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Abstract: Bayesian optimization (BO) has shown great promise as a data-e�cient strategy for
the global optimization of expensive, black-box functions in a plethora of control applications.
Traditional BO is derivative-free, as it solely relies on observations of a performance function
to find its optimum. Recently, so-called first-order BO methods have been proposed that
additionally exploit gradient information of the performance function to accelerate convergence.
First-order BO methods mostly utilize standard acquisition functions, while indirectly using
gradient information in the kernel structure to learn more accurate probabilistic surrogates
for the performance function. In this work, we present a gradient-enhanced BO method that
directly exploits performance function (zeroth-order) and its corresponding gradient (first-order)
evaluations in the acquisition function. To this end, a novel gradient-based acquisition function
is proposed that can identify fixed points of the performance optimization problem. We then
leverage ideas from multi-objective optimization to develop an e↵ective strategy for finding query
points that optimally tradeo↵ between traditional zeorth-order acquisition functions and the
proposed gradient-based acquisition function. We show how the proposed acquisition-ensemble,
gradient-enhanced BO (AEGEBO) method can be used to accelerate convergence of policy-based
reinforcement learning by combining noisy observations of the reward function and its gradient
that can be directly estimated from closed-loop data. The performance of AEGBO is compared
to traditional BO and the well-known REINFORCE algorithm on a benchmark LQR problem,
for which we consistently observe significantly improved performance over a limited data budget.
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1. INTRODUCTION

In recent years, there has been a growing interest in the
use of black-box (or derivative-free) optimization in a
variety of real-world control applications. In particular,
Bayesian optimization (BO) has emerged as an e↵ective
strategy for control-oriented model learning (Bansal et al.,
2017; Makrygiorgos et al., 2022), controller auto-tuning
(Paulson and Mesbah, 2020; Khosravi et al., 2021; Paulson
et al., 2022), and direct policy-search reinforcement learning
(Marco et al., 2016, 2017; Pautrat et al., 2018; Turchetta
et al., 2020; Chatzilygeroudis et al., 2019). BO is considered
especially useful for “global” optimization of black-box and
expensive-to-evaluate functions (Frazier, 2018), such as
closed-loop control performance measures. BO provides a
principled strategy to sequentially query candidate points
using an acquisition function (AF), which measures the
information value of sampling at a new point in terms
of a probabilistic surrogate model of the performance
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function constructed from previous function observations
(i.e., zeroth-order information).

Nevertheless, in various optimization and control settings,
first-order gradient information, namely observations of
partial derivatives of performance function with respect
to decision variables, is readily available. Enhancing the
convergence rate of BO using gradient information has been
investigated in a few recent works (Wu et al., 2017; Eriksson
et al., 2018; Shekhar and Javidi, 2021). The main idea is
to condition the GP model of performance function on
gradient information to obtain more accurate predictions,
which can in turn yield faster convergence. As such, the first-
order gradient information is used indirectly in searching for
the candidate sample points. More recently, the direct use
of gradients in the search process has been proposed mainly
in the context of policy-search reinforcement learning (RL)
to locally enhance the performance of gradient descent. To
this end, Müller et al. (2021) and Nguyen et al. (2022)
have utilized AFs based on only first-order information to
obtain improved gradient estimates for a black-box reward
function using gradients of a GP model. Penubothula
et al. (2021) proposed a first-order BO method that uses a
collection of AFs built separately for each partial derivative.



A clustering method is then used to find a consensus point
via a convex combination of the set optimal points found
for each individual AF. Not only does this method require
several acquisition functions to be maximized at each
iteration, the heuristic clustering method is not guaranteed
to optimally tradeo↵ between these di↵erent AFs. In the
context of traditional zeroth-order BO, recent work has
shown the value of applying multi-objective optimization
techniques to systematically identify Pareto optimal points
for an ensemble of AFs (Lyu et al., 2018; Guinet et al.,
2020). To the best of our knowledge, such concepts have
yet to be applied in any first-order BO method.

In this work, we present a gradient-enhanced BO method
that can exploit both performance and gradient function
evaluations using an ensemble of two acquisition functions.
The contribution of this paper is twofold. The first is the
derivation of a cheap-to-evaluate gradient-based acquisition
function that can identify fixed points of the performance
optimization problem. The second contribution is a simple,
yet e↵ective strategy for finding query points that optimally
tradeo↵ between a zeroth-order AF and the proposed
gradient-based AF via multi-objective optimization. Thus,
the proposed acquisition-ensemble, gradient-enhanced BO
(AEGBO) method can discover a set of valuable query
points that are Pareto optimal with respect to both sources
of information. Furthermore, we discuss how AEGBO can
be applied to policy-search RL to accelerate convergence
by using noisy observations of reward function and its
gradient, which can be directly estimated from closed-
loop observations of the reward function using the policy
gradient theorem (Sutton et al., 1999). The performance of
AEGBO is compared to standard BO and the well-known
REINFORCE algorithm on a benchmark LQR problem.

2. NOTATION AND PRELIMINARIES

2.1 Problem Statement

Given an expensive-to-evaluate function f : X ! R, we are
interested in finding the design (or input) vector x? that
globally maximizes the function, i.e.,

x
? 2 argmax

x2X
f(x), (1)

where X ⇢ Rd is the optimization domain. The mathemat-
ical structure of f is assumed to be unknown such that we
must rely on some “learning” strategy to infer a represen-
tation of the function from data. To execute the learning
process, we assume that we have the ability to query f

at any desired input x 2 X and receive a (possibly noisy)
evaluation of f(x) and its gradient rf(x). Traditional BO
methods consider zeroth-order (derivative-free) function
evaluations only, which fundamentally limits performance
when additional gradient information is available. The goal
of this work is to simultaneously utilize zeroth- and first-
order information in a computationally e�cient manner.
We first provide a short overview of previous BO methods
that use function and gradient information.

2.2 Gaussian Processes with Derivative Information

We place a GP prior over f to build a probabilistic surrogate
model that is non-parametric. A GP model is fully specified

by its mean function µ : X ! R and covariance (or kernel)
function k : X ⇥ X ! R. Since the gradient is a linear
operator, the gradient of a GP must remain a GP, such
that we can create a joint GP model with the following
updated mean function µ̃ and covariance function k̃

µ̃(x) =


µ(x)
rµ(x)

�
, (2a)

k̃(x, x0) =


k(x, x0) rx0k(x, x0)>

rxk(x, x
0) rx(rx0k(x, x0)>)

�
. (2b)

The extended mean function µ̃ : X ! Rd+1 maps to a
(d+ 1)-dimensional vector, while the extended covariance
function k̃ : X⇥ X ! Rd+1⇥d+1 maps to a (d+ 1)⇥ (d+
1) matrix, which has the ability to capture correlation
between the function and its d partial derivatives that
make up the gradient vector (Williams and Rasmussen,
2006, Sect. 9.4). We assume access to some dataset D(n) =
{(x(i)

, y
(i)
,ry

(i))}ni=1 composed of n sample points with
corresponding noisy observations of the objective and
gradient at each x

(i) given by

(y(i),ry
(i)) ⇠ N

⇣
(f(x(i)),rf(x(i))),⌃(i)

⌘
, (3)

where ⌃(i) 2 Rd+1⇥d+1 is a positive-definite covariance
matrix for the i

th sample point. If ⌃(i) is not known, then
we typically parametrize it as ⌃(i) = diag

�
�
2
1 , . . . ,�

2
d+1

�
,

where �2
k denotes a fixed independent variance term for each

separate element of the observation vector k 2 {1, . . . , d+
1}, which can be estimated from data.

Given the current dataset D(n), the posterior (f,rf) | D(n)

remains a joint GP with the following updated mean
function µ̃

(n) and covariance function k̃
(n)

µ̃
(n)(x) = µ̃(x) + k̃

>
n (x)K̃

�1

n (ỹn � µ̃n), (4a)

k̃
(n)(x, x0) = k̃(x, x0)� k̃

>
n (x)K̃

�1

n k̃n(x), (4b)

where k̃n(x) = [k̃(x(1)
, x), . . . , k̃(x(n)

, x)]> is the vector of
covariance values between the sample points and the test
point x, K̃n is the covariance matrix evaluated at the
sample points, which is composed of elements [K̃n]ij =
k̃(x(i)

, x
(j))+⌃(i)

�ij , ỹn = ((y(1),ry
(1)), . . . , (y(n),ry

(n)))
is a concatenated vector of all observations, and µ̃n =
(µ̃(x(1)), . . . , µ̃(x(n))) is the joint mean function evaluated
at the sample points. Note that the derivative-informed
GP approach can straightforwardly extended to the case
of incomplete observations by removing the corresponding
rows and columns in (4).

2.3 Derivative-enabled Acquisition Functions

Given the probabilistic surrogate model in (4), we must
define an acquisition function ↵

(n) : X ! R to provide a
good measure of the (expected) desirability of querying
any point x 2 X with respect to our end goal (maximizing
the unknown function f). If properly selected, one would
like to preferentially sample at the point that produces
the highest value of the acquisition function. We can then
formally define BO as the sequential learning process of
selecting next samples in the following fashion

x
(n+1) 2 argmax

x2X
↵
(n)(x), (5)



where ↵(n)(·) represents the acquisition function induced by
the posterior conditioned on data D(n). Therefore, the main
distinction between traditional BO and gradient-enhanced
BO is that D(n) includes derivative information for the
latter, which necessitates the use of a more complex GP
model. In principle, one could take advantage of any of the
previously developed acquisition functions (Shahriari et al.,
2015), such as expected improvement (EI), upper confidence
bound (UCB), or knowledge gradient (KG), by replacing
the standard posterior mean and variance predictions
for f with those derived from (4). However, performing
hyperparameter training and posterior update using (4)
can be computationally demanding. In particular, inverting
the covariance matrix K̃n for the joint GP model scales as
O((n(d+ 1))3), which can be challenging when either n or
d are modest in size. Furthermore, this additional cost can
have a big impact on the e↵ort needed to solve (5), which
requires repeated forward predictions to be made with the
joint GP model.

To better understand the computational implications, let us
look at the derivative-enabled KG (dKG) function in more
detail, which is one of the most commonly used acquisitions
in the noisy problem setting considered in this work. The
dKG function is defined as follows (Wu et al., 2017)

dKGn(x) = En


max
x2X

µ̃
(n+1)
1 (x)|x(n+1) = x

�
�max

x2X
µ̃
(n)
1 (x)

where µ̃(n)
1 (x) = En{f(x)} is the expectation of f(x) under

the GP prior conditioned on data D(n) (corresponds to the
first element of the joint mean vector µ̃(n)(x)). Thus, dKG
measures the expected improvement in the maximum value
of the mean function given a new observation is taken at
xn+1 = x. The use of the mean function, as opposed to the
function observations themselves, is needed to filter out
any noise present in the observations. Although dKG is a
quite e↵ective measure of the value of information, it is
very expensive to evaluate due to the internal maximization
over the future posterior mean function. To mitigate this
computational burden, (Wu et al., 2017) proposed to only
use the best directional derivative at each iteration. In
addition to ignoring useful information in the form of the
complete set of partial derivatives of the objective function,
this approach does not fully address the inherent challenge
of the two-level optimization procedure needed to globally
solve (5) when ↵

(n)(x) = dKGn(x).

In the next section, we introduce a new strategy that can
overcome the challenges of previously developed derivative-
enhanced acquisition functions (such as dKG). Not only
does the proposed method take advantage of the complete
set of function and gradient information at each iteration, it
requires significantly less computational cost than currently
available methods.

3. ACQUISITION ENSEMBLE WITH GRADIENTS
BAYESIAN OPTIMIZATION (AEGBO)

In this section, we describe the proposed method for e�-
ciently integrating noisy function and gradient information
into the BO framework, referred to as AEGBO. First, we
discuss a simpler model for the function and its gradient
constructed from a set of independent GPs. Then, we
introduce a novel acquisition function that can identify

points likely to satisfy rf(x) = 0, which is a necessary
condition for optimality of (1). Lastly, we present a strategy
to select a point for which both a zeroth-order (function)
and first-order (gradient) acquisition function agree is
valuable using ideas from multi-objective optimization.

3.1 Independent Gaussian Process Models

Instead of using the complete joint GP model (4), we
treat the objective function and each one of its partial
derivatives as independent. This implies that the GP priors
are completely separate, i.e.,

f(x) ⇠ GP(µ0(x), k0(x, x
0)), (6a)

@f(x)

@xi
⇠ GP(µi(x), ki(x, x

0)), 8i 2 {1, . . . , d}, (6b)

where µ0 and k0 correspond to the mean and kernel
functions for the function itself, respectively, and µi and
ki correspond to the mean and kernel functions for the
i
th partial derivative of the function, respectively. Let

D(n) = {D(n)
0 ,D(n)

1 , . . . ,D(n)
d } be divided into datasets

corresponding to the function observations D(n)
0 and each

of the partial derivative observations {D(n)
i }di=1. Then, due

to the independence assumption, we can construct the
posterior mean and kernel functions for each of the (d+ 1)

GP models, denoted by µ
(n)
i (x) and k

(n)
i (x, x0), separately

using only the local data D(n)
i for all i = 0, . . . , d. The

posterior update equations are analogous to (4), except
the operations are only performed on a subset of data,
implying the computational cost has been reduced to
O((d+1)n3), which is linear with respect to d. Furthermore,
these operations can be carried out in parallel, which would
make the cost independent of d. Another advantage of the
independent GPs in (6) is that the estimated noise values
for each function are also independent – we have found this
to be very important in practice to reduce sensitivity of
the overall predictions to the estimated noise levels.

3.2 Novel Gradient-based Acquisition Function

Here, we focus on UCB-style acquisition functions due to
their simplicity and established convergence properties (Lu
and Paulson, 2022). The UCB function is given by

↵
(n)
UCB(x) = µ

(n)
0 (x) + �f�

(n)
0 (x), (7)

where �f 2 R+ is a hyperparameter that balances explo-
ration (information) and exploitation (performance) and

�
(n)
0 (x) = [k(n)0 (x, x)]1/2 is the standard deviation of the

posterior GP for f .

Under the independence assumption, the gradient predic-
tions do not directly impact the UCB acquisition such
that we need a new strategy for quantifying the value of
gradient information. To derive an independent source of
information, we recognize that a necessary condition for op-
timality in (1) isrf(x) = 0. An equivalent way to represent
the solutions to this set of equations is minx2X krf(x)k,
which can also be stated as maxx2X(�krf(x)k), where k ·k
denotes some vector norm (we focus on the 1-norm here for
simplicity). Since the gradient is also an unknown function,
we can try to use BO methods to tackle this optimization
problem as a way to e�ciently search for fixed points of the



original maximization problem of interest. An important
distinction between the gradient norm (GN) problem and
(1) is that the former involves multiple unknown functions.
This is often referred to as a decomposed BO problem
in the literature for which standard acquisition functions
do not directly apply. We can straightforwardly develop
an UCB acquisition function for multi-output problems
whenever the objective is defined as a linear transformation
of the GP models, as shown in (Kudva et al., 2022).

Since norms are nonlinear operators, however, we need a
tailored approximation strategy for the gradient norm case
of interest here. We propose the following gradient-based
acquisition function analogously to the UCB function above

↵
(n)
GN(x) = �En{krf(x)k}+ �g

p
Varn{krf(x)k}, (8)

where Varn{·} denotes the posterior variance given Dn

and �g 2 R+ is a hyperparmeter similar to �f . It turns
out we can construct analytic expressions for the mean
and variance terms using properties of Gaussian random
variables. Starting with the mean term, we can derive

En{krf(x)k} =
Pd

i=1 En

n���@f(x)@xi

���
o
, (9)

=
dX

i=1

n
2�(n)

i (x)�(z(n)i ) + µ
(n)
i (x)

h
�(z(n)i ) + �(z(n)i )

io
,

where z(n)i = µ
(n)
i (x)/�(n)

i (x) and �(·) and �(·) correspond
to the standard normal density function and cumulative
density function, respectively. We can similarly derive a
simple overall expression for the variance

Varn{krf(x)k =
Pd

i=1 Varn
n���@f(x)@xi

���
o
, (10)

=
dX

i=1

(
(µ(n)

i (x))2 + (�(n)
i (x))2 � En

⇢����
@f(x)

@xi

����

�2
)
,

where we have exploited the independence assumption in
the first line and rewrote the individual variance terms
in terms of the second total moment in the second line.
Note that closed-form expressions for the inner expectation
terms have already been computed in (9). As such, our
proposed gradient-based acquisition function in (8) can be
e�ciently computed using the d separate GP models for
each of the partial derivatives of the objective function –

this implies that maximizing ↵
(n)
GN(x) should be at worst a

linear factor of the cost required to maximize the cheap-

to-evaluate function ↵
(n)
UCB(x) with respect to d. This is a

substantial reduction in cost when compared to the dKG
function described previously.

3.3 Combining Function and Gradient Information using
Acquisition Ensembles

Now we are equipped with two separate acquisition func-

tions ↵
(n)
UCB(x) and ↵

(n)
GN(x) that, respectively, provide

independent sources of zeroth- and first-order information
regarding the maxima of f . It is unlikely that the same point
maximizes both of these functions simultaneously, meaning
we need some procedure to select a common value xn+1 that
performs reasonably well with respect to both functions.
The multi-objective optimization (MOO) framework is a
good fit for this task since it allows us to systematically
tradeo↵ between multiple objectives.

The main goal of MOO is to characterize the set of points
on the so-called Pareto frontier, which is the set of Pareto
optimal points, i.e., feasible points x 2 X in which favorable
movement in one objective comes at the expense of at least
one other objective. In (Chen et al., 2022), a related idea is
applied to a set of traditional BO acquisition functions that
showed promising results. Therefore, we look to develop

a similar approach using ↵n(x) = {↵(n)
1 (x),↵(n)

2 (x)} as
our set of acquisition functions, where the subscripts 1
and 2 will be used as shorthand for the UCB and GN
acquisition functions, respectively. Therefore, we can now
formally state the AEGBO method in terms of ↵n(x) as
the following sequential sampling process

x
(n+1) 2 X

?
n = {x 2 X : ↵n(x) 2 Pn}, (11)

where X
?
n denotes the set of Pareto optimal points given

all currently available data D(n), which is characterized by
the Pareto frontier Pn

Pn = {↵n(x) : @y 2 X s.t. ↵n(x) � ↵n(y)}, (12)

where ↵n(x) � ↵n(y) implies point y dominates x, which

occurs if and only if ↵(n)
i (x)  ↵

(n)
i (y) for all i 2 {1, 2}

and 9i 2 1, 2 such that ↵
(n)
i (x) < ↵

(n)
i (y). Therefore, Pn

corresponds to the set of points for which there does not
exist any feasible point that dominates it.

Although the proposed AEGBO method requires the MOO
problem (11) be solved at every iteration, this problem
involves only two cheap-to-evaluate objective functions and
thus can be straightforwardly solved (approximately) using
established methods such as the NSGA-II algorithm (Deb
et al., 2002). It is worth noting that all points in X

?
n are

Pareto optimal such that there is no clear metric to select
between the candidate points in this set. In practice, any
selection criteria can be utilized; however, we focus on
a uniform random selection criteria in which all points
from X

?
n are potentially chosen with equal probability. We

found that such an approach tends to reduce bias that
may be introduced with a deterministic selection strategy.
Additionally, since the hypervolume of Pn tends to decrease
as more data is collected, the randomized approach is
unlikely to over-explore as n ! 1.

4. AEGBO FOR POLICY-BASED REINFORCEMENT
LEARNING OF EXPENSIVE SYSTEMS

Reinforcement learning (RL) is a semi-supervised learning
method in which a so-called “agent” attempts to learn the
best way to maximize a long-term reward function through
trial-and-error interactions with the “environment.” There
has been a vast amount of work on RL, which can be
roughly viewed as a collection of solution approaches to
stochastic optimal control problems of the form

max
⇡0:N�1

Ew0:N�1

nPN�1
t=0 rt(zt, ut, wt) + rN (zN )

o
, (13)

s.t. zt+1 = gt(zt, ut, wt), ut = ⇡t(⌧t),

when the system dynamics are unknown, where zt, ut, and
wt are the system state, control input, and disturbance at
time t, respectively, gt(·) is the state transition function that
governs the dynamics at time t in response to stochastic
disturbances wt, rt(·) is the reward gained at time step
t, ⇡t(·) is the feedback control policy at time t that can
be any feasible function of the observed data trajectory



up until time t, i.e., ⌧t = (u0, . . . , ut�1, x0, . . . , xt), and N

is the time horizon. Thus, RL methods attempt to solve
(13) in cases where the state transition rules {gt(·)} are
unknown by transforming the problem into a learning task.
We can then classify di↵erent RL methods based on the
chosen learning task (see, e.g., (Mesbah et al., 2022)).

One of the most popular variants in recent years is the so-
called class of policy-based RL methods that look to learn
the optimal settings for a parametrized policy function
⇡x(⌧t) where x refers to adjustable policy parameters. We
can think of the overall reward function in (13) as simply
a function of x since this represents the only degrees of
freedom remaining in the policy. Let us define R(⌧) as the
overall reward function computed over a single dynamic
trajectory ⌧ . Due to the random disturbances present in the
dynamics, ⌧ is random with some probability distribution
p(⌧ ;x) that is parametrized by x such that (13) becomes

max
x2X

f(x) = Ep(⌧ ;x){R(⌧)} =

Z
R(⌧)p(⌧ ;x)d⌧, (14)

which matches our starting problem (1) since f is unknown.
The first key observation is that noisy observations are criti-
cally important to handle in policy-based RL problems since
we cannot evaluate the integral in (14) exactly and must

resort to some sampling strategy, e.g., 1
Ns

PNs

i=1 R(⌧ (i))

where ⌧
(i) ⇠ p(⌧ ;x). Traditional BO methods can be

applied in such cases, however, this only takes advantage
of zeroth-order information. Policy gradient methods are
a commonly used alternative that exploit the fact that
gradient estimates of the reward can be derived as follows

rf(x) = Ep(⌧ ;x){R(⌧)rx log p(⌧ ;x)}, (15)

which can be evaluated using only gradients of the policy
for Markov processes (Sutton et al., 1999). Traditional
policy gradient methods, such as REINFORCE (Williams,
1992), then apply stochastic gradient ascent to update an
initial x(0) using a mini-batch of samples, i.e.,

x
(n+1) = x

(n) +
⌘n

Ns

 
NsX

i=1

R(⌧ (i))rx log p(⌧
(i);x)

!
, (16)

where ⌘n is the step size at iteration n (sometimes referred
to as a learning rate). However, as observed from (16),
these types of policy gradient methods only use estimates
of the current gradient at each iteration, which neglects
valuable information about the current and past reward
and gradient estimates. For example, if the current reward
value is small, we should prioritize moving to a new region
of the policy parameter space, as opposed to wasting closed-
loop evaluations at neighboring parameter values that
are likely to perform poorly. Such an e�cient sampling
strategy is extremely important whenever the closed-loop
data collection process is expensive, which will be the case
when the system dynamics are defined in terms of a high-
fidelity simulator or a time-consuming experimental setup.

The proposed AEGBO method in Section 3 is perfectly
suited to take advantage of the complete history of reward
and its gradient evaluations at every iteration. Therefore,
we can think of AEGBO as a powerful hybrid strategy that
inherits the e�cient global search capability of BO as well
as the useful local search behavior of REINFORCE. It is
worth noting that the cost of evaluating rx log p(⌧ (i);x)
is roughly the same as a single evaluation of the policy

itself, meaning the gradient estimate can be obtained for
free whenever the reward evaluation R(⌧ (i)) is much more
expensive than the policy evaluation ⇡x(⌧ (i)), which will
often be the case for expensive systems.

Remark 1. The gradient estimate used in (16) is noisy in
practice, which has led to a substantial amount of work on
ways to reduce the variance of this estimator. We apply
the method from (Papini et al., 2018) in our case study,
which involves subtracting a baseline value derived from the
generated sample trajectories, as we found this approach
worked well in our case study. Since the noise levels can
have a big influence on the performance of any BO method,
we plan to study this in more detail in future work.

5. ILLUSTRATIVE EXAMPLE:
LINEAR QUADRATIC REGULATOR

5.1 System Description

To demonstrate the achievable performance gains with
AEGBO, we consider a linear quadratic regulator (LQR)
problem of the form (13) with a quadratic reward function
rt(zt, ut, wt) = �z

>
t Qzt � u

>
t Rut, a linear system dynamic

zt+1 = Azt+But+wt with wt ⇠ N (0, 10�2
I), no terminal

cost, and a time horizon of N = 10. The true values for
(A,B,Q,R) are given by

A = 0.5

2

64

1 0 2 0
0 1 0 1
0 0 1 2
1 0 0 1

3

75 , B =

2

64

0.5
0
0
0

3

75 , Q = 10�2
I, R = 10�2

.

The initial condition is z0 = [2.0,�1.5,�2.0, 1.0]>. When
the system dynamics are known, the LQR problem can be
analytically solved using dynamic programming. For the
settings considered here, the optimal control policy as N !
1 is ⇡?(z) = �Kz where K = [1.172, 0.011, 1.516, 1.469].
This corresponds to an optimal reward value of �0.246.

5.2 Implementation Details

In the context of RL, the system dynamics are assumed
unknown such that we need to repeatedly interact with
the system to learn a suitable control policy. As discussed
in Section 4, we focus on policy-based RL methods and
assume a stochastic linear policy function of the form

⇡x(zt) = N (�x
>
zt,�

2), (17)

where x 2 X = [0, 2]4 ⇢ R4 are the policy parameters and
�
2 = 10�2 is a small variance term needed to ensure the

policy gradient theorem used to derive (15) holds.

To implement AEGBO, we use the fitgpr and gamultiobj
functions in Matlab to, respectively, train the hyperparam-
eters of the GP models (assuming a standard zero prior
mean function and squared exponential kernel) and identify
the set of Pareto optimal points X?

n needed in (11). We use
a “mini-batch” size of Ns = 16 samples during each episode
(training epoch) to estimate the reward and gradient values.
We selected exploration parameters of �f = 0.1 and �g = 0.

5.3 Results and Performance Comparisons

We compare AEGBO to two baseline algorithms on the
LQR problem to demonstrate its performance improve-
ments. Since our goal is to identify the policy parameters



that maximize the reward function in as few iterations as
possible, we use simple regret as our performance metric

Regretn(D(0)) = f
? � max

i=1,...,n
y
(i)
, (18)

where f
? = maxx2X f(x) is the true global maximum. By

definition, simple regret measures the distance between the
best observed point and the true solution, which depends
on the initial dataset D(0). Here, we assume that D(0) is
composed of 5 points chosen uniformly at random from
the design space X. We estimate average performance
E{Regretn(D(0))} by repeating the algorithms 100 times for
di↵erent D(0) and report corresponding confidence intervals
using the standard error formula (i.e., standard deviation
divided by the square root of the number of samples). The
two baseline algorithms are described next.

BO: The sampled point is x
(n+1) 2 argmaxx2X ↵

(n)
UCB(x),

which only considers zeroth-order information. We keep all
other settings the same as that used in AEGBO.

REINFORCE: The REINFORCE algorithm corresponds
to the stochastic gradient ascent update step shown in
(16), which uses only local first-order information at every
iteration. We set the learning rate ⌘n = 0.1, which is a
commonly used default value (and is the same order as the
exploration parameters used in BO and AEGBO).

The average simple regret versus the number of iterations
(or episodes e for short) is shown in Fig. 1. We see that
AEGBO consistently outperforms BO and REINFORCE
within 30 total closed-loop episodes, achieving more than
one order of magnitude reduction in simple regret by
iteration 30. Furthermore, AEGBO shows a steady reduc-
tion in simple regret after every episode, implying it can
more consistently identify policy parameters that increase
the reward. REINFORCE, on the other hand, shows an
initial fast drop in regret, but its convergence rate quickly
slows down. It is also worth noting that REINFORCE
would be expected to show much worse performance on
more challenging problems that contain multiple local
optima since it is prone to getting stuck in local solutions.
Therefore, this result highlights the value of combining local
and global information in the decision-making process.

To better understand the underlying source of AEGBO’s
improved performance, Fig. 2 shows the evolution of the
Pareto frontier in (12) at di↵erent episode values. In the
early episodes, we see that Pareto frontier is fairly elongated
since there is a significant amount of uncertainty in the
GP predictions. This implies there is significant mismatch
between the points that may lead to large reward values
and those that are likely to satisfy the necessary optimality
conditions given our current information. As more data is
collected, we see that the Pareto frontier begins to shrink
substantially, indicating lower uncertainty in the predicted
maximum point. Furthermore, we see that the proposed
GN acquisition function provides us with an independent
source of information that helps select high reward points
that are also likely to satisfy rf(x) = 0. Looking at e = 20,
for example, we see that several points are predicted to
perfectly satisfy the necessary optimality condition while
simultaneously having large reward values. Thus, the fusion
of zeroth- and first-order information appears to be at the
heart of the improved performance observed in Fig. 1.

Fig. 1. Expected simple regret (solid lines) and correspond-
ing confidence bounds (shaded regions), estimated us-
ing 100 independent realizations of the initial dataset,
over 30 closed-loop episodes for AEGBO, traditional
BO, and REINFORCE.

Fig. 2. Pareto frontiers for the proposed MOO acquisition
ensemble method at four di↵erent closed-loop episodes
e 2 {1, 5, 15, 20} for a representative AEGBO run. The
x-axis corresponds to the zeroth-order UCB acquisition
function in (7) and the y-axis corresponds to the first-
order GN acquisition function in (8).

6. CONCLUSIONS AND FUTURE WORK

This paper presents a gradient-enhanced Bayesian optimiza-
tion (BO) method, referred to as AEGBO, that can simulta-
neously exploit evaluations of performance function and its
gradients. AEGBO is composed of two key parts: (i) a new
first-order acquisition function that quantifies the likelihood
of a future query point satisfying necessary optimality con-
ditions and (ii) a multi-objective optimization approach for
combining zeroth- and first-order information to accelerate
convergence toward the global solution. We also discuss
how AEGBO can be applied to policy-search reinforcement
learning (RL) problems at virtually no additional cost
over traditional BO. The proposed AEGBO method is
demonstrated on a RL problem inspired from LQR, where
the goal is to identify optimal policy parameters using as
little closed-loop data as possible. We show that AEGBO



quickly identifies near-optimal solutions in significantly
less iterations than state-of-the-art alternative methods.
There are several interesting directions for future work
including better understanding of the theoretical properties
of AEGBO, incorporation of black-box constraints, and its
application to more complex RL problems.
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