Robust Bayesian Optimization for Flexibility Analysis of
Expensive Simulation-based Models with Rigorous
Uncertainty Bounds

Akshay Kudva, Wei-Ting Tang, Joel A. Paulson*

Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus

OH, USA

Abstract

The performance of emerging biochemical systems rests on their potential to adapt
to uncertainties quickly and accurately. Flexibility analysis is a quantitative frame-
work for determining if a system can maintain safe and feasible operation despite
uncertainty. Most available methods assume access to equation-oriented models,
which can be difficult to obtain in practice. In this paper, we propose a sequen-
tial black-box flexibility analysis method, BoFlex, that overcomes this challenge
by constructing probabilistic surrogate models over the joint space of uncertain and
recourse variables. BoFlex is based on a special alternating confidence bound proce-
dure, which we show finitely converges to a correct solution under mild assumptions
on the unknown functions. We also establish a rigorous upper bound on the con-
vergence rate in terms of the maximum information gain of the surrogate model.
The advantages of BoFlex are demonstrated on several case studies including a heat
exchanger network and a bubble column reactor.

Key words: Flexibility analysis, Robust Bayesian optimization, Black-box
optimization, Gaussian process regression

1. Introduction

Uncertainty and other sources of variability are inevitable in real-world sys-
tems and can arise from many different factors such as noisy and incomplete data,
unknown model parameters, external disturbances, and implementation errors, to
name a few. Flexibility analysis provides a quantitative framework for systemati-
cally identifying if a particular design of interest is feasible over a range of uncer-
tainty values given the potential for recourse (or feedback) from control inputs that
represent degrees of freedom in the system. The mathematical formalism of flexi-
bility analysis was originally introduced in the process systems engineering (PSE)
community by [1]; a historical perspective describing the evolution of the concepts
and models used for flexibility analysis is given in [2]. Since this early work, there
have been several additional works focused on developing more efficient strategies
for solving the underlying mathematical programming problem defining the flexi-
bility conditions [3, 4] as well as extensions to new problem formulations such as
stochastic [5, 6] and dynamic problems [7].

*Corresponding author
Email addresses: kudva.7Qosu.edu (Akshay Kudva), tang.1856Qosu.edu (Wei-Ting Tang),
paulson.82@osu.edu (Joel A. Paulson)

Preprint submitted to Elsevier October 29, 2023

As discussed in detail in [8], the concept of flexibility is closely related to ideas
from robust optimization [9, 10] that have become more popular in recent years due
to an increased number of theoretical developments and applications [11, 12, 13].
A major difference between flexibility analysis and standard robust optimization
approaches, however, is how one treats the recourse (control input) decisions. Here,
recourse refers to the ability to take corrective action by manipulating a control
variable (such as flow rates or heat inputs) in response to the realization of a random
event whose outcome is unknown at the design stage but accurately known at a later
stage of operation. Specifically, flexibility analysis allows the control inputs to be
optimally adjusted to the realization of the uncertain parameters, while traditional
robust optimization (RO) neglects recourse, leading to overly conservative solutions.
The concept of “adjustable robust optimization” (ARQO) [14] partially addresses this
gap by incorporating recourse in the form of parametrized “decision rules” that map
the realization of the uncertainties to a control input. However, depending on the
choice of the structure of the decision rule, one often introduces some degree of
suboptimality compared to comprehensive form of the flexibility analysis problem.
As such, since we are interested in the general flexibility analysis problem in this
work, we cannot directly rely on advances in RO or ARO to tackle this problem.

Although there has been a significant amount of work on flexibility analysis,
an important assumption in the vast majority of methods is that the mathemat-
ical structure of the model is known and can be efficiently exploited by global
optimization techniques. For example, in the case that all functions defining fea-
sibility are linearly related to the uncertain parameters and control inputs, one
can exploit knowledge of the Karush-Kuhn—Tucker (KKT) optimality conditions
to specify equations for the worst-case active constraints that depend on the choice
of these variables. The KKT conditions can then be enforced as constraints when
solving flexibility analysis problems for which a variety of reformulation techniques
exist for linear and other simple convex functions [3]. However, such approaches
critically rely on the assumptions that: (i) the KKT conditions are equivalent to the
global optimality conditions and (ii) the terms appearing in the KKT conditions
are known. It turns out that, in many engineering design problems, neither of these
assumptions are valid since the model is inherently non-convex and the feasibility
conditions are defined in terms of an expensive computer simulation whose internal
structure is inaccessible to the modeler. One example is when we want to evaluate
the flexibility of a system with significant spatial variability that is best character-
ized by a computational fluid dynamics (CFD) simulation [15]. Even though many
mature CFD codes exist, it may be very difficult (or even impossible) to convert
them to form that is compatible with existing flexibility analysis methods. These
cases are often referred to as “simulation-based,” “derivative-free,” or “black-box”
models for which the main assumption is that the model can be queried at desired
input values within the range of interest.

Due to their generality, there has been a significant amount of interest in uti-
lizing black-box models within optimization. In fact, several previous works have
tackled a special case of the black-box flexibility analysis problem in which there are
no recourse variables [16, 17, 18, 19, 20]. In the absence of recourse variables, flex-
ibility analysis reduces to a “feasibility test” problem that requires one to identify
the worst-case uncertain parameter and constraint combination, which can be for-
mulated as a single-level optimization problem. This single-level problem can then
be tackled using standard or custom derivative-free optimization (DFO) methods
[21]. For example, [16], [17], and [19] use high-dimensional model representations,
Kriging models, and cubic radial basis function models, respectively, to build a
surrogate model of the expensive feasibility function that can then be used to ac-
tively design new input points. An alternative approach, pursued in [20], is to
convert the feasibility problem into a sequence of univariate DFO models that are

then tackled by the established BOBYQA [22] method. Since these methods ne-
glect recourse variables, they result in a conservative view of flexibility in real-world
problems. Furthermore, all of the aforementioned methods are heuristic in nature
in the general non-convex case, meaning they do not provide any form of guarantee
of convergence or bounds on the rate of convergence.

In this paper, we propose a novel black-box flexibility analysis method for expen-
sive models that directly accounts for the challenging tri-level “max-min-max” op-
timization problem structure of the flexibility test. The proposed method, BoFlex,
effectively extends the Bayesian optimization (BO) framework [23, 24, 25] (which is
an efficient surrogate-based DFO method) to such three-level max-min-max prob-
lems. Similar to standard BO, BoFlex uses Gaussian process (GP) regression [26]
to construct non-parametric probabilistic surrogate models of the black-box func-
tions directly from data. By combining the probabilistic model with an acquisition
(or expected utility) function, BoFlex simultaneously selects uncertain parameters
and recourse variables that are likely to improve the information we have about the
solution to the flexibility test problem. A key source of novelty in BoFlex is the de-
sign of the acquisition function, which is defined in terms of alternating confidence
bounds on the flexibility test parameter. We develop a new strategy for computing
these confidence bounds through transformations of a multi-output GP model that
avoid challenges with alternative approaches such as constraint aggregation. We
show that, because of this structure, BoFlex enjoys strong theoretical guarantees
regarding performance and convergence. In particular, we derive worst-case bounds
on the number of iterations required for convergence to a correct answer that hold
in the general non-convex case. We also introduce an extension of the BoFlex that
directly quantifies the flexibility index, which represents the largest scaling factor
for the uncertainties (around a nominal value) that ensures the system remains
flexible [4]. Finally, we show that BoFlex works well in practice on a variety of test
problems including heat exchanger networks (HENs) and a bubble column fermen-
tation problem defined in terms of a genome-scale dynamic flux balance analysis
(DFBA) simulator. Not only does BoFlex consistently provide accurate solutions
in a limited number of expensive simulations, we perform ablation studies (that re-
move,/modify certain components of the algorithm) to demonstrate that the unique
components of BoFlex all contribute toward its success in practice.

The remainder of this paper is organized as follows. In Section 2, we provide
a formal introduction to the flexibility test problem of interest in this work. We
provide relevant background material on GPs and BO in Section 3. In Section 4,
we introduce our BoFlex algorithm, analyze its theoretical properties, and discuss
important practical implementation details. We then derive an extension of BoFlex
that works for flexibility index problems in Section 5. We evaluate the performance
of Boflex on several case studies in Section 6, and provide some concluding remarks
in Section 7. Lastly, for readability purposes, the proofs of all theoretical results
are provided in Section 8.

2. Problem Formulation

In this work, we are interested in the following flexibility test problem that can
be formulated as a tri-level “max-min-max” optimization problem [1]

= max min max f;(0,z), 1

X = maxmin max f;(6, z) (1)

where @ € © denotes the set of uncertain parameters restricted to some specified
domain © C R%, z € Z denotes the set of control (or recourse) variables that can
be adjusted during operation restricted to some specified domain Z C R%, and

{fj}jes are a set ¢ = |J| functions that define inequality constraints of the form
fi(0,2) <0, f; : ©x Z =R, j=1,...,q that must be satisfied for the system
to achieve feasible operation. The scalar quantity x thus represents a feasibility
measure for a given system under recourse. A value of x satisfying y < 0 implies
that feasible operation can be attained over the full set of uncertain parameters,
i.e., the flexibility test is passed. On the other hand, if x > 0, there is at least one
0 € © value for which feasible operation cannot be achieved for any feasible control
action z € Z, i.e., the flexibility test is failed.

In the absence of control variables (dz = 0), the flexibility test (1) reduces to a
standard feasibility problem, e.g., [17] for which the goal is to identify if constraints
are satisfied for all uncertainty realizations. However, the presence of z fundamen-
tally changes the behavior of (1) since we must identify the best control action z
to compensate for any specific realization of 6. In fact, we can interpret (1) as a
sequential three-player game with 6 representing Player 1, z representing Player
2 that can adapt to the decisions made by Player 1, and the constraint index j
representing Player 3 that can adapt to the decisions made by Players 1 and 2.

There has been a substantial amount of previous work on solving flexibility
problems of the form (1) when the functional form of the inequalities {f;(0,2)} cs
are known, e.g., [7, 27, 4, 2, 8.1 Typically, these inequalities are defined implicitly
in terms of equality and inequality constraints of the form

h(x70’z) = 07 g(x707z) S 07 (2)

where x denote internal states variables of the system (e.g., temperatures, concen-
trations), h(-) is a function representing equality constraints that uniquely define
the state for fixed uncertainty and control input values (e.g., steady-state versions
of the material and energy balances), and g(-) is a function defining the important
constraints directly in terms of the state (e.g., physical, safety, and quality con-
straints). Letting x(6,z) denote the values of x that satisfy h(x, 08,z) = 0, we can
recover the definition of the inequality constraints in (1) by

[g(X(@, z)7 07 Z)}j = fj(eaz> <0, Vj eJ, (3)

where [g(+)]; denotes the j*® output of g(-). In many practical applications, however,
it is difficult or impossible to obtain cheap equation-oriented “white-box” models
whose structure can be exploited by existing flexibility test methods. Even in cases
where part of the model is known, many engineering design problems involve com-
plex (integrated and multi-scale) computer simulations, implying {f;(0,2)};cs are
time-consuming-to-evaluate “black-box” functions (i.e., we can only query zeroth-
order information at specific input values).

The main goal of this paper is to develop a black-box flexibility analysis method
for functions in which limited data can be collected. Specifically, we consider the
bandit feedback setting in which the unknown functions {f;},cs can be sequentially
queried at specific (0,z) € © x Z values. Since we are interested in integrated
simulators that take in d = dy + ds inputs and return ¢ outputs, we require that the
same query point is used for all functions at each iteration (though this assumption
can be relaxed without major modifications). Since the querying process is assumed
to be expensive, we would like to design an algorithm that can determine if y <0
(test passed) or x > 0 (test failed) in as few iterations as possible. Furthermore,

1By “known,” we mean that there is a representation of the function as a composition of known
elementary functions, which can be equivalently represented as a directed acyclic graph [28]. This
structure is crucial for computing derivatives and/or convex relaxations that are assumed available
by traditional “white-box” optimization algorithms.

we would like to have some guarantees that the method converges and has minimal
chance of returning an inaccurate result for the flexibility test. Before introducing
our proposed method in Section 4, we first provide relevant background on Bayesian
optimization, which is the core framework that we look to extend in this work.

Lastly, since the simulator of interest may involve random variables, we further
assume that, whenever we evaluate the inequality constraints, we only receive a
noisy estimate of these functions. That is, for each input (0,z), we obtain mea-
surements f;(0,2) = f;(8,2) + &; where ¢, is a zero-mean, R-sub-Gaussian noise
for all j = 1,...,q. Although fj(g,z) is a random variable, we will use fj (04, 2¢)
to denote the measurement (realization) obtained at a given iteration ¢ € N. In
general, the noise variables could be correlated but we do not consider this case in
our theoretical analysis in Section 4.3.

3. Background

In this section, we provide a brief review of Gaussian processes (GPs) and robust
Bayesian optimization, which is the foundation of our flexibility test Bayesian opti-
mization algorithm in Section 4. The introduction to GPs and nominal Bayesian op-
timization are standard and follow from [26] and [25], respectively. Robust Bayesian
optimization, on the other hand, is relatively new and so we will briefly summarize
the method introduced in [29, 30].

3.1. Gaussian Processes (GPs)

All inequality constraint functions {f;(60,z)};es in Section 2 are unknown a
priori, meaning they must be learned from observations. For notational simplicity,
let x = (0,z) € R? denote the concatenated vector of the uncertain parameters
and control inputs with total input dimension d = d; + ds. Also note that we will
interchangeably denote f(0,z) as f(x) for any function f: OxZ - Ror f: X - R
where X = © x Z. We will use GPs as a non-parametric model to approximate
the unknown inequality functions over the common domain &'. Since traditional
Bayesian optimization methods focus on a single function, we will initially present
results for a single performance function ¢(x) — we will keep this function general for
now but one can imagine selecting ¢(x) = max;jcy f;j(x) as the largest constraint
value to connect the following exposition to (1). We extend this model to multiple
functions in order to represent all inequalities simultaneously in Section 4.1.

GP surrogate models are one of the most popular choices for non-parametric
regression in machine learning, where the goal is to find an approximation to the
nonlinear map ¢ : X — R from some input vector x € X’ to the function value ¢(x).
This learning is achieved by assuming the function values ¢(x) at different inputs x
are random variables and, further, that any finite subset of these random variables
has a joint Gaussian distribution. In other words, GPs model the correlation be-
tween any set of evaluation points and thus generalizes the concept of distributions
over vector spaces to distributions over function spaces [26].

A GP is fully specified by a prior mean function u(x) and a prior covariance
function k(x,x’) that defines the covariance of any two function values ¢(x) and
¢(x') for any x,x’ € X. The covariance function is also commonly referred to as
“the kernel” due to its relationship to kernel methods in machine learning. The prior
mean function is mainly used to capture some expected trend in the data; we will
assume p(x) = 0 without loss of generality in this work. The zero mean assumption
can be met in practice by normalizing the output data when defining the target
function. The choice of kernel is problem-dependent, as it encodes information
about the smoothness and rate of change of the unknown function. A review of
commonly used kernels can be found in [26, Chapter 4]. The specific kernel used

in this paper is discussed in Section 4.4. It is worth noting that the presented
algorithm can be applied for any choice of kernel, though some of the theoretical
results hold under certain assumptions on the kernel.

Using the GP framework, we can make a prediction of the function value ¢(x,)
for an arbitrary test input x, € X given a set of ¢ past observations, {Qg(Xi)}ﬁ:l, at
specifically selected input values {x;}!_;. The GP model assumes noisy observations
of the true function, i.e., ¢(x) = ¢(x) + & where e ~ N (0, \) with variance \. It is
important to note that this Gaussian noise model is used to simplify the design of
the algorithm and does not have to match the true noise distribution for which mild
assumptions are made in Section 4.3. In fact, we will consider the agnostic setting
introduced in [31] that consists of a misspecified prior and noise model. Conditioned
on these t observations, the posterior remains a GP with the following predictive
posterior mean and variance

pe(x2) = & (x) (Ko + ML) 'y, (4a)
o7 (x,) = k(x,, %) — K/ (%) (K¢ + L)~ 'ke(x,), (4b)
where ¢, = [¢(x1),...,0(x;)]T is the vector of observed noisy function values,

K, € R™*" is the covariance matrix between the observation input data with entries
[Ki]i,j) = k(xi,x;) for all 4,5 € {1,...,n}, I, € R™" denotes the identity matrix,
and ky(x,) = [k(x4,%1), ..., k(X«,%¢)] | is a vector of covariance values between the
new input x, and the observed inputs {x;}{_;.

3.2. Bayesian Optimization

Bayesian optimization (BO) aims to find the global maximum of an unknown
function by sequentially querying it at particular inputs [25, 32, 24]. The underlying
assumption is that the evaluation of the function is expensive (and thus the bot-
tleneck) while computational resources are relatively cheap for designing the next
query point. This fits our problem described in Section 2 where each evaluation
of the inequality constraints corresponds to running a process simulator that takes
a significant amount more CPU time than the BO design process (potentially by
multiple orders of magnitude). In general, BO constructs a probabilistic surro-
gate model for the objective function that is used to identify informative sample
locations. GPs are the most popular surrogate model due to their non-parametric
nature and analytic expressions for the posterior mean and variance in (4). The
main drawback of GPs is their O(#3) scaling with respect to the number of data
points (due to the matrix inversion in these expressions); however, this is typically
not an issue in most BO applications wherein we are operating in a low data regime.

For example, the upper confidence bound (UCB) algorithm in [31] selects the
next sample location as follows

Xi41 € argmax (%) + B o (x), (5)
xXe

where 3; is an iteration-dependent positive scalar that reflects the size of the confi-
dence interval of the GP model. We see that (5) suggests to evaluate the objective
function at the location where the confidence interval is largest. It has been shown
that by repeatedly evaluating the system at {x1,xa,...} suggested by (5) improves
the estimate (decreases uncertainty) of the global maximum and thus provably con-
verges under some assumptions [31]. In our setting, however, we cannot apply such
a sampling scheme because it treats all input variables as “design variables” whereas
in our case these variables are partitioned into adversarial players (0,z) that are
“fighting against” each other.

paulson.82
Sticky Note
t x t

3.8. Adversarially Robust Bayesian Optimization

Adversarially robust Bayesian optimization (ARBO) is a conceptually straight-
forward extension of BO to handle the adversarial nature of two player games of the
form maxgeo min,ecz ¢(0,z) [29, 30]. ARBO enables one to solve so-called robust
optimization problems for which we have a set of “here-and-now” variables € and
“wait-and-see” variables z that can be used to model a variety of different real-
world problems involving design under uncertainty. The key difference in ARBO
compared to UCB (5) is that we now need to sequentially solve two optimization
problems defined in terms of the confidence bounds

0141 € argmaxmin 11,(0,2) + B,/%0,(6, 2), (6a)
9co zEZ

Ziy1 € argnzlin 11(8:,2) — B, 01(61, 7). (6b)
zE

The core idea underpinning (6) is that we must alternate between upper confidence
bounds for selecting the here-and-now variables and lower confidence bounds for
selecting the wait-and-see variables. Intuitively, this structure follows the same
reasoning as UCB (5) in that we need a relaxed view of the problem being solved.
Since we have a minimization problem in the second stage, we need to use a lower
confidence bound to ensure we have a valid lower bound on the minimum.

For sufficiently smooth functions, it has been shown in [29] that ARBO enjoys
similar convergence properties to the original UCB algorithm described in Section
3.2. However, the flexibility test problem (1) is a tri-level optimization problem and
so does not directly fit the setting of ARBO. In principle, we could apply ARBO
by defining a new worst-case constraint function ¢(6,z) = max;cs f;(0,2); how-
ever, the max;c s operator is non-smooth, which makes ¢ difficult to accurately
model with a GP. In fact, useful confidence bound results that have been estab-
lished (that allow us to rigorously select the 8; parameter and will be discussed
further in Section 4.3) do not hold in this case. This prevents us from implementing
any sort of guaranteed stopping criteria during the sampling process, meaning such
an algorithm would be heuristic at best. As proposed in [33], one way to over-
come this challenge is to replace max;e 7 with a smooth approximation such as the
Kreisselmeier—Steinhsauser (KS) function that is defined as follows [34]

KS(0,219) = M+ In | 30 exp (o(/,(0.2) = 1) | 7)

Jj=1

where p > 0 is an “aggregation” parameter whose value controls the accuracy of
the approximation and M ~ max;cy f;(0,2) is a constant used to reduce over-
flow /underflow errors in the exponential function. Using established properties of
the KS function [27], it can be directly used to bound the max operator from above
and below as follows

KS(6,2;p) — In(q)/p < max £;(6,2) < KS(6,2;p), (8)
J

Furthermore, KS(0,z; p) — max;cy f;(0,2z) as p — oo, such that in principle we
could select p to be large enough to yield nearly 0 error in practice. However,
the downside of this approach is that large p significantly increases the maximum
rate of change in the function — therefore, even though we can technically model it
with a GP similarly to (4), we need to develop specialized non-stationary kernels
to construct reasonable confidence bounds. Another disadvantage of this approach
is that it aggregates the information we have collected on the individual inequality

constraint functions such that we are not exploiting the full set of available infor-
mation at every iteration. Therefore, in this paper, we develop a new method that
avoids these complications by developing a multi-output GP model for the inequal-
ity constraints that is combined with a new acquisition function to design the next
sample location (0:41,%:+1), as discussed in the next section.

4. Bayesian Optimization for Flexibility Analysis (BoFlex)

In this section, we introduce the BoFlex algorithm for solving black-box flexi-
bility test problems under a limited budget of function queries. We first describe
a multi-output extension of GPs that is critical for overcoming the aforementioned
challenges of ARBO applied to (1). We then summarize the BoFlex algorithm,
which we show is capable of guaranteeing a correct answer is provided to the flex-
ibility test problem within a finite number of steps with probability greater than
some user specified level. As we show in this section, the theoretical guarantees will
rely on the continuity of the underlying functions and so one can roughly expect the
smoother the behavior of f;(0,z) for all j € J the quicker BoFlex will converge.
We finally discuss some important implementation issues that can be helpful when
applying BoFlex in practice.

4.1. GPs with Multiple Outputs

In general, we have some finite number of ¢ simulator outputs that define the key
inequality constraints that must be satisfied to consider the system “safe” (feasible).
This implies that we need to consider multiple, possibly correlated functions when
designing our algorithm, which differs from traditional BO. Here, we choose to use
the representation from [35] that suggests the use of an equivalent surrogate function

f1(0,z) ifj=1
hb,z,j) = : (9)
fq(eaz) ifj=gq

which simply returns the corresponding constraint function depending on the ad-
ditional input j € J = {1,...,q}. The function h(-,-,-) remains a single-output
function such that it can still be modeled by a scalar GP over the extended param-
eter space © x Z x J. A key advantage of this representation is that we have a
significant amount of flexibility when it comes to specifying the kernel. For example,
consider the case of ¢ = 2, we may select the kernel to behave as follows

p N g
(), (1) = { o) el 7 =0
itk (x,X") + ki2(x,x") ifj=1
where ¢;;, is the Kronecker delta, k; and ko are kernels for functions f;(x) and
fa(x), respectively, and ks is an additional covariance function that models the
similarities between the two function outputs. If we wanted to model the two
functions independently, we could directly set k12(x,x’) = 0, which would simplify
training and prediction (aka inference). Note that k((x, j), (x',5’)) is a valid kernel
function as long as it satisfies symmetry and positive semi-definiteness [36]. These
two properties are satisfied by the kernel choice shown above as long as ki, ko,
and k1o are valid kernels since the set of kernel functions is closed under addition,
multiplication, and the application of linear operators.
Therefore, by merely augmenting the training data with an additional input j,
we can use the standard GP framework to predict the posterior mean and variance
at any test point using (4) — we now just add the function index j to the input

Algorithm 1 BoFlex: Bayesian Optimization for Black-Box Flexibility Tests

Input: Uncertain parameter domain ©;
Recourse variable domain Z;
Kernel for GP prior k((0,z,j), (0,2, j'));
Confidence interval parameters {; / *}iso.

1: fort=0,1,2,... do

2: Y + maxgeo minge z max;c 7 ut (0,2, j)

3 F + maxgeo Mingez maxje s l+(0,2, j)

4 if XY <0 then

5: Declare test passed (system is flexible) and stop.

6 end if

7 if ¥F > 0 then

8 Declare test failed (system is not flexible) and stop.
9 end if

10: 0.1 < argmaxgee Minyez max;cy ut (0,2, j)

11: Zi1 argminzez max ey lt(0t+1, Z, j)

12: Query noisy simulator: fj(0t+1, Zi41), Vi =1,...,q

13: Update GP model with new data collected in previous step
14: end for

parameter set x for each observation. In this setting, we obtain ¢ measurements at
every iteration t; however, for simplicity of notation, we continue to write u; and
ot to refer to the posterior mean and variance for h(0, z, j) given all information at
iteration ¢ (implying there are tg measurements instead of just ¢ as before).

4.2. The Algorithm

We are now in a position to state our proposed algorithm, which we refer to as
BoFlex. To facilitate the description of BoFlex, we first define the upper and lower
confidence bounds on h(6,z, j) based on the posterior GP model as follows

ut(97Z7.j) :ut(oazaj)+ﬂt1/2o-t(97z7j)7 (108’)

lt(evzaj) :,ut(eazvj) 761&1/201‘/(07Z7]‘)' (IOb)

The probability of the true functions {f;(0,z)};cs lying in the confidence interval
[1:(0,2,7),u:(0,2,7)] clearly depends on the choice of 3; as well as our assumptions
on these functions. We give a formal treatment of these choices in Lemma 1 in
Section 4.3 wherein a sufficiently large f; is derived to ensure these bounds hold
for all parameter values and iterations with at least some user-specified probability.
Given these confidence bounds, BoFlex operates as described in Algorithm 1. This
algorithm is conceptually simple and only requires one to solve tri-level optimization
problems in terms of the upper and lower confidence bounds, which are significantly
cheaper to evaluate than the expensive black-box functions by assumption. Specif-
ically, Lines 2 and 3 involve computing confidence bounds on the test parameter
x € [xXF,®V] (with probability dependent on the choice of 3;) that are used to
determine if the test is passed or failed on Lines 4-9. If the confidence region has
yet to cross zero, then we continue on to Lines 10 and 11 to sequentially compute
the next query point (0;41,2¢+1) using the alternating confidence bound principle
described previously. Finally, on Lines 12 and 13, we query the simulator at this
designed point and update the GP with this newly collected data before repeating
these steps until a definitive answer to the test is found.

A detailed illustration of how the BoFlex algorithm works on a simple test
problem is given in Section 6.1 (Figure 2).

4.8. Theoretical Results
Before we can analyze the performance of BoFlex, we must make some assump-
tions regarding the inequality constraint functions and the noise sequence.

Assumption 1. The function h(0,z,j) has bounded norm in a reproducing kernel
Hilbert space (RKHS), which includes functions of the form

h(evzaj) = Zk akk((gvz7j)a (gkazkajk))a

with o € R and representer points (0,2, ji) € © X Z x J [37].

The bounded norm property in Assumption 1 implies that the coefficients ay
decay sufficiently fast as k increases. In other words, these functions are well-
behaved in the sense that they are regular with respect to the choice of kernel. Let
Hj denote the RKHS for which the kernel k£ determines the roughness and size of
the function space and the induced norm ||h|x = \/(h, h) measures the complexity
of a given function h € Hj with respect to the kernel.

Assumption 2. The kernel function satisfies k((0,z,7),(0,2,7)) <1 for all inputs
(0,2,j) €O x Zx J.

Assumption 2 implies that we have bounded variance for all possible inputs and
can be made without loss of generality, as any multiplicative scaling can be absorbed
into the norm bound B.

Assumption 3. Let {x;}{2, be some X-valued discrete-time stochastic process that
is predictable with respect to the filtration F = {F;}52,, i.e., Xy is Fy_1-measurable
for allt > 1. The noise sequence {€:}32, is an R-valued stochastic process adapted
to F such that €¢ conditioned on F;_1 is R-sub-Gaussian for some R > 0, i.e.,

72 RQ

E e | Fi—1] < exp () , VvyEeR, Vt>0.

Assumption 3 is a relatively mild assumption on the noise that is common in
the bandit optimization literature (e.g., [38, 39, 40, 41]) and includes, for example,
noise models bounded in [—R, R] as well as Gaussian noise.

The GP framework uses a statistical model that makes different assumptions
about h and ¢ than those shown in Assumptions 1-3. Specifically, samples from
the GP prior are rougher than RKHS functions and are not contained in Hj an
the noise model used to derive (4) is different. However, it is known that GPs and
RKHS functions are closely related (see, e.g., [42]) and it turns out that one can
use the GP mean and variance to infer reliable confidence bounds on h(0, z, j). The
proofs of all results in this section are given in Section 8.

Lemma 1 (Based on [43]). Assume that h has bounded RKHS norm ||h|x < B and
that the measurements are corrupted by R-sub-Gaussian noise (i.e., Assumptions

1, 2, and 3 hold). Then, for any 6 € (0,1) and

R
t1/2:B—I—m\/QI(Yﬁh)"_an(l/é)v (11)

one has
P [lna(x,9) = hix)| < B 0u(x,), Yx e X ¥j e T2 0] 2 1-5, (12)

where I(ys; h) denotes the mutual information between the GP prior for h and the
tq measurements y; of h for a specific noise realization sequence, i.e.,

ye =[x, T)", .. h(xe, T)T]T € RY,

10

where h(x;, J) = [h(x,1),...,h(xi,q)]T € RY is a shorthand notation for all the
measurements collected at iteration i.

It is interesting to note that, for GP models, the mutual information I(yy;h)
depends only on the inputs and not the corresponding measurement of the function.
In particular, for a given set of measurements yp at inputs a = (x,j) € D C X x J,
the mutual information is given by

I(yp;h) = L1n(det (I+ 2 'Kp)), (13)

where Kp is the kernel matrix [k(a, a’)]a,a’ep. Intuitively, the mutual information
measures how informative the set of |D| samples yp are for the function h. If the
function values are independent of each other under the GP prior, they will provide
large amounts of new information. On the other hand, if the measurements are taken
close to each other as measured by the kernel, they are correlated under the GP
prior and thus provide less information. Furthermore, the more prior information
that we encode in the GP prior, the less information we are able to gain given the
same number of samples. Notice that Lemma 1 makes no probabilistic assumption
for h, meaning h could be “optimally bad” (in terms of inducing the worst-case
prediction error for the mean function) as long as it has bounded RKHS norm.

The scaling factor £; in Lemma 1 depends on the specific measurements of the
function so it leads to instance-specific values. It is common to replace this with a
worst-case upper bound by defining the worst-case mutual information that could
be obtained by any algorithm with at most n measurements

" = I i h). 14
T = e A (yp; h) (14)

Intuitively, v, quantifies a best case scenario where we select the measurements in
the most informative manner possible and can be directly interpreted as a measure
of the complexity of the function class associated with the GP prior. Since I(y¢;h) <
Viq by definition, we can replace I(y; h) with v, in (11) and the results still hold.
We will present the remaining theoretical results in terms of ;4 to show worst-case
bounds; however, note that the instance-specific bounds also hold and will be useful
when it comes to practical implementation details discussed in Section 4.4.

Next, we derive a bound on the gap between the upper and lower bounds on the
flexibility test parameter x derived by BoFlex as a function of the number iterations.

Theorem 1. Let the assumptions of Lemma 1 hold and fix the variables T € N,
e>0, and 6 € (0,1). Further, suppose that T satisfies

T >C’1

ety 15
ﬁT’VTq T € ()

where C1 = 8/In(1 + A1) and define the gap in the upper and lower bound on the
flexibility test parameter x at every iteration as follows

Gi1 =X — Xt (16)

Then, running BoFlex in Algorithm 1 with the confidence bound parameter set to
t1/2 = B+RA1/? 29tq + 21n(1/0) for T iterations achieves a minimum gap value
of G = mineqy . 7y Gy < € with probability at least 1 — 6.

Theorem 1 states that, given some reasonable assumptions on the function class,
BoFlex is able to find upper and lower bound estimates that are at least e-close to
the true flexibility test parameter value since XX < y < XV for all t > 0 by
Lemma 1. Furthermore, as long as Bryr4 scales sublinearly with respect to T, i.e.,

11

limy7_, o0 TZ;TQ = 00, then a large enough T always exists that satisfies (15) for
any € > 0. It turns out that 7, satisfies this property for many commonly-used
kernels, as shown in [31]. We will discuss specific examples in more detail later in
this section. We also note that the minimum gap G} can be recursively calculated
at every iteration of BoFlex by Gy = min{G}_;,G:}. An alternative termination
criteria that one can use is to monitor G} and stop the algorithm once G} < 7 for
some small tolerance value 7 > 0, though this will likely require additional iterations
to achieve a more accurate estimate of .

Not only are we interested in the gap between the upper and lower estimates of
X, we are also interested in the termination behavior of BoFlex. Specifically, under
what conditions will Line 5 or 8 of Algorithm 1 be correctly triggered. We show
in the following result that BoFlex is guaranteed to converge in a finite number of
iterations with high probability to a correct result.

Theorem 2. Let the assumptions of Lemma 1 hold, |x| = n for some positive
constant n > 0, By set as in Theorem 1, and limp_ 'YTq/\/T — 0. Then, given a
confidence level § € (0,1), BoFlex will terminate to a correct answer to the flexibility
test in a finite number of iterations with probability at least 1 —§ (i.e., Line 5 or 8
of Algorithm 1 is correctly declared for some iteration T < 00).

Not only does Theorem 2 establish that BoFlex terminates in a finite number
of steps for a reasonable class of functions, it also provides guarantees that it will
always converge to a correct answer whenever the bounds established in Lemma
1 hold. The probability that these bounds hold are controlled by a single tuning
parameter, &, which represents the failure probability. It can be made as close to 0
as desired, though this will increase the size of the confidence bounds that can be
expected to slow convergence. The proof of Theorem 2 further establishes a link
between the magnitude |y| = n > 0 and the number of iterations required before
BoFlex terminates. In particular, larger values of 1 are expected to require fewer
iterations since it gets easier to validate or invalidate the test x < 0.

We can verify the required condition that limp_, '\Y/TT‘? = 0 in Theorem 2 by
analyzing known bounds on yr4. Specifically, it has been shown that yp = O(pInT)
for the linear kernel, y7 = O((InT)?P*1) for the squared exponential kernel, and
yr = O(Tﬁ Inz%r T) for the Matern-v kernel [31, 44] where p = d + 1 is the
total number of inputs in the GP model. Note that these same scaling laws hold for
14 since the factor ¢ is a constant. As such, finite convergence can be guaranteed
for the linear kernel, squared exponential kernel, and any Matern-v kernel with
smoothness parameter v satisfying v > p/2. These are sufficient conditions on the
worst-case behavior so it is possible that BoFlex still converges whenever other (less
smooth) kernels are used. We can also make Theorem 1 more explicit by substituting
these bounds into (15). For example, in the case of the squared exponential kernel,

G < O(ULEZ) or equivalently G < e for T = O* (4 In (1)) where O*() is a
variant of O(-) that hides dimension-independent log factors.

4.4. Practical Implementation
In this section, we discuss some possible changes to Algorithm 1 that make it

simpler to implement in practice at the expense of loosing some of the theoretical
guarantees established in the previous section.

4.4.1. Choice of exploration constant

The parameter ; that sets the size of the GP confidence interval in Theorems
1 and 2 may be too conservative when applied in practice. As shown in Lemma 1,
the GP confidence bounds still hold when vz, is replaced by the data-dependent

12

empirical mutual information gained so far, I(y;; h). This quantity can also be easily
computed from the kernel matrix evaluated at the past measurement locations (13).
Furthermore, depending on the application of interest, one may consider setting 5;
to a constant value, which roughly corresponds to bounding the failure probability
per iteration (as opposed to over all iterations and all possible inputs). For example,
[35] used ﬁtl /% = 2 in their experiments, which yielded good results in practice.

Since guarantees are no longer provided under such choices of 3;, Algorithm 1
may prematurely converge. To mitigate potential errors in such cases, we propose to
derive a posteriori bounds on y after the learning process is completed. Specifically,
we can use Lemma 1 to check if we have achieved an accurate enough estimate — this
can always be done regardless of the choice of ; used during the data acquisition
process. If not, then we can continue to run BoFlex until the estimated gap G7%
is below some threshold and then repeat the a posteriori check. Interested readers
are referred to [45] for further details on these type of a posteriori bounds including
for cases where the kernel choice is misspecified.

4.4.2. Kernel selection

The choice of kernel k£ in the GP model is a critical parameter in Algorithm 1.
As the theoretical results in Section 4.3 show, the slower the growth of vp, with
respect to T', the faster we can expect BoFlex to converge. As discussed previously,
this growth is directly tied to the underlying degree of correlation in the function.
In this section, we review the type of kernel that we use throughout our numerical
experiments as well as the kind of models that they can represent. More detailed
discussions on kernel choices and properties can be found in, e.g., [26, 42, 46].

We focus exclusively on the Matern-v kernel with v = 3/2, which can be ex-
pressed as follows

k(a,a’) = ¢? (1 +/3r(a, a’)) exp (—\/?;r(a, a’))) (17a)

r(a,a’) = \/(a—a’)TL_Q(a—a’)7 (17b)

where r(a,a’) is a scaled Euclidean distance over the combined input a = (0,2, j) €
A=0x ZxJ CRP, L = diag(l) is a diagonal scaling matrix composed of posi-
tive lengthscale values 1 € RY |, and ¢? is a scaling factor for the output variance.
The GP model, with the Matern-v kernel, is then parametrized by three sets of
hyperparameters of total dimension p+ 2: scalar measurement noise A in (4), scalar
prior variance (2, and p lengthscales 1, all of which have intuitive interpretations. In
particular, A represents the noise in the observations that includes any source of ran-
domness in the algorithm or experiment. The prior variance ¢? roughly represents
the expected magnitude of the function value, i.e., |h(a)| < ¢ with 68% probability
based on the GP prior (recall we have assumed the prior has zero mean without loss
of generality). Finally, the lengthscales 1 specify how quickly the covariance changes
between neighboring values along specific dimensions. Small lengthscales imply the
covariance decays faster as a function of the distance between the points, meaning
the function can change must faster from one point to the next. This means that
we can always select a more conservative kernel representation by reducing 1. This
increases the leading constant in the expression for vy, as a function of 7" such
that, by Theorems 1 and 2, smaller lengthscales reduce the speed of convergence of
BoFlex. This fits our intuition since a large 1 means the function is not expected to
change much and thus can be learned with relatively small amounts of data.

The confidence bound result established in Lemma 1 relies on the assumption
that we know the true hyperparameters of the kernel (or can at least conservatively
estimate them), which is not always true in practice. Therefore, a common remedy

13

is to apply the maximum likelihood estimation (MLE) framework to estimate the
hyperparameters using already acquired data; see [26, Section 2.7] for details. It
is known, however, that the MLE approach can lead to “poor results,” mainly
because the GP estimates may violate Lemma 1 under adaptive updates [47]. Since
this issue is not the focus of this work, in our examples in Section 6, we assume
that we have a reasonable set of initial data to obtain good estimates using MLE.
There have been several interesting contributions on how to practically deal with
this mismatch, e.g., [41, 48, 49]. Any one of these methods could be incorporated
into BoFlex, though their impact on the convergence results in Section 4.3 would
need to be separately analyzed, which we plan to study in future work.

4.4.83. Optimizing the acquisition function

Algorithm 1 assumes that we can find exact solutions to the acquisition op-
timization subproblems on Lines 2, 3, 10, and 11. The max-min-max problems,
however, can be challenging to solve in practice. When © and Z are discrete sets,
we can solve these problems by evaluating u:(0,z, j) and 1;(0,z,j) at all O x Zx 7,
which consist of only a finite number of points in this case. Since these functions
can be evaluated cheaply, the cost of this exhaustive evaluation is still expected
to be small relative to the cost of evaluating the expensive function as long as the
cardinality |© x Z x J| is manageable (we found that on the order of millions can
be done quite quickly). For continuous © x Z, an alternative approach is to find
an approximate solution using a local robust optimization algorithm (that assume
the objective function is known) such as [50] that can be repeated from multiple
initial starting points. If a guaranteed global solution is desired, then one can for-
mulate these problems as generalized semi-infinite programs (GSIPs), as shown in
[51], though the cost of these methods can be quite high in practice.

5. Extending BoFlex to Flexibility Index Problems

The flexibility test problem (1) provides a yes or no answer to the question: Can
the system flexibly operate over the given set of uncertain parameters ©7 In some
cases, however, one is interested in deriving a quantitative measure of the degree of
flexibility. The flexibility index F' is one such measure that is defined as follows

F= max p subject to: x(p) <0, (18)
P>

where x(p) is a slightly modified definition of the flexibility test measure given by

= i (6 19
(p) erengé)gggrjngfj(,2), (19)

with ©(p) representing a variable parameter set
O(p) = {0 cR™ : 0y — pAO < 0 < Oy + pAO}. (20)

Here, 85 € R% denotes the nominal parameter values for which the system is
expected to maintain feasible operation, Af € Rff_l is the expected deviations from
the nominal parameter values, and p > 0 is a scaling factor that controls the size
of the uncertain parameter set ©(p). We can then interpret the flexibility index
problem (18) as finding the largest possible p for which there exists a feasible control
input z € Z to keep the system feasible for all possible 8 € ©(p). Therefore, if we
compare the F' values for two different designs of the same system, we can say that
the design that leads to the larger F' value is “more flexible” (can handle a larger
range of parameter variability) than the other design.

14

Algorithm 2 BoFlex-Index: Extension of BoFlex to Flexibility Index Problems
Input: Starting interval [pr, prl;
Desired tolerance €g1;
Initial dataset 2y composed of noisy simulator evaluations;
Uncertain parameter domain ©;
Recourse variable domain Z;
Kernel for GP prior k((0,z,j), (6',2,5"));
Confidence interval parameters {3;>}¢>o.
1: for i =0,1,2,... do
2: Calculate the midpoint py; =
3: Run BoFlex(O(par), Z, k, {52/2},520, 2;) in Algorithm 1; return result of the
flexibility test 7;, current bound gap G;(pas), and complete dataset Z;1.

pL+pPU
2

4 if 7; is true then

5 Test passed; update lower bound pr, < pas.

6 else

7 Test failed; update upper bound py + pas.

8 end if

9 if |Gi(pm)| < €01 then

10: Stop and return pr, as the best feasible estimate for F.
11: end if

12: end for

Clearly, x(p) is a monotonically non-decreasing function of p. In the common
case that we define A@ = Af[1,...,1]T for some positive scalar Af > 0 (such that
the uncertainty set is a hypercube), then we strengthen this result to say that x(p)
is a strictly increasing function of p such that F' can be equivalently defined as the
unique solution to x(F) = 0 (assuming a solution to this problem exists, which can
be guaranteed as long as the system is feasible for). This is a scalar root finding
problem that can be tackled with a variety of algorithms such as bisection [52].
Given a starting interval [py,, pr] that contains the root, we define the BoFlex-Index
method summarized in Algorithm 2, which is effectively a combination of BoFlex
with the bisection method to tackle the flexibility index problem. Since BoFlex-
Index involves solving a sequence of flexibility test problems, a key observation
is that we can reuse the collected data needed to construct the multi-output GP
model every time that BoFlex is called (Line 3). Thus, we can expect the quality of
the bounds on x to continually improve as the iterations increase, suggesting fewer
internal BoFlex iterations will be required as the algorithm progresses.

A detailed illustration of the BoFlex-Index algorithm is shown for a test problem
described in Section 6.1 (Figure 3).

6. Case Studies

In this section, we demonstrate BoFlex (Algorithm 1) on four problems using the
practical implementation modifications described in Section 4.4. The first problem
is a test problem that allows us to illustrate the key aspects of BoFlex and BoFlex-
Index. The next two problems are based on heat exchanger network (HEN) systems
from [3], which are common benchmark problems in the flexibility analysis litera-
ture. The fourth problem involves a realistic simulation-based model of a bubble
column reactor that, to the best of our knowledge, has not been solved previously.

A Python implementation of BoFlex that builds upon the BoTorch package [53]
is openly available on Github [54].

15

0.0

5.0

-05 43
36

—-1.0 29
21

N -15 14
0.7

0.0

0.7

1.4

2.0
25
-3.0 T

-35 -3.0 -25 20 -15 -10 05

Figure 1: Contour plot of the worst-case constraint value for the illustrative test problem described
in (21) and (22). The black line represents a worst-case constraint value of exactly 0.

6.1. Example 1: Illustrative Test Problem

To illustrate the behavior of the proposed BoFlex (Algorithm 1) and BoFlex-
Index (Algorithm 2) methods presented in Sections 4 and 5, respectively, we first
consider the following test problem consisting of two constraints ¢ = 2, one uncertain
parameter d; = 1, and one control input do = 1:

f1(0,2) = (0 +4)? 4+ (2 +3)* -9, (21a)
f2(0,2) = (0+2)* + 22 + 02 — 5. (21b)

The range of the uncertain parameter and control input variables are given by

O={AcR:-35<0< 05}, (22a)
Z={2eR:-3<z<0}. (22b)

A contour plot of the value of the worst-case constraint ¢(6, z) = max;e(1,2y f;(0,2)
over these ranges is shown in Figure 1. From this plot, we can see that there is no
feasible z value that ensures the inequality is less than zero for § = —0.5, implying
the system is inflexible.

An illustration of BoFlex is shown in Figure 2. We assume BoFlex is only
provided with 2 initial data points and progressively selects new points jointly in
(0, z) space to improve the quality of the upper and lower confidence bounds on .
The bottom row shows the projection of the worst-case inequality constraints onto
the z space by calculating ¥(0) = min,cz max;cs f;(0,2), i.e., x = maxgco ¥(0).
The confidence region calculated from the confidence bounds in (10) (shown in light
purple) get progressively tighter as BoFlex progresses. Eventually, the algorithm is
able to verify that the 0 < x by establishing that 0 < ¥ < x < x¥ at iteration 6.

We further illustration the BoFlex-Index algorithm in Figure 3 using a nominal
value of Oy = —2 and a perturbation of A = 0.5. The true flexibility index can
then be found by solving (18), which yields F' = 2 for this problem. At every outer
iteration of BoFlex-Index, we see BoFlex can efficiently certify if a specific p value
leads to a flexible or inflexible process. By repeatedly calling BoFlex, one can hone
in on the true flexibility index value F' by checking if a particular candidate value is
too large or too small. For example, given a starting midpoint value of p = 2.75, we
see that the flexibility test fails such that we know F' < 2.75. Running the flexibility
test given the new midpoint value p = 1.375, we now see that the flexibility test is

16

w(e)

Figure 2: Optimization with BoFlex on test problem at iterations 0, 3, and 6 in the first, second,
and third columns, respectively. The top row corresponds to the contours of the worst-case upper
confidence bound max;e s ut(0,2,j) with evaluation points shown with black dots. The middle
row corresponds to the contours of the worst-case lower confidence bound max;ec 7 l¢(6,2,j). The
bottom row corresponds to the projected functions onto z, i.e., ¥(0) = mingc z max;c s f;(60,2).
The shaded purple region represents the confidence region predicted by the upper and lower
confidence bounds while the solid black line represents the true 1(0) function. The dotted black
line corresponds to the 0 point, which is used to decide if the flexibility test is passed or failed. We
see that BoFlex decides to jointly sample design and recourse points that provide more information
about x. After only 6 iterations, it is able to ensure that the containing interval [)ZtL,)Z?] is fully
above 0 such that the system is correctly classified as inflexible.

passed such that we know F' € [1.375,2.75]. We continue this process until a desired
tolerance is met either for pyy —pr, or for the gap between the upper and lower bounds
for x. After 5 iterations, we have identified F' € [1.71,2.06], which does contain the
true value of F' = 2 and can be further refined by running additional iterations.

6.2. Example 2: Small Heat Exchanger Network

We next consider [3, Example 3], which is a HEN problem illustrated in Figure
4. The goal of this system is to cool the hot stream H1 to at least 323 K despite
uncertainty in the heat capacity € of stream 1 given we can manipulate the heat
load in an upstream cooler z. The range of the heat capacity is given by © = {6 :
0.55 < 6 < 1.05} kW/K and the range of possible cooler heat duties is given by
Z={z:1<2z <99} kW. After eliminating intermediate state variables, we can
write out the required conditions that must be satisfied by this HEN in terms of
the following four inequalities

f1(0,2) = =25+ z B = 0.5] + % <0, (23a)
£2(0,2) = —190 + % + g <0, (23b)
£3(0,2) = —270 + ? +2<0, (23¢)
Fa(0,2) = 260 — 2% - - <o (23d)

17

n 4
-O II
c
>
o 2
B]
>
S A - _
L 0 II “ b
T
o
mn -2
6‘_ _____ | — . Upper bound, p,
Q | = = Mid-point, pm
c 41 . —— Lower bound, py
o I
-ld ——————— I ——————————————
Q2 I o —————— et T e
& Y S— T re=a=as
[a]
0
0 1 2 3 4 5

Number of bisection iterations

Figure 3: Illustration of the BoFlex-Index algorithm on a test problem. The top plot shows the
range for the flexibility test parameter x € [)A(ZL,)25]] estimated with BoFlex in Line 3 of Algorithm
2 for every bisection iteration ¢. The bottom plot shows the upper, lower, and midpoint value for
bisection parameter p at every iteration. As the number of iterations increases, we see that the
bounds converge toward the true flexibility index value.

Under the aforementioned constraints on 6 and z, this system can be verified to
be flexible, as shown in Figure 5. This exercise is straightforward when we assume
that fi,..., f4 are known, however, it becomes much more difficult when we do not
have access to (23) but instead can only evaluate these functions at specific (6, z)
values. Since BoFlex is designed for such cases, we will assume that these functions
are completely unknown for testing purposes.

To demonstrate the importance of each component of BoFlex, we perform a
type of ablation study wherein we modify certain parts of the algorithm to see its
impact on the overall performance. We consider the following three modifications
to the search process:

e Random Sampling: In this case, the pair (6;11,2:+1) are selected by uni-
form random sampling from © x Z. We can interpret this case as neglecting
information from past samples to make our current selection.

e No Alternating Bounds: In this case, we use the upper confidence bound
to select both the uncertain parameters and the recourse variables. This
amounts to replacing Line 11 of Algorithm 1 with the following

Zi+1 € argmin max ug (041,72, 7).
zcz JEJT

This case effectively neglects the fact that we are solving problems with com-
peting objectives (max versus min) and so is less likely to explore potentially
promising values for the recourse variables.

e Constraint Aggregation: This case corresponds to a previous algorithm
that we developed based on KS aggregation (7) in [33]. The idea here is to

18

H2, 2 KW/K Fu -0

723K 583K
C,, 2kW/K 1\ t / , 563 K
388 K / \
t
C,, 3kW/K , 393K
Q -z 313K
553 K t; < 323K

Figure 4: Diagram of heat exchanger network problem described in Example 2.

92.8
B2.5
722
61.9
51.6
41.3
1.0
207
10.4
01

06 07 08 09 10

)

Figure 5: Contour of the worst-case constraint value max;e s f;(6, z) for heat exchanger network
problem described in Example 2 as a function of # and z. The black line represents the level set
corresponding to a value of zero.

ignore the data for each individual inequality and instead build a single GP
model for the aggregated worst-case constraint value. As such, this method
neglects valuable information provided for each constraint relative to BoFlex.

Note that these cases only modify the selection of (6;41,2¢+1) in Lines 10 and 11 of
Algorithm 1; we keep the termination process the same since our theoretical results
show it is robust to the chosen design rule (as long as j3; are sufficiently large).
The results of BoFlex and the other comparison methods for a maximum of
T = 30 iterations are shown in Figure 6. We provide all algorithms with a set of
Nipiy = 10 random samples to train the hyperparameters of the kernel, as discussed
in Section 4.4. Since the results depend on these random initial samples, we repeat
the methods 100 times to get an estimate of the average performance (shown with
a line) and corresponding confidence bounds (shown with the shaded region) in
Figure 6 for the upper YV and lower ¥ bound on Y. BoFlex clearly outperforms

19

BoFlex (Proposed) Random Sampling

................
.....

0 5 10 15 0 3 30] 5 10 15 20 5 30

BoFlex - No Alternating Bounds BoFlex — Constraint Aggregation

...........................

] 5 10 15 20 -] 30] 5 10 15 20 25 30
Iteration,t Iteration,t

_)Zél)?tLl

Figure 6: Comparison of the quality of the upper and lower bounds on the flexibility test parameter
X as a function of number of iterations for BoFlex and three modifications that remove an essential
piece of the algorithm, which result in performance losses. The red (blue) cloud shows the best
and worst case estimates for the upper (lower) bound of x over 100 replicates with the median
value shown with a solid red (blue) line. The dashed black line shows the zero value, which is the
cutoff point between a flexible and inflexible system.

all other tested methods, consistently terminating by iteration 13 in all 100 trials.
On the other hand, none of the other three cases converge (on average) within the 30
iterations. The “no alternating bound” case makes good initial progress, however,
it quickly gets stuck and is unable to make progress likely due to lack of exploration
in the z space. Furthermore, the “constraint aggregation” case shows much slower
convergence, which is likely due to sharp changes in the KS function that make the
GP model more difficult to train. Interestingly, “random sampling” appears to be
the second best method, though it still demonstrates a substantially slower rate of
convergence when compared to BoFlex on this problem.

6.3. Example 3: Large Heat Fxchanger Network

As a third example, we consider the larger HEN system from [3, Example 1],
which is illustrated in Figure 7. We slightly modified the structure of the equations
by having the heat capacity depend nonlinearly on temperature to further increase
the complexity of the problem. The resulting inequality constraints that this HEN
must satisfy are given by

f1(8,2) = —0.67Q. + Ts — 350 < 0,

£2(0,2) = =T — 0.75C1(T1)Ty + 0.5Q. — Ts + 1388.5 < 0,
£3(0,2) = —Ts — 1.5C5(T)Ty + Q. — 2T + 2044 < 0,
f1(0,2) =

f5(0,2) =

, 2

y 2

(
—Ty — 1.5Co(Ty) Ty + Q. — 2T — 2T + 2830 < 0, (24d
Ts + 1.5Co(T1)Ty — Qe + 2T + 3Ty — 3153 < 0, (24e

, 2

, 2

20

Hj, 1.5 kW/K H,, 1 kW/K

T, (TN = 620 K) Ts (TsN = 583 K)
Cy, 2kW/K \ T, / 563 K
H1-C1 H2-C1
T; (T5N =388 K) / \
T,
Ts
300 K
H1-W
C,, 3kW/K 393K
Q H2-C2
Tg (TgN =313 K)
350 K T,<323K

Figure 7: Diagram of heat exchanger network problem described in Example 3.

where 0 = (T1,T3,T5,Tg) are the uncertain inlet temperatures, z = Q. is the re-
course cooling rate, C1(T71) = 1+ 0.02cos (1), and C5(T7) = 1+ 0.01cos (1) are
nonlinear perturbation to the heat capacity. In addition to the nonlinear pertur-
bation, we also assume that the observations of each of these inequality functions
are subject to random noise ¢; ~ Uniform(—0.5,0.5). The range of possible cooler
heat duties is {z : 3 < z < 150} kW. In this case, we will assume an uncertainty set
of the form (20) with an expected deviation A8 = (1,1,1,1) K for all temperature
values (the nominal values are reported in Figure 7).

To demonstrate the results presented in Theorem 2, we apply BoFlex to this
problem for three different p values: p = 2, p = 4, and p = 8, which correspond
to true x values for -0.84, 2.28, and 7.40, respectively. Similarly to the previous
example, we generate 10 random initial data points for hyperparameter tuning
and perform 100 replicates to compute an approximate distribution of termination
iterations. The empirical cumulative distribution function (CDF) for these three
different cases is reported in Figure 8. We see that, for p = 8 and p = 4, all 100
replicates terminate within 5 and 11 iterations, respectively. For p = 2, we have
that 90% of the replicates have terminated by iteration 20. These results exactly
match the results of Theorem 2, which states that the number of iterations until
termination should decrease as the magnitude n = |x| increases. Furthermore, we
see that BoFlex can confidently provide solutions to this challenging 5-dimensional
problem in a small number of iterations.

6.4. FExample 4: Bubble Column Reactor

For the final case study, we consider the simulation-based bubble column reactor
model originally developed by [55], which simulates the system illustrated in Figure
9. The model consists of two major components: (i) a set of multiphase convection-
dispersion equations that govern the transport of species in the column and (ii) a
genome-scale reconstruction of the metabolism of the bacteria identified using the
flux balance analysis method. We have previously used this case study to test a
novel robust optimization method in [51]. However, our prior work focused on the
case that the design variables cannot adapt to the uncertainty realizations, so here
we modify the problem to look at the flexibility of the system to uncertainty.

21

1.0' L e P e B B iy
ll...’ l
* r
L i []
— 061+ I
ﬂj0.6 1 :
O 1
S 0411 l
o .
e |1]
|_|J0.2' : I p=2
1 | - p=4
0.01 [S— | == p=8

0 i é é éll é é % é é 1I0 1I1 1I2 1I3 1I4 1I5 lIG 1I7 ll8 1I9 20
Termination iteration
Figure 8: The empirical cumulative distribution function (CDF) for the termination iteration of
the proposed BoFlex algorithm applied to Example 3 under different uncertainty sets. We see

that larger p values (more uncertainty) actually result in faster convergence in this case since the
magnitude of x is larger in these cases, as expected based on the results shown in Theorem 2.

Liquid with | Unconsumed
products gas
A4
A4

Liquid 1 Recycled
media gas

Feed Gas

Figure 9: Schematic of the bubble column reactor system from [55].

The system is required to satisfy two inequality constraints that are both related
to product quality requirements

fi1(0,2) =13.5 g/L — Cg(6,2) <0, (25a)
f2(0,2) = Cx(0,2) — 8.5 g/L <0, (25b)

where C'p and Cjy, respectively, denote the steady-state concentration of ethanol
and acetate in the liquid product stream. These concentrations are functions of the
operating temperature 6 (which is an uncertain parameter) and the superficial gas
velocity z (which represents a recourse variable). The temperature can vary within
the interval 6 € [308,312] K and the superficial gas velocity can be manipulated
between the following bounds z € [10,14] m/hr. Similarly to both previous case
studies, we assume that 10 random initial samples are available for hyperparameter
tuning. Since this is an expensive simulator, we only run BoFlex a single time for
a total of T' = 10 iterations. BoFlex returns the following bounds on x € [)2%7)2%]

22

@ Constraint 1: Ethanol
Caonstraint 2: Acetate

$(308K, 2)

00 15 110 1].|.5 12I.D 12I.5 13I.D 135 140
Z:Ug (m/h)

Figure 10: Constraints f1(0,z), f2(0,z2), and ¢(0,z) = maxjecs f;(6,2) values for the bubble
column reactor case study for § = 308 K (worst-case value identified by BoFlex after 10 iterations).
These results were obtained by running 50 high-fidelity simulations on a grid of z values. We can
see that no feasible z value results in the worst-case constraint being less than 0 such that the true
system is inflexible.

where x4 = 0.41 and ¥ = 0.42, suggesting the system is inflezible. To verify
this, we perform 50 high-fidelity simulations over a grid of z values for § = 308
K (which is the predicted worst-case value). The results are shown in Figure 10
for which we see that there is no feasible z value that leads to the worst-case
constraint ¢(6,z) = max;es f;(6,2) evaluated at § = 308 K being greater than
zero, i.e., ¥(308) = min,cz ¢(308,2) > 0. It is important to note that, without
any prior knowledge about the model structure, we were able to tightly verify that
the system is inflexible using only 20 total expensive simulations. This is a direct
consequence of BoFlex’s ability to intelligently design samples that are informative
for validating or invalidating the flexibility test.

7. Conclusions

This paper proposes a new algorithm, BoFlex, for efficient flexibility analysis of
black-box systems that allows for both uncertain parameters and recourse variables
to impact multiple feasibility constraints. The algorithm takes into account the
decomposed, multi-level optimization structure of the flexibility problem, which we
show enables efficiency gains over our previously developed constraint aggregation
methods and can also handle sub-Gaussian measurement noise. We also theoreti-
cally characterize the performance of BoFlex on arbitrary (potentially non-convex)
functions belonging to a reproducing kernel Hilbert space (RKHS) in two ways.
First, we show that upper and lower bounds on flexibility test parameter are guar-
anteed to bound the true parameter value and that the gap between these bounds
converges to zero under mild conditions with high probability. Second, we derive
an explicit bound on the number of iterations until convergence to a correct re-
sult in terms of the maximum information gain of the data-driven surrogate model.
This establishes that BoFlex converges to a correct result in a finite number of
iterations (with high probability) under mild conditions on the complexity of the
RKHS. We demonstrate BoFlex’s superior performance to alternative methods on
three separate case studies. In all cases, BoFlex efficiently and automatically iden-
tifies correct solutions to the flexibility test problems, thereby significantly reducing
computational cost in practice.

23

There are several interesting directions for future work. Although easily appli-
cable to low-dimensional problems, BoFlex relies on the construction of probabilis-
tic surrogate models whose priors may be difficult to identify in high-dimensional
problems. Furthermore, the solution of the tri-level subproblems defined in terms
of these surrogate models become substantially more difficult in higher dimensions.
Developing more scalable approaches to both the surrogate model construction and
acquisition function optimization are thus worthy of future investigation. In this
work, we derived upper bounds on performance, however, it is not clear how tight
these bounds are in practice. Therefore, from a theoretical perspective, it would be
interesting to develop algorithm-independent lower bounds bounds on performance
to give some indication how much the upper bound can be improved. Results of
this type have recently been obtained in the standard Bayesian optimization setting
[56] but have yet to be extended to the tri-level optimization problems of interest in
this work. Lastly, a couple of recent works have shown the value of exploiting prior
physical knowledge in the development of acquisition functions in standard Bayesian
optimization [57, 58]. Similar ideas can be incorporated into BoFlex, though this
would further complicate the acquisition function subproblems. As such, specific
real-world applications for which this type of physics-based knowledge can be ex-
ploited would be interesting to pursue.

8. Proofs

8.1. Proof of Lemma 1

Proof. [Lemma 1] Directly follows from the proof of Theorem 2.2 in [43], which is
related to Theorem 2 in [40]. The main difference is that we obtain ¢ measurements
at every iteration such that the mutual information I(y¢; h) grows at a faster rate
than in the traditional single measurement setting, which completes the proof. [

8.2. Proof of Theorem 1

Lemma 2. Fixt > 0. If |h(0,2,5) — u:(0,2,5)| < ﬁg/zat(&z,j) for all (8,2,7) €
OxZxJ, then XV —xkt < 262/20(0,5“, Ziy1, jer1) where Opy 1 and zg1q are given in
Lines 10 and 11 of Algorithm 1, respectively, and ji 11 € argmax;c 7 u(Or11,Zt41,7)-

Proof. Given the definitions of X! and YZ, given in Lines 2 and 3 of BoFlex (Algo-
rithm 1) we can establish the following sequence of inequalities

Xt = payipmax(®.2.0) - prxmigeh(.m), (26
= rzréigrjnea}cut(f)m,z,j) - glgggggrjnglt(ﬁz,j), (26b)
< Izlélg r]nez?c ut(0i41,2,5) — ;rélénjne% 1:(0t41,2,7), (26¢)
= I;Iggl;neajxut(etJthJ) - g%%lt(etﬂaztﬂaj)» (26d)
< max Ut (041, %041, 5) — max 1t(0t41,%41,7), (26e)
= up(Or 41,241, Je41) — max 1:(0t11,2t41,7), (26f)
< U(Or41, Zet1, Jev1) = L (Ors1,s Zegs Jer1), (26g)
=28"%0,(0041, 2041, ji+1), (26h)

where (26b) follows from the definition of 6,41; (26¢) follows from F(60;41) <
maxgeco F'(0) for any choice of 8,1 € © and any function F' by definition of the
max operator; (26d) follows from the definition of z;;1, which minimizes the worst-
case constraint violation predicted by the lower bound; (26e) follows from the fact

24

that the minimum over z € Z must be less than or equal to the value for a specific
zi+1 € Z; (26f) follows from the definition of jiy1; (26g) follows from the same
arguments as (26¢); and (26h) follows from the definitions of the upper and lower

confidence bounds, which are separated by 2Bt1 / 20,5(-) at any specific point. O

Lemma 3. The sum of the GP predicted standard deviations evaluated at the sample
points can be bounded by the maximum information gain as follows

T

2 Z 0i-1(0¢,2¢, jit) < /C1Ty1g, (27)

t=1
where C1 = 8/In(1+ A71).

Proof. The proof is analogous to [31, Lemma 5.4] with a couple of important differ-
ences due to having several functions. First, we apply Cauchy-Schwarz inequality
on a vector of all ones and all standard deviations:

T T
2> 01-1(00,20,5t) < \|AT D> 02 (61,24, 51). (28)

t=1 t=1
Next, we bound the individual variance terms as follows

07 1(0e,2¢,5t) = AN 071 (04,24, jt)) (29)
<ACoIn(1 4+ A" 1o (04,24, i),

with Cy = A71/(1 + A7') > 1. This inequality holds since s* < Coln(1 + s?)
for all s € [0,A7] and A"to? 1(04,2¢,5:) < AN k((04,2¢, 5i), (01,24, 5i)) < A1 by
Assumption 2. By [31, Lemma 5.3], the mutual information (13) can be expressed
in terms of the predictive GP variances

T q

1 _ .

I(ys;h) = §Zzln(1+)\ 10162—1(9tazt7.7))' (30)
t=1 j=1

We can combine the previous result with this one to establish the following bound

on the sum of the variances

T T
> 07 (80,20, 50) < AC2 > In(1+ A "'o7 1 (0s,24, 1)), (31)
=1 t=1

< 2XCa2I(y; h),

S 2/\02’)/Tq,

where the second line follows from the monotonicity of the mutual information. We
can complete the proof by combining (31) with (28) and noting that C; = 8A\Cy. O

We are now in a position to prove the main result:

Proof. [Theorem 1] Since the minimum of a sequence is upper bounded by the

25

average of the sequence, it follows

T T
1 1
, . < 2 _t U oL 9
GT te{fR}ET} G < T ;Gt T ; (thl thl)) (32a)
T
1 .
< 7> 28, {01 (Br 20, jo), (32D)
t=1
952 I
S ;-: Zot—l(gtvztmjt)’ (32C)
t=1

< /%’ (32d)

where (32a) uses the definition of the bound gap, (32b) follows from Lemma 2, (32¢)
follows from the monotonicity of the 5; sequence, and (32d) uses (27) established
by Lemma 3. Note that these inequalities hold with probability > 1 — § by Lemma
1. Using (32d), we deduce that G4 < € if we can pick a pair of values € and T that
satisfies % < €2. The stated claims in the theorem then follow by rearranging
this inequality, thus completing the proof. O]

8.8. Proof of Theorem 2
Proof. [Theorem 2] We split this proof into two parts based on x = 1 (not flexible)
or x = —n (flexible). We will then prove by contradiction that, under these disjoint

cases, the algorithm must terminate given the bounds established in Lemma 1,
which imply for all (0,2,j) €O x Zx J and t >0

fj(07z) € [lt(07zaj)ﬂut(avz7j)]7 (33)

must hold with probability > 1 — §.

Let us start with y = 1 > 0. Assume, for the sake of contradiction, that the algo-
rithm never terminates. This immediately implies X < 0 for all ¢ > 0 such that the
test on Line 7 of Algorithm 1 never passes. Let ji41 € argmax;c 7 ut(Ot41,Zt41,7)
for O;y1 and z;41 defined in Lines 10 and 11 of Algorithm 1, respectively, then we
can also establish the following sequence of inequalities for X%

0> x4 = max minmaxly(9, 2, j). (34a)
> mi 1.(0 j 34b
> mip max 1(0141,2,7), (34b)
= Ijnefi«;{lt(etjtlazﬂrhj)v (34c)
> (01415 Zeg 1, Jit1), (34d)

where (34b) is a consequence of 8;1; € O being feasible so must be less than or
equal to the maximum; (34c) follows from the definition of z;11; and (34d) follows
from the fact that j;11 € J so it must be less than or equal to the maximum. Since
X =1, we also have

ut(0t+17zt+17jt+1) = YJHE%;(ut(0t+17zt+laj)7 (353)
> mi i(0141,2,7), 35b
= minmaxu; (01,2, j) (35b)
= i 0,z,j), 35

max min max ut(0,2,7) (35¢)
> maxminmax f;(0,z) = x =, (35d)

0cO z€Z jeJ

26

where (35a) follows from the definition of j;y1; (35b) is a consequence of z;4 € Z
being feasible so must be greater than or equal to the minimum; (35¢c) follows from
the definition of 6;11; and (35d) follows from (33) and the assumption that x = 7.
Combining (34) and (35), we have

T T
225,5 10t-1(0¢,2¢,j¢) = Z we—1(0¢,2¢,5¢) — li—1(0¢,2¢, jit)) Z
=1 o

(36)

Meanwhile, we also have that

T T
2253121015—1(915,%7]2) <26,/ > 011(01,24,51) < /C1BrTyr,, (37)

t=1 t=1

where the first inequality follows from the monotonicity of the 3; sequence and the
second inequality follows from Lemma 3. Combining (36) and (37), we have

VC187Tyrg > T, (38)

which implies n < 4/ % From the definition of 8;, we have that Sr = O(ypg)

CiBryrg _ Y : : ITq _ :
such that |/ == = O (%) However, since limp_, % = 0, this creates a
contradiction with 7 > 0 such that BoFlex must correctly terminate with Y& > 0

for some finite 7" whenever x =n > 0.

We can follow the same logical steps for the case of x = —n < 0, with the
main difference being that we must switch the signs when going through the initial
arguments. Eventually, we end up with the same inequality (38) such that we can
follow the same arguments to conclude that)2% < 0 for some finite T'. Since these
are mutually exclusive events, Boflex must finitely terminate to the correct results,
which completes the proof. O

References

[1] K. Halemane, I. Grossmann, Optimal process design under uncertainty, AIChE
Journal (1983) 425-433.

[2] 1. E. Grossmann, B. A. Calfa, P. Garcia-Herreros, Evolution of concepts and
models for quantifying resiliency and flexibility of chemical processes, Comput-
ers & Chemical Engineering 70 (2014) 22-34.

[3] 1. E. Grossmann, C. A. Floudas, Active constraint strategy for flexibility anal-
ysis in chemical processes, Computers & Chemical Engineering 11 (6) (1987)
675-693.

[4] C. A. Floudas, Z. H. Giimiig, M. G. Ierapetritou, Global optimization in design
under uncertainty: feasibility test and flexibility index problems, Industrial &
Engineering Chemistry Research 40 (20) (2001) 4267-4282.

[5] E. Pistikopoulos, T. Mazzuchi, A novel flexibility analysis approach for pro-
cesses with stochastic parameters, Computers & Chemical Engineering 14 (9)
(1990) 991-1000. doi:10.1016/0098-1354(90)87055-t.

URL https://doi.org/10.1016/0098-1354(90)87055-t

[6] D. Straub, I. Grossmann, Integrated stochastic metric of flexibility for sys-
tems with discrete state and continuous parameter uncertainties, Computers &

27

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Chemical Engineering 14 (9) (1990) 967-985. doi:10.1016,/0098-1354(90)87053-
I.
URL https://doi.org/10.1016/0098-1354(90)87053-r

V. D. Dimitriadis, E. N. Pistikopoulos, Flexibility analysis of dynamic systems,
Industrial & Engineering Chemistry Research 34 (12) (1995) 4451-4462.

Q. Zhang, 1. E. Grossmann, R. M. Lima, On the relation between flexibility

analysis and robust optimization for linear systems, AIChE Journal 62 (9)
(2016) 3109-3123.

A. Ben-Tal, A. Nemirovski, Robust optimization—methodology and applica-
tions, Mathematical Programming 92 (2002) 453-480.

N. V. Sahinidis, Optimization under uncertainty: State-of-the-art and oppor-
tunities, Computers & Chemical Engineering 28 (6-7) (2004) 971-983.

D. Bertsimas, D. B. Brown, C. Caramanis, Theory and applications of robust
optimization, SIAM Review 53 (3) (2011) 464-501.

V. Gabrel, C. Murat, A. Thiele, Recent advances in robust optimization: An
overview, European Journal of Operational Research 235 (3) (2014) 471-483.

D. Bertsimas, V. Gupta, N. Kallus, Data-driven robust optimization, Mathe-
matical Programming 167 (2018) 235-292.

I. Yanikoglu, B. L. Gorissen, D. den Hertog, A survey of adjustable robust
optimization, European Journal of Operational Research 277 (3) (2019) 799-
813.

J. P. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie,
D. J. Mavriplis, Cfd vision 2030 study: a path to revolutionary computational
aerosciences, Tech. rep. (2014).

I. Banerjee, S. Pal, S. Maiti, Computationally efficient black-box modeling for
feasibility analysis, Computers & Chemical Engineering 34 (9) (2010) 1515—
1521.

F. Boukouvala, M. G. Ierapetritou, Feasibility analysis of black-box processes
using an adaptive sampling kriging-based method, Computers & Chemical En-
gineering 36 (2012) 358-368.

A. Rogers, M. Ierapetritou, Feasibility and flexibility analysis of black-box
processes part 2: Surrogate-based flexibility analysis, Chemical Engineering
Science 137 (2015) 1005-1013.

Z. Wang, M. Ierapetritou, A novel feasibility analysis method for black-box
processes using a radial basis function adaptive sampling approach, AIChE
Journal 63 (2) (2017) 532-550.

F. Zhao, 1. E. Grossmann, S. Garcia-Munoz, S. D. Stamatis, Flexibility in-
dex of black-box models with parameter uncertainty through derivative-free
optimization, AIChE Journal 67 (5) (2021) e17189.

J. Larson, M. Menickelly, S. M. Wild, Derivative-free optimization methods,
Acta Numerica 28 (2019) 287-404.

M. J. Powell, et al., The BOBYQA algorithm for bound constrained opti-
mization without derivatives, Cambridge NA Report NA2009/06, University
of Cambridge, Cambridge 26 (2009).

28

[23]

[24]

[25]

[26]

[27]

E. Brochu, V. M. Cora, N. De Freitas, A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierar-
chical reinforcement learning, arXiv preprint arXiv:1012.2599 (2010).

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. De Freitas, Taking the
human out of the loop: A review of Bayesian optimization, Proceedings of the
IEEE 104 (1) (2015) 148-175.

P. I. Frazier, A tutorial on Bayesian optimization, arXiv preprint
arXiv:1807.02811 (2018).

C. K. Williams, C. E. Rasmussen, Gaussian Processes for Machine Learning,
Vol. 2, MIT press Cambridge, MA, 2006.

C. G. Raspanti, J. A. Bandoni, L. Biegler, New strategies for flexibility analysis
and design under uncertainty, Computers & Chemical Engineering 24 (9-10)
(2000) 2193-2209.

J. K. Scott, M. D. Stuber, P. I. Barton, Generalized McCormick relaxations,
Journal of Global Optimization 51 (4) (2011) 569-606.

I. Bogunovic, J. Scarlett, S. Jegelka, V. Cevher, Adversarially robust opti-
mization with Gaussian processes, Advances in Neural Information Processing
Systems 31 (2018).

J. A. Paulson, G. Makrygiorgos, A. Mesbah, Adversarially robust Bayesian
optimization for efficient auto-tuning of generic control structures under un-
certainty, AIChE Journal 68 (6) (2022) e17591.

N. Srinivas, A. Krause, S. M. Kakade, M. Seeger, Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design, arXiv preprint
arXiv:0912.3995 (2009).

J. Mockus, Application of Bayesian approach to numerical methods of global
and stochastic optimization, Journal of Global Optimization 4 (1994) 347-365.

A. Kudva, J. A. Paulson, A Bayesian optimization approach for data-efficient
flexibility analysis of expensive black-box models, In Proceedings of the Foun-
dations of Computer Aided Process Operations / Chemical Process Control,
2023.

G. A. Wrenn, An indirect method for numerical optimization using the
Kreisselmeir-Steinhauser function, Tech. rep., NASA (1989).

F. Berkenkamp, A. Krause, A. P. Schoellig, Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics, Machine Learn-
ing (2021) 1-35.

M. M. Noack, J. A. Sethian, Advanced stationary and nonstationary kernel de-
signs for domain-aware gaussian processes, Communications in Applied Math-
ematics and Computational Science 17 (1) (2022) 131-156.

A. Berlinet, C. Thomas-Agnan, Reproducing kernel Hilbert spaces in proba-
bility and statistics, Springer Science & Business Media, 2011.

Y. Abbasi-Yadkori, D. Pal, C. Szepesvéri, Improved algorithms for linear
stochastic bandits, Advances in Neural Information Processing Systems 24
(2011).

29

[39]

[40]

[41]

S. Agrawal, N. Goyal, Thompson sampling for contextual bandits with linear
payoffs, in: International Conference on Machine Learning, PMLR, 2013, pp.
127-135.

S. R. Chowdhury, A. Gopalan, On kernelized multi-armed bandits, in: Inter-
national Conference on Machine Learning, PMLR, 2017, pp. 844-853.

F. Berkenkamp, A. P. Schoellig, A. Krause, No-regret Bayesian optimization
with unknown hyperparameters, arXiv preprint arXiv:1901.03357 (2019).

M. Kanagawa, P. Hennig, D. Sejdinovic, B. K. Sriperumbudur, Gaussian pro-
cesses and kernel methods: A review on connections and equivalences, arXiv
preprint arXiv:1807.02582 (2018).

A. Durand, O.-A. Maillard, J. Pineau, Streaming kernel regression with prov-
ably adaptive mean, variance, and regularization, The Journal of Machine
Learning Research 19 (1) (2018) 650-683.

S. Vakili, K. Khezeli, V. Picheny, On information gain and regret bounds in
Gaussian process bandits, in: International Conference on Artificial Intelligence
and Statistics, PMLR, 2021, pp. 82-90.

C. Fiedler, C. W. Scherer, S. Trimpe, Practical and rigorous uncertainty bounds
for Gaussian process regression, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, 2021, pp. 7439-7447.

E. Schulz, M. Speekenbrink, A. Krause, A tutorial on Gaussian process regres-
sion: Modelling, exploring, and exploiting functions, Journal of Mathematical
Psychology 85 (2018) 1-16.

A. D. Bull, Convergence rates of efficient global optimization algorithms., Jour-
nal of Machine Learning Research 12 (10) (2011).

I. Bogunovic, A. Krause, Misspecified Gaussian process bandit optimization,
Advances in Neural Information Processing Systems 34 (2021) 3004-3015.

A. Capone, A. Lederer, S. Hirche, Gaussian process uniform error bounds
with unknown hyperparameters for safety-critical applications, in: Interna-
tional Conference on Machine Learning, PMLR, 2022, pp. 2609-2624.

D. Bertsimas, O. Nohadani, K. M. Teo, Robust optimization for unconstrained
simulation-based problems, Operations Research 58 (1) (2010) 161-178.

A. Kudva, F. Sorourifar, J. A. Paulson, Constrained robust Bayesian optimiza-
tion of expensive noisy black-box functions with guaranteed regret bounds,
AIChE Journal 68 (12) (2022) e17857.

G. R. Wood, The bisection method in higher dimensions, Mathematical pro-
gramming 55 (1992) 319-337.

M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson,
E. Bakshy, BoTorch: A framework for efficient Monte-Carlo Bayesian opti-
mization, Advances in Neural Information Processing Systems 33 (2020) 21524~
21538.

A. Kudva, J. A. Paulson, BoFlex (2023).
URL https://github.com/PaulsonlLab/BoFlex

30

[55]

[57]

[58]

J. Chen, J. A. Gomez, K. Hoffner, P. Phalak, P. I. Barton, M. A. Henson, Spa-
tiotemporal modeling of microbial metabolism, BMC Systems Biology 10 (1)
(Mar. 2016). doi:10.1186/s12918-016-0259-2.

URL https://doi.org/10.1186/s12918-016-0259-2

J. Scarlett, I. Bogunovic, V. Cevher, Lower bounds on regret for noisy gaussian
process bandit optimization, in: Conference on Learning Theory, PMLR, 2017,
pp. 1723-1742.

J. A. Paulson, C. Lu, COBALT: COnstrained Bayesian optimizAtion of compu-
tational.ly expensive grey-box models exploiting derivaTive information, Com-
puters & Chemical Engineering 160 (2022) 107700.

C. Lu, J. A. Paulson, No-regret constrained Bayesian optimization of noisy and
expensive hybrid models using differentiable quantile function approximations,
arXiv preprint arXiv:2305.03824 (2023).

31

