
A Tutorial on Derivative-Free Policy Learning Methods for
Interpretable Controller Representations

Joel A. Paulson, Farshud Sorourifar, and Ali Mesbah

Abstract— This paper provides a tutorial overview of recent
advances in learning control policy representations for complex
systems. We focus on control policies that are determined by
solving an optimization problem that depends on the current
state and some adjustable parameters. We refer to such policies
as interpretable in the sense that each of the individual
components can be directly understood by practitioners once
the parameters are set, i.e., the objective function encodes
the desired goal and the constraint functions enforce the
rules of the system. We discuss how various commonly used
control policies can be viewed in this manner such as the
linear quadratic regulator, (nonlinear) model predictive control,
and approximate dynamic programming. Traditionally, the
parameters that appear in these control policies have been
tuned by hand, expert knowledge, or simple trial-and-error
experimentation, which can be time consuming and lead to
suboptimal results in practice. To this end, we describe how the
Bayesian optimization framework, which is a class of efficient
derivative-free optimization methods for noisy functions, can
be used to efficiently automate this process. In addition to re-
viewing relevant literature and demonstrating the effectiveness
of these new methods on an illustrative example problem, we
also offer perspectives on future research in this area.

I. INTRODUCTION

Reinforcement learning (RL) is a subfield of machine
learning that focuses on how to use past system measure-
ments to improve the future control of a dynamic system [1]–
[3]. RL can be viewed as a collection of (often approximate)
solution approaches to stochastic optimal control problems
that represent optimal state-to-action policies in uncertain
control systems. Even though RL has been around for
several decades, it recently gained massive publicity in 2016
when it was used to beat the best Go player in the world,
which had been previously thought impossible due to the
enormous state/action space (> 10170 states) [4]. Although
nothing short of amazing, such game applications have a
few useful characteristics that do not hold in most real-world
engineering problems: (i) all system states can be measured;
(ii) all measurements are perfect (noise-free); and (iii) huge
amounts of data can be collected across many different
conditions. This dramatic progress in RL begs the question:
can we exploit the same methods to solve challenging next-
generation control tasks such as self-driving vehicles, agile
robotic systems, and smart manufacturing? For RL to expand

J. A. Paulson and F. Sorourifar are with the Department of Chemical
and Biomolecular Engineering, The Ohio State University, Columbus, OH
43210, USA. {paulson.82,sorourifar.1}@osu.edu

A. Mesbah is with the Department of Chemical and Biomolecu-
lar Engineering, University of California, Berkeley, CA 94720, USA.
mesbah@berkeley.edu

This work was supported by the US NSF under Grant 2237616.

into such areas, the methods must work safe and reliably,
especially when the three previous assumptions are not
satisfied, since the failure of such systems can have severe
economic and social consequences (including loss of human
life).

Model-free RL methods are usually divided into one of
two major categories: approximate dynamic programming
(ADP) and policy search [2]. ADP methods directly approx-
imate the optimality conditions for the stochastic optimal
control problem using some type of value function represen-
tation. Even though they have the potential to converge to
the true optimal solution in the limit of enough data, ADP
methods often end up providing an implicit representation
of the policy that can be difficult to interpret (and may
perform poorly for small to medium amounts of data) [5].
Policy search methods, on the other hand, look to directly
optimize parameters that appear in an explicitly parametrized
control policy. Thus, in practice, we can think of policy
search as a way to convert the RL problem into a derivative-
free optimization (DFO) problem [6]. By selecting the right
policy parametrization, we can (greatly) reduce the size of
the search space, as well as generate easier to implement and
more interpretable control policies. However, many possible
policy parametrizations exist, and the choice of policy has an
important impact on the selection of a suitable DFO method.

In this tutorial, we give an overview of recent research
efforts on control policy learning that are able to address
some of the previously mentioned challenges encountered by
traditional RL methods when applied to real-world systems.
In particular, we consider control of stochastic dynamical
systems using “interpretable” feedback policies that deter-
mine the input to give to the system by solving an opti-
mization problem in real-time. We can generally express a
control policy as ut = ⇡(xt; ✓), where ⇡ : Rn ⇥ Rp ! Rm

is the policy function that maps a measured (or estimated)
system state xt 2 Rn to a control input (or action) ut 2 Rm

given some vector value ✓ 2 ⇥ ✓ Rp of policy parameters.
Many different structures for ⇡ have been studied. Explicit
policies refer to ⇡ that are available in an analytic form
such as proportional-integral-derivative and neural network
controllers. In the (shallow) neural network case, which
has become increasingly popular, the policy will have the
following parametrized form

⇡(x; ✓) = W1↵(W0x + b0) + b1, (1)

where W0 2 Rh⇥n and b0 2 Rh are the weight and bias
parameters in the first layer given h 2 N hidden nodes, W1 2
Rm⇥h and b0 2 Rm are the weight and bias parameters in

the output layer, and ↵ : Rh ! Rh is a nonlinear activation
function (e.g., the rectified linear unit ↵(y) = max{y, 0}). In
this case, the learnable parameters are ✓ = {W0, b1, W1, b1}.
Although (1) is a universal function approximator in the
sense that it is expressive enough to represent any function as
h!1 [7], it involves a large number of parameters whose
values are not necessarily interpretable by humans. Not only
can this increase training complexity, it also leads to less trust
when attempting to implement the policy in practice since
practitioners cannot be confident in its ability to extrapolate
beyond the limited observed training instances.

We focus on a certain class of control policies defined
implicitly in terms of an interpretable or understandable set
of equations [8]. Since mathematical optimization problems
require the specification of a clear goal (objective) and
set of rules (constraints), they are naturally comprised of
interpretable components such that we focus on well-defined
structures of the following form

⇡(x; ✓) = argmin
u

f0(x, u; ✓), (2a)

subject to: fi(x, u; ✓)  0, i = 1, . . . , k, (2b)
gi(x, u; ✓) = 0, i = 1, . . . , r, (2c)

where f0 : Rn ⇥ Rm ⇥ Rp ! R is the objective function,
fi : Rn ⇥ Rm ⇥ Rp ! R are the inequality constraints for
all i = 1, . . . , k, and gi : Rn ⇥ Rm ⇥ Rp ! R are the
equality constraints for all i = 1, . . . , r. Specific examples
of policies of the form (2) are provided in Section III. The
main idea behind this structure is that (2a) can act as some
type of (approximate) value function, (2b) can capture critical
safety/actuator limitations, and (2c) can require the state and
inputs to satisfy physical laws. Another key advantage of the
structure (2) is that prior knowledge can be easily built into
the policy through proper choice of the functions.

The rest of the tutorial is organized as follows. In Section
II, we introduce the controller tuning (or learning) problem
that is the focus of this tutorial. In Section III, we dis-
cuss some important, commonly used forms of interpretable
optimization-based control policies. In Section IV, we pro-
vide a detailed overview of how Bayesian optimization, a
particularly efficient DFO method, can be used to effectively
tackle controller auto-tuning problems. In Section V, we ap-
ply Bayesian optimization for auto-tuning a model predictive
control policy on a benchmark system of oscillating masses.
Finally, Section VI concludes the paper by providing some
perspectives for future work.

II. THE AUTOMATED CONTROLLER TUNING PROBLEM

A. System Dynamics

In this work, we consider (possibly) nonlinear systems
with dynamics given by

xt+1 = f(xt, ut, wt), t = 0, 1, . . . , (3)

where xt 2 Rn, ut 2 Rm, wt 2 Rq are the state, control
input, and disturbance at time period t, respectively, and f :
Rn⇥Rm⇥Rq ! Rn is the state transition function. The ini-
tial condition x0 and the disturbances {wt}t�0 are assumed

to be random variables. In the traditional stochastic optimal
control literature, it is often assumed that x0, w0, w1, . . . are
independent random variables, with the disturbance sequence
being identically distributed, and the dynamics f are known.
We do not make such assumptions here, as they are often
unrealistic in practical applications.

B. Closed-loop Performance Metrics

By combining the dynamics (3) and the control policy
(2), the state x0, x1, . . . and input u0, u1, . . . trajectories
form a stochastic process; the only requirement we will have
throughout this work is the ability to generate independent
samples from this stochastic process. This means that we do
not need exact knowledge of the dynamics or the distribution
of the disturbances, i.e., the true system is treated as a black-
box, data-generating process. To judge the performance of a
given control policy (specifically, a choice of parameter ✓ 2
⇥), we define some closed-loop performance measure over
finite-time trajectories of length T . The choice of T is very
application-dependent and, for continuous-time applications,
should be large enough such that an average over T steps is
close to the long-term average. For notational simplicity, we
will denote the trajectories over this horizon as

X = (x0, x1, . . . , xT) 2 RN
, (4a)

U = (u0, x1, . . . , uT) 2 RM
, (4b)

W = (w0, w1, . . . , wT) 2 RQ
, (4c)

where N = n(T + 1), M = m(T + 1), and Q = q(T +
1) are the dimensions of the state, input, and disturbance
trajectories, respectively. The trajectories X , U , and W are
random variables whose distributions depend on the choice
of parameters ✓ (the explicit dependence on ✓ is not shown
for notational simplicity).

The cost of any trajectory can then be defined by the
evaluation of a function : RN ⇥RM ⇥RQ ! R[{+1}.
Note that must be specified by the user and depends on the
closed-loop behavior of the process (with the control policy
embedded). A control policy is then judged according to the
expected value of this cost (with respect to the random initial
condition and disturbances)

J(✓) = E{ (X, U, W)}. (5)

Since the trajectories X , U , and W are fully parametrized
by ✓, the expected cost J only depends on ✓. We briefly
comment that can take on many forms, though traditionally
this function will be separable across time, with the form

 (X, U, W) =
1

T + 1

TX

t=0

g(xt, ut, wt), (6)

where g : Rn⇥Rm⇥Rq ! R[{+1} is the so-called stage
cost function. This is not a requirement in this work.

C. Controller Tuning as Optimization

Given the performance indicator (5), we can compactly
represent the controller tuning problem as solving the fol-
lowing optimization problem

min
✓2⇥

J(✓). (7)

However, it is important to recognize that in general we
cannot tackle the tuning problem (7) with traditional opti-
mization methods (e.g., gradient descent) due to the features
of J . First, the mathematical structure of J will not be known
in closed-form since the optimization-based policy is defined
implicitly by (2). This problem is further complicated by
the fact that the dynamics f are generally unknown, which
prevents the calculation of derivatives r✓J(✓). Second, the
expectation operator cannot be exactly computed in general.
Instead, under the assumption that we can generate indepen-
dent samples from the (joint) initial state and disturbance
distribution, we can compute a Monte Carlo approximation
of J as follows

Ĵ(✓) =
1

K

KX

i=1

 (Xi
, U

i
, W

i), (8)

where {(Xi
, U

i
, W

i)}K
i=1 denotes a collection of K in-

dependent trajectory samples. Third, evaluating the cost
approximation (8) is expensive since it involves running K

closed-loop simulations, which requires solving K(T + 1)
optimization problems of the form (2) in order to evaluate
u
i

t
for all t = 0, . . . , T and i = 1, . . . , K.

We note that the estimator Ĵ(✓) is an unbiased approx-
imation of J(✓), i.e., J(✓) = E{Ĵ(✓)} for any K � 1
where the expectation is taken over the random samples. The
quality of the approximation improves as K increases since
Var{Ĵ(✓)} = 1

K
Var{ (X,U, W)} where Var{·} denotes

variance, which goes to 0 as K !1 [9].

D. Incorporation of Safety Constraints

An important consideration is how safety constraints can
be incorporated into the auto-tuning problem (7). Techni-
cally, one can use infinite values for to encode constraints
on trajectories; however, this can create several problems in
practice, including the inability to guarantee satisfaction of
these constraints during the process of tuning ✓. Constraint
satisfaction is particularly important in safety-critical appli-
cations, wherein violating constraints can lead to dangerous
and undesirable outcomes. Due to the stochastic nature of (3),
we assume that safety constraints take the form of chance
constraints [10]

Pr{'(X, U, W) � 0} � 1� ✏, (9)

where ' : RN ⇥RM ⇥RQ ! R is a function that represents
if a trajectory is safe (� 0) or unsafe (< 0) and ✏ 2 [0, 1]
is the allowed probability of violation. By defining c(✓) =
Pr{'(X, U, W) � 0} � 1 + ✏, we can compactly write the
safe controller auto-tuning problem as

min
✓2⇥

{J(✓) subject to c(✓) � 0}, (10)

which is an extension of (7) to incorporate safety constraints
in addition to performance. The safety function c suffers from
the exact same challenges as the performance function J , but
it can similarly be approximated with Monte Carlo sampling

ĉ(✓) =
1

K

KX

i=1

1[0,1)('(X
i
, U

i
, W

i))� 1 + ✏, (11)

where 1A(x) denotes the indicator function on set A (equal
to 1 when x 2 A and 0 otherwise). As such, we can estimate
the desired performance and safety metrics from the same
set of K closed-loop simulations. In this tutorial, we mainly
focus on methods that can solve the safe controller tuning
problem (10).

III. EXAMPLES OF TUNABLE OPTIMIZATION-BASED
CONTROL POLICIES

We briefly describe specific forms of interpretable control
policies (2) in this section. This list is not comprehensive – it
is merely meant to make the abstract form of the optimization
problem (2) more concrete.

A. Linear Quadratic Regulator

It is well-known that, when the random variables
x0, w0, w1, . . . are independent, no explicit constraints are
considered, and the overall cost is separable in time (6), then
the optimal policy for T ! 1 that minimizes J over all
possible state feedback policies has the following form [11]

⇡(x) = argmin
u

E{g(x, u, w) + V (f(x, u, w))}, (12)

where V : Rn ! R is the optimal cost-to-go value function,
which can be derived from dynamic programming (DP).
Notice how no parameter ✓ appears in this expression since
we have assumed access to the exact value function V .
Unfortunately, the construction of the optimal value function
is very difficult in general and can only be derived for a
limited number of special cases. The most well-known case
is often referred to as the linear quadratic regulator (LQR),
which further assumes linear dynamics and quadratic stage
cost

f(x, u, w) = Ax + Bu + w, (13a)
g(x, u, w) = x

>
Qx + u

>
Ru, (13b)

where A 2 Rn⇥n, B 2 Rn⇥m, Q 2 Sn+ (set of n ⇥ n

symmetric positive semidefinite matrices), Sn++ (set of n⇥n

symmetric positive definite matrices), and w 2 N (0,⌃w).
The value function in this case can be analytically computed
to be V (x) = x

>
Px for a specific P 2 Sn+ that solves the

discrete-time algebraic Riccati equation [12].
To compute P , however, one requires exact knowledge of

the system matrices A and B. Assuming we do not know
these values, we can express the LQR policy in the form of
(2) by selecting the following objective parametrization

f0(x, u; ✓) =


x

u

�> 
Q + ✓

>
x
✓x ✓

>
x
✓u

✓
>
u
✓x R + ✓

>
u
✓u

� 
x

u

�
, (14)

where ✓ = (✓x, ✓u) represent the tunable parameters with
✓x 2 Rn⇥n and ✓u 2 Rn⇥m. One can show that (2) with an
objective (14) is equivalent to the LQR solution whenever
✓u = BP

1/2 and ✓x = AP
1/2.

B. Approximate Dynamic Programming

Approximate DP (ADP) policies take the form [13]

⇡(x) = argmin
u

E{g(x, u, w) + V̂ (f(x, u, w))}, (15)

where V̂ is an approximation of the true value function.
Policies of the form (15) are sometimes referred to as control
Lyapunov functions (CLFs) [14]. By developing a suitable
parametrization of V̂ and the dynamics f , this policy can
be written in the form of (2). Interested readers are referred
to, e.g., [8], [15] for examples. It is also worth noting that
hard input constraints u 2 U (almost always present in
practice) can be easily incorporated into (15), and it will
remain a special case of (2) through proper selection of fi.
Furthermore, although these constraints may increase the
online cost of evaluating ⇡(x; ✓), it does not change the
dimensionality of (10).

C. Model Predictive Control

Model predictive control (MPC) has become the prime
technology for achieving high-performance control of con-
strained multivariable systems [16], [17], which has diverse
applications in chemical, energy, manufacturing, automotive,
and robotic systems [18]. A standard formulation for nominal
(or, certainty equivalence) MPC is given by

⇡(x) = argmin
u0|t

H�1X

k=0

g(xk|t, uk|t, ŵk|t) + gH(xH|t), (16a)

s.t. xk+1|t = f(xk|t, uk|t, ŵk|t), (16b)
x0|t = x, (16c)
(xk|t, uk|t) 2 Z, (16d)
xH|t 2 XH , 8k = 0, . . . , H � 1, (16e)

where H � 1 is the prediction horizon; xk|t, uk|t, and ŵk|t
are, respectively, the predicted state, input, and disturbance
values k steps ahead of current time t; Z ⇢ Rn+m is the set
of mixed state and input constraints (often decomposes to the
form Z = X ⇥U); and gH : Rn ! R and XH are the termi-
nal cost and constraints, respectively. We refer to this as the
“nominal” formulation since ŵ0|t, . . . , ŵH�1|t represents a
single predicted disturbance sequence. The initial state x acts
as a parameter in MPC, and is a key source of “feedback”
from the true system. Although the optimization problem
(16) has variables u0|t, . . . , uH�1|t and x0|t, . . . , xH|t, the
argmin is taken over u0|t since MPC only applies the first
input to the system at every time step.

When chosen as an invariant set for the predicted dynam-
ics, XH guarantees that the constrained optimization problem
(16) is recursively feasible. Additionally, the terminal cost
gH can be chosen to ensure closed-loop stability whenever
the dynamics and stage cost satisfy certain assumptions; see
[17, Chapter 2] for a comprehensive discussion on feasibility

and stability of MPC. These issues are not as important in
our setting since we assume the true dynamics are unknown,
so we are unable to construct these sets without gathering
more data from the system.

Nearly all components of the MPC problem (16) can be
treated as a tuning parameter, including

{H, g, gH , f, ŵ0|k, . . . , ŵH�1|k,Z,XH}. (17)

In practice, however, one desires to incorporate as much
prior knowledge as possible to reduce the complexity of
the auto-tuning problem (keep p as low as possible). It is
important to note that any parameter that gets introduced
in the implementation of (16) can be added to ✓, including
parameters appearing in the algorithm used to (approxi-
mately) solve (16) (e.g., tolerance values, scaling factors,
initial guesses). Finally, even though we focused on the
nominal MPC formulation, the ideas presented in the next
section can be directly applied to more advanced robust and
stochastic MPC formulations (see [6, Section 3] for examples
and key references).

IV. EFFICIENT DERIVATIVE-FREE OPTIMIZATION
METHODS FOR AUTO-TUNING APPLICATIONS

A. Zeroth- versus First-order Optimization Methods

Solving the controller tuning problem (7) is very hard in
general due to its expensive black-box nature so that we must
resort to approximate solution methods in practice. Recent
work has discussed the value of gradient-based methods [8]
that start with an initial guess for the parameters ✓0 that
is updated, at each iteration k, by simulating the closed-
loop system and computing an unbiased stochastic gradient
of J , e.g., gk = r✓Ĵ(✓k), and updating the parameters via
✓k+1 = ⇧⇥(✓k�↵kgk) where ⇧⇥(✓) denotes the Euclidean
projection of ✓ onto set ⇥ and ↵k > 0 is a step size.
The main challenge with this type of approach, however, is
computing the gradient estimate gk, which requires differen-
tiating through the dynamics f , the cost , and the policy ⇡
defined implicitly as the solution to an optimization problem
(2). It is known that derivatives of (2) can be computed
by differentiating through the KKT optimality conditions if
the objective and constraint functions are smooth and satisfy
some regularity conditions [19]; however, these requirements
may not always be satisfied. An even bigger challenge is
differentiating through the dynamics f , which cannot be done
exactly unless we have perfect knowledge of this function.
Two other challenges with first-order methods in this context
are: (i) they are local in nature and so can become stuck in
suboptimal local optima, and (ii) they do not easily extend
to the safe (constrained) setting in (10).

Due to these major challenges, we must look to an alter-
native class of methods to tackle the auto-tuning problem. A
natural choice is so-called derivative-free optimization (DFO)
methods, which have become increasingly popular due to
their general applicability; they make little-to-no assumptions
on the objective or constraint functions. Even though DFO
methods may not as effectively scale as the number of
tunable parameters p becomes very large compared to the

first-order methods, it is important to recognize that p is
expected to be small for interpretable control policies that
take advantage of prior knowledge to effectively parametrize
the objective and constraint functions. Therefore, we have
in essence traded a more complex black-box policy, e.g.,
(1) (with a higher degree of representation power) for a
“physics-informed” interpretable policy, which makes the
auto-tuning problem more manageable in the sense that it
requires optimization over a significantly lower-dimensional
space. The latter set of problems are particularly amenable
to DFO, which we discuss next.

B. Why Bayesian Optimization for Auto-Tuning?

There has been a significant amount of work on DFO, with
a comprehensive survey of methods provided in [20], [21].
Some specific examples include random search [22], mesh
adaptive direct search (MADS) [23], generalized pattern
search (GPS) [24], genetic algorithms [25], particle swarm
optimization (PSO) [26], and covariance matrix adaptation
evolution strategy (CMA-ES) [27]. A key limitation of
many DFO methods is that they require a large number
of function evaluations to find the optimum – this is not a
problem when the function is cheap to evaluate (i.e., can be
efficiently evaluated several thousands to millions of times).
Unfortunately, controller auto-tuning problems do not satisfy
this requirement since estimating J (and c) is noisy and
expensive, as discussed in Section II-C. This implies that
extreme care should be taken when designing the next tuning
parameter to test since we only have a limited number of
attempts. In addition, if there are safety requirements that
must be satisfied at each iteration, we must only test tuning
parameter values that will not violate constraints.

Bayesian optimization (BO) is a class of machine learning-
based optimization methods specifically designed for noisy
and expensive functions [28]–[30]. As such, it has surpassed
human and state-of-the-art algorithmic performance on a
variety of real-world applications, including controller auto-
tuning for a variety of different types of policies [31]–[35].
In addition, black-box constraints can be incorporated into
BO to guarantee a high probability of safety during the
optimization process [36]–[38]. Therefore, due to its data
efficiency and ability to accommodate safety constraints, we
will exclusively focus on BO for the rest of the paper. We
provide an overview of (safe) BO next.

C. Overview of (Safe) Bayesian Optimization

BO effectively translates optimization tasks into learning
tasks, which allows one to take advantage of the full data
history when designing the next set of simulation or experi-
mental conditions. This is the key advantage of BO compared
to other competing DFO methods that use a small window
of recent function observations. We will first focus on the
auto-tuning problem in (7) and then show how this method
extends to the safe version of the problem in (10).

A BO method consists of two components: (i) a predictive
model given by a Bayesian posterior distribution over J ,
serving as a surrogate equipped with uncertainty estimates,

and (ii) an acquisition function that depends on the posterior
distribution of J , whose value at any ✓ 2 ⇥ quantifies the
benefit of evaluating the objective function at this point.

1) Predictive model: The first major component of BO
is the predictive model defined by a Bayesian posterior
distribution over J . There are several examples of probabilis-
tic surrogate models that satisfy this requirement, including
random forests [39], Bayesian neural networks [40], and
Gaussian processes (GP) [41]. GPs are the most commonly
used class of models in BO due to their computationally
tractability and non-parametric nature. The phrase “non-
parametric” refers to the fact that they do not assume the
function belongs to a finitely parametrized space such as the
space of polynomials up to a certain degree – a consequence
of this property is that GPs can learn any function satisfying
certain continuity/smoothness properties [41].

A GP generalizes the notion of “distributions over vari-
ables” to “distributions over functions.” It is fully specified
by its prior mean function µ0 : ⇥ ! R and covariance
k0 : ⇥⇥⇥! R functions. Given a prior GP distribution for
J and a set of s noisy evaluations Ds = {(✓i, yi)}si=1, where
yi = Ĵ(✓i) = J(✓i) + "i and "1, . . . , "s are independent and
normally distributed with zero mean and variance �

2, the
posterior distribution for J remains a GP with the following
analytic mean and covariance function expressions

µs(✓) = µ0(✓) + k>
0 (✓)

�
Ks + �

2
Is

��1
ỹ
s
, (18)

ks(✓, ✓
0) = k0(✓, ✓

0)� k>
0 (✓)

�
Ks + �

2
Is

��1
k0(✓),

where ỹ
s
= (y1 � µ0(✓1), . . . , ys � µ0(✓s)) 2 Rs, k0(✓) =

(k0(✓, ✓1), . . . , k0(✓, ✓s)) 2 Rs, Ks 2 Ss++ is the kernel
matrix whose elements are given by [Ks]v,w = k0(xv, xw)
for all v, w 2 {1, . . . , s}, and Is is the s⇥ s identity matrix.

It is worth noting that the posterior mean function µs can
be interpreted as a surrogate model for J , while the posterior
covariance function ks equips this surrogate with the ability
to generate rigorous uncertainty estimates, which is a key ad-
vantage of GPs over deterministic models. These uncertainty
estimates are often based on the posterior standard deviation
of J , which can be calculated as �s(✓) =

p
ks(✓, ✓).

Additionally, the prior mean and covariance function are
often defined in terms of a set of hyperparameters that are
not exactly known. In practice, these hyperparameters can
be trained by maximizing the likelihood of the model pre-
dictions on the observation data Ds. The detailed derivation
of the likelihood function can be found in [41, Chapter 2].
The likelihood contains a model fit and regularization term
such that the training process is robust to overfitting by
construction.

2) Acquisition function: The second major component of
BO is the choice of acquisition function ↵s : ⇥ ! R (also
called the expected utility), where the subscript s denotes
its dependence on the posterior distribution of J shown in
(18). The choice of ↵s is completely open to the user and,
when properly selected, the value of ↵s(✓) at any particular
✓ 2 ⇥ should be a good measure of the (expected) benefit
in querying J at this point in the future. According to this

definition, one looks to preferentially sample at the point
that produces the highest possible value of the acquisition
function. We then formally define a BO method as the
sequential learning process of selecting the next point ✓s+1 2
argmax

✓2⇥ ↵s(✓) as the maximizer of ↵s. Note that, unlike
J , ↵s is often available in closed-form such that it is much
simpler to optimize than J itself.

Several acquisition functions have been proposed, includ-
ing expected improvement (EI) [42], lower confidence bound
(LCB) [43], knowledge gradient (KG) [44], Thompson sam-
pling [45], and entropy search [46]. The most common way
to derive an acquisition function is through the selection
of a reward (or utility) function r(Ds) that depends on the
collected data Ds. The acquisition function then corresponds
to the expected increase in the reward, i.e.,

↵s(✓) = Es {r(Ds [{✓, J(✓)})� r(Ds)} , (19)

where Es refers to the expected value under the posterior
distribution at iteration s. For example, EI corresponds to
a reward function defined in terms of the observed sample
r(Ds) = �J

?

s
= �min(✓,y)2Ds

y = �mini=1,...,s yi; the
negative sign represents the fact that lower values increase
the reward in the case of a minimization problem. In this
case, we can simplify (19) as follows

EIs(✓) = Es{J?

s+1 � J
?

s
}, (20)

= Es{max{0, J?

s
� ys+1}},

= EZ{max{0, J?

s
� µs(✓)� �s(✓)Z}},

= ⇢(J?

s
� µs(✓),�s(✓)),

where

⇢(y, s) =

(
y�(y/s) + s�(y/s), s � 0,

max{y, 0} s = 0,
(21)

and � and � are, respectively, the standard normal cumulative
distribution function and probability density function. The
third line in (20) follows from the fact that our prediction of
the next sample J(✓s+1)|Ds is normally distributed such that
it can be written as J(✓s+1)|Ds = µs(✓) + �s(✓)Z where
Z ⇠ N (0, 1). The final line then follows by solving for the
expectation with respect to Z using integration by parts.

A standard implementation of BO, for a chosen acquisition
function, is summarized in Algorithm 1. Although it is com-
mon to use a single acquisition function at every iteration,
it is straightforward to modify Step 3 of this algorithm to
perform some adaptation to select from a set of candidate
solutions. One approach for doing this is to randomly sample
↵s from a discrete set of options and updating the future
probability of selection based on its performance in that
iteration [47]. An alternative approach is to solve a multi-
objective optimization (MOO) problem that constructs a
Pareto frontier (tradeoff curve) between multiple acquisition
functions [48]. This can be interpreted as finding a point
✓s+1 for which there is a reasonable consensus among these
different reward measures. The derivation of new acquisition
functions, as well as strategies for selecting among them, is
still an active area of research in BO and further research

Algorithm 1 The Bayesian Optimization (BO) Framework
Require: Domain ⌦, initial data D0, prior GP mean µ0 and

kernel k0 function, and choice of acquisition function
1: for s = 0, 1, . . . do
2: Construct GP posterior for J given Ds using (18).
3: Maximize acquisition ✓s+1 argmax

✓2⇥ ↵s(✓)
4: Query at ✓s+1 and observe cost ys+1 = Ĵ(✓s+1)
5: Update data Ds+1 Ds [{✓s+1, ys+1}
6: end for

is needed to understand the impact of these choices in the
context of controller auto-tuning problems.

3) Safety considerations: As discussed in the previous
section, we must explicitly incorporate black-box constraints,
as in (10), to be able to address safety considerations when
selecting our next sample ✓s+1. If one tries to encode
constraints by assigning infinite values to the cost, then J

will no longer satisfy the GP modeling assumptions and,
thus, we cannot construct an accurate surrogate model using
(18). Instead, we can explicitly model the safety constraint
function c using a separate (independent) GP model, just as
we did for the cost function J . Let Dc

s
denote a set of s noisy

constraint evaluations. Then, given a GP prior with mean µ
c

0

and covariance k
c

0 functions for c, we can construct a GP
posterior function similarly to (18), i.e.,

c(✓)|Dc

s
⇠ GP(µc

s
(✓), kc

s
(✓, ✓0)). (22)

Constraint satisfaction can be achieved with high probability
as long as the GP model (22) is sufficiently well-calibrated,
meaning it satisfies the following definition.

Definition 1: The GP model of the safety constraints (22)
is said to be well-calibrated if the inequality

|c(✓)� µ
c

s
(✓)| 

p
�s+1�

c

s
(✓), 8✓ 2 ⇥, 8s � 0, (23)

holds with probability at least 1� � for some � 2 (0, 1).
That is, if (22) is well calibrated, then the confidence

interval of the GP contains the true unknown function c with
high probability for all ✓ and for all iterations s. As shown
in [49, Theorem 2], one can select parameters {�s+1}s�0

that ensure the well-calibrated model assumption is satisfied
as long as c has a bounded reproducing kernel Hilbert space
(RKHS) norm, which is a relatively mild assumption. Letting
S = {✓ 2 ⇥ : c(✓) � 0} denote the set of safe controller
tuning parameters, we can construct a high-probability inner
approximation of S as follows

Ŝs = {✓ 2 ⇥ : µ
c

s
(✓)�

p
�s+1�

c

s
(✓) � 0}. (24)

In other words, we can think of Ŝs as a partially-revealed
safe set that must satisfy Pr{Ŝs ✓ S, 8s � 0} � 1 � �.
Note that Ŝs 6= ; as long as at least one safe set of tuning
parameters ✓0 2 S is known, which can often be obtained
from high-fidelity simulations and/or domain knowledge.

Given the partially-revealed safe set, one can easily modify
Algorithm 1 to be safe by replacing the set ⇥ in Line 3
with Ŝs, which guarantees ✓s+1 2 Ŝs for all s � 0, as

<latexit sha1_base64="5VwnjFHh6Olo0x7inlKQQkWthk0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJD7Lv98sVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfUvq7X7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwD9zY2e</latexit>

m1
<latexit sha1_base64="dbD0R8vOR85ULvP4a/BRYCg4TCQ=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqeyWoh6LXjxWtLXQLiWbZtvQJLskWaEs/QlePCji1V/kzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqmzjVlLVoLGLdCYlhgivWstwK1kk0IzIU7DEc38z8xyemDY/Vg50kLJBkqHjEKbFOupf9Wr9c8areHHiV+DmpQI5mv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2TzU6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10FGVdJapmii0VRKrCN8exvPOCaUSsmjhCqubsV0xHRhFqXTsmF4C+/vEratap/Ua3f1SuN6zyOIpzAKZyDD5fQgFtoQgsoDOEZXuENCfSC3tHHorWA8plj+AP0+QP/UY2f</latexit>

m2

<latexit sha1_base64="FusJ3Mu+gn0dyYFuNiGOGuzMLNM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAKDI2m</latexit>

u1

<latexit sha1_base64="tmS9qh1fHLOKCF5YVbEDjZvnALQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAHAI2k</latexit>

s1
<latexit sha1_base64="n6/W1KPfxCc6g5FHRqeg8V9bvKI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle92v9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMIhI2l</latexit>

s2
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>

v1
<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>

v2

Fig. 1: Illustration of system of two oscillating masses.

shown in [38]. To reduce the complexity of the optimization
procedure, one can use a log-barrier penalty function instead,
which will not compromise safety guarantees. A recently
identified challenge with this type of safe BO approach,
however, is that it does not directly incentivize enlarging
Ŝs such that it has the potential to lead to sub-optimal per-
formance. One way to overcome this challenge is presented
in [50], which provides a practical algorithm for detecting
when this behavior is likely to occur and then switching
to an alternative series of relaxation and projection steps.
There remain several interesting directions for future work
on how to optimally tackle safe BO problems; however,
the promising results obtained so far with straightforward
extensions of traditional BO highlight the power of this type
of framework for controller auto-tuning problems.

V. ILLUSTRATIVE CASE STUDY: LEARNING MPC
POLICY PARAMETERS WITH CLOSED-LOOP DATA

In this section, we demonstrate some of the key advantages
of the BO framework for controller auto-tuning on an illus-
trative example. The control policy was implemented using
the do-mpc toolbox [51], and the BO implementation was
done using the BOTorch package [52] with default settings.
We describe the system dynamics, the (interpretable) MPC
control policy, and the simulation results.

A. System Description

We consider a system of two horizontally oscillating
masses interconnected via a spring. Each mass is connected
via a spring to a wall, where the applied force to the second
mass can be manipulated, as depicted in Fig. 1. The states
of the system are the two positions, s1 and s2, and two
velocities, v1 and v2, of the masses while the control input
is the applied force u1 to the second mass. The dynamics of
this system are described by a model of the form (3)

f(x, u, w) = Ax + Bu, (25)

where

A =

2

664

0.763 0.460 0.115 0.020
�0.899 0.763 0.420 0.115
0.115 0.020 0.763 0.460
0.420 0.115 �0.899 0.763

3

775 , B =

2

664

0.014
0.063
0.221
0.367

3

775 ,

and x = (s1, v1, s2, v2) and u = u1. Note that the units of
s1 and s2 are in meters, v1 and v2 are in meters per second,
and u1 is Newton. The sampling time used to generate this

discrete-time model is 0.5 seconds. We assume a closed-loop
cost function of the form (6) with T = 40

 (X,U, W) =
P

T

t=0 kxtk22. (26)

We also assume that the states and control input must satisfy
the following constraints

�4  si  4, i 2 {1, 2}, (27a)
�10  vi  10, i 2 {1, 2}, (27b)
�0.5  u1  0.5. (27c)

We could treat the state constraints on the position as “safety
constraints,” however, they are rarely active so we decided
not to formally consider them here. As for the probability
distribution of the initial conditions, we define the following
single initial conditions (i.e., Dirac delta distribution)

x0 = (0.293, 1.291, 0.617, 0.269). (28)

B. MPC Control Policy

To control this oscillating mass system, we consider an
MPC policy of the form (16). We use nearly the same stage
cost function of g(x, u, w) = kxk22; however, we also add a
small input penalty term 10�4�u

2 to the stage cost (where
�u is the difference between consecutive input values) to
ensure smooth input profiles. We stress that the choice of
is completely open to the user and does not have to match
what is used to derive the control policy. In addition, we
only assume partial knowledge of the system dynamics, that
is, only the matrix A is known. Therefore, we parametrize
(16b) as xk+1|t = Axk|t + ✓uk|t, where ✓ 2 ⇥ = [0, 1]4 are
the tuning parameters.

To highlight the impact of ✓ on the cost, we plot the
closed-loop trajectory for s2 for the exact case ✓ = B, a
randomly chosen ✓, and no control in Fig. 2. It is interesting
to note that the randomly chosen incorrect ✓ value ends up
destabilizing the system, illustrating the importance of the
proper tuning of the unknown parameters.

C. Results and Performance Comparison

We start by comparing two different BO implementations
with commonly used alternative DFO methods. In particular,
we compare the EI and UCB acquisition functions, denoted
by BO-EI and BO-UCB, respectively, to random search [22]
and SnobFit [53]. Each optimizer is allowed a maximum
budget of 60 closed-loop evaluations. The first 5 data points
for both BO methods are generated using quasi-random
sampling to ensure the hyperparameters of the GP prior
are trainable. Since all methods involve some degree of
random sampling, the optimization trials are repeated 50
times from different random seeds to assess their average
performance. Performance of each method is measured in
terms of simple regret, which is the difference between the
best found sample up until a given iteration and the global
minimum (estimated using the best found sample in all
trials). The results are shown in Fig. 3. We clearly see that
both BO-EI and BO-UCB consistently outperform the other
DFO methods. Interestingly, the BO methods find tuning

Fig. 2: Closed-loop trajectories for the most challenging state
to control, s2, using the exact model ✓ = B (true B), a
randomly chosen tuning ✓ (wrong B), and no control.

Fig. 3: Expected simple regret for the oscillating mass auto-
tuning problem, with approximate 95% confidence regions,
estimated from 50 independent random optimization trials.
The cost obtained with the true ✓ = B is also shown with a
dotted black line.

parameter values that lead to a lower cost than setting ✓ equal
to the true B value. This is not as surprising when we recall
the mismatch between the closed-loop cost and MPC cost
functions. Since we have not penalized the smoothness of
the control input profile in (26), BO has found a (somewhat
non-intuitive) way to make the control actions more aggres-
sive while simultaneously achieving good setpoint tracking
performance. This highlights the importance of the choice of
cost functions (and policy parametrization) when formulating
the controller auto-tuning problem.

To further investigate these results, we analyze the perfor-
mance of a single run of these algorithms, which lead to the

following best learned tuning parameter values

B = (0.014, 0.063, 0.221, 0.367),

✓BO-EI = (0.000, 0.000, 0.338, 0.761),

✓random = (0.105, 0.476, 0.262, 0.927),

✓snobfit = (0.000, 0.094, 0.410, 0.733).

BO does not exactly learn the true B matrix, however, it
clearly mimics the same trend as B wherein the first two
elements are small and the fourth element is larger than the
third element. This is a consequence of the interpretable pol-
icy structure, which allows useful information to be extracted
from the learned ✓ values. In particular, here, we learned
that, as expected, the control input has a small effect on the
position and velocity of the first mass, but a large effect on
the position and velocity of the second mass (see Fig. 1). To
demonstrate how this type of knowledge can transfer to other
tasks, we tested the performance of the BO-tuned controller
on a new (harder) initial condition x0 = (2,�1, 0,�2).
Phase plots of s1 versus s2 for the original (training) initial
condition and the new (testing) initial condition are shown
in Fig. 4. The system can be quickly steered to the origin
in both cases – this type of extrapolation would be difficult
to achieve in general without an interpretable control policy
supplied with useful domain knowledge.

VI. CONCLUSIONS AND PERSPECTIVES FOR FUTURE
WORK

This tutorial provided an overview of recent developments
in the area of control policy learning, with a particular
focus on learning optimization-based control policies that are
implicitly defined in terms interpretable equations, namely
control objectives and system dynamics and constraints. In
contrast to explicit control policies such as neural networks,
these interpretable equations in fact enable us to encode
prior system knowledge into a control policy with learnable
parameters. We first demonstrated how some of the widely-
used control strategies such as linear-quadratic regulator
and model predictive control can be viewed as tunable
optimization-based control policies, wherein automated and
systematic policy tuning plays an important role to en-
sure high-performance and safe closed-loop behavior. Then,
we discussed Bayesian optimization (BO) as an especially
promising derivative-free optimization method for efficient
solution of safe controller auto-tuning problems that rely
on (often expensive) repeated closed-loop simulations of an
optimization-based control policy.

Recent years have witnessed a growing interest in BO
applications for controller auto-tuning. Yet, this fast evolving
area presents significant opportunities for future research.
Here, we discuss several extensions of traditional BO (Al-
gorithm 1). We note that this list is by no means exhaustive,
rather it is intended to provide a brief overview of several
open challenges that have received less attention in the
context of (safe) controller auto-tuning problems.

Noise handling. An important advantage of BO is its
ability to handle noisy observations, which is intrinsic to

Position of mass 1 [m]

Po
si

tio
n

of
 m

as
s

2
[m

]
BO

True

(a) training initial condition

Position of mass 1 [m]

Po
si

tio
n

of
 m

as
s

2
[m

] BO
True

(b) testing initial condition

Fig. 4: Comparison of closed-loop phase plots of s1 versus
s2 for the original (training) initial condition in (a) and the
new (testing) initial condition in (b) for the BO-based auto-
tuned (blue) and true control (black) policies.

controller auto-tuning problems discussed in Section II. The
GP presented in (18) is based on the simplest independent,
fixed variance �

2 Gaussian noise model. Although �
2 is

often treated as a trainable hyperparameter in the GP, which
provides some degree of modeling flexibility, this type of
noise model is only theoretically valid in the limit of large
K in (8) wherein we can invoke the central limit theorem.
Since the evaluation of cost J is proportional to K (see
(8)), we may not be able to select a large enough value for
K so that this assumption is accurate. There are two major
directions that can be pursued to address this challenge. First,
one can apply more sophisticated Monte Carlo sampling
techniques (e.g., importance sampling [54]) to reduce the
variance in the sample-based estimator such that it better
fits the standard noise model. Second, one can incorporate
more advanced noise models to better capture the observed
variability. For example, heteroscedastic GP models can
capture input-dependent variability in the noise variance
[55]–[57]. There has been very limited work on these types
of noise models in the context of BO-based controller auto-

tuning [58].
Parallel evaluation. In many applications, one may have

access to multiple copies of the system of interest. For high-
fidelity simulators, these copies refer to multiple computers
or cores that enable one to evaluate J simultaneously for
different values of ✓. For experimental systems, these copies
would be physical “backup” systems available for testing and
validation purposes. In either case, we are no longer limited
to evaluating a single tuning parameter at every iteration.
Assuming we can run B trials at every iteration, Line 3
of Algorithm 1 can be updated to simultaneously design B

different sets of tuning parameters that can all be run in
parallel in Line 4. In fact, BO can straightforwardly extend
to this parallel evaluation case in both the synchronous
[59]–[61] (evaluations take the same amount of time) and
asynchronous [62]–[64] (evaluations take a variable amount
of time) settings. Parallel (also known as batch) BO can lead
to significant speedups in controller auto-tuning problems in
terms of total optimization time.

Multi-fidelity representations. Strategies for improving
upon the budget allocation in BO are highly desirable, espe-
cially when observations are expensive to acquire. Recent
work has shown that, instead of thinking about J as a
function of tuning parameters only, we can more generally
represent it as a family of information sources J (✓, �) such
that J(✓) = J (✓, � = 1) with � 2 [0, 1]n� denoting a
collection of “fidelity” parameters that control the accuracy
of the cost function. It is assumed the fidelity parameters
have been scaled such that � = 0 and � = 1 correspond
to the lowest and highest fidelity model, respectively. As
discussed in detail in [65, Section 5], many quantities can
be treated as fidelity parameters � in controller auto-tuning
applications. As such, increasing individual elements of �
is expected to increase the accuracy of the simulation,
however, this increase in accuracy comes at the price of
additional cost toward our budget. Therefore, given some
fixed overall budget, we could attempt to simultaneously
design (✓s+1, �s+1) to move us toward our goal of solving
the (safe) auto-tuning problem without over-spending our
budget. Multi-fidelity BO has been considered in several
works [66]–[68] and applied to MPC auto-tuning in [65].
Note that the performance of these methods heavily depends
on the chosen fidelity space. Additional theoretical and
practical work is needed to better understand the impact of
this choice on multi-fidelity BO performance, especially in
auto-tuning applications. Moreover, there has been no work
on extending multi-fidelity BO to handle constraints.

Composite functions. Traditional BO is fully black-box in
nature, which implicitly neglects certain structural informa-
tion that is often available. For example, the overall closed-
loop cost function is often the sum of repeated individual
terms defined in terms of a known stage cost function, as
shown in (6). When we directly model J as a GP, this
structure is completely neglected. This does provide some
benefits in terms of reduced computational cost in terms of
training and prediction; however, these benefits often come
at the cost of accuracy, which can be significant in some

cases. A more general way to approach the controller auto-
tuning problem is to treat the cost and constraint functions as
composites of known and unknown functions, as shown in
[69]. Whenever the known functions are linear, the added
cost is fairly minor since the overall cost and constraint
functions are still GPs (just with lower variance as proven in
[70]). However, whenever these functions are nonlinear, we
must resort to more advanced strategies to properly exploit
this structure. A general algorithm for constrained BO of
composite functions is presented in [71], which has shown
significant performance improvements over black-box BO
on a variety of problems. Applying and further specializing
these types of composite BO methods to auto-tuning appli-
cations is a worthwhile direction for future research.

Gradient information. There has been a significant
amount of recent work on BO strategies for exploiting deriva-
tive (gradient) information in the search process [72]–[74].
These methods can be interpreted as a hybrid between zeroth-
and first-order methods, meaning they have the potential to
achieve the fast local convergence properties of first-order
methods, like (stochastic) gradient descent, along with the
powerful global search properties of traditional BO. Even
when the system dynamics are unknown, we can compute
estimates of the gradient of the cost function from closed-
loop trajectories using the policy gradient theorem [75]. As
such, one can obtain significantly improved performance
over standard reinforcement learning and BO auto-tuning
methods with these hybrid methods, as demonstrated in [76].
Further work is needed to better understand the scalability
of these methods and to extend them to handle safety
constraints.

Multi-objective problems. The previous discussions fo-
cused on a single cost function, however, many auto-tuning
applications involve multiple cost indicators such as those
related to economics, setpoint tracking performance, and
actuator use. In such cases, it is possible to formulate
the auto-tuning problem as a multi-objective optimization
(MOO) problem, which looks to systematically study the
tradeoff between different cost functions through the con-
struction of an optimal Pareto front. BO has been extended
to MOO problems, e.g., in [77]–[79] and applied to an MPC
auto-tuning problem in [80]. Additional work is needed to
understand how best to incorporate safety considerations into
the MOO framework, as well as how to best handle more
than two cost functions.

Preference learning. An important assumption made
throughout this paper is that we have access to a cost
J that numerically quantifies the “best” controller tuning
parameters. However, there are cases when such a cost
function is not easily quantifiable in this form, either because
it is qualitative in nature, it involves several goals, or requires
a human decision maker to be assessed. An interesting
direction that has recently emerged to address this limitation
is so-called preference-based Bayesian optimization (PBO)
[81]–[83], wherein one uses expressed preferences (pairwise
comparisons between a set of evaluations) to learn an un-
derlying GP surrogate preference function that can be used

for optimization tasks. An efficient preference-based learning
optimization approach was recently developed and applied to
controller auto-tuning problems in [84]. Additional studies
of the performance of such preference-based optimization
methods, especially as the number of tuning parameters
increases, would be valuable. Furthermore, combining prefer-
ence learning with the previously-mentioned BO extensions
(such as noise and parallel and multi-fidelity evaluations) are
very interesting directions for future work.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[2] B. Recht, “A tour of reinforcement learning: The view from contin-
uous control,” Annual Review of Control, Robotics, and Autonomous

Systems, vol. 2, pp. 253–279, 2019.
[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. MIT Press, 2018.
[4] D. Bertsekas, “Newtons method for reinforcement learning and model

predictive control,” Results in Control and Optimization, vol. 7,
p. 100121, 2022.

[5] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for
reinforcement learning by genetic programming,” Engineering Appli-

cations of Artificial Intelligence, vol. 76, pp. 158–169, 2018.
[6] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia,

T. A. Badgwell, and J. A. Paulson, “Fusion of machine learning
and mpc under uncertainty: What advances are on the horizon?,” in
Proceedings of the American Control Conference, pp. 342–357, 2022.

[7] Y. Lu and J. Lu, “A universal approximation theorem of deep neural
networks for expressing probability distributions,” Advances in Neural

Information Processing Systems, vol. 33, pp. 3094–3105, 2020.
[8] A. Agrawal, S. Barratt, S. Boyd, and B. Stellato, “Learning convex

optimization control policies,” in Learning for Dynamics and Control,
pp. 361–373, 2020.

[9] W.-K. Mak, D. P. Morton, and R. K. Wood, “Monte Carlo bounding
techniques for determining solution quality in stochastic programs,”
Operations Research Letters, vol. 24, no. 1-2, pp. 47–56, 1999.

[10] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah, “Stochastic
model predictive control with joint chance constraints,” International

Journal of Control, vol. 93, no. 1, pp. 126–139, 2020.
[11] D. Bertsekas, Dynamic programming and optimal control: Volume I,

vol. 1. Athena Scientific, 2012.
[12] T. Pappas, A. Laub, and N. Sandell, “On the numerical solution of

the discrete-time algebraic Riccati equation,” IEEE Transactions on

Automatic Control, vol. 25, no. 4, pp. 631–641, 1980.
[13] W. B. Powell, “What you should know about approximate dynamic

programming,” Naval Research Logistics, vol. 56, no. 3, pp. 239–249,
2009.

[14] Y. Wang and S. Boyd, “Fast evaluation of quadratic control-Lyapunov
policy,” IEEE Transactions on Control Systems Technology, vol. 19,
no. 4, pp. 939–946, 2010.

[15] A. Keshavarz and S. Boyd, “Quadratic approximate dynamic program-
ming for input-affine systems,” International Journal of Robust and

Nonlinear Control, vol. 24, no. 3, pp. 432–449, 2014.
[16] M. Morari and J. H. Lee, “Model predictive control: past, present

and future,” Computers & Chemical Engineering, vol. 23, no. 4-5,
pp. 667–682, 1999.

[17] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:

Theory, computation, and design, vol. 2. Nob Hill Publishing Madison,
WI, 2017.

[18] J. H. Lee, “Model predictive control: Review of the three decades
of development,” International Journal of Control, Automation and

Systems, vol. 9, pp. 415–424, 2011.
[19] S. Barratt, “On the differentiability of the solution to convex optimiza-

tion problems,” arXiv preprint arXiv:1804.05098, 2018.
[20] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to

derivative-free optimization. SIAM, 2009.
[21] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review

of algorithms and comparison of software implementations,” Journal

of Global Optimization, vol. 56, pp. 1247–1293, 2013.

[22] F. J. Solis and R. J.-B. Wets, “Minimization by random search tech-
niques,” Mathematics of Operations Research, vol. 6, no. 1, pp. 19–30,
1981.

[23] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms
for constrained optimization,” SIAM Journal on Optimization, vol. 17,
no. 1, pp. 188–217, 2006.

[24] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: New perspectives on some classical and modern methods,”
SIAM Review, vol. 45, no. 3, pp. 385–482, 2003.

[25] D. M. Mukhopadhyay, M. O. Balitanas, A. Farkhod, S.-H. Jeon, and
D. Bhattacharyya, “Genetic algorithm: A tutorial review,” Interna-

tional Journal of Grid and Distributed Computing, vol. 2, no. 3,
pp. 25–32, 2009.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-

ceedings of International Conference on Neural Networks, vol. 4,
pp. 1942–1948, IEEE, 1995.

[27] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary Computation, vol. 11,
no. 1, pp. 1–18, 2003.

[28] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[29] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint

arXiv:1807.02811, 2018.
[30] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh,

“Bayesian optimization for adaptive experimental design: A review,”
IEEE Access, vol. 8, pp. 13937–13948, 2020.

[31] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe,
“Data-efficient autotuning with Bayesian optimization: An industrial
control study,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 3, pp. 730–740, 2019.

[32] D. Piga, M. Forgione, S. Formentin, and A. Bemporad, “Performance-
oriented model learning for data-driven mpc design,” IEEE Control

Systems Letters, vol. 3, no. 3, pp. 577–582, 2019.
[33] J. A. Paulson and A. Mesbah, “Data-driven scenario optimization for

automated controller tuning with probabilistic performance guaran-
tees,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1477–1482,
2020.

[34] Q. Lu, R. Kumar, and V. M. Zavala, “MPC controller tuning using
Bayesian optimization techniques,” arXiv preprint arXiv:2009.14175,
2020.

[35] M. Khosravi, V. N. Behrunani, P. Myszkorowski, R. S. Smith,
A. Rupenyan, and J. Lygeros, “Performance-driven cascade controller
tuning with Bayesian optimization,” IEEE Transactions on Industrial

Electronics, vol. 69, no. 1, pp. 1032–1042, 2021.
[36] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-

tion with safety constraints: Safe and automatic parameter tuning in
robotics,” Machine Learning, pp. 1–35, 2021.

[37] M. Khosravi, C. König, M. Maier, R. S. Smith, J. Lygeros, and A. Ru-
penyan, “Safety-aware cascade controller tuning using constrained
Bayesian optimization,” IEEE Transactions on Industrial Electronics,
vol. 70, no. 2, pp. 2128–2138, 2022.

[38] D. Krishnamoorthy and F. J. Doyle, “Safe bayesian optimization using
interior-point method - applied to personalized insulin dose guidance,”
IEEE Control Systems Letters, vol. 6, pp. 2834–2839, 2022.

[39] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Learning and

Intelligent Optimization, pp. 507–523, Springer, 2011.
[40] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,

M. Patwary, M. Prabhat, and R. Adams, “Scalable Bayesian opti-
mization using deep neural networks,” in International Conference

on Machine Learning, pp. 2171–2180, PMLR, 2015.
[41] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine

Learning, vol. 2. MIT Press, 2006.
[42] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-

tion of expensive black-box functions,” Journal of Global optimization,
vol. 13, no. 4, p. 455, 1998.

[43] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger,
“Information-theoretic regret bounds for Gaussian process optimiza-
tion in the bandit setting,” IEEE Transactions on Information Theory,
vol. 58, no. 5, pp. 3250–3265, 2012.

[44] P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient
policy for sequential information collection,” SIAM Journal on Control

and Optimization, vol. 47, no. 5, pp. 2410–2439, 2008.

[45] K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Póczos,
“Parallelised Bayesian optimisation via Thompson sampling,” in Inter-

national Conference on Artificial Intelligence and Statistics, pp. 133–
142, PMLR, 2018.

[46] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani, “Pre-
dictive entropy search for efficient global optimization of black-
box functions,” Advances in Neural Information Processing Systems,
vol. 27, 2014.

[47] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R.
Collins, J. Schneider, B. Poczos, and E. P. Xing, “Tuning hyperparam-
eters without grad students: Scalable and robust Bayesian optimisation
with dragonfly,” The Journal of Machine Learning Research, vol. 21,
no. 1, pp. 3098–3124, 2020.

[48] J. Chen, F. Luo, and Z. Wang, “Dynamic multi-objective ensemble of
acquisition functions in batch Bayesian optimization,” in Proceedings

of the Genetic and Evolutionary Computation Conference Companion,
pp. 479–482, 2022.

[49] S. R. Chowdhury and A. Gopalan, “On kernelized multi-armed ban-
dits,” in International Conference on Machine Learning, pp. 844–853,
PMLR, 2017.

[50] K. J. Chan, J. A. Paulson, and A. Mesbah, “Safe explorative Bayesian
optimization - towards personalized treatments in plasma medicine,”
in Submitted to 2023 Proceedings of Conference on Decision and

Control, IEEE.
[51] S. Lucia, A. Tătulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid

development of modular and sustainable nonlinear model predictive
control solutions,” Control Engineering Practice, vol. 60, pp. 51–62,
2017.

[52] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham, A. G. Wilson,
and E. Bakshy, “Botorch: A framework for efficient Monte-Carlo
Bayesian optimization,” Advances in neural information processing

systems, vol. 33, pp. 21524–21538, 2020.
[53] W. Huyer and A. Neumaier, “SNOBFIT–stable noisy optimization by

branch and fit,” ACM Transactions on Mathematical Software, vol. 35,
no. 2, pp. 1–25, 2008.

[54] S. T. Tokdar and R. E. Kass, “Importance sampling: A review,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 1,
pp. 54–60, 2010.

[55] P. Goldberg, C. Williams, and C. Bishop, “Regression with input-
dependent noise: A Gaussian process treatment,” Advances in Neural

Information Processing Systems, vol. 10, 1997.
[56] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, “Most likely

heteroscedastic Gaussian process regression,” in Proceedings Interna-

tional Conference on Machine Learning, pp. 393–400, 2007.
[57] M. Lázaro-Gredilla and M. K. Titsias, “Variational heteroscedastic

Gaussian process regression,” in Proceedings of the International

Conference on Machine Learning, pp. 841–848, 2011.
[58] K. Tuan Hoang, S. Boersma, A. Mesbah, and L. Imsland, “Het-

eroscedastic Bayesian optimisation for active power control of wind
farms,” IFAC-PapersOnLine, 2023 (accepted).

[59] J. Wu and P. Frazier, “The parallel knowledge gradient method
for batch Bayesian optimization,” Advances in Neural Information

Processing Systems, vol. 29, 2016.
[60] S. Daulton, M. Balandat, and E. Bakshy, “Differentiable expected

hypervolume improvement for parallel multi-objective Bayesian op-
timization,” Advances in Neural Information Processing Systems,
vol. 33, pp. 9851–9864, 2020.

[61] L. D. González and V. M. Zavala, “New paradigms for exploiting par-
allel experiments in Bayesian optimization,” Computers & Chemical

Engineering, vol. 170, p. 108110, 2023.
[62] T. S. Frisby, Z. Gong, and C. J. Langmead, “Asynchronous parallel

bayesian optimization for ai-driven cloud laboratories,” Bioinformat-

ics, vol. 37, pp. i451–i459, 2021.
[63] M. Dorier, R. Egele, P. Balaprakash, J. Koo, S. Madireddy, S. Ramesh,

A. D. Malony, and R. Ross, “HPC storage service autotuning using
variational-autoencoder-guided asynchronous Bayesian optimization,”
in International Conference on Cluster Computing, pp. 381–393,
IEEE, 2022.

[64] J. P. Folch, R. M. Lee, B. Shafei, D. Walz, C. Tsay, M. van der
Wilk, and R. Misener, “Combining multi-fidelity modelling and
asynchronous batch Bayesian optimization,” Computers & Chemical

Engineering, vol. 172, p. 108194, 2023.
[65] F. Sorourifar, N. Choksi, and J. A. Paulson, “Computationally efficient

integrated design and predictive control of flexible energy systems

using multi-fidelity simulation-based Bayesian optimization,” Optimal

Control Applications and Methods, 2021.
[66] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos, “Multi-

fidelity Bayesian optimisation with continuous approximations,” in In-

ternational Conference on Machine Learning, pp. 1799–1808, PMLR,
2017.

[67] M. Poloczek, J. Wang, and P. Frazier, “Multi-information source
optimization,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[68] J. Song, Y. Chen, and Y. Yue, “A general framework for multi-fidelity
Bayesian optimization with Gaussian processes,” in International

Conference on Artificial Intelligence and Statistics, pp. 3158–3167,
PMLR, 2019.

[69] A. Kudva, F. Sorouifar, and J. A. Paulson, “Efficient robust global
optimization for simulation-based problems using decomposed Gaus-
sian processes: Application to MPC calibration,” in Proceedings of the

American Control Conference, pp. 2091–2097, IEEE, 2022.
[70] K. Wang, B. Wilder, S.-c. Suen, B. Dilkina, and M. Tambe, “Improving

GP-UCB algorithm by harnessing decomposed feedback,” in Machine

Learning and Knowledge Discovery in Databases, pp. 555–569,
Springer, 2020.

[71] J. A. Paulson and C. Lu, “Cobalt: Constrained bayesian optimization of
computationally expensive grey-box models exploiting derivative in-
formation,” Computers & Chemical Engineering, vol. 160, p. 107700,
2022.

[72] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier, “Bayesian opti-
mization with gradients,” Advances in Neural Information Processing

Systems, vol. 30, 2017.
[73] S. Müller, A. von Rohr, and S. Trimpe, “Local policy search with

Bayesian optimization,” Advances in Neural Information Processing

Systems, vol. 34, pp. 20708–20720, 2021.
[74] S. Penubothula, C. Kamanchi, and S. Bhatnagar, “Novel first order

Bayesian optimization with an application to reinforcement learning,”
Applied Intelligence, vol. 51, pp. 1565–1579, 2021.

[75] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, 1999.

[76] G. Makrygiorgos, J. A. Paulson, and A. Mesbah, “Gradient-enhanced
Bayesian optimization via acquisition ensembles with application to
reinforcement learning,” IFAC-PapersOnLine, 2023 (accepted).

[77] N. Khan, D. E. Goldberg, and M. Pelikan, “Multi-objective Bayesian
optimization algorithm,” in Proceedings of the 4th Annual Conference

on Genetic and Evolutionary Computation, pp. 684–684, 2002.
[78] D. Hernández-Lobato, J. Hernandez-Lobato, A. Shah, and R. Adams,

“Predictive entropy search for multi-objective Bayesian optimization,”
in International Conference on Machine Learning, pp. 1492–1501,
PMLR, 2016.

[79] S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy, “Multi-objective
Bayesian optimization over high-dimensional search spaces,” in Un-

certainty in Artificial Intelligence, pp. 507–517, PMLR, 2022.
[80] G. Makrygiorgos, A. D. Bonzanini, V. Miller, and A. Mesbah,

“Performance-oriented model learning for control via multi-objective
Bayesian optimization,” Computers & Chemical Engineering, vol. 162,
p. 107770, 2022.

[81] B. Eric, N. Freitas, and A. Ghosh, “Active preference learning with
discrete choice data,” Advances in Neural Information Processing

Systems, vol. 20, 2007.
[82] J. González, Z. Dai, A. Damianou, and N. D. Lawrence, “Preferen-

tial Bayesian optimization,” in International Conference on Machine

Learning, pp. 1282–1291, PMLR, 2017.
[83] M. Abdolshah, A. Shilton, S. Rana, S. Gupta, and S. Venkatesh,

“Multi-objective Bayesian optimisation with preferences over objec-
tives,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[84] M. Zhu, D. Piga, and A. Bemporad, “C-GLISp: Preference-based
global optimization under unknown constraints with applications to
controller calibration,” IEEE Transactions on Control Systems Tech-

nology, vol. 30, no. 5, pp. 2176–2187, 2021.

