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s Abstract

Spatial regression is widely used for modeling the relationship between a depen-
dent variable and explanatory covariates. Oftentimes, the linear relationships vary
across space, such that some covariates have location-specific effects on the response.
One fundamental question is how to detect the systematic variation in the model and
identify which locations share common regression coefficients and which do not. Only
a correct model structure can assure unbiased estimation of coefficients and valid in-
ferences. A new procedure is proposed, called Spatial Heterogeneity Automatic De-
tection and Estimation (SHADE), for automatically and simultaneously subgrouping
and estimating covariate effects for spatial regression models. The SHADE employs
a class of spatially-weighted fusion type penalty on all pairs of observations, with
location-specific weight constructed using spatial information, to cluster coefficients
into subgroups. Under certain regularity conditions, the SHADE is shown to be able
to identify the true model structure with probability approaching one and estimate
regression coefficients consistently. An alternating direction method of multiplier
algorithm (ADMM) is developed to compute the SHADE. In numerical studies, the
empirical performance of the SHADE is demonstrated by using different choices of
weights and comparing their accuracy. The results suggest that spatial information
can enhance subgroup structure analysis in challenging situations when the spatial
variation among regression coefficients is small or the number of repeated measures
is small. Finally, the SHADE is applied to find the relationship between a natural
resource survey and a land cover data layer to identify spatially interpretable groups.
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1. Introduction

Spatial regression is commonly used to model the relationship between a response
and explanatory variables. For complex problems, some covariates (we call them
global covariates) may have constant effects across space, while other covariates (we
call them local covariates) may have location-specific effects, i.e, their effects on the
response variable vary across space. This has received wide attention in many fields,
such as environmental sciences (Hu and Bradley, 2018), biology (Zhang and Lawson,
2011), social science (Bradley et al., 2018), economics (Brunsdon et al., 1996), and
biostatistics (Xu et al., 2019).

A motivating example is about studying the relationship between two land-
cover data sources. One is the National Resources Inventory (NRI, Nusser and
Goebel 1997) survey conducted by the USDA Natural Resources Conservation Ser-
vice (NRCS), the other one is the Cropland data layer (CDL, Han et al. 2012) pro-
duced by the USDA National Agricultural Statistics Service (NASS). An accurate
estimate of local landcover information from NRI is essential for developing con-
servation policies and land management plans. However, direct estimates in small
geographical areas such as at the county level may not be accurate due to small
sample sizes. Auxiliary information such as CDL can be used to improve the small
area estimator in NRI (Wang et al., 2018). Traditional regression models used in
the small area estimation problems typically assume common regression coefficients
over all domains, which may not be appropriate. For example, when we looked at
the linear relationship between the NRI and CDL estimates of different types of land
covers at the county level, the regression coefficients in the Mountain states are quite
different from the west coast and the vast areas in the east. This is reflected in Figure
10 (a) in Section 5. One reason for that difference is due to the NRI survey’s scope,
which only includes non-federal land in the US. Another contributing reason is that
CDL is created by training separate machine learning models at the state level using
only ground observations from that state, which creates variations among states. A
common regression assumption would be too simple to capture the regional differ-
ences and lead to biases in the estimators. This type of spatial heterogeneity is also
known as structural instability. For linear models, this implies that the linear rela-
tionship changes geographically over space, and the linear regression coefficients may
form subgroups. It is an important and challenging problem to identify the correct
grouping structure of the regression coefficients, as only a correct model structure
can lead to an unbiased estimation of the regression coefficients and their valid in-
ference. In practice, ad hoc grouping of states as regions defined by tradition or for
federal administrative purposes is sometimes used to address this issue. However,
such grouping is not driven by the data in specific problems and may not be ap-
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propriate or efficient. For example, the central region in Figure 10 (a) includes not
only all the Mountain states, but also the North and South Dakotas which are not
traditionally considered Mountain states. Figure 10 (b) suggests a further division
of the east into sub-regions, which does not align with any well known administra-
tive regions. One natural approach is to assume that regression coefficients of states
nearby are more likely to belong to the same subgroup than states which are further
apart, and use both the estimated regression coefficients and the spatial structure to
guide the clustering of states into subregions, which is what we propose to do in this
paper.

The problem of taking into account spatial dependence structure in linear regres-
sion has been studied for a long time in literature. Classical works include spatial
expansion methods (Casetti, 1972; Casetti and Jones, 1987), which treat the spatially
varying regression coefficients as a function of expansion variables, typically using
longitude and latitude coordinates as location variables. One popular approach to
accounting for spatial variations in the model is by introducing an additive spatial
random effect for each location, as done for linear models by Cressie (2015) and gen-
eralized linear models by Diggle et al. (1998). Other classes of models in wide use
are spatial varying coefficient models, including the geographically weighted regres-
sion (GWR; Brunsdon et al. 1996) and its extensions to generalized linear models
(Nakaya et al., 2005) and the Cox model for survival analysis (Xue et al., 2020; Hu
and Huffer, 2020). There have also been developments in the Bayesian framework,
such as Gelfand et al. (2003).

The methods mentioned above typically assume that the regression parameters
are smooth functions of location variables. This assumption is reasonable in certain
practices, but may not be appropriate for applications where the covariate effects
are constant over subregions defined by some unobserved hidden factors. In this
work, we take a different perspective by grouping the covariate effects into spatially-
interpretable subgroups or clusters. As in the motivating example, different clusters
have different patterns, which can be used to build more flexible estimators to im-
prove the original direct estimates. A majority of existing work in the literature
on spatial cluster detection is based on hypothesis tests, including the scan statistic
methods based on the likelihood ratio (Kulldorff and Nagarwalla, 1995; Jung et al.,
2007; Cook et al., 2007) and the two-step spatial test methods under the GWR
framework (Lee et al., 2017, 2020). Test-based methods are intuitive and useful in
practice, but proper test statistics are often difficult to construct, and the tests may
have low power when the number of locations is large. In addition, these methods
handle the cluster detection problem and the model estimation separately, making
it challenging to study the inferential properties of the final estimator. The main
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purpose of this article is to fill this gap by developing a unified framework to de-
tect clusters of regression coefficients, estimate them consistently, and make valid
inferences.

In the context of non-spatial data analysis, a variety of clustering methods have
been proposed to identify homogeneous groups for either observations or regression
coefficients. Chi and Lange (2015) developed a method for the convex clustering
problem through the alternating direction method of multiplier algorithm (ADMM)
(Boyd et al., 2011) with pairwise L,(p > 1) penalty. Nonnegative weights are consid-
ered to reduce bias for pairwise penalties. Fan et al. (2018) considered a clustering
problem with [y penalty on graphs. For clustering the regression coefficients, Ma and
Huang (2017) and Ma et al. (2020a) proposed a concave fusion approach for esti-
mating the group structure and estimating subgroup-specific effects, where smoothly
clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and the minimax con-
cave penalty (MCP) (Zhang, 2010) are considered. The pairwise penalty approach
is also applied in partially linear models Liu and Lin (2019) and mixture models Im
and Tan (2021).

For spatial analysis, some interesting work are recently proposed for grouping
regression coefficients in the spatial regression. Hallac et al. (2015) considered a gen-
eral network setting, and their focus was on optimization, where an ADMM based
algorithm was proposed for network LASSO with a global convergence guarantee.
They did not discuss statistical properties for any estimators. By contrast, our paper
focuses on spatial regression and gives a comprehensive investigation of the topic,
covering estimation framework, statistical theory, computation and tuning, as well
as spatial applications. Both Ma et al. (2020a) and Hallac et al. (2015) considered on
finding clusters based on the whole vector of regression coefficients. Ma et al. (2020Db)
proposed the Bayesian heterogeneity pursuit regression models to detect clusters in
the covariate effects based on the Dirichlet process. Hu et al. (2020) proposed a
Bayesian method for clustering coefficients with auxiliary covariates random effects,
based on a mixture of finite mixtures (MFM). Li and Sang (2019) proposed a penal-
ized approach based on the minimum spanning tree. Luo et al. (2021) generalized
the work of Li and Sang (2019) using a Bayesian method and random spanning tree
models, which was not based on penalty approaches. These two methods consid-
ered clusters on each covariate. In the area of spatial boundaries detection, Lu and
Carlin (2005) and Lu et al. (2007) considered the areal boundary detection using a
Bayesian hierarchical model based on the conditional autoregressive model (Banerjee
et al., 2014). The boundaries were determined by the posterior distribution of the
corresponding spatial process or spatial weights. These boundary detection methods
focused on clustering of observations instead of regression coefficients.
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The main difficulty in clustering spatial covariate effects is how to consistently
estimate the number of clusters and cluster memberships, when properly considering
spatial neighborhood information. To our knowledge, most existing methods do not
rigorously prove the theoretical results and explore the choices of spatial weights.
In this work, we fill the gap by proposing a new procedure, called Spatial Hetero-
geneity Automatic Detection and Estimation (SHADE), for automatically grouping
and estimating local covariate effects simultaneously. The SHADE employs a class
of spatially-weighted fusion type penalty on all pairs of observations, with location-
specific weights adaptively constructed using geographical proximity of locations,
and achieves spatial clustering consistency for spatial linear regression models. In
theory, we show that the oracle estimator based on weighted least squares is a local
minimizer of the objective function with probability approaching 1 under certain
regular conditions, which indicates that the number of clusters can be estimated
consistently. We believe that this result is the first of its kind in the contest of
spatial data analysis. To implement the SHADE, an alternating direction method
of multiplier (ADMM) algorithm is developed. To make the best choices of spatial
weights and to understand their roles in practical applications, we consider different
schemes to choose pairwise weights and compare them numerically and theoretically.
Our numerical examples suggest that the number of clusters and the group struc-
ture can be recovered with high probability, and the spatial information can help in
spatial clustering analysis when the minimal group difference is small or the number
of repeated measures is small.

The article is organized as follows. In Section 2, we describe the Spatial Hetero-
geneity Automatic Detection and Estimation (SHADE) model and the corresponding
ADMM algorithm. In Section 3, we establish the theoretical properties of the SHADE
estimator. The simulation study is conducted in Section 4 under several scenarios to
show the performances of the proposed estimator. The proposed method is applied
to an NRI small area estimation problem to illustrate the use of SHADE in real-data
applications in Section 5. Finally, some discussions are given in Section 6.

2. Methodology and Algorithm
2.1. Methodology: SHADE

Assume our spatial data consist of multiple measurements at each location or
subject. Let y;, be the hth response for the ith subject observed at location s;,
where ¢ = 1,...,n, h = 1,...,n;. Based on their effects on the response variable,
the covariates can be divided into two categories: “global” covariates which have
common effects on the response across all the locations, and “local” covariates which
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have location-specific effects on the response. To reflect this, let z;, and x;, be the
corresponding covariate vectors with dimension g and p, respectively, where z;,’s are
“global” covariates with common linear effects to the response across all the locations,
while x;;,’s are “local” covariates with location-specific linear effects on the response.
We consider the following linear regression model
Yin = 2N + €3,0i + €in, (1)

where 1) represents the vector of common regression coefficients shared by global
effects, B;’s are location-specific regression coefficients, and €;;,’s are i.i.d random er-
rors with F (e;,) = 0 and Var (e;,) = 0. Furthermore, some locations may have the
same or similar location-specific effects, grouping locations with the same location-
specific effects can help to achieve dimension reduction and improve model prediction
accuracy. Assume the n location-specific effects belong to K mutually exclusive sub-
groups: the locations with a common 3; belong to the same group. Denote the
corresponding partition of {1,...,n} as G = {G1,..., Gk}, where the index set Gi
contains all the locations belonging to the group k for k = 1,..., K. For conve-
nience, denote the regression coefficients associated with G, as ay.. In practice, since
neither K nor the partition G,’s are known, the goal is to use the observed data
{(Win, zm,:cm)} to construct the estimator K and the partition G = {Ql, .. QK}
where gk—{z.ﬁl—ak,l <1< n}.

To achieve this goal, we use the following optimization problem: minimize the
weighted least squares objective function subject to a spatially-weighted pairwise
penalty

1.1 & 2
Qu(m BN =53 > (yin— =z —ziB:) + 3 vy (18— Byl i)
i=1 "V p—1 1<i<j<n

(2)
where n = (n1,...,n,)%, B = (ﬂ{,...,ﬁg)T, || - || denotes the Euclidean norm,
P~ (v, A) is a penalty function imposed on all distinct pairs. In the penalty function,
A > 0 is a tuning parameter, v > 0 is a built-in constant in the penalty function, and
different weights c¢;;’s are assigned to different pairs of locations s; and s; for any
1 <i < j <n. One popular choice of penalty is the L; penalty (lasso) (Tibshirani,
1996) with the form p,(¢,\) = A|t|. Since L; penalty tends to produce too many

groups as shown in Ma and Huang (2017), we consider the SCAD penalty, which is
defined as

pa(t ) =X [ min{1, (/). /(1) ()

Here we treat -y as a fixed value as in Fan and Li (2001), Zhang (2010) and Ma et al.
(2020a).
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2.2. Choices of Spatial Weights

In (2), the values of weights ¢;; are crucial, as they control the number of sub-
groups and grouping results. The pairs ||3; — 3;|| with larger weights ¢;;A are shrunk
together more than those pairs with smaller weights. For spatial data, reasonable
choices of ¢;; should take into account two factors: locations with closer B; values
are more likely grouped together and locations closer to each other are more likely
to form a subgroup as they typically have similar trends. Since the true values of 3
are not available, we use their estimators B as the surrogates. For example, we can
define the weights c¢;; as

cij = exp (=0 |ls: = s5ll - |B: = By .

where B; is an initial estimate of 3;, and 1 is a scale parameter to control the
magnitudes of the weights. In areal data, we suggest three different ways of taking
into account spatial information in the data to construct the weights.

(i) using both spatial and regression coefficients information:

/éi_léj )7 (4)

where a;; is the neighbor order between location s; and location s;, which
means that if 7 and j are neighbors, a;; = 1. If 7 and j are not neighbors, but
they have at least one same neighbor, a,; = 2. Similarly, we can have all the
neighborhood order for all subjects or locations.

ci = oxp (¢ (1 - ay) - |

(ii) using regression coefficients information only:

Cij = €Xp (—1/1 ’ Bz - B]H) . (5)

(iii) using spatial information only:
cij = exp (Y(1 — ay)) . (6)

Weights in (4) and (5) both include the regression coefficients, which would de-
pend on the accuracy of B;. If the number of repeated measures is not large, the
values of 3; will not show the real relationship between different locations, which
would lead to very bad weights. The phenomenon can be observed in the simulation
study. The weights we use here are three special cases that use the information of
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either regression coefficients or the spatial neighborhood orders. Definitely, there
are other ways to construct weights, such as using distance to borrow spatial infor-
mation. As long as the weights satisfy condition (C4) in Section 3, the theoretical
results will hold under other conditions. For example, the weights in (5) will satisfy
(C4) automatically if 3;’s are consistent estimators. Besides condition (C4), there
are no other conditions about the format of the weight function.

2.3. Algorithm for SHADE
In this section, we describe the ADMM algorithm to solve (2) in Section 2.1.
There are two tuning parameters, A and v, in the proposed method. We choose
them adaptively using some tuning procedures discussed at the end of this section.
For now, we fix them and present the computational algorithm for solving (2). Denote
the solution as

(7,8) = argmin Q. (n,B8,\,¢). (7)
nERY,BERP
First, we introduce the slack variables for all the pairs (4, j) &;; = B; — B;, for

1 <i < 7 <n. Then the problem is equivalent to minimizing the followmg objective
function with regard to (n,3,4d),

2
7r1n,81% Ly (n, B,9) Z Z (yzh ;‘2”7—333;1@) + Z Py (1045l 5 ci3A)

i =y 1<i<j<n
subject to 3; —B; —06,; =0, 1<i<j<n,

where § = (527; ;1 <i < j <n)T. To handle the equation constraints in the opti-
mization problem, we introduce the augmented Lagrangian
L(Thﬁﬁ,v):Lo (naﬁ>5)+z<vij>/6i_/6j_ ’L] + = ZHBZ Z]H27
1<j Z<j

where v = (’UZ; .1 <i < j < n)T are Lagrange multipliers and ¢ > 0 is the penalty
parameter.

To solve the problem, we use an iterative algorithm which updates 3,n,9d,v
sequentially, one at a time. At the (m + 1)th iteration, given their current values
(B pm) §0m) (™) the updates of i, 3,8, v are

(.88, v,
(

n(m+1)7 /B(m+1)7 57 v(m)) Y
v(mﬂ) v L4 (BZ(erl) B(m+1) . 51'(;7%1)). (8)

) J

(n(mﬂ)?,@(mﬂ)) = arg IIllIl L

omt) — arg min L
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To update n and 3, we minimize the following objective function

F B = |27 (y— Zn—XB)| +9]A8 8™ + oo’

Y

T T
Wherey = (ylla"'aylnp-"7yn17"-7yn,nn) 7Z = (zlla"'azlnp"'?znla-"7zn,nn) ;
X =diag (X1,..., X,) with X; = (xi1, ..., ®ip,)", Q = diag (1/mI,,,,...,1/n,1,,)
and A = D ® I, with an [n(n — 1) /2] x n matrix D = {(e; — ¢;),i < j}", where
e; is an n x 1 vector with ith element 1 and other elements 0. Then the solutions
for 3 and 1 are

B = (XTQuaX +0ATA) ' [XTQuay + dvec (A — 9 x™) D],
(9)

n(mt) — (ZTQZ) VALY (y—Xﬂ<m+1>), (10)

where A(™ = (5( m < ])

ij

im = (v( m < ]) and

pxn(n—1)/2’ K pxn(n—1)/2

Qrza=0-QZ (ZTQZY1 zZ'Q.

To update d;;’s componentwisely, it is equivalent to minimizing the following
objective function

J
2

where c(mH) (Bl(mH ﬁ(mH ) + 9~ tw;7". The solution based on SCAD penalty
has a closed—form solution as
S (5 Ay /0)

5D s(g;;"+ )vaei/((-1)9 ))

(m)

2
;" — 8y +p'y(||6ij||,cij/\);

| < Acij + Aeiy /0,

T i (m-+1) 11
N G if Acz(y t A /0 < 5] < ey, (D)
S if |lgi" H > YAcij,

where v > ¢;; + ¢/ and S(w,t) = (1 —t/||w|), w, and (t); =t ift > 0, 0
otherwise.

In summary, the computational algorithm can be described as follows.
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Algorithm: ADMM algorithm

Require: : Initialize 8©, §© and v(©.
1: form=0,1,2,... do
Update 8 by (9).
Update i by (10).
Update 8 by (11)
Update v by (8).
if convergence criterion is met then
Stop and get the estimates
else
m=m+1
10:  end if
11: end for

A good initial estimator of 3 will depend on many factors such as the number
of covariates, the magnitude of difference between true parameters from different
clusters, and signal to noise ratio. We can construct the initial values 3© by fitting
a linear regression model y;, = 25 m + x} B; + €, for each i = 1,...,n. Then, set
55;]) = ,81(0) — BJ(O) and v(©) = 0. Alternatively, the initial values can be set using the
procedure in Ma et al. (2020a). They used a ridge fusion criterion with a small tuning
parameter value. The initial group structure was obtained by assigning objects into
K*(a given value) groups by ranking the estimated (3; based on the ridge fusion
criterion.

If Sij = 0, then the locations ¢ and j belong to the same group. Thus, we
can obtain the corresponding estimated partition G and the estimated number of

groups K (A, 1). For each group, the group-specific parameter vector is estimated as
dk = 1/|gk’2266k,61 for k = 1,...,K.

Remark 1. If there are no global covariates, the model simplifies as vy;;, = mﬁﬂi—}—eih.
The algorithm will be simplified, that is, Qzq will become 2. The model we use in
the application is the simplified model.

Remark 2. The convergence criterion used is the same as Ma and Huang (2017),
which is based on the primal residual v+ = ABHD — §(m+D) - The algorithm is
stopped if ||r™ Y| < e, where ¢ is a small positive number.

Remark 3. In (9), the computational cost of calculating the matriz inverse

~1 ar _ S .
(XTQZA”ZX + ﬁATA> is O(n®) if calculating the matriz inverse directly. How-
ever, based on the Sherman—Morrison—Woodbury (SMW) in Appendiz, the matriz

10
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inverse can be calculated with less computational cost O(n?). The computational cost
of updating pairwise differences is also O(n?). Thus, the computational cost of the
whole algorithm is O(n?).

We need to select two tuning parameters, A and v, in the SHADE algorithm. In
this paper, we use the modified Bayes Information Criterion (BIC) (Wang et al., 2007)
to determine the best tuning parameters adaptively from the data. In particular, we
have
i = 0 0) = eh B0 0) | +CIE (RO +a),

(12)
where C), is a positive number which can depend on n. Here C,, = ¢qlog (log (np + q))
with ¢y = 0.2 is used. For tuning parameter 1), we select the best value from some
candidate values, such as 0.1, 0.5, 1, 3. For each given v, we use the warm start
and continuation strategy to select the tuning parameter A. A grid of A is prede-
fined within [Ayin, Amax]- For each A, the initial values are the estimated values from

BIC (X, ¢)) = log liznjl(

i=1 "%

the previous estimation. Denote the selected tuning parameters as A and ﬁ Cor-
respondingly, the estimated group number is K (A, ), and the estimated regression
coefficients are B and 7.

3. Theoretical Properties of SHADE

In this section, we study the theoretical properties of the proposed SHADE esti-
mator. Assume G,’s are the true partition of location-specific regression coefficients.
Let |G| be the number of subjects in group G for k = 1,..., K, [Guin| and |Grax| be
the minimum and maximum group sizes, respectively. Let W be an n x K matrix
with element w;;, and w;, = 1if ¢ € Gy, wir, = 0, otherwise. Denote W = W ®1I,, an
np X Kp matrix, and U = (Z, XW). Define Mg = {B € R : 8, = 3;, fori,j €
Gk, 1 < k < K}. Using these notations, we can then express 3 as 8 = Wa if
B € Mg, where a = (a{, e aﬂ) . For any positive numbers, z,, and v, £, > y,
means that x, 'y, = o(1). Define the scaled penalty function as

py(t) = A 7'py(E, ). (13)
Below are our assumptions.

(C1) The function p,(t) is symmetric, non-decreasing, and concave on [0,00). It is
constant for ¢ > aA for some constant a > 0, and p,(0) = 0. Also, p/(t) exists
and is continuous except for a finite number values of ¢ and p'(04) = 1.

11
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(C2) There exist finite positive constants My, My, M3 > 0 such that |z;,,| < My,
|Zing| < My forj=1,...,n;andi=1,...,nand M, < max;n;/ min; n; < Ms.
Also, assume that A, (UTQU) > C1 |Guminl; Amax (UTQU) < Cfn for some
constants 0 < €7 < oo and 0 < (] < oo, where Ay, and Ay are the
corresponding minimum and maximum eigenvalues respectively. In addition,
assume that sup, j, ||| < Coy/p and sup, , [|za|| < Cs,/q for some constants
0<Cy<ooand 0< Cs < oo.

(C3) The random error vector € = (€11, .-, €1ny, €215« 5 €2y -+ -y Enly - - - ,e,mn)T has
sub-Gaussian tails such that P (‘aTe‘ > ||all :L') < 2exp (—cy2?) for any vector
a € R™ and > 0, where 0 < ¢; < oo and m = 1" | n;.

(C4) The pairwise weights ¢;;’s are bounded away from zero if ¢ and j are in the
same group.

(C5) Below is the condition for the minimum group size,

|Gmin| > (¢ + Kp)1/2 max <1 / .n logn, (¢ + Kp)1/2> .
min; 7n;

Conditions (C1) and (C3) are commonly used in high-dimensional penalized re-
gression problems. Condition (C2) is similar to the condition mentioned in Ma et al.
(2020a). It also includes the bounded conditions for covariates, which are used in
Huang et al. (2004). In general, if the weights functions are not zeros defined on a
finite support, the ¢;;’s will satisfy condition (C4). This mild condition can guaran-
tee the consistency results. Different choices of weights that satisfy this condition
will not have any effect on the consistency results. However, different ¢;;’s may have
different finite sample performances. We tried different ¢;; in the simulation results
to compare the performances.

First, we establish the properties of the oracle estimator, which is defined as the
weighted least squares estimator, assuming that the underlying group structure is
known. Specifically, the oracle estimator of (n, ) is

(", &°") = argmin ; H91/2 (y—2Zn— XWa)H2

neR,acREP
—1
= (UTau) Uy (14)
Then, the corresponding oracle estimator of 3 is BOT = Wa°". Let ! be the true
coefficient vector for group k, k = 1,..., K and a® = ()T, ..., (a%)T)T, and let n°

12



10

11

12

13

14

15

16

17

18

be the true common coefficient vector. The following theorem shows the properties
of the oracle estimator.

Theorem 1. Under conditions (C1)-(C3) and (C5), ¢ = o(n) and Kp = o(n), we
have with probability at least 1 — 2(q + Kp)n™1,

H( S ) < 6,
and . A
187 = B°|| < /|Grmax|n; sup 18 = 87| < ¢,
where

= PO M K e noy
¢n c 1 1\/m|gm1n| m

Furthermore, for any vector a,, € RI5P we have as n — oo

on(an) " ay, ((n —n°)" (a7~ aO)T)T 4 N(0, 1), (15)

where

on(a,) =0o

af (UQU) 'UTequ (UTaU) " an} " (16)

n
q+Kp

or minn; = O(qﬁ(p logn), (C5) becomes |Guin| > (q+Kp)1/21/#nilogn. If

minn; > logn, (C5) becomes |Guin| > q+ Kp. In this case, if ¢, p and K are

fized values, the condition (C5) becomes 1/ |Gmin| = o(1).

Remark 4. There are no specific assumptions about n;. If minn; < logn,

Remark 5. The model considered in Ma et al. (2020a) is a special case of the
proposed model, and their condition is a special case of condition (C5) used here,
that is when n; = 1.

Remark 6. If let |G| = on/K for some constant 0 < 6 < 1, then

On = cfl/QCflMl(S_lK\/q + Kp\/log n/(nminn;).

Moreover, if q, p and K are fized values, then ¢, = C’*\/log n/(nminn;) for some
constant 0 < C* < oo.
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Next, we study the properties of our proposed estimator. Let

(17)

b, = min
1€GK,JEGy

0 Of| _ : 0 0
e )

be the minimal difference among different groups.

Theorem 2. Suppose the conditions of Theorem 1 hold and (C4) holds. If b, >
aX and N > ¢, for some constant a > 0, then there exists a local minimizer

(ﬁ(A,¢)T,B(A,¢)T)T of the objective function Q,(n,3) given in (2) such that

A T

P (a0 )" B0 = (@) (87 ) =1 (18)

Remark 7. Theorem 2 implies that true group structure can be recovered with prob-
ability approaching 1. It also implies that the estimated number of groups K satisfies
P(K(\¢)=K)— 1.

Let &(A, 1) be the distinct group vectors of B()\,w). According to Theorem 1
and Theorem 2, we have the following result.

Corollary 1. Suppose the conditions in Theorem 2 hold, for any vector a,, € RITEP,
we have as n — 00

on(an) " a) ((ﬁ(k, ¥) ") (@) - aO)T)T % N(0,1). (19)

Remark 8. The variance parameter o* can be estimated by

1 no . A\ 2
02 = —— 33 (yin — 250 — 21, 6)) (20)
m—q—Kp;35

The algorithm can be implemented through the package Spgr found in https:
//github.com/wangx23/Spgr.

4. Simulation Studies

In this section, we evaluate and compare the performance of the proposed SHADE
estimator with different weight choices: equal weights ¢;; = 1 (denoted as “equal”),
weights defined in (4) (denoted as “reg-sp”), weights defined in (5) (denoted by
“reg”), and weights defined in (6) (denoted by “sp”).

The simulations are carried out as follows. Let z;, = (zih’l,...,zihj)T with
Zin1 = Land (Zino2, ..., zih75)T are generated using a multivariate normal distribution
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with mean 0, variance 1, and pairwise correlation p = 0.3. Define x;;, = (21, .ZUZ'hQ)T,
where x;5,; is simulated from a standard normal distribution and z;, 2 is simulated
from a centered and standardized binomial (n,0.7). Let 7 = (11,...,15)7, where
ni’s are simulated from Uniform [1,2] and the standard deviation of the error term
is 0 = 0.5. We set ¥ = 1 and v = 3 and use the SCAD penalty function. The tuning
parameters are chosen by the modified BIC defined by (12). We run the simulations
under several scenarios. The results are based on 100 simulations.

To evaluate the subgrouping performance of the proposed method, we report the
estimated group number K, adjusted Rand index (ARI) (Rand, 1971; Hubert and
Arabie, 1985; Vinh et al., 2010), and the root mean square error (RMSE) for estimat-
ing 3. For the estimated K over 100 simulations, we report its average (denoted by
“mean”), standard error in the parenthesis, and the occurrence percentage of K=K
(denoted by “per”). The quantity ARI is used to measure the degree of agreement
between two partitions, taking a value between 0 and 1: the larger ARI value, the
more agreement. We report the average ARI across 100 simulations along with the
standard error in the parentheses. To evaluate the estimation accuracy of 3, we also
report the average RMSE

1 <N 5
JRZII@-—@H?. (21)
i=1

4.1. Balanced group

We assume that there are K = 3 true groups Gi1,Gs and Gs. Consider the two
spatial settings, for which the group parameters are respectively given by:

Setting 1: B; = (1, 1) ifi € Gi; Bi = (1.5,1.5)T if i € Go; B; = (2,2)T if i € G3.

Setting 2: B; = (1, 1) if i € G1; B; = (1.25,1.25)T if i € Go; B; = (1.5,1.5)T if
1 € Gs.
Under each setting, we simulate the data on two sizes of regular lattice, a 7 x 7 grid
(left) and a 10 x 10 grid (right), as shown in Figure 1. Furthermore, for the 7 x 7
grid with n; = 10, we use a 10-fold cross validation to select the tuning parameters.
The repeated measures of location ¢ are divided into 10 parts; the jth part of each
location is combined as the validation data set, and the remaining observations form
the training data set. The spatial weights (6) are considered. The results are labeled
as “cv” in all the tables. Note that “reg_sp” and “reg” were not computed for the
10 x 10 grid.
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(a) 7 x 7 grid (b) 10 x 10 grid

Figure 1: Two spatial settings in the simulation studies.

Results for Setting 1: Tables 1, 2 and 3 show the estimated number of groups and
ARI. Figures 2 and 3 plot the RMSE of the estimates obtained using different weight
choices. After estimating the group structure, one can also estimate parameters 7
and 3 again by assuming that the group information is known; the results are denoted
as “refit”. Based on the numerical results, we make the following observations.

First, we summarize the results for the 7 x 7 grid. In all the considered scenarios,
the spatially weighted penalty outperforms the non-weighted penalty ( “equal”).
The upper panels in Tables 1 and 2, and the left plot in Figure 2 suggest that, if
the number of repeated measurements is relatively small (say, n; = 10), the weights
“reg_sp” and “sp” perform similarly and they are the best in terms of estimating
K, recovering the true subgroup structure (large ARI), and estimating regression
coefficients (small RMSE); the weights “equal” and “reg” are much worse. The lower
panels of Tables 1 and 2 and the right plot in Figure 2 show that when the number of
repeated measurements gets larger (say, n; = 30), all the methods improve and there
is not much difference among them. Cross validation works well in terms of ARI and
RMSE, but it tends to over-estimate the number of groups K. This is because that
cross validation focuses more on the prediction accuracy; the coefficient estimates
of some groups are close to the true coefficients, but they are not shrank together.
In addition, refitting the model does not appear to further improve the accuracy of
estimating 3.
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Table 1: Summary of the estimate K for Setting 1 under the 7 x 7 grid.

equal reg_sp reg sp cv
_ 1o mean 3.34(0.054) 315(0.030) 3.33(0.051) 3.13(0.034) 3.82(0.13)
e per 0.69 0.86 0.69 0.87 0.56
- _ g mean  3.00(0) 3.00(0) 3.00(0) 3.00(0)
e per 1.00 1.00 1.00 1.00
Table 2: Average ARI for Setting 1 under the 7 x 7 grid
equal reg_sp reg sp cv
n; =10 0.80(0.011) 0.92(0.008)  0.82(0.01)  0.92(0.007) 0.95(0.007)
n; =30 0.998(0.001) 0.999(0.0006) 0.998(0.001) 0.999(0.0006)
7 x7grid; n=10 7 x7grnd; n=30
] l | 1 ] '
o] o]
3 .
T o
equal reg_sp reg wesi;m sp_refit cov  cv_refit equal reg_spwemm reg sp

ra

o o - W

Figure 2: RMSE for Setting 1 under the 7 x 7 grid

Next, we summarize the results for the 10 x 10 grid. In this case, we consider equal
weights and spatial weights only. Again, the spatially-weighted penalty outperforms
the non-weighted penalty (“equal”). Table 3 and Figure 3 suggest that if the number
of repeated measurements is relatively small (say, n; = 10), “sp” performs much
better in terms of grouping and estimating regression coefficients than “equal”; for
a larger number of repeated measurements (say, n; = 30), they perform similarly.

17



Table 3: Summary of K and average ARI for Setting 1 under the 10 x 10 grid.

K ARI
equal sp equal sp
mean 3.59(0.073) 3.37(0.065) 0.70(0.009) 0.97(0.003)
per 0.53 0.71 - -
. _ g mean 3(0) 3(0) 0.996(0.001)  1.00(0)
e per 1.00 1.00 - -
10« 10grid; n=10 10« 10grid; n=30
Ijg ‘ Ijg 0.04
| | |
equal wgm sp equal wgm sp

Figure 3: RMSE for Setting 1 under the 10 x 10 grid

Results for Setting 2: In this setting, the group difference becomes smaller. Tables
4, 5 and Figure 4 summarize the results for the 7 x 7 grid. For both values of n;,
the weights “sp” performs best in terms of estimating the number of groups (f( )
recovering the true group structure (ARI), and estimating regression coefficients. In
contrast to Setting 1, when the difference among groups becomes smaller, even with
n; = 30, the model with the spatial weight is superior to other models.

18



Table 4: Summary of K for Setting 2 under the 7 x 7 grid

equal reg sp reg sp
o mean 3.25(0.119) 3.01(0.003) 3.14(0.107) 2.88(0.067)
P per 0.34 0.45 0.33 0.60
L _gp mean 270(0.046) 2.90(0.030) 2.76(0.043) 2.95(0.022)
i per 0.70 0.90 0.76 0.95

Table 5: Average ARI for Setting 2 under the 7 x 7 grid

equal reg_sp reg sp
n; =10 0.32(0.011) 0.50(0.023) 0.33(0.01) 0.61(0.026)

n; =30 0.72(0.018) 0.86(0.015) 0.75(0.017) 0.90(0.012)

7+ 7grid; n=10 7+ 7grid; n=30
0.251 1 0154
1
0.204 ‘ |
‘ ‘ 0.10
w 0157 [ | w
w w
= ‘ =
14 14
0.10
0.054
0.054
|
|
eq;.lal regl_sp relg slp sp_lreﬁt eqlual regl_sp rég slp
weight weight

Figure 4: RMSE for setting 2 under the 7 x 7 grid

Table 6 and Figure 5 show the results for the 10 x 10 grid. Again, we only compare
“equal” weights and “sp” weights. The results suggest similar conclusions to those
for the 7 x 7 grid: the model with the spatial weight is superior even with a large
number of repeated measurements (n; = 30) by producing larger ARI and smaller

RMSE.
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Table 6: Summary of K and average ARI for Setting 2 under the 10 x 10 grid

K ARI
equal sp equal sp
n — 10 Mean 3.82(0.146) 3.35(0.078) 0.32(0.009) 0.81(0.022)
e per 0.32 0.620 - -
mean 3.10(0.060)  3.00(0.0) 0.79(0.012) 0.94(0.005)
n; = 30
per 0.64 1.0 - -
10« 10grid; n=10 10+ 10grid; n;=30
0.204 = I
g 0.10 : g

0.05

0.025

eqlual slp eq :.Lal slp
weight weight

Figure 5: RMSE for Setting 2 under the 10 x 10 grid

4.2. Unbalanced group setting

Here we consider an unbalanced group setting as shown in Figure 6. In this
setting, there are four groups, denoted as G;,G,,Gs and G,, and two groups have 9
subjects and the other two groups have 41 subjects. The group parameters are 3; =
(1L,)Tifie G, Bi=(1.515)Tifie G, B =(2,2)T ifi € G5 and 3; = (2.5,2.5)T
if 1 € Gy.
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Figure 6: Unbalanced group setting

Table 7 and Figure 7 show the summaries of K, ARI and RMSE for 3 when the
number of repeated measurements is n; = 10. In general, “reg_ sp” and “sp” perform
better than the other two types of weights. In particular, “sp” performs a slightly
better than “reg_sp”. The results are consistent with those under balanced cases.
We expect that when the group difference becomes smaller, “sp” would still perform
better than other weights even when the number of repeated measurements is large.

Table 7: Summary of K and average ARI for the unbalanced setting with n; = 10

equal reg sp reg sp
7 mean 458(0.003) 4.23(0.049) 5.17(0.011) 4.35(0.050)
per 0.570 0.800 0.300 0.710

ARI mean 0.62(0.010) 0.94(0.061) 0.67(0.009) 0.96(0.004)
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equal reg_sp reg sp
weight

Figure 7: RMSE for unbalanced setting

4.3. Random group setting

We consider a setting without specified location group information. For each
location, it has equal probability to three groups. Table 8 shows the summary of
K and ARI for Setting 1 under the grid 7 x 7 with 10 repeated measures. Table
9 shows the summary of K and ARI for Setting 2 under the grid 7 x 7 with 30
repeated measures. Figure 8 shows the RMSE results for both cases. We can see
that different weights have similar performances. The results suggest that even
without prior information on the existence of spatial groups, “sp” weights can still
produce comparable results to equal weights.

Table 8: Summary of K and average ARI for Setting 1 under the 7 x 7 grid with n; = 10

equal reg sp reg sp
i mean 3.42(0.064) 3.45(0.063) 3.40(0.059) 3.45(0.063)
per 0.66 0.62 0.65 0.62

ARI mean 0.78(0.011) 0.82(0.010) 0.81(0.010) 0.82(0.011)
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Table 9: Summary of K and average ARI for Setting 2 under the 7 x 7 grid with n; = 30

equal reg_sp reg sp
f mean 2.77(0.045) 2.77(0.045) 2.83(0.040) 2.73(0.047)
per 0.75 0.75 0.81 0.71

ARI mean 0.74(0.015) 0.76(0.016) 0.77(0.014) 0.74(0.017)

7+ 7 setl =10 7+ 7 set2 n=30

0.125

0.25 | ‘

0.207 0.100+

0.075

RMSE

0.10 0.050

0.05 0.025

equal reg_sp reg sp equal reg_sp reg sp
weight weight

Figure 8: RMSE for random groups under the 7 x 7 grid

4.4. Computation time

In this section, we illustrate the computation time by using the algorithm im-
plemented in Spgr. We consider four different values of n, which are 10 x 10, 15,
20 x 20 and 25 x 25 grid. The number of groups is 3, and the true group parameters
follow Setting 2. The number of repeated measures is 30. We used 37 A values and 4
1) values when evaluating the computation time. The computation time is recorded
based on an iMac with Processor 4.2 Hz Quad-Core Intel Core i7 and Memory 16GB.
Figure 9 shows the results based on 100 simulations for equal weights and spatial
weights, respectively. The y-axis is about the computation time in minutes. When
n is 100, the computation time is less than 1 minute for spatial weights. When n
is 400, the computation time is about 15 minutes for spatial weights and about 5
minutes for equal weights. When the number of locations is 625, the computation
time can be about 15 minutes for equal weights and 70 minutes for spatial weights.
A longer computation time of using spatial weights is because of an extra tuning
parameter .
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Figure 9: Computation time

5. Application

In this section, we apply our SHADE method to the modeling of the National
Resources Inventory survey (NRI) data ! for the purpose of small area estimation.
The NRI survey is one of the largest longitudinal natural resource surveys in the
U.S. The national and state level estimates of the status and change of landcover use
and soil erosion have been used by numerous federal, state, and local agencies in the
past few decades. In recent years, there is an increasing demand for NRI to provide
various county level estimates. These include estimates of different land covers, such
as cropland, pasture land, urban and forest. Due to the limitation of sample size, the
uncertainty of the NRI direct county level estimates are usually too large for local
stakeholders to make policy decisions. To make the county level estimates more use-
ful, it is necessary to include some auxiliary information and an appropriate model to
reduce the uncertainty of the estimates. One such set of auxiliary covariates is Crop-
land Data Layer (CDL), which is based on classification of satellite image pixels into
several mutually exclusive and exhaustive land cover categories. In this section, we
model the relationship between the NRI forest proportion and the CDL forest pro-
portion among 48 states. In NRI, forests belonging to federal land, such as national

thttps://www.nres.usda.gov/wps/portal /nres/main /national /technical /nra/nri/
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parks, are not included in the forest category. For states with more forest federal

land, NRI estimates can be substantially smaller than CDL estimates. Therefore,

different states could have different relationships between these two proportions.
The model we consider is,

Yin = Bosi + Pri%in + €in (22)

where y;;, is the NRI forest proportion of the hth county in the ith state, x;, is the
corresponding CDL forest proportion of the hth county in the ith state, and 5y ; and
B1,; are the unknown coefficients. Both x and y are standardized. Instead of using
the estimated linear regression coefficients as initial values directly, we use five sets
of initial values which are simulated from a multivariate normal distribution with
estimated coefficients as the mean vector and estimated covariance matrix as the
covariance matrix. The models with the smallest modified BIC values are selected
for equal weights and spatial weights, respectively.

In Figure 10, we display the estimated groups based on 2011 NRI data sets. The
left figure shows the estimated groups based on equal weights, and the right one is for
the estimated groups based on spatial weights in (6). We find that the two different
weights give different estimated groups. Tables 10 and 11 are the corresponding
estimates of regression coefficients in different groups.

equal weight spatal weight
504 504

- . Y uaL: P
||- u \... q;-,a i
] ll‘hm' | w i

25
120 ~100 -80
X X

254

(a) Estimated groups based on equal weights (b) Estimated groups based on spatial weights
Figure 10: Estimated groups for both equal weights and spatial weights.

Table 10: Estimated coefficients of different groups for equal weight

group 1 2
Bo -0.029(0.006) 0.003(0.008)
Ioht 0.885(0.011)  0.241(0.026)

25



10

11

12

14

15

16

17

Table 11: Estimated coefficients of different groups for spatial weights

group 1 2 3 4 5 6 7

Bo _ -0.041(0.016) -0.032(0.006) 0.003(0.007) 0.023(0.015) -0.108(0.293) 0.275(0.038)  0.376 (0.309)
81 1.018(0.028)  0.867(0.012)  0.241(0.024)  0.608(0.033)  1.148 (0.377)  0.332(0.064)  0.341(0.384)

When considering equal weights, A is the only tuning parameter in the algorithm.
By changing the value of A, we can have a different number of groups. We consider
changing the A value in the algorithm based on equal weights such that the number
of groups is the same as what we have selected based on the spatial weights, that is,
7 groups. Figure 11 shows the group structure with 7 groups based on equal weights.
In both Figure 11 and the left figure of Figure 10, “WA”, “OR” and “CA” are not
separated from the majority group (the group with the largest group size) when
considering equal weights. These three states are in group 4, which are separated
from the majority group (group 2) when considering spatial weights, which is more
reasonable and intuitive based on the estimates of regression coefficients as shown
in Table 11. One possible explanation of this result is that these three states have
more national parks than those states in group 2.

rn
II" w |
»‘

—120 ~100 -80
X

50 -

454

o

40

o

35 -

o

30+

25+

Figure 11: Estimated groups by changing the tuning parameter \ with equal weights.

Alternatively, we also implement K-means clustering based on the initial esti-
mates to identify similar behaviors among the states. Figure 12 shows the maps
based on 2-means clustering and 7-means clustering, respectively. The 2-cluster map
is almost the same as the map based on equal weights. However, the 7-cluster map
is not interpretable compared to the result based on spatial weights. This suggests
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that the proposed procedure can produce more interpretable subgroup structures
than K-means clustering methods.

kmeans 2 clusters kmeans 7 clusters
50 50

T YR Y

g
‘ ll- "' - ll- "’ 5
> .1 > .4
35 | E 35

Il‘ ll’ E

-120 100 -80 -120 100 -80
X X

Figure 12: Group clustering results based on K-means.

6. Discussion

In this article, we considered the problem of spatial clustering of local covariate
effects and develop a general framework called Spatial Heterogeneity Automatic De-
tection and Estimation (SHADE) for spatial areal data with repeated measures. In
spatial data, since locations near each other usually have similar patterns, we pro-
posed to take into account spatial information in the pairwise penalty, where closer
locations are assigned with larger weights to encourage stronger shrinkage. In the
simulation study, we used several examples to investigate and compare the perfor-
mance of the procedure using different weights. We found that spatial information
helps improve the accuracy of grouping, especially when the minimal group difference
is small or the number of repeated measures is small. We also established theoretical
properties of the proposed estimator in terms of its consistency in estimating the
number of groups.

In the real data example, we have treated states as locations and counties as
repeated measures. Alternatively, one can treat counties as individual units, since
one state could have counties with two different features. Then, the algorithm will
involve a matrix inverse with dimension more than 3000, which will require a higher
computational burden. A further study is needed to compare these two models for
the application.

The proposed method does not consider the spatial dependence in the regression
error when constructing the objective function. The basic idea of this algorithm can
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be extended to a general spatial clustering setup with consideration of the spatially
dependent error. More specifically, the weighted least squared term in the objective
function needs to be replaced by a generalized least squares term, which includes
an estimated covariance matrix. The new algorithm should have two iterative steps.
The first step is to update regression coefficients to find clusters and the second step
is to update covariance parameters. More simulation studies are needed to explore
the performance of the two-step algorithm. Moreover, the theoretical properties need
to be established to support the new algorithm. Both theoretical and computational
aspects of such extension are nontrivial and will be considered in a follow up work.
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Appendices

A. Proof of Theorem 1

In this section, we prove Theorem 1. When proving the central limit theorem
(CLT) we use the technique in Huang et al. (2004).

The oracle estimator is defined in (14), which has the following form

( n” ) - (UTaU) Uy

dOT’
Thus, we have

A 0T

( -’ ) — (UTU) " U Qe

&’ -«
where € = (€7, ..., €l)T with € = (€i1,...,€in,)". Therefore,
HOT 0
e —n T -1 T
|<d°”—a0> gH(U av) | Jured, (23)

where [|-[|2 is matrix norm, which is defined as, for a matrix A, || Allz = supj -, [[Az].
We know that

P (HUTQGHOO > C mizn' logn> <p (H(XW)T QEHOO >C mizn' logn>
+P (HZTQEHOO > C mizn 10gn> . (24)

28



where C' is a finite positive constant and || -

|z ||co = maxy<ij<m ;. By condition (C2), we have

J

Since

DI

i=1 h=1

zhl

i

H(XW QGH —sup

1{26gk}<M1J

>

= 1

from condition (C3), it follows that

P(H(XW Qe| >cC

IN

M~

P

™=

N
Il
—
B
Il
—

[
M@
M=

"

N
Il
—_
>
I
—_

P

Nk

3

=

IN
N
o
[
N

<2Kpexp (—cl

Similarly, ‘ZZ DR

> Z *wm €inl {i € G}

11]1

> Z xzhl@hl {i € Gy}| >

zlhl

> Z ﬁﬁzthzhl {i € Gx}| >

zlhl
2

1

(C3), we have

P (Hzme”m e

IA

q
=

>

=1

1

IN

<2gexp (—cl

> P

P

(
|

zhl

n

n

Z Z 727,}1 1€ih

zlhl

n

Z Z *Zzhmh

zlhl

< M}

2

M}

1

*{Zegk}<M1 7<M
\21

Z Z Ting€inl {i € G},

l|loo is defined as, for a vector & € R™,

minn;

J

— log n) = 2Kpn’chQ/M12.

1 1/”1

min n;

> C log n)
\/ min n;

Sy

i=1 h=1

log n)

< M?

1 minn; -

zhl

i

S\

log n> = 2c1n_clc2/]\/[12 .

29

i=1 Zh 1
10gn>
>C logn)
H?’Li
Vs htea e —
logn
\/Z i ;hll{zegk min n;

1{i ng}— logn>

n

)

Again, by condition



Thus, (24) can be bounded by

P <HUTQGHOO >C log n> <2(Kp+q) n~ Ot

min n;

Since U0 < VaF G |UTQe|_.

P(Jvrad| > out K| toun) <2 (K + e,

Let C = ¢ /* M, thus

T n -1
P(HU QGH>C\/q+Kp mmnibgn> <2(Kp+q)n . (25)
Also, according to condition (C2), we have
(UTQU) | < (Gl (26)
2
Combining (23), (25) and (26), with probability at least 1 — 2 (Kp+¢)n™!, we
have
< CCy'a+ Kp |Gl 1
H( ) G+ Kp |Guin| (| — ol
Let
On = & O M4+ Kp |Guial [ Tog .
Furthermore,
Jor ol u Aor 0l o 0
|37 =8 =2 3 e — i af — o
k=1i€Gy,
2
- |gmax‘ a” — aOH S |gmax‘ ¢i>
and

sup |77 - 7] = sup & — o] < [l — o] < 4.
Next, we consider the central limit theorem. Let U = (UlT ..... U’ )T with
U, = Uy,..., U, )" fori=1,..., n. Consider
T n

CLZ ((ﬁor - no)T ’ (dor B &O)T> - Z a;F <Zn: UiTQiUi) R UiTQiGi?
=1

i=1

30



1 where ©; = 1/n,;I,,,. By the assumption of €; in the model (1), we have
T T
E [af ((ﬁor - 770) , (&07" - d“) > ] =0.
T
The variance of a’ ((ﬁ‘”" )" (& — dO)T) can be written as

var{ (7 —n )T,(d‘”—do)T>T}

o! (UTu) ' uTaou (UTeU) an}

—O'

—o? lag (uTav)” S UTQQU, (uTav)” an] .
=1

> We use the technique of Huang et al. (2004) in the proof of their Theorem 3. That
3 iS,

T
« al ((ﬁm” —" (& — dO)T) can be written as 3.7, a;& with

ot =al (U™QU)  UrQQU, (U'QU) ' a,.

)

s where &;’s are independent with mean zero and variance one. If
2

max; a;
5 — 0,
i=1%
o then Y0 | a;&/\/> 0, a? is asymptotically N (0,1).
For any A = (A, ... 7)\quKp)T, we have

NUTQ,QU = ;ATUZT U = Z AU UL

) lhl

1 Ju q+Kp ) q+Kp ) M12
< = Z Uiny Z A< . (¢ + Kp) ||)‘||

(2

AT (Z U/ Q,Q,U; ATurQua

=1

N—
>
v
—_
>
S

(Z U/ QU) A >

i=1 max; 1;

v

C1 |Guuinl A%

max; n;
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where the last inequality is by condition (C2). So,

maX,ATUZTQlQZUZ)\ << a ><
AT (S, UTQQU) A =

— MQCl 1

1 _
max n) MECTY |Gunin| ! (¢+ Kp)

7

max; n;

Igmml (¢ + Kp) =0, (27)

min; n

by assumption.
By (27), we have that max; a?/ >, a? — 0, so (15) exists.

i=1""

B. Proof of Theorem 2
In this section, we prove Theorem 2. As in Ma et al. (2020a) and Ma and
Huang (2017), we define T : Mg — RXP to be the mapping that T(8) = a and
T* : R™ — RX? to be the mapping that T* (8) = (|Qk|_1 icc, BE, k=1,. K)T.
Consider the following neighborhood of (n°, 3°),
< o}

According to Theorem 1, there exists an event E; where ||n — n°|| < ¢,, and sup, ||3; — BY|| <
¢, such that P (Ey) >1—2(q+ Kp)n™!

Recall that the objective function to minimize is given in (2), which has the
following form

@:{TIERq,BERRP: H"’I—’OOHSQ% ﬁz_ﬂ?

121 % 2
Qu(mBAY) =52 =2 (vin — zim —xhB:) + X o (1B = Byl i)
i=1 i p— 1<i<j<n

(28)
Here we show that (( 777, (B°) ) is a strict local minimizer of the above objective

function with probability approaching 1 by two steps as in Ma et al. (2020a). The first
step is to show that in event Fy, Q,(n,B3%) > Qn( or [307") for any (n*,B8%)T € ©

and (07, 87T # (7). (B)T)T, where 8* = T~ (T*(B)) and B € R". The
proof of this step is almost the same as the first step in Ma et al. (2020a) , which is
omitted here.

Here we show the second step, that is, there exists an event Fs such that P (Fy) >
A~ \T\T
1 —2n~!. In the event E; N E,, there is a neighborhood ©,, of (( AOT) , (BO’“> ) ,

such that Q, (n,8) > Q,, (n, 3*) for any (nT, ﬁT) € 6,,N 0O for sufficiently large n.

32



Let ©,, = {[3, : sup; Hﬁ, — ,[;’:”"H < tn}, where t,, is a positive sequence with t, =
T
o(1). By Taylor’s expansion, for (nT, ﬁT) €06,Nn06,
Qn (77,,3) _Qn (777/6*) :F1+F27 (29>
where
Li=—(y—2Zn-Xp") QX (-6,

2 9 [A L euns (|8~ By
Y SR, 1)) P
=1 1

with 8™ = a3 + (1 — «) B* for some constant « € (0, 1).
We have I'y as follows,

ra =23 s, (|0 = oy]) Jor - o (o - 7)" {8 80 - (8- 8)}-

For i,j € Gy, B] = Bj and 8" — B}" = a(B; — B;), then

K _
=AY Y e (lar -8y e -y (8 -8r) B -8

k=1 {i,j€G,i<j}

K —1 T
+AY > (B -sr)) B -8y (B -8r) {Bi-8)-(8-8;)}-

k=1 {i€Gk,j€G\'}

Since sup; |87 — B2 < ¢, for k # K, i € Gyuj € Gy,

18 =87 = _min |87 = B0 — 2max| 8" - BY|| = b, — 26, > ar.

~ €0k, JEGy

Thus, o’ (

Bi" — [3}””) = 0 by assumption (C1). Therefore,

K
=AY X e

i=1 {4,j€G,i<j}

B —87|) 18— 8il. (30)

Also, for i, 5 € G, sup;, H,Bim — ﬁJmH < 4t,, so pl, (
tion (C1). Thus, we have

B — 5}”“) > p' (4t,,) by assump-

K
Ly >> > Aeyp, (4ta) 1B — G5 -

33



L Lt Q=(Q7.....QY) = [y 2zn - xp") " QX] with

l i (yzh Zym — wﬁﬁ?) Tip-

i =

We have,

I =-(y—Zn-XB")" QX (8-

=-Q" (B-pB")
K T

_ ¥y @@ -8 -
k=1{i,j€Gy,i<j} |Gl

> Moreover,

Q: = Ly Z (em + 2, (n - 77) +zj, (BO BZ-")) Tin,
i p=
SO

sup Qi) < sup ] (el
< Cov/p ([€lle + Csv/adn + Can/pn)

where £ = (&1,...,&,)" with & = L Y0, €. According to Condition (C3),

- B

)

(H&H > \/201 \/logn/ mlnnl) <>» P (]@] > \/261_1\/10gn/ minni>

M- 10

-\p ( i 2 €ij \/201_1\/10g n/ min nz)
i=1 tj=1

<3 (|1 S5 e
=1 v g=1

; {—01201_1 log n} < TQL

3 Thus, there exists an event Fy such that P (Fy) >1—2n"" and

sup [| Qi < Cay/p (\/2011\/10g n/ miin n; + Cs\/qon + C'Q\/]_Jqﬁn) .
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Thus,

|(Q@- -Q)" (B - B))
|G|
§2 ‘gminyil Sl;lp HQZH ”/82 - /BJH

<20y Goinl ' <¢20;1wog n/ minn; + Cs/G6, + 02\/2_?¢n> 18: = Bill. (32)

Combining (30), (31) and (32), (29) follows that

Qn (777/6> - Qn (777 /6*)

X 1
=3 X {A%‘P'(‘Un)—202|gmin|_1\/15<\/2011\/m?i7;i+03\/§¢n+02\/23¢n>}”ﬂi—5j||-

k=1{i,jeGk,i<j}

Ast, = o(1), o (4t,) — 1. Since |G| > (¢ + Kp)"/* max (1 [ logn, (¢ + Kp)1/2>,
p = o(n) and ¢ = o(n), then |Gum| 'p = o(1) and |Qmin|_1\/p_q = 0(1). Thus,
A > (G| VPy/ HISEZ, A > ’gmin|_1\/p_q¢n and A > [Guin| ' pén. Therefore,
Qn (M, B) — Qn (n, B*) > 0 for sufficiently large n by the assumption (C4) that ¢;;’s

are bounded if 7 and j are in the same group.
Therefore, combining the two steps, we will have that @, (n,3) > Q.(7°", 8°")

for any (nT,,BT>T € ©,Nn 0 and (n”,80)T # ()T, (B°")T)T. This shows that

(/)T (B°)T)T is a strict local minimizer of the objective function (2) on Ey N E,
with probability at least 1 — 2(K + p + 1)n~! for sufficiently large n.

C. Sherman—Morrison—Woodbury formula

-1
Consider (XTQzoX +vATA) . Itis known that AT A = nl,,—(1, @ I,) (1, ® I,)".
Let X* = QY2X and Z* = Q'/2Z, then the target matrix becomes

(X7TQsX* +vATA)
o -1
_ (X*TX* tonl,, - X2 (272) 27X v (1,0 L,) 1, ® I,,)T) .

Let Ay = X*TX* +vnl,, — X7 Z* (Z*TZ*)_1 ZTX* B=1,®1, C = v, and

D = B”, then based on Sherman-Morrison-Woodbury formula the orignal inverse
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1 can be written as
(A, —BCD) ' = A;'+A;'B CI,, - BTAl‘lB)_I BTA
Use Sherman-Morrison-Woodbury formula again to calculate A;*, that is
A7l = <X*TX* +vnd,, — x T 7 (Z*TZ*) Z*TX*>1 ’
which can be written as
Al (X*TX* +1/nInp) i
+ (XX +unl,) X2 {Z*TZ* - 27X (XX +vnL,,) X*TZ*] -

- ZTX (XX fonl,,)

2 Also it is known that,

1

(af{w*{T + anp)i e 0
Al = (X*TX* + annp)_l = : : ’
0 e (w;‘Lw;‘LT + VnIp>71
and
BTAle_ﬁ:( i +vnl,) '

@
I
—

-1
+

{
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