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Abstract— Bayesian optimization (BO) has recently been

demonstrated as a powerful tool for efficient derivative-free

optimization of expensive black-box functions, such as those

prevalent in performance optimization of complex energy sys-

tems. Classical BO algorithms ignore the relationship between

consecutive optimizer candidates, resulting in jumps in the

admissible search space which can lead to fail-safe mechanisms

being triggered, or undesired transient dynamics that violate

operational constraints. In this paper, we propose LSR-BO,

a novel global optimization methodology that enforces local

search region (LSR) constraints by design, which restricts how

much the optimizer candidate can be changed at every iteration.

We demonstrate that naively incorporating LSR constraints

into BO causes the algorithm to get stuck in local sub-

optimal solutions, and overcome this challenge through the

development a novel exploration strategy that can gracefully

navigate the trade-off between short-term “local”, and long-

term “global”, performance improvement. Furthermore, we

provide theoretical guarantees on the convergence of LSR-BO.

Finally, we verify the effectiveness of our proposed LSR-BO

method on an illustrative benchmark and a real-world energy

minimization problem for a commercial vapor compression

system.

Index Terms— Probabilistic machine learning, Black-box op-

timization, Bayesian methods, Energy systems.

I. INTRODUCTION

Closed-loop systems can be further optimized after de-
ployment by adapting certain design parameters (e.g., con-
troller gains, reference inputs, or internal model parameters)
given some useful performance metric defined in terms of
measured operational data. Manually tuning these control
parameters can be highly inefficient and/or requires consider-
able task-specific expertise that cannot easily be generalized
to new types of systems. This has motivated recent work on
the development of auto-tuning algorithms that are capable
of automatically adjusting the control parameters to achieve
optimal performance as a way to save time, manual effort,
and cost of experimentation [1]–[4].

Since the map between the control parameters and closed-
loop performance function is often unmodeled (unknown)
and may be highly nonlinear, it is common to treat this
map as a black-box function with fully unknown structure.
Therefore, we can treat auto-tuning as a black-box optimiza-
tion problem, which can be tackled using any derivative-
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free optimization (DFO) method; c.f. [5] for a detailed
overview of DFO algorithms. However, since closed-loop ex-
perimentation or high-fidelity software simulations (like so-
called digital twins) are needed to accurately represent true
system behavior, the evaluation of which is expensive, auto-
tuning algorithms must be designed to require as few exper-
iments/evaluations as possible. Bayesian optimization (BO)
is a sample-efficient DFO method that uses a probabilistic
machine learning model to intelligently search over feasible
parameter spaces [6], [7]. Due to its sample efficiency, BO
has received significant attention in the context of auto-tuning
including real-world applications in wind energy systems [8],
engines [9], and space cooling [10]. In addition, BO has been
shown to generalize well across a wide-variety of complex
control problems such as controller parameter/reference set-
point tuning [11]–[13], cascade controller tuning [14], and
MPC tuning [15]–[18].

An important challenge in the online deployment of such
BO-based auto-tuning strategies is that they explore the
search space without considering the distance between con-
secutive optimization candidates. BO thus has the tendency
to suggest candidates at consecutive iterations that are far
apart in the search space. While this is not a problem
for static systems, these types of large “jumps” in control
parameter values can induce aggressive dynamic behavior
that leads to violation of safety constraints or triggers fail-
safe mechanisms that limit performance. For example, energy
consumption in HVAC systems is correlated with the elec-
tronic expansion valve (EEV) position setpoint. Aggressively
exploring the search space is tantamount to aggressively
opening and closing the EEV, which causes excessive wear
and tear of the mechanical components of the valve and can
produce oscillations in the refrigerant flow dynamics that
result in compromised heating/cooling performance and can
destabilize feedback loops that regulate the behavior of other
system actuators (e.g., compressor speed).

In this paper, we propose a local search region (LSR) con-
strained Bayesian optimization method that ensures candi-
dates suggested by classical BO are restricted to a predefined
ball centered at the previous candidate. This limits the rate of
change of the control parameter candidates at each iteration
using so-called ‘LSR constraints’. Although one can naively
enforce these LSR constraints at each BO step, we show that
the resulting strategy often gets stuck in local sub-optimal
solutions. To counteract this, we propose the novel ‘LSR-BO’
algorithm, that trades off short-term “local” improvement
(i.e., take a nearby safe step when it has a good chance
of improving upon our current best point) and long-term



“global” improvement (i.e., take multiple safe steps towards
a new region of the parameter space when we have exhausted
local improvement). We also prove convergence of LSR-BO
and describe sufficient conditions to ensure convergence to
a global optimum.

To the best of the authors’ knowledge, our recent
work [19] is the first and only paper to explicitly consider
LSR constraints in the context of BO. The focus of [19]
was to characterize the optimal BO sampling policy using
dynamic programming (DP) and provide a tractable approx-
imation. However, this type of strategy is significantly more
computationally expensive than traditional BO and does not
provide any convergence guarantees. As such, the main result
of this paper is to develop a simple and convergent LSR-BO
algorithm that can be straightforwardly implemented on real-
world control applications.

In summary, our major contributions include:
C1) development of a novel BO method, LSR-BO, that guar-

antees satisfaction of local “safety” constraints, while
balancing local and global performance improvement;

C2) a proof of convergence of the proposed LSR-BO method
through a simple-to-enforce rolling terminal constraint
that ensures dense sampling in the search space; and,

C3) demonstration of LSR-BO’s ability to ensure safe en-
ergy optimization of industrial heat pump systems using
high-fidelity simulations.

The rest of the paper is organized as follows. In Sec-
tion II, we describe the importance of the LSR-constrained
BO problem, and provide our proposed solution in Sec-
tion III. We provide guarantees on LSR-BO convergence
in Section IV and demonstrate that the method outperforms
other constraint-enforcing BO algorithms on a benchmark
and real-world energy application in Section V. We present
concluding remarks in Section VI.

II. PROBLEM STATEMENT

We consider stable closed-loop systems of the form

x+ = f(x, ✓) (1)

where x 2 Rnx and x+ 2 Rnx denote the current and
updated state of the system, respectively, and ✓ 2 ⇥ ⇢ Rd

denotes a set of control-relevant parameters to be assigned.
The parameters ✓ can represent any tunable variable in
the control policy, which includes parameter choices (e.g.,
controller gains), references (e.g., setpoints), and structural
choices (e.g., turning on or off a component of the policy).

Assumption 1: The admissible set of control parameters
⇥ is known at design time. /

To evaluate the performance of the closed-loop system (1),
we assume the existence of a steady-state performance func-
tion J : ⇥! R such that J(✓) effectively quantifies system
performance for any fixed ✓ 2 ⇥, once the closed-loop
system achieves steady-state. The closed-loop performance
optimization task then requires solving for

✓? 2 argmax
✓2⇥

J(✓), (2)

where ✓? denotes the globally optimal control policy param-
eters. The characteristics of the function J and domain ⇥
restrict the types of algorithms that can be used to solve (2).
In many real-world applications, the structure of J is very
often unmodeled and could potentially be highly non-convex
in nature. This is especially true when attempting to solve (2)
using closed-loop data collected from an online experimental
system wherein the relationship between ✓ and J(✓) contains
the dynamics (1), and therefore, may be complicated.

A more general representation of (2) is to treat J as
a black-box function, implying we can only “learn” about
it by evaluating J(✓) at specific ✓ values. The following
assumption, which is trivially satisfied by the energy systems
of interest in this work, greatly limits the amount of data that
can be collected.

Assumption 2: The performance function J(✓) can be
evaluated at any selected ✓ 2 ⇥ but each evaluation requires
significant expenditure. /

Expenditure can manifest itself in many forms. For exam-
ple, J(✓) might take a long time to simulate, specialized sen-
sors/resources for experimental, or significant manual labor
to implement and evaluate. Without additional assumptions,
we would need to apply a brute-force search to solve (2)
since J(✓) could be highly discontinuous at every point
✓ 2 ⇥ (in the worst-case). Fortunately, most real-world
problems demonstrate some degree of continuity, which is
a useful property for constructing a more efficient search
algorithm. Therefore, we make one additional assumption
about the performance function:

Assumption 3: J(✓) is bounded, continuous, and at least
once differentiable at every point ✓ 2 ⇥. /

Assumption 3 is not strong, as it requires that the closed-
loop system (1) must be globally asymptotically stable to a
parameter-dependent equilibrium state x1(✓), and that the
map x1(·) is continuous on ⇥. This property can be (at
least locally) ensured by proper design of the control policy.
Continuity of x1(✓) is sufficient to guarantee continuity of
J(✓), as long as the closed-loop performance is defined by
a continuous transformation of the equilibrium states.

Recent advances in Bayesian optimization (BO) have
shown that one can solve (2) under Assumptions 1–3 by iter-
atively constructing a probabilistic surrogate representation
of J(✓) and exploiting the predicted uncertainty estimates to
efficiently search over ⇥. Although BO represents a powerful
framework for solving (2), it has the tendency to produce
consecutive samples ✓k and ✓k+1 that are a large distance
apart to ensure efficient exploration of ⇥. However, in many
practical applications, one cannot search across arbitrarily
large distances of ⇥ within one iteration of BO. In the
context of closed-loop systems (1), large changes in the
control parameter candidates can induce aggressive dynamics
causing safety constraint violation and/or the triggering of
fail-safe mechanism that limit performance quality.

We propose to avoid these undesired behaviors by restrict-
ing the next candidate sample ✓k+1 to be within a domain-
informed safe neighborhood of the current candidate ✓k.
Concretely, the constraint is given by We propose to avoid



these undesired behaviors by restricting the next candidate
sample ✓k+1 to be within a domain-informed safe neighbor-
hood of the current candidate ✓k. Concretely, the constraint
is given by

✓k+1 2 B�(✓k) 8k 2 {0, . . . , N � 1}, (3a)

where

B�(✓) = {✓+ 2 ⇥ : k✓+ � ✓kp  �}, (3b)

denotes a p-norm ball of radius � > 0 centered at ✓. We
refer to the proposed constraints (3) as local search region
(LSR) constraints. Traditional BO methods are not equipped
to handle such restrictions on their exploration capabilities
due to their greedy “one-step” nature. In addition, we would
like to have some assurances on its convergence properties to
avoid the designed sequence {✓1, ✓2, . . .} from getting stuck
in a local maximum, which is discussed in Section IV.

III. BAYESIAN OPTIMIZATION WITH LOCAL SEARCH
REGION CONSTRAINTS (LSR-BO)

A. Bayesian Optimization Preliminaries
In Bayesian optimization, one models the black-box (un-

known) performance function J(·) as a realization of a Gaus-
sian process (GP) [20]. To define a GP model, we must define
a prior distribution ⇡, which is uniquely specified by a prior
mean function µ(✓) = E⇡ [J(✓)] and prior kernel covari-
ance function (✓, ✓0) = E⇡ [(J(✓)� µ(✓))(J(✓0)� µ(✓0))].
Given the prior ⇡ along with a current set of observations
Dk = {(✓i, J(✓i))}ki=1, we may derive the posterior distri-
bution for J(✓) at any future test point as follows

J(✓) | Dk ⇠ N (µk(✓),�
2
k(✓)), (4)

where

µk(✓) = µ(✓) + k>
k (✓)K

�1
k (Jk � µk),

�2
k(✓) = (✓, ✓)� k>

k (✓)K
�1kk(✓),

and

kk(✓) = [(✓1, ✓), . . . ,(✓k, ✓)]
> 2 Rk⇥1,

Jk = [J(✓1), . . . , J(✓k)]
> 2 Rk⇥1,

µk = [µ(✓1), . . . , µ(✓k)]
> 2 Rk⇥1,

Kk = [(✓i, ✓j)](i,j)2{1,...,k}⇥{1,...,k} 2 Rk⇥k.

The choice of the prior ⇡ determines the properties of the
fitted functions and plays an important role in the accuracy
of the GP; interested readers are referred to [20] for details
on how to select µ and . We will focus on covariance
functions belonging to the Matern class that have a parameter
⌫ that controls the degree of smoothness of the performance
function (i.e., J has is at least d⌫ � 1e times differentiable).

Traditional BO methods take advantage of the statistical
information embedded in the GP approximations to intelli-
gently explore the search space ⇥ by defining a correspond-
ing acquisition function. Ideally, the value of the acquisition
function at every ✓ 2 ⇥ should provide a good measure
of the potential benefit of querying J at that point in the

future. Several acquisition functions have been proposed in
the literature, with one of the most popular being the so-
called expected improvement (EI) function, given by

EIk(✓) = E⇡

⇥
(J(✓)� J?

k )
+ | Dk

⇤
,

where a+ = max(a, 0) and J?
k = max(✓,J(✓))2Dk

J(✓) is
the incumbent solution that corresponds to the best objective
value observed so far. The following closed-form expression
for EI has been derived for GP approximators [21]:

EIk(✓) = ⇢ (µk(✓)� J?
k ,�k(✓)) ,

where

⇢(y, s) =

(
y�(y/s) + s�(y/s), s > 0,

max(y, 0), s = 0,
(5)

and � and � denote the cumulative density function and
probability density function of a zero-mean unit-variance
normal distribution, respectively. Since EIk is inexpensive, it
can be maximized using standard techniques and traditional
BO proceeds by selecting ✓k+1 2 argmax✓2⇥ EIk(✓).

B. Proposed LSR-BO Algorithm
Herein, we describe the LSR-BO algorithm, which hinges

on modifying the EI acquisition function to automatically
trade-off local and global information predicted by the GP.

We compute a local optimizer for the EI acquisition
over the local constraint region (3) to determine the nearest
point ✓local

k+1 that has the best chance of improving upon the
incumbent solution. That is,

✓local
k+1 2 argmax

✓2B�(✓k)
EIk(✓). (6)

By construction, ✓local
k+1 must satisfy LSR constraints; however,

it is possible that no nearby point is likely to improve upon
the incumbent. This will be the case whenever the largest EI
value in the local region is small, indicating this region has
been sufficiently well-explored and, thus, ✓local

k+1 is not a good
sample choice. In such situations, an alternative strategy is
to globally optimize EI to find the best possible point ✓global

k+1
in the admissible search space ⇥, given by

✓global
k+1 2 argmax

✓2⇥
EIk(✓). (7)

Since ✓global
k+1 may not satisfy (3), we cannot directly evaluate

J(✓global
k+1 ). The most straightforward approach to guarantee

constraint satisfaction is to project ✓global
k+1 onto B�(✓k), which

can be interpreted as taking the largest possible feasible step
in the direction of the globally optimal sample. Using such
an approach at every iteration would result in us missing out
on potential nearby points that could lead to large possible
improvements. Thus, the key idea in LSR-BO is to tradeoff
between the “local” and “global” steps, respectively, defined
by (6) and (7), which is achieved by

✓k+1 =

(
✓local
k+1, EIk(✓local

k+1) � �,

ProjB�(✓k)(✓
global
k+1 ), otherwise,

(8)



where � is a user-defined tuning parameter that controls the
degree of local search. Based on the properties of the EI
function, (8) reduces to greedy local and a global search as
� ! 0 and � !1, respectively. We found that a reasonably
small value of � = 0.1 provided good results in all of our
case studies (Section V); we plan on systematically studying
the effect of � on performance in future work.

Since the GP model (4) is likely imprecise with only a few
data points, we assume that the initial points are chosen in a
random quasi-uniform fashion. This initial dataset, denoted
by D0, is assumed to be generated offline in the sense that
the experiments can be reset and, therefore, the points do not
have to satisfy (3).

We can now formally define the sequential LSR-BO
sample selection strategy.

Definition 1: The LSR-BO(⇡) strategy selects a sequence
of sample points {✓1, ✓2, . . .} for a given prior ⇡ by selecting
✓k+1 according to (8) for all k � 0. /
This approach is extremely simple to implement, with com-
putational and memory requirements on the same order as
classical BO methods. Another important advantage of this
approach is we can guarantee the incumbent converges to the
global solution, i.e., J?

k ! J(✓?) as k !1, as shown in the
following section. Equivalently, the simple regret J(✓?)�J?

k
decays to zero asymptotically.

IV. CONVERGENCE PROPERTIES OF LSR-BO

The convergence properties of EI (in the absence of LSR
constraints) have been analyzed in [22], which requires a
non-degeneracy assumption on the covariance function .

Definition 2: A GP model (4) with continuous, positive-
definite covariance kernel  has the no-empty-ball (NEB)
property if the following holds:

inf
k2N

✓1,··· ,✓k2⇥
k✓i�✓0k�✏,8i

�2
k(✓0) > 0

for any sequence {✓k}k�1, any ✏ > 0, and any ✓0 2 ⇥. /
The NEB property directly implies �2

k(✓0) ! 0 when ✓0
is an adherent point of the set {✓k}k�1, which is equivalent
to saying that, if the prediction error covariance �2

l (✓0) goes
to zero, then there can be no “empty ball” centered at ✓0
As shown in [22, Proposition 10], kernel functions from
the Mátern class have the NEB property and such kernels
can be used to reconstruct performance functions that satisfy
Assumption 3. The following result can then be established
under the NEB property.

Lemma 1 (Global EI Convergence [22]): Let  be a ker-
nel that exhibits the NEB property. For any initial set
✓1, . . . , ✓k0 2 ⇥, the sequence {✓k}k�1 generated by ✓k+1 =
✓global
k+1 for all k > k0, where ✓global

k+1 is given by (7), is almost
surely (a.s.) dense in ⇥.

Note that convergence of the ‘global’ EI strategy is an
immediate consequence of the kernel allowing dense sam-
pling of ⇥. That is, maxi2{1,...,k} J(✓i)! max✓2⇥ J(✓) as
k !1 (almost surely). This result immediately carries over
to the LSR-BO(⇡) at the limit � !1. In particular, as the

radius of the LSR constraints becomes arbitrarily large, (8)
naturally reduces to ✓k+1 = ✓global

k+1 since we are able to jump
across ⇥ arbitrarily far. However, as we show next, the same
concept further generalizes to all positive � values under a
certain assumption that can be easily satisfied through a slight
modification to (8).

Theorem 1 (LSR-BO Convergence): Let  exhibit the
NEB property. Suppose there exist a sequence of integers
{mk}k�1 and a finite integer M <1 such that the sequence
generated by LSR-BO(⇡) satisfies ✓mk+1 = ✓global

mk+1 with
|mk+1 � mk|  M for all k � 0. Then, the LSR-BO(⇡)
strategy generates a dense set of sample points in ⇥ (a.s.).
Consequently, J?

k ! J(✓?) as k !1 (a.s.).
Proof: By assumption, we can always take a subse-

quence {✓global
m0 , . . . , ✓global

mk } from the sequence generated by
LSR-BO(⇡) for any k � 1. These global samples can be at
most M steps apart in this sequence, meaning at most M
samples are added into the GP model between k and k+ 1.
By treating all of these additional (non-global) sample points
as “initial” points, we can then directly apply Lemma 1 to
infer that the LSR-BO(⇡) sequence provides dense sampling
in ⇥ a.s. as k !1 (or equivalently mk !1). ⇤

The assumption made about the existence of {mk} de-
serves some further elaboration. This sequence assumption
allows us to exploit the properties of the global EI policy
in a straightforward manner; however, we have not shown
that LSR-BO(⇡) always generates such a sequence. Due to
the potential to switch back and forth between local and
global steps in (8), we do not attempt to formally prove
that this sequence exists. Instead, we propose a simple mod-
ification such that the sequence assumption is satisfied by
construction. To this end, we employ a “terminal constraint”
that enforces ✓k+M = ✓global

k+1 for all k 2 {0,M, 2M, . . .},
while still satisfying LSR constraints. This can be enforced
by doing one more projection step after (8) as follows

✓k+1  ProjT (n(M,k),✓k,✓
global
k+1)

(✓k+1), (9)

where T (j, ✓0, ✓f ) denotes the set of all next samples that
satisfy LSR constraints and the terminal condition given j
steps remaining, initial sample ✓0, and final sample ✓f , and
n(M,k) = M � 1�mod(k � 1,M) is the number of steps
remaining until step M is reached in current interval k.
The choice of M would need to be at least as large as the
minimum number of steps that it takes to move between any
two points in ⇥, which is finite for any � > 0. Although this
modified version of LSR-BO(⇡) will converge independently
of M , the rate of convergence is expected to depend on M ,
which we plan to study more in future work.

Remark 1: Note that the terminal constraint is a sufficient
condition for convergence; we found the assumptions in
Theorem 1 were automatically satisfied by the original
LSR-BO(⇡) algorithm with � > 0 in practice.

V. CASE STUDIES

A. Example 1: Illustrative 2-D Benchmark Problem
We first test our proposed LSR-BO method on a modified

version of the Branin function from [19], which is a standard



benchmark problem for global optimization algorithms due
to its non-convex nature with multiple local optima and one
global optimum.

The compact domain is given by ⇥ = [�5, 10] ⇥ [0, 15],
while we also incorporate the following LSR constraints to
mimic safe exploration in this problem

|✓1,k+1 � ✓1,k|  0.5�, |✓2,k+1 � ✓2,k|  1.5�, (10)

that must hold for all k � 0. These constraints force the next
sample to be within a hyperrectangle of the current sample,
which can be straightforwardly mapped to a hypercube of
the form (3) with p =1.

Our proposed LSR-BO algorithm requires the specification
of the prior GP functions as well as a numerical procedure
to optimize the EI acquisition functions. For the prior,
we selected µ(✓) = 0 and a Mátern-2.5 function for .
The length- and output-scale parameters were estimated at
each iteration using the MLE approach summarized in [20,
Section 2]. We use a multi-start version of the L-BFGS-B
algorithm [23] to optimize the EI functions in (6) and (7)
wherein the best 10 points from an initial set of 1000 samples
(ranked by their EI values) are used as the starting points.

We use so-called simple regret to measure the perfor-
mance of the generated sequence of performance function
evaluations Dk+1 = Dk [ {(✓k+1, J(✓k+1)}, i.e., Sk(D0) =
J(✓?) � J?

k . for any iteration k � 0, which depends on
the initial dataset D0. To illustrate that LSR-BO is capable
of performing well across a wide array of starting points,
we randomly generate 50 different D0 composed of 10
samples generated in quasi-uniform random fashion inside
of ⇥. The starting value ✓0 is always selected to the point
in D0 that maximizes the performance function. We use
these replicate runs to estimate statistical properties of the
sequences generated by the LSR-BO algorithm. To highlight
the advantages of the LSR-BO, we compare its performance
to the following three baseline algorithms that have all been
constructed to satisfy the LSR constraints by design.

Shortest-Path: The global EI problem is solved to gen-
erate the next desired sample. If this point does not satisfy
LSR constraints, we sample the sequence of points along the
shortest path between the current and desired global point.

Projection: We sample by projecting the global EI point
onto the LSR constraints, i.e., ✓k+1 = ProjB�(✓k)

(✓global
k+1 ). We

can think of this as a special case of the LSR-BO sampling
method (8), when � !1.

Random: The procedure is the same as the shortest-path
algorithm, except that the desired point is selected uniformly
at random. This approach is thus a simple modification to
random search to ensure satisfaction of LSR constraints.

The statistical results for the simple regret Sk(D0) for all
methods for up to k = 80 iterations is shown in Fig. 1
for LSR constraint radius values � = 0.5, 1.5 to illustrate
the effect of the radius of the LSR on the performance of
the LSR-BO algorithm. We see that LSR-BO outperforms
all considered methods in both cases; the regret decay is
consistently faster and the final solution better than the com-
petitor algorithms. In addition, the improvements become

even more pronounced as the size of the LSR constraint
region is reduced. It is interesting to observe that the LSR-
BO algorithm initially converges quickly to a local optimal
value (within the first 10–20 iterations) and then expands out
from the local region to achieve the global optimal value.

(a) � = 0.5

(b) � = 1.5

Fig. 1: Comparison of simple regret statistics (median and
95% confidence interval) versus number of iterations for the
proposed (LSR-BO), shortest-path, projection, and random
search algorithms for two LSR constraint radius values �.

B. Example 2: Industrial Heat Pump Energy Optimization

We also study a real-world problem of tuning setpoints of
a vapor-compression heat pump to minimize the operating
power consumption. A block diagram of the heat pump of
interest is shown in Fig. 2A, which consists of a compressor,
a condenser, an expansion valve, and an evaporator that
exchanges heat between an indoor occupied setting and the
ambient environment. We can cast this problem in the form
of (2) by defining the performance function J(✓) = �P1(✓)
as the negative of the steady-state power consumption P1
that is a function of the heat pump setpoints ✓. In the
system of interest, we first close a feedback loop from
compressor frequency to room temperature, which leaves
us with three tunable setpoints ✓ representing the electrical
expansion valve (EEV) position, the indoor fan speed (IFS),
and the outdoor fan speed (OFS). By assigning fixed setpoint



values ✓, we wait for an adequate amount of time until the
power signal resides within a 95% settling zone and use that
to represent J(✓). The setpoints must lie in the following
known ranges: EEV 2 [200, 300] counts, IFS 2 [200, 500]
rpm, and OFS 2 [500, 1000] rpm.

Fig. 2: (A) Schematic of industrial heat pump system. (B)
Illustration of the proposed LSR-BO method for minimizing
power consumption through manipulation of setpoints.

Reckless alterations of the setpoints can result in wear
and tear of the actuators, and lead to undesired transients
in the refrigerant flow and thermal dynamics. This prevents
the direct use of traditional BO methods that demonstrate
significant jumps in ✓ values between consecutive iterations.
We avoid these harmful operational modes by incorporating
LSR constraints (3) that limit the change in EEV position to
±5 counts, IFS to ±10 rpm, and OFS to ±25 rpm. An il-
lustrative schematic of the proposed data-driven optimization
approach for the heat pump system is shown in Fig. 2B.

Implementation Details: We use a high-fidelity dynamic
model of a prototype vapor-compression system (VCS)1

written in the Modelica language [24] to collect power
consumption data and optimize the set-points on-the-fly. A
complete description of the model is available in [10]. The
model was first developed in the Dymola [25] environment
and then exported as a functional mockup unit (FMU) [26].
Its current version is comprised of a total of 12,114 differen-
tial equations. We use the same GP model and optimization
settings as discussed in Example 1.

Results and Discussion: We again compare the LSR-BO
method to the shortest-path and projection methods defined
previously. Since the true global optimum is unknown in this
problem, we directly compare the power consumption values
produced over 40 allowed high-fidelity function evaluations.

1Note that while the behavior of this model have been validated against a
real VCS, the numerical values and/or performance presented in this work
is not representative of any product.

Similar to Example 1, we initially populate D0 with high-
fidelity evaluations at 10 domain-informed samples in ⇥,
and select ✓0 as the point within this set that produces the
largest J(✓) (minimal power consumption). We again repeat
all algorithms 50 times to estimate statistical properties of the
generated sample trajectories. The resulting minimal power
consumption profiles, i.e., min(✓),P1(✓)2Dk

P1(✓) for the
LSR-BO, shortest-path, and projection algorithms are shown
in Fig. 3. We see that that the proposed method achieves
tighter confidence intervals, implying LSR-BO can reliably
find setpoint values that lead to lower power consumption in
a shorter amount of time. The complete dynamic simulation
profiles for the VCS for the median LSR-BO run are also
shown in Fig. 4. Note that the grey shading in the figure
denotes the ‘offline’ experiments on the heat pump system:
they are actually done online, which is why they appear
in the trace, but with manual safety configurations running
to avoid deleterious behavior. This is why there are LSR
constraint violations in the grey shaded areas, and after that,
the LSR constraints are consistently satisfied. Furthermore,
we see a clear reduction in the power consumption over time,
without generating any intermediate harmful transient states.
We also note that the sensitivity of the power varies among
the actuators; because the power is more sensitive to the EEV
position, the EEV tends to converge to a steady-state value as
the power is minimized. In comparison, the lower sensitivity
of the power to the fan speeds, and in particular OFS, causes
these actuators to continue to vary after power has converged
to a minimum value because these variations do not translate
to a significant change in the power consumption.

Fig. 3: Comparison of minimum power sequence statistics
(median and 95% confidence interval) versus number of
iterations for proposed (LSR-BO) method, shortest-path, and
projection algorithms on real-world VCS problem.

VI. CONCLUSIONS

This paper presents a new, simple-to-implement variation
of Bayesian optimization (BO) suitable for global optimiza-
tion of expensive-to-evaluate objective functions with local
search rate (LSR) constraints imposed on the sequence of



Fig. 4: Heat pump power, compressor frequency (CF), EEV
position, OFS, and IFS values over time for median LSR-
BO run. �EEV, �OFS, and �IFS represent the change in
setpoints at each iteration with the red lines denoting the
LSR constraints. The grey shaded regions denote the offline
experiments used to initialize the GP model.

candidate points. The newly added LSR constraints must
be considered when there is a significant cost to changing
the design variables at every optimization iteration. We are
particularly interested in closed-loop performance optimiza-
tion of energy systems, which require limited alterations to
control design parameters to avoid pushing the system into
unsafe operating modes. The proposed method, LSR-BO, re-
stricts how much the candidate point can be changed at each
iteration while also avoiding getting stuck in sub-optimal
local solutions. In addition to having computational and
memory requirements on the same order as classical BO, we
prove that LSR-BO inherits its established convergence prop-
erties. We compare the efficiency of LSR-BO to three com-
peting alternative methods on two challenging case studies
including one derived from a commercial vapor-compression
system. Further, we analyze the statistical properties of the
performance evaluation sequences generated by all methods
under different random initializations and show that LSR-
BO consistently generates better quality solutions including
up to multiple orders of magnitude better median and 95%
confidence interval performance values. Future work will
include the development of multi-objective and constrained
extensions of LSR-BO as well as theoretical guarantees on
the expected and worst-case rate of convergence.
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