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Abstract3

Spatial regression is widely used for modeling the relationship between a depen-
dent variable and explanatory covariates. Oftentimes, the linear relationships vary
across space, such that some covariates have location-specific effects on the response.
One fundamental question is how to detect the systematic variation in the model and
identify which locations share common regression coefficients and which do not. Only
a correct model structure can assure unbiased estimation of coefficients and valid in-
ferences. A new procedure is proposed, called Spatial Heterogeneity Automatic De-
tection and Estimation (SHADE), for automatically and simultaneously subgrouping
and estimating covariate effects for spatial regression models. The SHADE employs
a class of spatially-weighted fusion type penalty on all pairs of observations, with
location-specific weight constructed using spatial information, to cluster coefficients
into subgroups. Under certain regularity conditions, the SHADE is shown to be able
to identify the true model structure with probability approaching one and estimate
regression coefficients consistently. An alternating direction method of multiplier
algorithm (ADMM) is developed to compute the SHADE. In numerical studies, the
empirical performance of the SHADE is demonstrated by using different choices of
weights and comparing their accuracy. The results suggest that spatial information
can enhance subgroup structure analysis in challenging situations when the spatial
variation among regression coefficients is small or the number of repeated measures
is small. Finally, the SHADE is applied to find the relationship between a natural
resource survey and a land cover data layer to identify spatially interpretable groups.
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1. Introduction1

Spatial regression is commonly used to model the relationship between a response2

and explanatory variables. For complex problems, some covariates (we call them3

global covariates) may have constant effects across space, while other covariates (we4

call them local covariates) may have location-specific effects, i.e, their effects on the5

response variable vary across space. This has received wide attention in many fields,6

such as environmental sciences (Hu and Bradley, 2018), biology (Zhang and Lawson,7

2011), social science (Bradley et al., 2018), economics (Brunsdon et al., 1996), and8

biostatistics (Xu et al., 2019).9

A motivating example is about studying the relationship between two land-10

cover data sources. One is the National Resources Inventory (NRI, Nusser and11

Goebel 1997) survey conducted by the USDA Natural Resources Conservation Ser-12

vice (NRCS), the other one is the Cropland data layer (CDL, Han et al. 2012) pro-13

duced by the USDA National Agricultural Statistics Service (NASS). An accurate14

estimate of local landcover information from NRI is essential for developing con-15

servation policies and land management plans. However, direct estimates in small16

geographical areas such as at the county level may not be accurate due to small17

sample sizes. Auxiliary information such as CDL can be used to improve the small18

area estimator in NRI (Wang et al., 2018). Traditional regression models used in19

the small area estimation problems typically assume common regression coefficients20

over all domains, which may not be appropriate. For example, when we looked at21

the linear relationship between the NRI and CDL estimates of different types of land22

covers at the county level, the regression coefficients in the Mountain states are quite23

different from the west coast and the vast areas in the east. This is reflected in Figure24

10 (a) in Section 5. One reason for that difference is due to the NRI survey’s scope,25

which only includes non-federal land in the US. Another contributing reason is that26

CDL is created by training separate machine learning models at the state level using27

only ground observations from that state, which creates variations among states. A28

common regression assumption would be too simple to capture the regional differ-29

ences and lead to biases in the estimators. This type of spatial heterogeneity is also30

known as structural instability. For linear models, this implies that the linear rela-31

tionship changes geographically over space, and the linear regression coefficients may32

form subgroups. It is an important and challenging problem to identify the correct33

grouping structure of the regression coefficients, as only a correct model structure34

can lead to an unbiased estimation of the regression coefficients and their valid in-35

ference. In practice, ad hoc grouping of states as regions defined by tradition or for36

federal administrative purposes is sometimes used to address this issue. However,37

such grouping is not driven by the data in specific problems and may not be ap-38
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propriate or efficient. For example, the central region in Figure 10 (a) includes not1

only all the Mountain states, but also the North and South Dakotas which are not2

traditionally considered Mountain states. Figure 10 (b) suggests a further division3

of the east into sub-regions, which does not align with any well known administra-4

tive regions. One natural approach is to assume that regression coefficients of states5

nearby are more likely to belong to the same subgroup than states which are further6

apart, and use both the estimated regression coefficients and the spatial structure to7

guide the clustering of states into subregions, which is what we propose to do in this8

paper.9

The problem of taking into account spatial dependence structure in linear regres-10

sion has been studied for a long time in literature. Classical works include spatial11

expansion methods (Casetti, 1972; Casetti and Jones, 1987), which treat the spatially12

varying regression coefficients as a function of expansion variables, typically using13

longitude and latitude coordinates as location variables. One popular approach to14

accounting for spatial variations in the model is by introducing an additive spatial15

random effect for each location, as done for linear models by Cressie (2015) and gen-16

eralized linear models by Diggle et al. (1998). Other classes of models in wide use17

are spatial varying coefficient models, including the geographically weighted regres-18

sion (GWR; Brunsdon et al. 1996) and its extensions to generalized linear models19

(Nakaya et al., 2005) and the Cox model for survival analysis (Xue et al., 2020; Hu20

and Huffer, 2020). There have also been developments in the Bayesian framework,21

such as Gelfand et al. (2003).22

The methods mentioned above typically assume that the regression parameters23

are smooth functions of location variables. This assumption is reasonable in certain24

practices, but may not be appropriate for applications where the covariate effects25

are constant over subregions defined by some unobserved hidden factors. In this26

work, we take a different perspective by grouping the covariate effects into spatially-27

interpretable subgroups or clusters. As in the motivating example, different clusters28

have different patterns, which can be used to build more flexible estimators to im-29

prove the original direct estimates. A majority of existing work in the literature30

on spatial cluster detection is based on hypothesis tests, including the scan statistic31

methods based on the likelihood ratio (Kulldorff and Nagarwalla, 1995; Jung et al.,32

2007; Cook et al., 2007) and the two-step spatial test methods under the GWR33

framework (Lee et al., 2017, 2020). Test-based methods are intuitive and useful in34

practice, but proper test statistics are often difficult to construct, and the tests may35

have low power when the number of locations is large. In addition, these methods36

handle the cluster detection problem and the model estimation separately, making37

it challenging to study the inferential properties of the final estimator. The main38
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purpose of this article is to fill this gap by developing a unified framework to de-1

tect clusters of regression coefficients, estimate them consistently, and make valid2

inferences.3

In the context of non-spatial data analysis, a variety of clustering methods have4

been proposed to identify homogeneous groups for either observations or regression5

coefficients. Chi and Lange (2015) developed a method for the convex clustering6

problem through the alternating direction method of multiplier algorithm (ADMM)7

(Boyd et al., 2011) with pairwise Lp(p ≥ 1) penalty. Nonnegative weights are consid-8

ered to reduce bias for pairwise penalties. Fan et al. (2018) considered a clustering9

problem with l0 penalty on graphs. For clustering the regression coefficients, Ma and10

Huang (2017) and Ma et al. (2020a) proposed a concave fusion approach for esti-11

mating the group structure and estimating subgroup-specific effects, where smoothly12

clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and the minimax con-13

cave penalty (MCP) (Zhang, 2010) are considered. The pairwise penalty approach14

is also applied in partially linear models Liu and Lin (2019) and mixture models Im15

and Tan (2021).16

For spatial analysis, some interesting work are recently proposed for grouping17

regression coefficients in the spatial regression. Hallac et al. (2015) considered a gen-18

eral network setting, and their focus was on optimization, where an ADMM based19

algorithm was proposed for network LASSO with a global convergence guarantee.20

They did not discuss statistical properties for any estimators. By contrast, our paper21

focuses on spatial regression and gives a comprehensive investigation of the topic,22

covering estimation framework, statistical theory, computation and tuning, as well23

as spatial applications. Both Ma et al. (2020a) and Hallac et al. (2015) considered on24

finding clusters based on the whole vector of regression coefficients. Ma et al. (2020b)25

proposed the Bayesian heterogeneity pursuit regression models to detect clusters in26

the covariate effects based on the Dirichlet process. Hu et al. (2020) proposed a27

Bayesian method for clustering coefficients with auxiliary covariates random effects,28

based on a mixture of finite mixtures (MFM). Li and Sang (2019) proposed a penal-29

ized approach based on the minimum spanning tree. Luo et al. (2021) generalized30

the work of Li and Sang (2019) using a Bayesian method and random spanning tree31

models, which was not based on penalty approaches. These two methods consid-32

ered clusters on each covariate. In the area of spatial boundaries detection, Lu and33

Carlin (2005) and Lu et al. (2007) considered the areal boundary detection using a34

Bayesian hierarchical model based on the conditional autoregressive model (Banerjee35

et al., 2014). The boundaries were determined by the posterior distribution of the36

corresponding spatial process or spatial weights. These boundary detection methods37

focused on clustering of observations instead of regression coefficients.38
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The main difficulty in clustering spatial covariate effects is how to consistently1

estimate the number of clusters and cluster memberships, when properly considering2

spatial neighborhood information. To our knowledge, most existing methods do not3

rigorously prove the theoretical results and explore the choices of spatial weights.4

In this work, we fill the gap by proposing a new procedure, called Spatial Hetero-5

geneity Automatic Detection and Estimation (SHADE), for automatically grouping6

and estimating local covariate effects simultaneously. The SHADE employs a class7

of spatially-weighted fusion type penalty on all pairs of observations, with location-8

specific weights adaptively constructed using geographical proximity of locations,9

and achieves spatial clustering consistency for spatial linear regression models. In10

theory, we show that the oracle estimator based on weighted least squares is a local11

minimizer of the objective function with probability approaching 1 under certain12

regular conditions, which indicates that the number of clusters can be estimated13

consistently. We believe that this result is the first of its kind in the contest of14

spatial data analysis. To implement the SHADE, an alternating direction method15

of multiplier (ADMM) algorithm is developed. To make the best choices of spatial16

weights and to understand their roles in practical applications, we consider different17

schemes to choose pairwise weights and compare them numerically and theoretically.18

Our numerical examples suggest that the number of clusters and the group struc-19

ture can be recovered with high probability, and the spatial information can help in20

spatial clustering analysis when the minimal group difference is small or the number21

of repeated measures is small.22

The article is organized as follows. In Section 2, we describe the Spatial Hetero-23

geneity Automatic Detection and Estimation (SHADE) model and the corresponding24

ADMM algorithm. In Section 3, we establish the theoretical properties of the SHADE25

estimator. The simulation study is conducted in Section 4 under several scenarios to26

show the performances of the proposed estimator. The proposed method is applied27

to an NRI small area estimation problem to illustrate the use of SHADE in real-data28

applications in Section 5. Finally, some discussions are given in Section 6.29

2. Methodology and Algorithm30

2.1. Methodology: SHADE31

Assume our spatial data consist of multiple measurements at each location or32

subject. Let yih be the hth response for the ith subject observed at location si,33

where i = 1, . . . , n, h = 1, . . . , ni. Based on their effects on the response variable,34

the covariates can be divided into two categories: “global” covariates which have35

common effects on the response across all the locations, and “local” covariates which36
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have location-specific effects on the response. To reflect this, let zih and xih be the1

corresponding covariate vectors with dimension q and p, respectively, where zih’s are2

“global” covariates with common linear effects to the response across all the locations,3

while xih’s are “local” covariates with location-specific linear effects on the response.4

We consider the following linear regression model5

yih = zT
ihη + xT

ihβi + ϵih, (1)
where η represents the vector of common regression coefficients shared by global6

effects, βi’s are location-specific regression coefficients, and ϵih’s are i.i.d random er-7

rors with E (ϵih) = 0 and V ar (ϵih) = σ2. Furthermore, some locations may have the8

same or similar location-specific effects, grouping locations with the same location-9

specific effects can help to achieve dimension reduction and improve model prediction10

accuracy. Assume the n location-specific effects belong to K mutually exclusive sub-11

groups: the locations with a common βi belong to the same group. Denote the12

corresponding partition of {1, . . . , n} as G = {G1, . . . ,GK}, where the index set Gk13

contains all the locations belonging to the group k for k = 1, . . . , K. For conve-14

nience, denote the regression coefficients associated with Gk as αk. In practice, since15

neither K nor the partition Gk’s are known, the goal is to use the observed data16

{(yih, zih,xih)} to construct the estimator K̂ and the partition Ĝ = {Ĝ1, . . . , ĜK̂},17

where Ĝk = {i : β̂i = α̂k, 1 ≤ i ≤ n}.18

To achieve this goal, we use the following optimization problem: minimize the19

weighted least squares objective function subject to a spatially-weighted pairwise20

penalty21

Qn (η,β;λ, ψ) = 1
2

n∑
i=1

1
ni

ni∑
h=1

(
yih − zT

ihη − xT
ihβi

)2
+

∑
1≤i<j≤n

pγ (∥βi − βj∥ , cijλ) ,

(2)
where η = (η1, . . . , ηq)T , β =

(
βT

1 , . . . ,β
T
n

)T
, ∥ · ∥ denotes the Euclidean norm,22

pγ (·, λ) is a penalty function imposed on all distinct pairs. In the penalty function,23

λ ≥ 0 is a tuning parameter, γ > 0 is a built-in constant in the penalty function, and24

different weights cij’s are assigned to different pairs of locations si and sj for any25

1 ≤ i < j ≤ n. One popular choice of penalty is the L1 penalty (lasso) (Tibshirani,26

1996) with the form pγ(t, λ) = λ|t|. Since L1 penalty tends to produce too many27

groups as shown in Ma and Huang (2017), we consider the SCAD penalty, which is28

defined as29

pγ(t, λ) = λ
∫ |t|

0
min{1, (γ − x/λ)+/(γ − 1)}dx. (3)

Here we treat γ as a fixed value as in Fan and Li (2001), Zhang (2010) and Ma et al.30

(2020a).31
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2.2. Choices of Spatial Weights1

In (2), the values of weights cij are crucial, as they control the number of sub-2

groups and grouping results. The pairs ∥βi − βj∥ with larger weights cijλ are shrunk3

together more than those pairs with smaller weights. For spatial data, reasonable4

choices of cij should take into account two factors: locations with closer βj values5

are more likely grouped together and locations closer to each other are more likely6

to form a subgroup as they typically have similar trends. Since the true values of β7

are not available, we use their estimators β̃ as the surrogates. For example, we can8

define the weights cij as9

cij = exp
(
−ψ ∥si − sj∥ ·

∥∥∥β̃i − β̃j

∥∥∥) ,
where β̃i is an initial estimate of βi, and ψ is a scale parameter to control the10

magnitudes of the weights. In areal data, we suggest three different ways of taking11

into account spatial information in the data to construct the weights.12

(i) using both spatial and regression coefficients information:13

cij = exp
(
ψ (1 − aij) ·

∥∥∥β̃i − β̃j

∥∥∥) , (4)

where aij is the neighbor order between location si and location sj, which14

means that if i and j are neighbors, aij = 1. If i and j are not neighbors, but15

they have at least one same neighbor, aij = 2. Similarly, we can have all the16

neighborhood order for all subjects or locations.17

18

(ii) using regression coefficients information only:19

cij = exp
(
−ψ

∥∥∥β̃i − β̃j

∥∥∥) . (5)

(iii) using spatial information only:20

cij = exp (ψ(1 − aij)) . (6)

Weights in (4) and (5) both include the regression coefficients, which would de-21

pend on the accuracy of β̃i. If the number of repeated measures is not large, the22

values of β̃i will not show the real relationship between different locations, which23

would lead to very bad weights. The phenomenon can be observed in the simulation24

study. The weights we use here are three special cases that use the information of25
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either regression coefficients or the spatial neighborhood orders. Definitely, there1

are other ways to construct weights, such as using distance to borrow spatial infor-2

mation. As long as the weights satisfy condition (C4) in Section 3, the theoretical3

results will hold under other conditions. For example, the weights in (5) will satisfy4

(C4) automatically if β̃i’s are consistent estimators. Besides condition (C4), there5

are no other conditions about the format of the weight function.6

2.3. Algorithm for SHADE7

In this section, we describe the ADMM algorithm to solve (2) in Section 2.1.8

There are two tuning parameters, λ and ψ, in the proposed method. We choose9

them adaptively using some tuning procedures discussed at the end of this section.10

For now, we fix them and present the computational algorithm for solving (2). Denote11

the solution as12 (
η̂, β̂

)
= arg min

η∈Rq ,β∈Rnp
Qn (η,β, λ, ψ) . (7)

First, we introduce the slack variables for all the pairs (i, j) δij = βi − βj, for
1 ≤ i < j ≤ n. Then the problem is equivalent to minimizing the following objective
function with regard to (η,β, δ),

min
η,β,δ

L0 (η,β, δ) = 1
2

n∑
i=1

1
ni

ni∑
h=1

(
yih − zT

ihη − xT
ihβi

)2
+

∑
1≤i<j≤n

pγ (∥δij∥ , cijλ) ,

subject to βi − βj − δij = 0, 1 ≤ i < j ≤ n,

where δ = (δT
ij, 1 ≤ i < j ≤ n)T . To handle the equation constraints in the opti-13

mization problem, we introduce the augmented Lagrangian14

L (η,β, δ,v) = L0 (η,β, δ) +
∑
i<j

⟨vij,βi − βj − δij⟩ + ϑ

2
∑
i<j

∥βi − βj − δij∥2 ,

where v = (vT
ij, 1 ≤ i < j ≤ n)T are Lagrange multipliers and ϑ > 0 is the penalty15

parameter.16

To solve the problem, we use an iterative algorithm which updates β,η, δ,v
sequentially, one at a time. At the (m + 1)th iteration, given their current values
(β(m),η(m), δ(m),v(m)), the updates of η,β, δ,v are(

η(m+1),β(m+1)
)

= arg min
η,β

L
(
η,β, δ(m),v(m)

)
,

δ(m+1) = arg min
δ

L
(
η(m+1),β(m+1), δ,v(m)

)
,

v
(m+1)
ij = vm

ij + ϑ
(
β

(m+1)
i − β

(m+1)
j − δ

(m+1)
ij

)
. (8)
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To update η and β, we minimize the following objective function1

f (β,η) =
∥∥∥Ω1/2 (y − Zη − Xβ)

∥∥∥2
+ ϑ

∥∥∥Aβ − δ(m) + ϑ−1v(m)
∥∥∥2
,

where y = (y11, . . . , y1n1 , . . . , yn1, . . . , yn,nn)T , Z = (z11, . . . ,z1n1 , . . . ,zn1, . . . ,zn,nn)T ,2

X = diag (X1, . . . ,Xn) with Xi = (xi1, . . . ,xi,ni
)T , Ω = diag (1/n1In1 , . . . , 1/nnInn)3

and A = D ⊗ Ip with an [n (n− 1) /2] × n matrix D = {(ei − ej) , i < j}T , where4

ei is an n × 1 vector with ith element 1 and other elements 0. Then the solutions5

for β and η are6

β(m+1) =
(
XTQZ,ΩX + ϑATA

)−1 [
XTQZ,Ωy + ϑvec

((
∆(m) − ϑ−1Υ(m)

)
D
)]
,

(9)

η(m+1) =
(
ZTΩZ

)−1
ZTΩ

(
y − Xβ(m+1)

)
, (10)

where ∆(m) =
(
δ

(m)
ij , i < j

)
p×n(n−1)/2

, Υ (m) =
(
v

(m)
ij , i < j

)
p×n(n−1)/2

and7

QZ,Ω = Ω − ΩZ
(
ZTΩZ

)−1
ZTΩ.

To update δij’s componentwisely, it is equivalent to minimizing the following8

objective function9

ϑ

2
∥∥∥ς(m)

ij − δij

∥∥∥2
+ pγ (∥δij∥ , cijλ) ,

where ς
(m+1)
ij =

(
β

(m+1)
i − β

(m+1)
j

)
+ ϑ−1v

(m)
ij . The solution based on SCAD penalty10

has a closed-form solution as11

δ
(m+1)
ij =


S
(
ς

(m+1)
ij , λcij/ϑ

)
if
∥∥∥ς(m+1)

ij

∥∥∥ ≤ λcij + λcij/ϑ,

S

(
ς

(m+1)
ij ,γλcij/((γ−1)ϑ)

)
1−1/((γ−1)ϑ) if λcij + λcij/ϑ <

∥∥∥ς(m+1)
ij

∥∥∥ ≤ γλcij,

ς
(m+1)
ij if

∥∥∥ς(m+1)
ij

∥∥∥ > γλcij,

(11)

where γ > cij + cij/ϑ and S (w, t) = (1 − t/ ∥w∥)+ w, and (t)+ = t if t > 0, 012

otherwise.13

In summary, the computational algorithm can be described as follows.14
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Algorithm: ADMM algorithm
Require: : Initialize β(0), δ(0) and v(0).

1: for m = 0, 1, 2, . . . do
2: Update β by (9).
3: Update η by (10).
4: Update δ by (11)
5: Update v by (8).
6: if convergence criterion is met then
7: Stop and get the estimates
8: else
9: m = m+ 1

10: end if
11: end for

A good initial estimator of β will depend on many factors such as the number1

of covariates, the magnitude of difference between true parameters from different2

clusters, and signal to noise ratio. We can construct the initial values β̃(0) by fitting3

a linear regression model yih = zT
ihη + xT

ihβi + ϵih for each i = 1, . . . , n. Then, set4

δ
(0)
ij = β

(0)
i − β

(0)
j and v(0) = 0. Alternatively, the initial values can be set using the5

procedure in Ma et al. (2020a). They used a ridge fusion criterion with a small tuning6

parameter value. The initial group structure was obtained by assigning objects into7

K∗(a given value) groups by ranking the estimated βi based on the ridge fusion8

criterion.9

If δ̂ij = 0, then the locations i and j belong to the same group. Thus, we10

can obtain the corresponding estimated partition Ĝ and the estimated number of11

groups K̂(λ, ψ). For each group, the group-specific parameter vector is estimated as12

α̂k = 1/|Ĝk|∑i∈Ĝk
β̂i for k = 1, . . . , K̂.13

Remark 1. If there are no global covariates, the model simplifies as yih = xT
ihβi+ϵih.14

The algorithm will be simplified, that is, QZ,Ω will become Ω. The model we use in15

the application is the simplified model.16

Remark 2. The convergence criterion used is the same as Ma and Huang (2017),17

which is based on the primal residual r(m+1) = Aβ(m+1) − δ(m+1). The algorithm is18

stopped if ∥r(m+1)∥ < ε, where ε is a small positive number.19

Remark 3. In (9), the computational cost of calculating the matrix inverse20 (
XTQZ,ΩX + ϑATA

)−1
is O(n3) if calculating the matrix inverse directly. How-21

ever, based on the Sherman–Morrison–Woodbury (SMW) in Appendix, the matrix22
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inverse can be calculated with less computational cost O(n2). The computational cost1

of updating pairwise differences is also O(n2). Thus, the computational cost of the2

whole algorithm is O(n2).3

We need to select two tuning parameters, λ and ψ, in the SHADE algorithm. In4

this paper, we use the modified Bayes Information Criterion (BIC) (Wang et al., 2007)5

to determine the best tuning parameters adaptively from the data. In particular, we6

have7

BIC (λ, ψ) = log
[

1
n

n∑
i=1

1
ni

(
yih − zT

ihη̂(λ, ψ) − xT
ihβ̂i(λ, ψ)

)2
]
+Cn

log n
n

(
K̂(λ, ψ)p+ q

)
,

(12)
where Cn is a positive number which can depend on n. Here Cn = c0 log (log (np+ q))8

with c0 = 0.2 is used. For tuning parameter ψ, we select the best value from some9

candidate values, such as 0.1, 0.5, 1, 3. For each given ψ, we use the warm start10

and continuation strategy to select the tuning parameter λ. A grid of λ is prede-11

fined within [λmin, λmax]. For each λ, the initial values are the estimated values from12

the previous estimation. Denote the selected tuning parameters as λ̂ and ψ̂. Cor-13

respondingly, the estimated group number is K̂(λ̂, ψ̂), and the estimated regression14

coefficients are β̂ and η̂.15

3. Theoretical Properties of SHADE16

In this section, we study the theoretical properties of the proposed SHADE esti-17

mator. Assume Gk’s are the true partition of location-specific regression coefficients.18

Let |Gk| be the number of subjects in group Gk for k = 1, . . . , K, |Gmin| and |Gmax| be19

the minimum and maximum group sizes, respectively. Let W̃ be an n × K matrix20

with element wik and wik = 1 if i ∈ Gk, wik = 0, otherwise. Denote W = W̃ ⊗Ip, an21

np × Kp matrix, and U = (Z,XW ). Define MG = {β ∈ Rnp : βi = βj, for i, j ∈22

Gk, 1 ≤ k ≤ K}. Using these notations, we can then express β as β = Wα if23

β ∈ MG, where α =
(
αT

1 , . . . ,α
T
K

)T
. For any positive numbers, xn and yn, xn ≫ yn24

means that x−1
n yn = o(1). Define the scaled penalty function as25

ργ(t) = λ−1pγ(t, λ). (13)

Below are our assumptions.26

(C1) The function ργ(t) is symmetric, non-decreasing, and concave on [0,∞). It is27

constant for t ≥ aλ for some constant a > 0, and ργ(0) = 0. Also, ρ′(t) exists28

and is continuous except for a finite number values of t and ρ′(0+) = 1.29

11



(C2) There exist finite positive constants M1,M2,M3 > 0 such that |xih,l| ≤ M1,1

|zih,l| ≤ M1 for j = 1, . . . , ni and i = 1, . . . , n and M2 ≤ maxi ni/mini ni ≤ M3.2

Also, assume that λmin
(
UTΩU

)
≥ C1 |Gmin|, λmax

(
UTΩU

)
≤ C ′

1n for some3

constants 0 < C1 < ∞ and 0 < C ′
1 < ∞, where λmin and λmax are the4

corresponding minimum and maximum eigenvalues respectively. In addition,5

assume that supi,h ∥xih∥ ≤ C2
√
p and supi,h ∥zih∥ ≤ C3

√
q for some constants6

0 < C2 < ∞ and 0 < C3 < ∞.7

(C3) The random error vector ϵ = (ϵ11, . . . , ϵ1n1 , ϵ21, . . . , ϵ2n2 , . . . , ϵn1, . . . , ϵnnn)T has8

sub-Gaussian tails such that P
(∣∣∣aTϵ

∣∣∣ > ∥a∥ x
)

≤ 2 exp (−c1x
2) for any vector9

a ∈ Rm and x > 0, where 0 < c1 < ∞ and m = ∑n
i=1 ni.10

(C4) The pairwise weights cij’s are bounded away from zero if i and j are in the11

same group.12

(C5) Below is the condition for the minimum group size,13

|Gmin| ≫ (q +Kp)1/2 max
(√

n

mini ni

log n, (q +Kp)1/2
)
.

14

Conditions (C1) and (C3) are commonly used in high-dimensional penalized re-15

gression problems. Condition (C2) is similar to the condition mentioned in Ma et al.16

(2020a). It also includes the bounded conditions for covariates, which are used in17

Huang et al. (2004). In general, if the weights functions are not zeros defined on a18

finite support, the cij’s will satisfy condition (C4). This mild condition can guaran-19

tee the consistency results. Different choices of weights that satisfy this condition20

will not have any effect on the consistency results. However, different cij’s may have21

different finite sample performances. We tried different cij in the simulation results22

to compare the performances.23

First, we establish the properties of the oracle estimator, which is defined as the
weighted least squares estimator, assuming that the underlying group structure is
known. Specifically, the oracle estimator of (η,α) is

(η̂or, α̂or) = arg min
η∈Rq ,α∈RKp

1
2
∥∥∥Ω1/2 (y − Zη − XWα)

∥∥∥2

=
(
UTΩU

)−1
UTΩy. (14)

Then, the corresponding oracle estimator of β is β̂or = Wα̂or. Let α0
k be the true24

coefficient vector for group k, k = 1, . . . , K and α0 = ((α0
1)T , . . . , (α0

K)T )T , and let η0
25

12



be the true common coefficient vector. The following theorem shows the properties1

of the oracle estimator.2

Theorem 1. Under conditions (C1)-(C3) and (C5), q = o(n) and Kp = o(n), we3

have with probability at least 1 − 2(q +Kp)n−1,4 ∥∥∥∥∥
(

η̂or − η0

α̂or − α0

)∥∥∥∥∥ ≤ ϕn,

and5 ∥∥∥β̂or − β0
∥∥∥ ≤

√
|Gmax|ϕn; sup

i

∥∥∥β̂or
i − β0

i

∥∥∥ ≤ ϕn,

where6

ϕn = c
−1/2
1 C−1

1 M1

√
q +Kp |Gmin|−1

√
n

minni

log n.

Furthermore, for any vector an ∈ Rq+Kp, we have as n → ∞7

σn(an)−1aT
n

((
η̂or − η0

)T
,
(
α̂or − α0

)T
)T

d→ N(0, 1), (15)

where8

σn(an) = σ
[
aT

n

(
UTΩU

)−1
UTΩΩU

(
UTΩU

)−1
an

]1/2
. (16)

Remark 4. There are no specific assumptions about ni. If minni ≪ n
q+Kp

log n,9

or minni = O
(

n
q+Kp

log n
)
, (C5) becomes |Gmin| ≫ (q +Kp)1/2√ n

min ni
log n. If10

minni ≫ n
q+Kp

log n, (C5) becomes |Gmin| ≫ q +Kp. In this case, if q, p and K are11

fixed values, the condition (C5) becomes 1/ |Gmin| = o(1).12

Remark 5. The model considered in Ma et al. (2020a) is a special case of the13

proposed model, and their condition is a special case of condition (C5) used here,14

that is when ni = 1.15

Remark 6. If let |Gmin| = δn/K for some constant 0 < δ ≤ 1, then16

ϕn = c
−1/2
1 C−1

1 M1δ
−1K

√
q +Kp

√
log n/(nminni).

Moreover, if q, p and K are fixed values, then ϕn = C∗
√

log n/(nminni) for some17

constant 0 < C∗ < ∞.18

13



Next, we study the properties of our proposed estimator. Let1

bn = min
i∈Gk,j∈Gk′

∥∥∥β0
i − β0

j

∥∥∥ = min
k ̸=k′

∥∥∥α0
k − α0

k′

∥∥∥ (17)

be the minimal difference among different groups.2

Theorem 2. Suppose the conditions of Theorem 1 hold and (C4) holds. If bn >3

aλ and λ ≫ ϕn for some constant a > 0, then there exists a local minimizer4 (
η̂(λ, ψ)T , β̂(λ, ψ)T

)T
of the objective function Qn(η,β) given in (2) such that5

P
((

η̂(λ, ψ)T , β̂(λ, ψ)T
)T

=
(
(η̂or)T , (β̂or)T

)T
)

→ 1. (18)

Remark 7. Theorem 2 implies that true group structure can be recovered with prob-6

ability approaching 1. It also implies that the estimated number of groups K̂ satisfies7

P
(
K̂(λ, ψ) = K

)
→ 1.8

Let α̂(λ, ψ) be the distinct group vectors of β̂(λ, ψ). According to Theorem 19

and Theorem 2, we have the following result.10

Corollary 1. Suppose the conditions in Theorem 2 hold, for any vector an ∈ Rq+Kp,11

we have as n → ∞12

σn(an)−1aT
n

((
η̂(λ, ψ) − η0

)T
,
(
α̂(λ, ψ) − α0

)T
)T

d→ N(0, 1). (19)

Remark 8. The variance parameter σ2 can be estimated by13

σ2 = 1
m− q − K̂p

n∑
i=1

ni∑
h=1

(
yih − zT

ihη̂ − xT
ihβ̂i

)2
(20)

The algorithm can be implemented through the package Spgr found in https:14

//github.com/wangx23/Spgr.15

4. Simulation Studies16

In this section, we evaluate and compare the performance of the proposed SHADE17

estimator with different weight choices: equal weights cij = 1 (denoted as “equal”),18

weights defined in (4) (denoted as “reg-sp”), weights defined in (5) (denoted by19

“reg”), and weights defined in (6) (denoted by “sp”).20

The simulations are carried out as follows. Let zih = (zih,1, . . . , zih,5)T with21

zih,1 = 1 and (zih,2, . . . , zih,5)T are generated using a multivariate normal distribution22

14



with mean 0, variance 1, and pairwise correlation ρ = 0.3. Define xih = (xih,1, xih,2)T ,1

where xih,1 is simulated from a standard normal distribution and xih,2 is simulated2

from a centered and standardized binomial (n, 0.7). Let η = (η1, . . . , η5)T , where3

ηk’s are simulated from Uniform [1, 2] and the standard deviation of the error term4

is σ = 0.5. We set ϑ = 1 and γ = 3 and use the SCAD penalty function. The tuning5

parameters are chosen by the modified BIC defined by (12). We run the simulations6

under several scenarios. The results are based on 100 simulations.7

To evaluate the subgrouping performance of the proposed method, we report the8

estimated group number K̂, adjusted Rand index (ARI) (Rand, 1971; Hubert and9

Arabie, 1985; Vinh et al., 2010), and the root mean square error (RMSE) for estimat-10

ing β. For the estimated K̂ over 100 simulations, we report its average (denoted by11

“mean”), standard error in the parenthesis, and the occurrence percentage of K̂ = K12

(denoted by “per”). The quantity ARI is used to measure the degree of agreement13

between two partitions, taking a value between 0 and 1: the larger ARI value, the14

more agreement. We report the average ARI across 100 simulations along with the15

standard error in the parentheses. To evaluate the estimation accuracy of β, we also16

report the average RMSE17 √√√√ 1
n

n∑
i=1

∥β̂i − βi∥2. (21)

4.1. Balanced group18

We assume that there are K = 3 true groups G1,G2 and G3. Consider the two19

spatial settings, for which the group parameters are respectively given by:20

Setting 1: βi = (1, 1)T if i ∈ G1; βi = (1.5, 1.5)T if i ∈ G2; βi = (2, 2)T if i ∈ G3.21

Setting 2: βi = (1, 1)T if i ∈ G1; βi = (1.25, 1.25)T if i ∈ G2; βi = (1.5, 1.5)T if22

i ∈ G3.23

Under each setting, we simulate the data on two sizes of regular lattice, a 7 × 7 grid24

(left) and a 10 × 10 grid (right), as shown in Figure 1. Furthermore, for the 7 × 725

grid with ni = 10, we use a 10-fold cross validation to select the tuning parameters.26

The repeated measures of location i are divided into 10 parts; the jth part of each27

location is combined as the validation data set, and the remaining observations form28

the training data set. The spatial weights (6) are considered. The results are labeled29

as “cv” in all the tables. Note that “reg sp” and “reg” were not computed for the30

10 × 10 grid.31
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( a ) 7 × 7 g ri d
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( b ) 1 0 × 1 0 g ri d

Fi g ur e 1: T w o s p ati al s etti n g s i n t h e si m ul ati o n st u di e s.

R e s ul t s f o r S e t ti n g 1 : T a bl es 1 , 2 a n d 3 s h o w t h e esti m at e d n u m b er of gr o u ps a n d1

A RI. Fi g ur es 2 a n d 3 pl ot t h e R M S E of t h e esti m at es o bt ai n e d usi n g di ff er e nt w ei g ht2

c h oi c es. Aft er esti m ati n g t h e gr o u p str u ct ur e, o n e c a n als o esti m at e p ar a m et ers η3

a n d β a g ai n b y ass u mi n g t h at t h e gr o u p i nf or m ati o n is k n o w n; t h e r es ults ar e d e n ot e d4

as “r e fit ”. B as e d o n t h e n u m eri c al r es ults, w e m a k e t h e f oll o wi n g o bs er v ati o ns.5

First, w e s u m m ari z e t h e r es ults f or t h e 7 × 7 gri d. I n all t h e c o nsi d er e d s c e n ari os,6

t h e s p ati all y w ei g ht e d p e n alt y o ut p erf or ms t h e n o n- w ei g ht e d p e n alt y ( “ e q u al ”).7

T h e u p p er p a n els i n T a bl es 1 a n d 2 , a n d t h e l eft pl ot i n Fi g ur e 2 s u g g est t h at, if8

t h e n u m b er of r e p e at e d m e as ur e m e nts is r el ati v el y s m all (s a y, n i = 1 0), t h e w ei g hts9

“r e g s p ” a n d “s p ” p erf or m si mil arl y a n d t h e y ar e t h e b est i n t er ms of esti m ati n g1 0

K , r e c o v eri n g t h e tr u e s u b gr o u p str u ct ur e (l ar g e A RI), a n d esti m ati n g r e gr essi o n1 1

c o e ffi ci e nts (s m all R M S E); t h e w ei g hts “ e q u al ” a n d “r e g ” ar e m u c h w ors e. T h e l o w er1 2

p a n els of T a bl es 1 a n d 2 a n d t h e ri g ht pl ot i n Fi g ur e 2 s h o w t h at w h e n t h e n u m b er of1 3

r e p e at e d m e as ur e m e nts g ets l ar g er (s a y, n i = 3 0), all t h e m et h o ds i m pr o v e a n d t h er e1 4

is n ot m u c h di ff er e n c e a m o n g t h e m. Cr oss v ali d ati o n w or ks w ell i n t er ms of A RI a n d1 5

R M S E, b ut it t e n ds t o o v er- esti m at e t h e n u m b er of gr o u ps K . T his is b e c a us e t h at1 6

cr oss v ali d ati o n f o c us es m or e o n t h e pr e di cti o n a c c ur a c y; t h e c o e ffi ci e nt esti m at es1 7

of s o m e gr o u ps ar e cl os e t o t h e tr u e c o e ffi ci e nts, b ut t h e y ar e n ot s hr a n k t o g et h er.1 8

I n a d diti o n, r e fitti n g t h e m o d el d o es n ot a p p e ar t o f urt h er i m pr o v e t h e a c c ur a c y of1 9

esti m ati n g β .2 0

1 6



T a bl e 1: S u m m ar y of t h e e sti m at e ˆK f or S etti n g 1 u n d er t h e 7 × 7 gri d.

e q u al r e g s p r e g s p c v

n i = 1 0
m e a n 3. 3 4( 0. 0 5 4) 3. 1 5( 0. 0 3 9) 3. 3 3( 0. 0 5 1) 3. 1 3( 0. 0 3 4) 3. 8 2( 0. 1 3)
p er 0. 6 9 0. 8 6 0. 6 9 0. 8 7 0. 5 6

n i = 3 0
m e a n 3. 0 0( 0) 3. 0 0( 0) 3. 0 0( 0) 3. 0 0( 0)
p er 1. 0 0 1. 0 0 1. 0 0 1. 0 0

T a bl e 2: A v er a g e A RI f or S etti n g 1 u n d er t h e 7 × 7 gri d

e q u al r e g s p r e g s p c v
n i = 1 0 0. 8 0( 0. 0 1 1) 0. 9 2( 0. 0 0 8) 0. 8 2( 0. 0 1) 0. 9 2( 0. 0 0 7) 0. 9 5( 0. 0 0 7)

n i = 3 0 0. 9 9 8( 0. 0 0 1) 0. 9 9 9( 0. 0 0 0 6) 0. 9 9 8( 0. 0 0 1) 0. 9 9 9( 0. 0 0 0 6)

●●●●

●●

●●

●●

●●
●●●●

●●

●●

0. 1

0. 2

e q u al r e g _ s p r e g s p s p _r efit c v c v _r efit

w ei g ht

R
M

S
E

7 × 7 gri d; n i= 1 0

●●
●●

●● ●● ●●
●●

●● ●●

0. 0 2

0. 0 4

0. 0 6

e q u al r e g _ s p r e g s p

w ei g ht

R
M

S
E

7 × 7 gri d; n i= 3 0

Fi g ur e 2: R M S E f or S etti n g 1 u n d er t h e 7 × 7 gri d

N e xt, w e s u m m ari z e t h e r es ults f or t h e 1 0 × 1 0 gri d. I n t his c as e, w e c o nsi d er e q u al1

w ei g hts a n d s p ati al w ei g hts o nl y. A g ai n, t h e s p ati all y- w ei g ht e d p e n alt y o ut p erf or ms2

t h e n o n- w ei g ht e d p e n alt y ( “ e q u al ”). T a bl e 3 a n d Fi g ur e 3 s u g g est t h at if t h e n u m b er3

of r e p e at e d m e as ur e m e nts is r el ati v el y s m all (s a y, n i = 1 0), “s p ” p erf or ms m u c h4

b ett er i n t er ms of gr o u pi n g a n d esti m ati n g r e gr essi o n c o e ffi ci e nts t h a n “ e q u al ”; f or5

a l ar g er n u m b er of r e p e at e d m e as ur e m e nts (s a y, n i = 3 0), t h e y p erf or m si mil arl y.6

1 7



T a bl e 3: S u m m ar y of ˆK a n d a v er a g e A RI f or S etti n g 1 u n d er t h e 1 0 × 1 0 gri d.

ˆK A RI
e q u al s p e q u al s p

n i = 1 0
m e a n 3. 5 9( 0. 0 7 3) 3. 3 7( 0. 0 6 5) 0. 7 0( 0. 0 0 9) 0. 9 7( 0. 0 0 3)
p er 0. 5 3 0. 7 1 - -

n i = 3 0
m e a n 3( 0) 3( 0) 0. 9 9 6( 0. 0 0 1) 1. 0 0( 0)
p er 1. 0 0 1. 0 0 - -

0. 0 5

0. 1 0

0. 1 5

0. 2 0

e q u al s p

w ei g ht

R
M

S
E

1 0 × 1 0 gri d; n i= 1 0

●●
●●

●●●●●●
●●●●
●●

●●

●●

●●●●
●●

0. 0 2

0. 0 4

0. 0 6

e q u al s p

w ei g ht

R
M

S
E

1 0 × 1 0 gri d; n i= 3 0

Fi g ur e 3: R M S E f or S etti n g 1 u n d er t h e 1 0 × 1 0 gri d

R e s ul t s f o r S e t ti n g 2 : I n t his s etti n g, t h e gr o u p di ff er e n c e b e c o m es s m all er. T a bl es1

4 , 5 a n d Fi g ur e 4 s u m m ari z e t h e r es ults f or t h e 7 × 7 gri d. F or b ot h v al u es of n i,2

t h e w ei g hts “s p ” p erf or ms b est i n t er ms of esti m ati n g t h e n u m b er of gr o u ps ( ˆK ),3

r e c o v eri n g t h e tr u e gr o u p str u ct ur e ( A RI), a n d esti m ati n g r e gr essi o n c o e ffi ci e nts. I n4

c o ntr ast t o S etti n g 1, w h e n t h e di ff er e n c e a m o n g gr o u ps b e c o m es s m all er, e v e n wit h5

n i = 3 0, t h e m o d el wit h t h e s p ati al w ei g ht is s u p eri or t o ot h er m o d els.6

1 8



T a bl e 4: S u m m ar y of ˆK f or S etti n g 2 u n d er t h e 7 × 7 gri d

e q u al r e g s p r e g s p

n i = 1 0
m e a n 3. 2 5( 0. 1 1 9) 3. 0 1( 0. 0 9 3) 3. 1 4( 0. 1 0 7) 2. 8 8( 0. 0 6 7)
p er 0. 3 4 0. 4 5 0. 3 3 0. 6 0

n i = 3 0
m e a n 2. 7 0( 0. 0 4 6) 2. 9 0( 0. 0 3 0) 2. 7 6( 0. 0 4 3) 2. 9 5( 0. 0 2 2)
p er 0. 7 0 0. 9 0 0. 7 6 0. 9 5

T a bl e 5: A v er a g e A RI f or S etti n g 2 u n d er t h e 7 × 7 gri d

e q u al r e g s p r e g s p
n i = 1 0 0. 3 2( 0. 0 1 1) 0. 5 0( 0. 0 2 3) 0. 3 3( 0. 0 1) 0. 6 1( 0. 0 2 6)

n i = 3 0 0. 7 2( 0. 0 1 8) 0. 8 6( 0. 0 1 5) 0. 7 5( 0. 0 1 7) 0. 9 0( 0. 0 1 2)

●●

●●
●●

●●
●●●●

●●

0. 0 5

0. 1 0

0. 1 5

0. 2 0

0. 2 5

e q u al r e g _ s p r e g s p s p _r efit

w ei g ht

R
M

S
E

7 × 7 gri d; n i= 1 0
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0. 0 5

0. 1 0

0. 1 5

e q u al r e g _ s p r e g s p

w ei g ht

R
M

S
E

7 × 7 gri d; n i= 3 0

Fi g ur e 4: R M S E f or s etti n g 2 u n d er t h e 7 × 7 gri d

T a bl e 6 a n d Fi g ur e 5 s h o w t h e r es ults f or t h e 1 0 × 1 0 gri d. A g ai n, w e o nl y c o m p ar e1

“ e q u al ” w ei g hts a n d “s p ” w ei g hts. T h e r es ults s u g g est si mil ar c o n cl usi o ns t o t h os e2

f or t h e 7 × 7 gri d: t h e m o d el wit h t h e s p ati al w ei g ht is s u p eri or e v e n wit h a l ar g e3

n u m b er of r e p e at e d m e as ur e m e nts ( n i = 3 0) b y pr o d u ci n g l ar g er A RI a n d s m all er4

R M S E.5

1 9



T a bl e 6: S u m m ar y of ˆK a n d a v er a g e A RI f or S etti n g 2 u n d er t h e 1 0 × 1 0 gri d

ˆK A RI
e q u al s p e q u al s p

n i = 1 0
m e a n 3. 8 2( 0. 1 4 6) 3. 3 5( 0. 0 7 8) 0. 3 2( 0. 0 0 9) 0. 8 1( 0. 0 2 2)
p er 0. 3 2 0. 6 2 0 - -

n i = 3 0
m e a n 3. 1 0( 0. 0 6 0) 3. 0 0( 0. 0) 0. 7 9( 0. 0 1 2) 0. 9 4( 0. 0 0 5)
p er 0. 6 4 1. 0 - -
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1 0 × 1 0 gri d; n i= 3 0

Fi g ur e 5: R M S E f or S etti n g 2 u n d er t h e 1 0 × 1 0 gri d

4. 2. U n b al a n c e d g r o u p s etti n g1

H er e w e c o nsi d er a n u n b al a n c e d gr o u p s etti n g as s h o w n i n Fi g ur e 6 . I n t his2

s etti n g, t h er e ar e f o ur gr o u ps, d e n ot e d as G 1 , G 2 , G 3 a n d G 4 , a n d t w o gr o u ps h a v e 93

s u bj e cts a n d t h e ot h er t w o gr o u ps h a v e 4 1 s u bj e cts. T h e gr o u p p ar a m et ers ar e β i =4

( 1, 1) T if i ∈ G 1 , β i = ( 1 .5 , 1 .5) T if i ∈ G 2 , β i = ( 2 , 2) T if i ∈ G 3 a n d β i = ( 2 .5 , 2 .5) T
5

if i ∈ G 4 .6

2 0
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Fi g ur e 6: U n b al a n c e d gr o u p s etti n g

T a bl e 7 a n d Fi g ur e 7 s h o w t h e s u m m ari es of ˆK , A RI a n d R M S E f or β w h e n t h e1

n u m b er of r e p e at e d m e as ur e m e nts is n i = 1 0. I n g e n er al, “r e g s p ” a n d “s p ” p erf or m2

b ett er t h a n t h e ot h er t w o t y p es of w ei g hts. I n p arti c ul ar, “s p ” p erf or ms a sli g htl y3

b ett er t h a n “r e g s p ”. T h e r es ults ar e c o nsist e nt wit h t h os e u n d er b al a n c e d c as es.4

We e x p e ct t h at w h e n t h e gr o u p di ff er e n c e b e c o m es s m all er, “s p ” w o ul d still p erf or m5

b ett er t h a n ot h er w ei g hts e v e n w h e n t h e n u m b er of r e p e at e d m e as ur e m e nts is l ar g e.6

T a bl e 7: S u m m ar y of ˆK a n d a v er a g e A RI f or t h e u n b al a n c e d s etti n g wit h n i = 1 0

e q u al r e g s p r e g s p

ˆK
m e a n 4. 5 8( 0. 0 9 3) 4. 2 3( 0. 0 4 9) 5. 1 7( 0. 0 1 1) 4. 3 5( 0. 0 5 9)
p er 0. 5 7 0 0. 8 0 0 0. 3 0 0 0. 7 1 0

A RI m e a n 0. 6 2( 0. 0 1 0) 0. 9 4( 0. 0 6 1) 0. 6 7( 0. 0 0 9) 0. 9 6( 0. 0 0 4)
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Fi g ur e 7: R M S E f or u n b al a n c e d s etti n g

4. 3. R a n d o m g r o u p s etti n g1

We c o nsi d er a s etti n g wit h o ut s p e ci fi e d l o c ati o n gr o u p i nf or m ati o n. F or e a c h2

l o c ati o n, it h as e q u al pr o b a bilit y t o t hr e e gr o u ps. T a bl e 8 s h o ws t h e s u m m ar y of3

ˆK a n d A RI f or S etti n g 1 u n d er t h e gri d 7 × 7 wit h 1 0 r e p e at e d m e as ur es. T a bl e4

9 s h o ws t h e s u m m ar y of ˆK a n d A RI f or S etti n g 2 u n d er t h e gri d 7 × 7 wit h 3 05

r e p e at e d m e as ur es. Fi g ur e 8 s h o ws t h e R M S E r es ults f or b ot h c as es. We c a n s e e6

t h at di ff er e nt w ei g hts h a v e si mil ar p erf or m a n c es. T h e r es ults s u g g est t h at e v e n7

wit h o ut pri or i nf or m ati o n o n t h e e xist e n c e of s p ati al gr o u ps, “s p ” w ei g hts c a n still8

pr o d u c e c o m p ar a bl e r es ults t o e q u al w ei g hts.9

T a bl e 8: S u m m ar y of ˆK a n d a v er a g e A RI f or S etti n g 1 u n d er t h e 7 × 7 gri d wit h n i = 1 0

e q u al r e g s p r e g s p

ˆK
m e a n 3. 4 2( 0. 0 6 4) 3. 4 5( 0. 0 6 3) 3. 4 0( 0. 0 5 9) 3. 4 5( 0. 0 6 3)
p er 0. 6 6 0. 6 2 0. 6 5 0. 6 2

A RI m e a n 0. 7 8( 0. 0 1 1) 0. 8 2( 0. 0 1 0) 0. 8 1( 0. 0 1 0) 0. 8 2( 0. 0 1 1)

2 2



T a bl e 9: S u m m ar y of ˆK a n d a v er a g e A RI f or S etti n g 2 u n d er t h e 7 × 7 gri d wit h n i = 3 0

e q u al r e g s p r e g s p

ˆK
m e a n 2. 7 7( 0. 0 4 5) 2. 7 7( 0. 0 4 5) 2. 8 3( 0. 0 4 0) 2. 7 3( 0. 0 4 7)
p er 0. 7 5 0. 7 5 0. 8 1 0. 7 1

A RI m e a n 0. 7 4( 0. 0 1 5) 0. 7 6( 0. 0 1 6) 0. 7 7( 0. 0 1 4) 0. 7 4( 0. 0 1 7)
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Fi g ur e 8: R M S E f or r a n d o m gr o u p s u n d er t h e 7 × 7 gri d

4. 4. C o m p ut ati o n ti m e1

I n t his s e cti o n, w e ill ustr at e t h e c o m p ut ati o n ti m e b y usi n g t h e al g orit h m i m-2

pl e m e nt e d i n S p gr. We c o nsi d er f o ur di ff er e nt v al u es of n , w hi c h ar e 1 0 × 1 0, 1 5,3

2 0 × 2 0 a n d 2 5 × 2 5 gri d. T h e n u m b er of gr o u ps is 3, a n d t h e tr u e gr o u p p ar a m et ers4

f oll o w S etti n g 2. T h e n u m b er of r e p e at e d m e as ur es is 3 0. We us e d 3 7 λ v al u es a n d 45

ψ v al u es w h e n e v al u ati n g t h e c o m p ut ati o n ti m e. T h e c o m p ut ati o n ti m e is r e c or d e d6

b as e d o n a n i M a c wit h Pr o c ess or 4. 2 H z Q u a d- C or e I nt el C or e i 7 a n d M e m or y 1 6 G B.7

Fi g ur e 9 s h o ws t h e r es ults b as e d o n 1 0 0 si m ul ati o ns f or e q u al w ei g hts a n d s p ati al8

w ei g hts, r es p e cti v el y. T h e y - a xis is a b o ut t h e c o m p ut ati o n ti m e i n mi n ut es. W h e n9

n is 1 0 0, t h e c o m p ut ati o n ti m e is l ess t h a n 1 mi n ut e f or s p ati al w ei g hts. W h e n n1 0

is 4 0 0, t h e c o m p ut ati o n ti m e is a b o ut 1 5 mi n ut es f or s p ati al w ei g hts a n d a b o ut 51 1

mi n ut es f or e q u al w ei g hts. W h e n t h e n u m b er of l o c ati o ns is 6 2 5, t h e c o m p ut ati o n1 2

ti m e c a n b e a b o ut 1 5 mi n ut es f or e q u al w ei g hts a n d 7 0 mi n ut es f or s p ati al w ei g hts.1 3

A l o n g er c o m p ut ati o n ti m e of usi n g s p ati al w ei g hts is b e c a us e of a n e xtr a t u ni n g1 4

p ar a m et er ψ .1 5

2 3
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Figure 9: Computation time

5. Application1

In this section, we apply our SHADE method to the modeling of the National2

Resources Inventory survey (NRI) data 1 for the purpose of small area estimation.3

The NRI survey is one of the largest longitudinal natural resource surveys in the4

U.S. The national and state level estimates of the status and change of landcover use5

and soil erosion have been used by numerous federal, state, and local agencies in the6

past few decades. In recent years, there is an increasing demand for NRI to provide7

various county level estimates. These include estimates of different land covers, such8

as cropland, pasture land, urban and forest. Due to the limitation of sample size, the9

uncertainty of the NRI direct county level estimates are usually too large for local10

stakeholders to make policy decisions. To make the county level estimates more use-11

ful, it is necessary to include some auxiliary information and an appropriate model to12

reduce the uncertainty of the estimates. One such set of auxiliary covariates is Crop-13

land Data Layer (CDL), which is based on classification of satellite image pixels into14

several mutually exclusive and exhaustive land cover categories. In this section, we15

model the relationship between the NRI forest proportion and the CDL forest pro-16

portion among 48 states. In NRI, forests belonging to federal land, such as national17

1https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/
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parks, are not included in the forest category. For states with more forest federal1

land, NRI estimates can be substantially smaller than CDL estimates. Therefore,2

different states could have different relationships between these two proportions.3

The model we consider is,4

yih = β0,i + β1,ixih + ϵih (22)

where yih is the NRI forest proportion of the hth county in the ith state, xih is the5

corresponding CDL forest proportion of the hth county in the ith state, and β0,i and6

β1,i are the unknown coefficients. Both x and y are standardized. Instead of using7

the estimated linear regression coefficients as initial values directly, we use five sets8

of initial values which are simulated from a multivariate normal distribution with9

estimated coefficients as the mean vector and estimated covariance matrix as the10

covariance matrix. The models with the smallest modified BIC values are selected11

for equal weights and spatial weights, respectively.12

In Figure 10, we display the estimated groups based on 2011 NRI data sets. The13

left figure shows the estimated groups based on equal weights, and the right one is for14

the estimated groups based on spatial weights in (6). We find that the two different15

weights give different estimated groups. Tables 10 and 11 are the corresponding16

estimates of regression coefficients in different groups.17

25

30

35

40

45

50

−120 −100 −80
x

y

group
1

2

equal weight

25

30

35

40

45

50

−120 −100 −80
x

y

group
1

2

3

4

5

6

7

spatal weight

(a) Estimated groups based on equal weights
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(b) Estimated groups based on spatial weights

Figure 10: Estimated groups for both equal weights and spatial weights.

Table 10: Estimated coefficients of different groups for equal weight

group 1 2
β0 -0.029(0.006) 0.003(0.008)
β1 0.885(0.011) 0.241(0.026)
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Table 11: Estimated coefficients of different groups for spatial weights

group 1 2 3 4 5 6 7
β0 -0.041(0.016) -0.032(0.006) 0.003(0.007) 0.023(0.015) -0.108(0.293) 0.275(0.038) 0.376 (0.309)
β1 1.018(0.028) 0.867(0.012) 0.241(0.024) 0.608(0.033) 1.148 (0.377) 0.332(0.064) 0.341(0.384)

When considering equal weights, λ is the only tuning parameter in the algorithm.1

By changing the value of λ, we can have a different number of groups. We consider2

changing the λ value in the algorithm based on equal weights such that the number3

of groups is the same as what we have selected based on the spatial weights, that is,4

7 groups. Figure 11 shows the group structure with 7 groups based on equal weights.5

In both Figure 11 and the left figure of Figure 10, “WA”, “OR” and “CA” are not6

separated from the majority group (the group with the largest group size) when7

considering equal weights. These three states are in group 4, which are separated8

from the majority group (group 2) when considering spatial weights, which is more9

reasonable and intuitive based on the estimates of regression coefficients as shown10

in Table 11. One possible explanation of this result is that these three states have11

more national parks than those states in group 2.12
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Figure 11: Estimated groups by changing the tuning parameter λ with equal weights.

Alternatively, we also implement K-means clustering based on the initial esti-13

mates to identify similar behaviors among the states. Figure 12 shows the maps14

based on 2-means clustering and 7-means clustering, respectively. The 2-cluster map15

is almost the same as the map based on equal weights. However, the 7-cluster map16

is not interpretable compared to the result based on spatial weights. This suggests17

26



that the proposed procedure can produce more interpretable subgroup structures1

than K-means clustering methods.2
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Figure 12: Group clustering results based on K-means.

6. Discussion3

In this article, we considered the problem of spatial clustering of local covariate4

effects and develop a general framework called Spatial Heterogeneity Automatic De-5

tection and Estimation (SHADE) for spatial areal data with repeated measures. In6

spatial data, since locations near each other usually have similar patterns, we pro-7

posed to take into account spatial information in the pairwise penalty, where closer8

locations are assigned with larger weights to encourage stronger shrinkage. In the9

simulation study, we used several examples to investigate and compare the perfor-10

mance of the procedure using different weights. We found that spatial information11

helps improve the accuracy of grouping, especially when the minimal group difference12

is small or the number of repeated measures is small. We also established theoretical13

properties of the proposed estimator in terms of its consistency in estimating the14

number of groups.15

In the real data example, we have treated states as locations and counties as16

repeated measures. Alternatively, one can treat counties as individual units, since17

one state could have counties with two different features. Then, the algorithm will18

involve a matrix inverse with dimension more than 3000, which will require a higher19

computational burden. A further study is needed to compare these two models for20

the application.21

The proposed method does not consider the spatial dependence in the regression22

error when constructing the objective function. The basic idea of this algorithm can23

27



be extended to a general spatial clustering setup with consideration of the spatially1

dependent error. More specifically, the weighted least squared term in the objective2

function needs to be replaced by a generalized least squares term, which includes3

an estimated covariance matrix. The new algorithm should have two iterative steps.4

The first step is to update regression coefficients to find clusters and the second step5

is to update covariance parameters. More simulation studies are needed to explore6

the performance of the two-step algorithm. Moreover, the theoretical properties need7

to be established to support the new algorithm. Both theoretical and computational8

aspects of such extension are nontrivial and will be considered in a follow up work.9

Acknowledgement10

This research was supported in part by the Natural Resources Conservation Ser-11

vice of the U.S. Department of Agriculture and was supported in part by National12

Science Foundation grant NSF CCF-1740858.13

Appendices14

A. Proof of Theorem 115

In this section, we prove Theorem 1. When proving the central limit theorem16

(CLT) we use the technique in Huang et al. (2004).17

The oracle estimator is defined in (14), which has the following form18 (
η̂or

α̂or

)
=
(
UTΩU

)−1
UTΩy.

Thus, we have19 (
η̂or − η0

α̂or − α0

)
=
(
UTΩU

)−1
UTΩϵ,

where ϵ = (ϵT
i , . . . , ϵ

T
n )T with ϵi = (ϵi1, . . . , ϵi,ni

)T . Therefore,20 ∥∥∥∥∥
(

η̂or − η0

α̂or − α0

)∥∥∥∥∥ ≤
∥∥∥∥(UTΩU

)−1
∥∥∥∥

2

∥∥∥UTΩϵ
∥∥∥ , (23)

where ∥·∥2 is matrix norm, which is defined as, for a matrix A, ∥A∥2 = sup∥x∥=1 ∥Ax∥.21

We know that

P

(∥∥∥UTΩϵ
∥∥∥

∞
> C

√
n

minni

log n
)

≤ P

(∥∥∥(XW )T Ωϵ
∥∥∥

∞
> C

√
n

minni

log n
)

+ P

(∥∥∥ZTΩϵ
∥∥∥

∞
> C

√
n

minni

log n
)
, (24)
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where C is a finite positive constant and ∥ · ∥∞ is defined as, for a vector x ∈ Rm,1

∥x∥∞ = max1≤i≤m xi. By condition (C2), we have2 √√√√ n∑
i=1

ni∑
h=1

x2
ih,l

n2
i

1 {i ∈ Gk} ≤ M1

√√√√ n∑
i=1

1
ni

{i ∈ Gk} ≤ M1

√√√√ n∑
i=1

1
ni

≤ M1

√
n

minni

.

Since3 ∥∥∥(XW )T Ωϵ
∥∥∥

∞
= sup

k,l

∣∣∣∣∣
n∑

i=1

1
ni

ni∑
h=1

xih,lϵih1 {i ∈ Gk}
∣∣∣∣∣ ,

from condition (C3), it follows that

P

(∥∥∥(XW )T Ωϵ
∥∥∥

∞
> C

√
n

minni

log n
)

≤
p∑

l=1

K∑
k=1

P

∣∣∣∣∣∣
n∑

i=1

ni∑
j=1

1
ni

xih,lϵih1 {i ∈ Gk}

∣∣∣∣∣∣ > C

√
n

minni

log n


=
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l=1

K∑
k=1

P


∣∣∣∣∣

n∑
i=1

ni∑
h=1

1
ni

xih,lϵih1 {i ∈ Gk}
∣∣∣∣∣ >

√∑n
i=1

∑ni
h=1

x2
ih,l

n2
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i=1
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x2
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1 {i ∈ Gk}
C

√
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log n


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p∑
l=1

K∑
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i=1

ni∑
h=1

1
ni
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√
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≤2Kp exp

(
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log n
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= 2Kpn−c1C2/M2
1 .

Similarly,
∣∣∣∣∑n

i=1
∑ni

h=1
z2

ih,l

n2
i

∣∣∣∣ ≤ M2
1
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n
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. Again, by condition
(C3), we have

P
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Thus, (24) can be bounded by1

P

(∥∥∥UTΩϵ
∥∥∥

∞
> C

√
n

minni

log n
)

≤ 2 (Kp+ q)n−c1C2/M2
1 .

Since
∥∥∥UTΩϵ

∥∥∥ ≤
√
q +Kp

∥∥∥UTΩϵ
∥∥∥

∞
,2

P

(∥∥∥UTΩϵ
∥∥∥ > C

√
q +Kp

√
n

minni

log n
)

≤ 2 (Kp+ q)n−c1C2/M2
1 .

Let C = c
−1/2
1 M1, thus3

P

(∥∥∥UTΩϵ
∥∥∥ > C

√
q +Kp

√
n

minni

log n
)

≤ 2 (Kp+ q)n−1. (25)

Also, according to condition (C2), we have4 ∥∥∥∥(UTΩU
)−1

∥∥∥∥
2

≤ C−1
1 |Gmin|−1 . (26)

Combining (23), (25) and (26), with probability at least 1 − 2 (Kp+ q)n−1, we5

have6 ∥∥∥∥∥
(

η̂or − η0

α̂or − α0

)∥∥∥∥∥ ≤ CC−1
1

√
q +Kp |Gmin|−1

√
n

minni

log n.

Let7

ϕn = c
−1/2
1 C−1

1 M1

√
q +Kp |Gmin|−1

√
n

minni

log n.

Furthermore,
∥∥∥β̂or − β0

∥∥∥2
=

K∑
k=1

∑
i∈Gk

∥∥∥α̂or
k − α0

k

∥∥∥2
≤ |Gmax|

K∑
k=1

∥∥∥α̂or
k − α0

k

∥∥∥2

= |Gmax|
∥∥∥α̂or − α0

∥∥∥2
≤ |Gmax|ϕ2

n,

and8

sup
i

∥∥∥β̂or
i − β0

i

∥∥∥ = sup
k

∥∥∥α̂or
k − α0

k

∥∥∥ ≤
∥∥∥α̂or − α0

∥∥∥ ≤ ϕn.

Next, we consider the central limit theorem. Let U =
(
UT

1 , . . . ,U
T
n

)T
with

Ui = (Ui1, . . . ,Ui,ni
)T for i = 1, . . . , n. Consider

aT
n

((
η̂or − η0

)T
,
(
α̂or − α̂0

)T
)T

=
n∑

i=1
aT

n

(
n∑

i=1
UT

i ΩiUi

)−1

UT
i Ωiϵi,
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where Ωi = 1/niIni
. By the assumption of ϵi in the model (1), we have1

E

[
aT

n

((
η̂or − η0

)T
,
(
α̂or − α̂0

)T
)T
]

= 0.

The variance of aT
n

(
(η̂or − η0)T

, (α̂or − α̂0)T
)T

can be written as

V ar

{
aT

n

((
η̂or − η0

)T
,
(
α̂or − α̂0

)T
)T
}

=σ2
[
aT

n

(
UTΩU

)−1
UTΩΩU

(
UTΩU

)−1
an

]
=σ2

[
aT

n

(
UTΩU

)−1 n∑
i=1

UT
i ΩiΩiUi

(
UTΩU

)−1
an

]
.

We use the technique of Huang et al. (2004) in the proof of their Theorem 3. That2

is,3

aT
n

(
(η̂or − η0)T

, (α̂or − α̂0)T
)T

can be written as ∑n
i=1 aiξi with4

a2
i = aT

n

(
UTΩU

)−1
UT

i ΩiΩiUi

(
UTΩU

)−1
an,

where ξi’s are independent with mean zero and variance one. If5

maxi a
2
i∑n

i=1 a
2
i

→ 0,

then ∑n
i=1 aiξi/

√∑n
i=1 a

2
i is asymptotically N (0, 1).6

For any λ = (λ1, . . . , λq+Kp)T , we have

λTUT
i ΩiΩiUiλ = 1

n2
i

λTUT
i Uiλ = 1

n2
i

ni∑
h=1

λTUihU
T
ihλ

= 1
n2

i

ni∑
h=1

q+Kp∑
l=1

Uih,lλl

2

≤ 1
n2

i

ni∑
h=1

q+Kp∑
l=1

U2
ih,l

q+Kp∑
l=1

λ2
l

 ≤ M2
1

ni

(q +Kp) ∥λ∥2 .

λT

(
n∑

i=1
UT

i ΩiΩiUi

)
λ ≥ 1

maxi ni

λT

(
n∑

i=1
UT

i ΩiUi

)
λ ≥ 1

maxi ni

λTUTΩUλ

≥ 1
maxi ni

C1 |Gmin| ∥λ∥2 ,
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where the last inequality is by condition (C2). So,

maxi λ
TUT

i ΩiΩiUiλ

λT (∑n
i=1 U

T
i ΩiΩiUi)λ

≤
(

max
i
ni

)(
max

i

1
ni

)
M2

1C
−1
1 |Gmin|−1 (q +Kp)

= M2
1C

−1
1

maxi ni

mini ni

|Gmin|−1 (q +Kp) → 0, (27)

by assumption.1

By (27), we have that maxi a
2
i /
∑n

i=1 a
2
i → 0, so (15) exists.2

B. Proof of Theorem 23

In this section, we prove Theorem 2. As in Ma et al. (2020a) and Ma and4

Huang (2017), we define T : MG → RKp to be the mapping that T (β) = α and5

T ∗ : Rnp → RKp to be the mapping that T ∗ (β) =
(
|Gk|−1∑

i∈Gk
βT

i , k = 1, . . . , K
)T

.6

Consider the following neighborhood of (η0,β0),7

Θ =
{
η ∈ Rq,β ∈ Rnp :

∥∥∥η − η0
∥∥∥ ≤ ϕn, sup

i

∥∥∥βi − β0
i

∥∥∥ ≤ ϕn

}
.

According to Theorem 1, there exists an event E1 where ∥η − η0∥ ≤ ϕn and supi ∥βi − β0
i ∥ ≤8

ϕn such that P (E1) ≥ 1 − 2 (q +Kp)n−1.9

Recall that the objective function to minimize is given in (2), which has the10

following form11

Qn (η,β;λ, ψ) = 1
2

n∑
i=1

1
ni

ni∑
h=1

(
yih − zT

ihη − xT
ihβi

)2
+

∑
1≤i<j≤n

pγ (∥βi − βj∥ , cijλ) .

(28)
Here we show that

(
(η̂or)T , (β̂or)T

)T
is a strict local minimizer of the above objective12

function with probability approaching 1 by two steps as in Ma et al. (2020a). The first13

step is to show that in event E1, Qn(η,β∗) > Qn(η̂or, β̂or) for any (ηT ,βT )T ∈ Θ14

and (ηT ,β∗T )T ̸= ((η̂or)T , (β̂or)T )T , where β∗ = T−1 (T ∗ (β)) and β ∈ Rnp. The15

proof of this step is almost the same as the first step in Ma et al. (2020a) , which is16

omitted here.17

Here we show the second step, that is, there exists an event E2 such that P (E2) ≥18

1 − 2n−1. In the event E1 ∩ E2, there is a neighborhood Θn of
(

(η̂or)T ,
(
β̂or

)T
)T

,19

such that Qn (η,β) ≥ Qn (η,β∗) for any
(
ηT ,βT

)T
∈ Θn ∩ Θ for sufficiently large n.20
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Let Θn =
{
βi : supi

∥∥∥βi − β̂or
i

∥∥∥ ≤ tn
}
, where tn is a positive sequence with tn =1

o(1). By Taylor’s expansion, for
(
ηT ,βT

)T
∈ Θn ∩ Θ,2

Qn (η,β) −Qn (η,β∗) = Γ1 + Γ2, (29)

where

Γ1 = − (y − Zη − Xβm)T ΩX (β − β∗) ,

Γ2 =
n∑

i=1

∂
[
λ
∑

l<j cljργ

(∥∥∥βm
l − βm

j

∥∥∥)]
∂βT

i

(βi − β∗
i ) ,

with βm = αβ + (1 − α)β∗ for some constant α ∈ (0, 1).3

We have Γ2 as follows,4

Γ2 = λ
∑
i<j

cijρ
′
γ

(∥∥∥βm
i − βm

j

∥∥∥) ∥∥∥βm
i − βm

j

∥∥∥−1 (
βm

i − βm
j

)T {
(βi − β∗

i ) −
(
βj − β∗

j

)}
.

For i, j ∈ Gk, β∗
i = β∗

j and βm
i − βm

j = α (βi − βj), then5

Γ2 = λ
K∑

k=1

∑
{i,j∈Gk,i<j}

cijρ
′
γ

(∥∥∥βm
i − βm

j

∥∥∥) ∥∥∥βm
i − βm

j

∥∥∥−1 (
βm

i − βm
j

)T
(βi − βj)

+ λ
K∑

k=1

∑
{i∈Gk,j∈Gk′ }

cijρ
′
γ

(∥∥∥βm
i − βm

j

∥∥∥) ∥∥∥βm
i − βm

j

∥∥∥−1 (
βm

i − βm
j

)T {
(βi − β∗

i ) −
(
βj − β∗

j

)}
.

Since supi ∥βm
i − β0

i ∥ ≤ ϕn, for k ̸= k′, i ∈ Gk,j ∈ Gk′ ,6 ∥∥∥βm
i − βm

j

∥∥∥ ≥ min
i∈Gk,j∈Gk′

∥∥∥β0
i − β0

j

∥∥∥− 2 max
i

∥∥∥βm
i − β0

i

∥∥∥ ≥ bn − 2ϕn > aλ.

Thus, ρ′
γ(
∥∥∥βm

i − βm
j

∥∥∥) = 0 by assumption (C1). Therefore,7

Γ2 = λ
K∑

i=1

∑
{i,j∈Gk,i<j}

cijρ
′
γ

(∥∥∥βm
i − βm

j

∥∥∥) ∥βi − βj∥ . (30)

Also, for i, j ∈ Gk, supi

∥∥∥βm
i − βm

j

∥∥∥ ≤ 4tn, so ρ′
γ

(∥∥∥βm
i − βm

j

∥∥∥) ≥ ρ′ (4tn) by assump-8

tion (C1). Thus, we have9

Γ2 ≥
K∑

k=1

∑
{i,j∈Gk,i<j}

λcijρ
′
γ (4tn) ∥βi − βj∥ .
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Let Q =
(
QT

1 , . . . ,Q
T
n

)T
=
[
(y − Zη − Xβm)T ΩX

]T
with1

Qi = 1
ni

ni∑
h=1

(
yih − zT

ihη − xT
ihβ

m
i

)
xih.

We have,

Γ1 = − (y − Zη − Xβm)T ΩX (β − β∗)
= −QT (β − β∗)

= −
K∑

k=1

∑
{i,j∈Gk,i<j}

(Qi − Qj)T (βi − βj)
|Gk|

. (31)

Moreover,2

Qi = 1
ni

ni∑
h=1

(
ϵih + zT

ih

(
η0 − η

)
+ xT

ih

(
β0

i − βm
i

))
xih,

so

sup
i

∥Qi∥ ≤ sup
i,h

∥xih∥
(

∥ξ∥∞ + sup
i,h

∥zih∥
∥∥∥η0 − η

∥∥∥+ sup
i,h

∥xih∥
∥∥∥β0

i − βm
i

∥∥∥)
≤ C2

√
p (∥ξ∥∞ + C3

√
qϕn + C2

√
pϕn) ,

where ξ = (ξ1, . . . , ξn)T with ξi = 1
ni

∑n
h=1 ϵih. According to Condition (C3),

P
(

∥ξ∥∞ >
√

2c−1
1

√
log n/minni

)
≤

n∑
i=1

P
(

|ξi| >
√

2c−1
1

√
log n/minni

)

=
n∑

i=1
P

∣∣∣∣∣∣ 1
ni

ni∑
j=1

ϵij

∣∣∣∣∣∣ >
√

2c−1
1

√
log n/minni


≤

n∑
i=1

P

∣∣∣∣∣∣ 1
ni

ni∑
j=1

ϵij

∣∣∣∣∣∣ >
√

2c−1
1

√
log n/ni


≤ 2

n∑
i=1

exp
{
−c12c−1

1 log n
}

≤ 2
n
.

Thus, there exists an event E2 such that P (E2) ≥ 1 − 2n−1 and3

sup
i

∥Qi∥ ≤ C2
√
p

(√
2c−1

1

√
log n/min

i
ni + C3

√
qϕn + C2

√
pϕn

)
.
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Thus,∣∣∣∣∣(Qi − Qj)T (βi − βj)
|Gk|

∣∣∣∣∣
≤2 |Gmin|−1 sup

i
∥Qi∥ ∥βi − βj∥

≤2C2 |Gmin|−1 √
p

(√
2c−1

1

√
log n/min

i
ni + C3

√
qϕn + C2

√
pϕn

)
∥βi − βj∥ . (32)

Combining (30), (31) and (32), (29) follows that

Qn (η,β) − Qn (η,β∗)

≥
K∑

k=1

∑
{i,j∈Gk,i<j}

{
λcijρ′ (4tn) − 2C2 |Gmin|−1 √

p

(√
2c−1

1

√
log n

mini ni
+ C3

√
qϕn + C2

√
pϕn

)}
∥βi − βj∥ .

As tn = o (1), ρ′ (4tn) → 1. Since |Gmin| ≫ (q +Kp)1/2 max
(√

n
mini ni

log n, (q +Kp)1/2
)

,1

p = o(n) and q = o(n), then |Gmin|−1 p = o (1) and |Gmin|−1 √
pq = o (1). Thus,2

λ ≫ |Gmin|−1 √
p
√

log n
min ni

, λ ≫ |Gmin|−1 √
pqϕn and λ ≫ |Gmin|−1 pϕn. Therefore,3

Qn (η,β) − Qn (η,β∗) ≥ 0 for sufficiently large n by the assumption (C4) that cij’s4

are bounded if i and j are in the same group.5

Therefore, combining the two steps, we will have that Qn (η,β) > Qn(η̂or, β̂or)6

for any
(
ηT ,βT

)T
∈ Θn ∩ Θ and (ηT ,βT )T ̸= ((η̂or)T , (β̂or)T )T . This shows that7

((η̂or)T , (β̂or)T )T is a strict local minimizer of the objective function (2) on E1 ∩ E28

with probability at least 1 − 2(K + p+ 1)n−1 for sufficiently large n.9

C. Sherman–Morrison–Woodbury formula10

Consider
(
XTQZ,ΩX + νATA

)−1
. It is known that ATA = nInp−(1n ⊗ Ip) (1n ⊗ Ip)T .11

Let X∗ = Ω1/2X and Z∗ = Ω1/2Z, then the target matrix becomes12

(
X∗TQZ∗X∗ + νATA

)−1

=
(
X∗TX∗ + νnInp − X∗TZ∗

(
Z∗TZ∗

)−1
Z∗TX∗ − ν (1n ⊗ Ip) (1n ⊗ Ip)T

)−1
.

Let A1 = X∗TX∗ + νnInp −X∗TZ∗
(
Z∗TZ∗

)−1
Z∗TX∗, B = 1n ⊗ Ip, C = νIp and13

D = BT , then based on Sherman–Morrison–Woodbury formula the orignal inverse14
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can be written as1

(A1 − BCD)−1 = A−1
1 + A−1

1 B
(1
ν
Ip − BTA−1

1 B
)−1

BTA−1
1 .

Use Sherman–Morrison–Woodbury formula again to calculate A−1
1 , that is

A−1
1 =

(
X∗TX∗ + νnInp − X∗TZ∗

(
Z∗TZ∗

)−1
Z∗TX∗

)−1
,

which can be written as

A−1
1 =

(
X∗TX∗ + νnInp

)−1

+
(
X∗TX∗ + νnInp

)−1
X∗TZ∗

[
Z∗TZ∗ − Z∗TX∗

(
X∗TX∗ + νnInp

)−1
X∗TZ∗

]−1
.

· Z∗TX∗
(
X∗TX∗ + νnInp

)−1

Also it is known that,2

A−1
11 =

(
X∗TX∗ + νnInp

)−1
=


(
x∗

1x
∗T
1 + νnIp

)−1
· · · 0

... . . . ...
0 · · ·

(
x∗

nx
∗T
n + νnIp

)−1

 ,
and

BTA−1
1 B =

n∑
i=1

(
x∗

ix
∗T
i + νnIp

)−1

+
(

n∑
i=1

(
x∗

ix
∗T
i + νnIp

)−1
x∗

iz
∗T
i

) [
Z∗TZ∗ − Z∗TX∗

(
X∗TX∗ + νnInp

)−1
X∗TZ∗

]−1

·
(

n∑
i=1

(
x∗

ix
∗T
i + νnIp

)−1
x∗

iz
∗T
i

)T

.
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