÞi leads to the maximum rate that can be
guaranteed to all sets of users, called the worst-case network
capacity, while themaximization of

P
m
i¼1hlog2dðiÞi leads to the

maximum total rate, which is called the total network capacity.
We end the discussion by noting that it is possible to

consider more general models and capacities of a network
(Townsend, 1997; Fröhlich et al., 2013; Seshadreesan,
Takeoka, and Wilde, 2016; Bäuml and Azuma, 2017;
Laurenza and Pirandola, 2017; Takeoka, Seshadreesan, and
Wilde, 2017; Bäuml, Das, and Wilde, 2018; Das, Bäuml, and
Wilde, 2020). For instance, it is possible to consider multiple
input and multiple output channels connecting an arbitrary
number of parties (Das et al., 2021).

3. Entanglement-based upper bounds

While in general there is no known procedure for comput-
ing these capacities, there are several tools for bounding them
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both from above and from below, leveraging the relation
between the communication task and the distillation of the
appropriate entangled state.
In the following, we present a formulation by Rigovacca

et al. (2018) for abstract entanglement measures. This formu-
lation generalizes earlier work by Pirandola (2016, 2019) for
quantum networks composed of a specific type of channels
[called teleportation-simulable channels (discussed later)] with
the relative entropy of entanglement and by Azuma, Mizutani,
and Lo (2016) for arbitrary quantum networks with the
squashed entanglement. In particular, these two results build,
respectively, on the PLOB (Pirandola et al., 2017) and TGW
bounds (Takeoka, Guha, and Wilde, 2014a) on the private
capacity of an individual channel; see Secs. III.A.3 and IV.
In particular, let E be a measure of bipartite entanglement.

That is, E is a function from the set of bipartite states into the
positive real numbers that satisfy several requirements
(Horodecki et al., 2009). In particular, it is not increasing
on average under LOCC. We define the entanglement of
channel N A→B as

EðN A→BÞ≡ sup
ρAA0

E½N A→BðρAA0Þ�; ð46Þ

where ρAA0 is a bipartite state between systems A and A0. We
note that it is sufficient to optimize the right-hand side of
Eq. (46) over pure states on A and A0. This follows from the
monotonicity of entanglement measures under LOCC oper-
ations (Khatri and Wilde, 2020).
Now let E be a bipartite entanglement measure that satisfies

the following two inequalities:
P1 Continuity. If a bipartite state ρAB is at epsilon distance

from the target state θðdÞAB, i.e., kρAB − θ
ðdÞ
ABk1 ≤ ϵ, then

EðρABÞ ≥ gðϵÞ log d − fðϵÞ, with f and g being two real
valued continuous functions that verify limϵ→0 fðϵÞ ¼
0 and limϵ→0 gðϵÞ ¼ 1.

P2 Subadditivity. Given a bipartite state ρA1A2B1
, the

entanglement in the AB cut after sending the system
A2 through channel N A→B is not larger than the
original entanglement in the AB cut plus the entan-
glement of the channel: EðσA1B2B1

Þ ≤ EðρA1A2B1
Þþ

EðN A→BÞ, where σA1B2B1
¼ N A2→B2

ðρA1A2B1
Þ.

The capacity of the network for distributing some target state θ
(i.e., ebits or pbits) between two nodes A and B can be
bounded from above by the following optimization formulas
(Rigovacca et al., 2018):

Cθ
cðG; fpege∈EÞ ≤ min

V ∈VA;B

X

e∈ΔðVÞ
peEðN eÞ; ð47Þ

Cθ
cðGÞ ≤ max

pe≥0;P

e
pe¼1

min
V ∈VA;B

X

e∈ΔðVÞ
peEðN eÞ; ð48Þ

Cθ
nðGÞ ≤ min

V ∈VA;B

X

e∈ΔðVÞ
EðN eÞ: ð49Þ

Note that Eqs. (47)–(49) do not depend on any functional of
more than one channel: Eqs. (47) and (48) depend only on the
entanglement of each of the channels individually and the
channel usage frequencies, while Eq. (49) depends only on
the entanglement of the channels. The minimization is

performed over VA;B, the set of all cuts between A and B.
The intuition for this formula is that we could join all the
nodes of the network into two virtual nodes, one including A

and one including B; see Fig. 22(b). Distributing entangle-
ment between these two virtual nodes is an easier task and can
be done at a rate no larger than the entanglement of all the
channels connecting the two virtual nodes. Since this argu-
ment provides a valid upper bound for any bipartition, the
minimum provides the best upper bound of this form.
Note that there are several entanglement measures that

verify P1 and P2 for private states (and in consequence also for
maximally entangled states). In particular, the squashed
entanglement (Takeoka, Guha, and Wilde, 2014a, 2014b)
and the max-relative entropy of entanglement (Christandl and
Müller-Hermes, 2017) satisfy both properties for arbitrary
channels, while the relative entropy of entanglement is known
to satisfy both properties only for a family of channels known
as teleportation-simulable, Choi-simulable, or stretchable
channels (Bennett, DiVincenzo et al., 1996; Gottesman and
Chuang, 1999; Horodecki, Horodecki, and Horodecki, 1999;
Wolf, Pérez-García, and Giedke, 2007; Pirandola et al., 2017).
Leveraging an inequality from Christandl and Müller-

Hermes (2017), Rigovacca et al. (2018) proved a hybrid
relative entropy upper bound, where the entanglement mea-
sure in the upper bounds in Eqs. (47)–(49) is the relative
entropy of entanglement for teleportation-simulable channels
and the max-relative entropy of entanglement for the other
channels. Therefore, the best current option to give upper
bounds in the form of Eq. (47), (48), or (49) to a given
arbitrary quantum network is to use this hybrid relative-
entropy bound or the squashed-entanglement bound. Many
relevant channels, such as the amplitude damping channel, are
not teleportation simulable. However, several channels of
particular interest are teleportation simulable; this includes the
depolarizing and dephasing channels, more generally mixed
Pauli channels, the erasure channel, and lossy bosonic
channels. For the lossy bosonic channels, which model optical
fibers, the relative entropy of entanglement-based upper
bound is tight (Pirandola et al., 2017). In the following we
define Choi-simulable channels.
A channel N A→B is teleportation simulable if, given a state

ρA that one wants to transmit through channel N A→B and the
Choi state of the channel ΓA0B ¼ N A→BðjΦdihΦdjA0AÞ, there is
an LOCC protocol Λ that simulates the action of the channel
on any input state ρA,

N A→BðρAÞ ¼ ΛðΓA0B ⊗ ρA00Þ: ð50Þ

To gain intuition about Eq. (50), one can think of the identity
channel from A to B. Since ΓA0B is then an edit, the simulation
can be obtained by teleportation; i.e., Λ consists of a joint
generalized Bell measurement on systems A0A00 and applying
the appropriate correction to system B. More generally, this
strategy works for any channel whose action commutes with
the receiver’s corrections of quantum teleportation (Bennett
et al., 1993) because, in this case, the correction to system B

can be regarded as a correction for system A before entering
the channelN A→B. Thus, this is merely a local teleportation to
send a quantum state ρA00 to system A.
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4. Application of the upper bounds to linear networks

In the following we focus on a particular use case: linear
networks; see Fig. 22. This use case of the upper bounds is of
particular relevance to quantum repeater protocols. In this
case, the cut sets are the individual channels, highly simplify-
ing the upper bounds. The bounds on the capacities per
channel (47), (48) and, per network, (49) take the form

Cθ
cðG; fpege∈EÞ ≤ min

e∈E
peEðN eÞ; ð51Þ

Cθ
cðGÞ ≤

1
P

e∈E½EðN eÞ�−1
; ð52Þ

Cθ
nðGÞ ≤ min

e∈E
EðN eÞ: ð53Þ

The upper bound on the network capacity per channel use (52)
was derived by Azuma, Mizutani, and Lo (2016).
As a first example, we consider a linear network connected

by lossy bosonic channels. For these channels, the choice of
the relative entropy of entanglement (i.e., E ¼ ER) gives tight
bounds. In particular, it was shown by Pirandola et al. (2017)
that ERðN eÞ ¼ − log2ð1 − ηeÞ, where ηe is the transmittance
of the lossy bosonic channel N e of Eq. (13). If we then insert
this relation into Eqs. (51)–(53), we obtain the following
expressions for the capacities of the network:

Cθ
cðG; fpege∈EÞ ¼ min

e∈E
− pe log2ð1 − ηeÞ; ð54Þ

Cθ
cðGÞ ¼

1
P

e∈E½−log2ð1 − ηeÞ�−1
; ð55Þ

Cθ
nðGÞ ¼ min

e∈E
½−log2ð1 − ηeÞ�; ð56Þ

where Eq. (56) was derived by Pirandola (2019).
As a second example, we consider the performance of a

DLCZ-type quantum repeater protocol (like the one in
Sec. III.A.3) (Duan et al., 2001) where the memory in the
nodes is subject to decoherence and taking into account the
time required to exchange classical communication between
distant nodes. Razavi et al. (2009) noticed that, in contrast to
the polynomial scaling with the total distance L predicted by
the DLCZ protocol, the performance with finite coherence
times of quantum memories degrades exponentially with

ffiffiffiffi
L

p
.

Azuma, Mizutani, and Lo (2016) strengthened the results and
showed that polynomial scalings for a large class of DLCZ-
type protocols could be possible only above a threshold
coherence time. In particular, the performance of any
DLCZ-type repeater scheme with a memory coherence time
below 1.0 × 10−4 s is upper bounded by an exponential on the
square root of the total distance, irrespective of how many
repeater nodes are available; see Fig. 23. This kind of
performance is achievable as described in Sec. IV. The key
idea to apply upper bound (52) is that the memory noise can
be modeled by a noisy quantum channel between the memory
at the time when it stores a state and the memory at the
moment that it releases the state for probabilistic entanglement
swapping. In consequence, the performance of any protocol
using the noisy memory is bounded by the performance of an
induced linear network [i.e., by using Eq. (52)].

5. Capacity lower bounds via the aggregated repeater protocol

We now look at a general lower bound on the capacity of
quantum networks (Azuma and Kato, 2017). This lower
bound, based on the aggregated quantum repeater protocol,
matches the general upper bounds given in Eqs. (47) and (49)
up to a prefactor. Moreover, the aggregation even of existing
protocols (Duan et al., 2001; Jiang et al., 2009; Sangouard
et al., 2011; Li et al., 2013; Mazurek et al., 2014) matches the
lower bound on the capacity up to another prefactor for the
case of optical quantum networks composed of lossy bosonic
channels. This implies that the upper bounds have no scaling
gap and yield good measures of the usefulness of a network.
We note that while we have exemplified the upper bounds
with a linear network of repeaters in Sec. VI.C.4, they can be
applied to any quantum network with an arbitrary topology,
including distributed quantum computation setups.
In the following, we discuss the lower bound that corre-

sponds to the achievable rate of the aggregated quantum
repeater protocol introduced by Azuma and Kato (2017); see
Fig. 21(b). The goal of this protocol is to distribute entangle-
ment between targeted nodes in the network that is later
consumed to perform the appropriate communications task.
For each of the quantum channels in a given quantum

network, we consider a protocol that produces entangled states
that are ϵ close to a maximally entangled state at a rate Re that
can be different for each channel. This is possible for all
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FIG. 23. Upper bound on the secret key rate achievable with a
noisy linear network. In particular, the upper bound applies to a
wide range of protocols that includes DLCZ (Duan et al., 2001)
and others (Kok, Williams, and Dowling, 2003; Sangouard et al.,
2011; Azuma et al., 2012) when implemented with matter
quantum memories in the presence of dephasing noise. The
linear network consists of a chain of repeaters equally separated
and connected by an optical fiber with attenuation length 22 km
and spanning a total distance of L ðkmÞ. The coupling efficiency
to an optical fiber is assumed to be 90%. In the calculation, the
number of repeater nodes is optimized. The curves labeled (i)–
(vi), respectively, correspond with the following coherence times:
1.0 × 10−2, 5.0 × 10−3, 2.5 × 10−3, 1.0 × 10−3, 5.0 × 10−4, and
1.0 × 10−4 s. The upper bound in (vi) scales better than direct
transmission and is roughly proportional to the square root of the
PLOB bound but equivalent to the intercity QKD protocols in
Sec. IV. In consequence, with a coherence time of 1.0 × 10−4 s
there can be no advantage for a DLCZ-type repeater scheme over
the simpler intercity QKD protocols. From Azuma, Mizutani, and
Lo, 2016.
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channels provided thatRe < QðN eÞ, i.e., provided that the rate
is below the maximal rate of the channel for distributing
maximally entangled states for a large enough number of
channel uses (called the quantum capacity of the channelN e).
If each of the channels is used ne times, the entire network
will be in a tensor product of entangled states and the entire
network can then be regarded as a multigraph with neRe edges
per edge in the original graph, where each edge in the multi-
graph corresponds to a qubit maximally entangled state jΦ2i.
We can use the resulting state to create maximally entangled

states between Alice at node A and Bob at node B. For each
state it is necessary to perform entanglement swapping over a
path of maximally entangled states connecting Alice with
Bob. The number of maximally entangled states that can be
distributed between Alice and Bob is then equivalent to the
maximum number of edge disjoint paths connecting Alice
with Bob in the multigraph. This maximum number of paths is
by Menger’s theorem (Jungnickel, 2005) equivalent to the
value of the minimum cut of the graph:

M ¼ min
V ∈VA;B

X

e∈ΔðVÞ
neRe: ð57Þ

This minimization can be solved in time proportional to a
polynomial in the number of edges. However, since the
number of edges grows with the number of uses, the full
optimization is a priori intractable. If we consider the
achievable rate per channel use with the aggregated repeater
protocol, Eq. (57) becomes minV ∈VA;B

P

e∈ΔðVÞðne=nÞRe.
Moreover, for a number of uses n large enough, any rate below
the capacity of each channel is achievable. Consequently, the
right-hand side of the following expression is achievable:

Cθ
cðG; fpege∈EÞ ≥ min

V ∈VA;B

X

e∈ΔðVÞ
peQðN eÞ; ð58Þ

Cθ
cðGÞ ≥ max

pe≥0;P

e
pe¼1

min
V ∈VA;B

X

e∈ΔðVÞ
peQðN eÞ; ð59Þ

Cθ
nðGÞ ≥ min

V ∈VA;B

X

e∈ΔðVÞ
QðN eÞ; ð60Þ

where pe ¼ ne=n. We note that the lower bounds are of the
same form as the respective upper bounds in Eqs. (47)–(49),
where the entanglement of the channel is replaced by the
quantum capacity. Therefore, if EðN eÞ ¼ QðN eÞ holds for any
e, these lower bounds (58), (59), and (60) coincide with upper
bounds (47), (48), and (49). This is indeed the case for quantum
networks composed only of lossy bosonic channels.
The aggregation of quantum repeaters is also possible while

minimizing cost (Azuma, 2023). The cost here is a general
notion like a price to pay for presenting ebits between two
targeted nodes in a quantum network.

6. Computability of the network capacities

We now discuss how to compute both the lower and upper
bounds in Eqs. (47)–(49) and (58)–(60). This is indeed
important in practice, for instance, to determine how a
network provider should distribute entanglement to clients
according to their requests. All six equations depend only on
the values of the entanglement of the individual channels.

Equations (47), (49), (58), and (60) are expressed as the
solution of the minimum cut over an undirected graph, while
Eqs. (48) and (59) maximize the minimum cut over all
possible edge distributions. All of these optimization prob-
lems, including the latter cases (Bäuml et al., 2020), can be
solved by a linear program in time polynomial in the number
of nodes in the graph (Jungnickel, 2005). Similar arguments
allow one to find efficiently lower and upper bounds not only
on the previously described capacities for two-party commu-
nication but also on the worst-case and total quantum network
capacities (see Sec. VI.C.2) and for distributing GHZ states
(Bäuml et al., 2020).

VII. CONCLUDING REMARKS

The quantum internet will have important applications in
sensor networks, upscaling quantum computing and secure
quantum communication (Awschalom, 2020). To build the
quantum internet, quantum repeaters have been proposed and
extensively studied. This review has focused on the various
generations of quantum repeaters as well as all-photonic
quantum repeaters; we have seen that quantum repeaters
are essential for realizing an efficient quantum internet.
Nonetheless, our discussion has been largely limited to a
fiber-optical setting connecting two end nodes Alice and Bob.
In this concluding section, we take a step back to think more

about how to build a quantum internet. We discuss a few
alternative designs and important issues facing the quantum
internet: not only its efficiency but also its cost and the
uncertainty in the technology it would leverage.
Cost can be a critical issue in realizing any technology.

Although the conventional Internet is believed to contribute
trillions of U.S. dollars each year to the U.S. economy, simply
upgrading the existing fiber-optical network in the U.S. to
cover many, say, 90%, of the households there would take an
additional investment of over 1011 U.S. dollars; see Cartesian,
2021. This figure is for a single country and for an upgrade to
the existing, extensively developed Internet. Therefore, it is
reasonable to predict that the construction and operation of a
global quantum internet would ultimately take decades and
require investments of trillions of U.S. dollars. This is an
astonishing number. Such an enormous investment would
almost certainly come not only from governments but also
from for-profit commercial corporations. For a comparison,
the LIGO and LHC projects (endeavors admittedly more
localized in scope) required only 1.1 × 109 and 4.75 × 109 dol-
lars, respectively (Horgan, 2016; Roche, 2022). We have not
even begun to estimate the cost of building various gener-
ations of quantum repeater structures on a global scale. Some
detailed calculations, aided by a quantum network simulator,
would be needed to address the cost issue more seriously.
In addition, as mentioned in Sec. I, the Internet consumes a

lot of energy through the transmission of optical signals.
Furthermore, the sensing, monitoring, and routing of the
Internet require tremendous amounts of local computational
power. As the Internet grows, scalability becomes a challenge.
A quantum internet could operate at the single-photon level. It
may well be interesting to explore whether a quantum internet
could lead to large savings in energy consumption. Similarly,
it may be worthwhile to investigate whether quantum comput-
ing and quantum information processing could contribute to
the management of the Internet.
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Next we imagine a world (sometime in the distant future)
where quantum memories with long-term stability become
widely available at low cost. In this case, to distribute
entanglement one could simply ship those stable quantum
memories all over the world, physically, in the same way that
we currently dispatch hard drives and mail; see Devitt et al.
(2016). The apparent drawback would be latency, which
refers to the delay before a transfer of data begins following
an instruction for its transfer; however, this shipment could
be done off line, and entanglement swapping could be used
to connect users via intermediate nodes instantaneously in
the same way that a telephone network can connect the users.
In this way, the latency issue could be alleviated. With the
physical shipment of quantum memory devices, the require-
ments of quantum repeaters could be reduced. This is just
one way in which our design of the quantum internet is
highly dependent on the available technology, in addition to
the cost.
Currently quantum memories often operate at cryogenic

temperatures and their lifetimes are often limited. If this is the
case, quantum repeater nodes will need refrigerators. Notice
that all-photonic quantum repeaters may also require refrig-
erators (in either photonic graph-state generation devices or
measurement devices). Suppose that we wanted to connect
someone in New York with another person in Tokyo (10
845 km away) through undersea optical fibers. Optimistically,
we would then need to place a quantum repeater node every
few hundred kilometers under the sea. In this case, hundreds
of repeater nodes would be needed. Placing cryogenic repeater
nodes in undersea optical fibers, maintaining them, and
providing the energy to operate them reliably are no easy
feats and would likely prove to be costly.
As an alternative solution, ground-to-satellite quantum

communication is a serious candidate. By preparing an
entangled source of photons in a satellite Charlie and sending
photon pairs to two ground stations Alice and Bob, Charlie can
act as an untrusted relay to connect two distant locations on the
globe. Currently the line of sight is a serious restriction in
ground-to-satellite communication. However, we can envision
a future where space-grade long-lifetime quantum memories
are available. By first sending one half of an entangled pair to
Alice, storing the other half in the quantum memory on a
rapidly moving quantum satellite, and later sending it to Bob,
Charlie can connect any two ground stations that have a line of
sight to any point on the satellite’s orbit. Besides this, a
constellation of orbiting satellites could provide a continuous,
on-demand entanglement distribution service to ground sta-
tions (Khatri et al., 2021). In principle, one could put quantum
repeaters even on satellites to run a quantum repeater protocol
(Liorni, Kampermann, and Bruß, 2021). However, this can be
challenging if the repeaters require a cryogenic environment.
As mentioned (see Sec. III), the probabilistic nature of a

Bell-state measurement in linear optics (for certain photonic
encodings) is a key limiting factor in the design of both
matter-based and all-photonic quantum repeaters. Indeed,
without using additional ancillae or a different encoding,
the success probability of a linear-optical Bell measurement is
upper bounded by 1=2. A game changer for the efficiency of
quantum repeaters would therefore be a near-deterministic,
high-fidelity entangling gate on photons. This could be based

on an enhancement by quantum memories (Munro et al.,
2012; Bhaskar et al., 2020; Borregaard et al., 2020).
For all-photonic repeaters, in particular, a game changer

would be the deterministic generation of photonic graph states
based on coupled quantum emitters such as quantum dots; see
Li, Economou, and Barnes (2022). Alternatively, a hybrid
approach with a single quantum emitter and subsequent
fusions would also dramatically lower the resource require-
ments (Hilaire, Vidro et al., 2023). There is another possibility
for development based purely on all photonics beginning with
all-photonic intercity QKD (Sec. IV), proceeding to all-
photonic quantum repeaters (Sec. III.C), and ending with a
linkage of fault-tolerant photonic quantum computers (Knill,
Laflamme, and Milburn, 2001).
Another important area of research is the quantum inter-

connect; see Awschalom et al. (2021). Indeed, the ability to
convert and transfer quantum information across different
platforms will enhance the interoperability of the future
quantum internet.
In this review, we have focused on the distribution of

bipartite entanglement. However, for many applications,
including quantum sensing, it is often advantageous to use
multipartite entangled states. Conceptually we can build up
multipartite states through successive teleportations. However,
were we to do it with linear optics, the probabilistic nature of a
Bell measurement would make the success probability of
constructing an n-partite entangled state decrease exponen-
tially with n. Therefore, there is value in further exploring the
preparation and distribution of multipartite entanglement.
To conclude, we stress that a truly global quantum internet

requires seamless operation across continents. As different
countries are currently pursuing different approaches and
strategies for the quantum internet, there will be a need for
cooperation and standardization in the design, construction,
and operation of this major technology.

LIST OF SYMBOLS AND ABBREVIATIONS

BBSM boosted Bell-state measurement
BDCZ Briegel-Dür-Cirac-Zoller

BM Bell measurement
BSM Bell-state measurement
CPTP completely positive and trace preserving
CSS Calderbank-Shor-Steane
CV continuous variable

DLCZ Duan-Lukin-Cirac-Zoller
DV discrete variable
EG entanglement generation
ES entanglement swapping

GHZ Greenberger-Horne-Zeilinger
GKP Gottesman-Kitaev-Preskill

HEGP heralded entanglement generation protocol
LHC Large Hadron Collider
LIGO Laser Interferometer Gravitational-Wave

Observatory
LOCC local operations and classical

communication
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MBQC measurement-based quantum computing
MDI measurement device independent
MIT Massachusetts Institute of Technology
NISQ noisy intermediate scale quantum
NIST National Institute for Standards in

Technology
N-V nitrogen vacancy
PBS polarizing beam splitter

PLOB Pirandola-Laurenza-Ottaviani-Banchi
PNR photon-number-resolving detector
PRCS phase-randomized coherent state
QD quantum dot

QED quantum electrodynamics
QKD quantum key distribution
QM quantum memory

QND quantum nondemolition
QR quantum repeater

RGS repeater graph state
RSA Rivest-Shamir-Adleman

SECOQC secure communication based on quantum
cryptography

SPD single-photon detector
SW (optical) switch

TF QKD twin-field quantum key distribution
TGW Takeoka-Guha-Wilde
ULL ultralow loss
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Riera-Sàbat, F., P. Sekatski, A. Pirker, and W. Dür, 2021, “Entangle-
ment-Assisted Entanglement Purification,” Phys. Rev. Lett. 127,
040502.

Rigovacca, Luca, Go Kato, Stefan Bäuml, Myungshik S. Kim,
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2017, “Phase-Tuned Entangled State Generation between Distant
Spin Qubits,” Phys. Rev. Lett. 119, 010503.

Stucki, Damien, et al., 2011, “Long-term performance of the
SwissQuantum quantum key distribution network in a field
environment,” New J. Phys. 13, 123001.

Su, Daiqin, Casey R. Myers, and Krishna Kumar Sabapathy,
2019, “Conversion of Gaussian states to non-Gaussian states
using photon-number-resolving detectors,” Phys. Rev. A 100,
052301.

Sukachev, Denis D., Alp Sipahigil, Christian T. Nguyen, Mihir K.
Bhaskar, Ruffin E. Evans, Fedor Jelezko, and Mikhail D. Lukin,
2017, “Silicon-Vacancy Spin Qubit in Diamond: A Quantum
Memory Exceeding 10 ms with Single-Shot State Readout,” Phys.
Rev. Lett. 119, 223602.

Sun, Shuo, Hyochul Kim, Glenn S. Solomon, and Edo Waks, 2016,
“A quantum phase switch between a single solid-state spin and a
photon,” Nat. Nanotechnol. 11, 539–544.

Takeoka, Masahiro, Saikat Guha, and Mark M. Wilde, 2014a,
“Fundamental rate-loss tradeoff for optical quantum key distribu-
tion,” Nat. Commun. 5, 5235.

Takeoka, Masahiro, Saikat Guha, and Mark M. Wilde, 2014b, “The
squashed entanglement of a quantum channel,” IEEE Trans. Inf.
Theory 60, 4987–4998.

Takeoka, Masahiro, Kaushik P. Seshadreesan, and Mark M. Wilde,
2017, “Unconstrained Capacities of Quantum Key Distribution and
Entanglement Distillation for Pure-Loss Bosonic Broadcast Chan-
nels,” Phys. Rev. Lett. 119, 150501.

Tamaki, Kiyoshi, Marcos Curty, Go Kato, Hoi-Kwong Lo, and Koji
Azuma, 2014, “Loss-tolerant quantum cryptography with imperfect
sources,” Phys. Rev. A 90, 052314.

Tamaki, Kiyoshi, Hoi-Kwong Lo, Chi-Hang Fred Fung, and Bing Qi,
2012, “Phase encoding schemes for measurement-device-indepen-
dent quantum key distribution with basis-dependent flaw,” Phys.
Rev. A 85, 042307.

Tamaki, Kiyoshi, Hoi-Kwong Lo, Wenyuan Wang, and Marco
Lucamarini, 2018, “Information theoretic security of quantum
key distribution overcoming the repeaterless secret key capacity
bound,” arXiv:1805.05511.

Taminiau, T. H., J. J. T. Wagenaar, T. Van der Sar, Fedor Jelezko,
Viatcheslav V. Dobrovitski, and R. Hanson, 2012, “Detection and
Control of Individual Nuclear Spins Using a Weakly Coupled
Electron Spin,” Phys. Rev. Lett. 109, 137602.

Tan, Ting Rei, John P. Gaebler, Yiheng Lin, Yong Wan, R.
Bowler, D. Leibfried, and David J. Wineland, 2015, “Multi-
element logic gates for trapped-ion qubits,” Nature (London)
528, 380–383.

Tani, Seiichiro, Hirotada Kobayashi, and Keiji Matsumoto, 2005,
“Exact quantum algorithms for the leader election problem,” in
Proceedings of the 22nd Annual Symposium on Theoretical

Aspects of Computer Science, Stuttgart, 2005, edited by Volker
Diekert and B. Durand (Springer, New York), pp. 581–592,
10.1007/978-3-540-31856-9_48.

Tanzilli, S., W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and
H. Zbinden, 2005, “A photonic quantum information interface,”
Nature (London) 437, 116–120.

Tchebotareva, Anna, et al., 2019, “Entanglement between a Diamond
Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wave-
length,” Phys. Rev. Lett. 123, 063601.

Terhal, Barbara M., 2015, “Quantum error correction for quantum
memories,” Rev. Mod. Phys. 87, 307–346.

Thomas, Philip, Leonardo Ruscio, Olivier Morin, and Gerhard
Rempe, 2022, “Efficient generation of entangled multiphoton
graph states from a single atom,” Nature (London) 608, 677–681.

Togan, E., et al., 2010, “Quantum entanglement between an optical
photon and a solid-state spin qubit,”Nature (London) 466, 730–734.

Tomm, Natasha, et al., 2021, “A bright and fast source of coherent
single photons,” Nat. Nanotechnol. 16, 399–403.

K. Azuma et al.: Quantum repeaters: From quantum networks to the …

Rev. Mod. Phys., Vol. 95, No. 4, October–December 2023 045006-64



Townsend, Kevin, 2022, “NIST post-quantum algorithm finalist
cracked using a classical PC,” https://www.securityweek.com/nist-
post-quantum-algorithm-finalist-cracked-using-classical-pc.

Townsend, Paul D., 1997, “Quantum cryptography on multiuser
optical fibre networks,” Nature (London) 385, 47–49.
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