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Abstract: The accurate forecast of algal blooms can provide helpful information for water resource
management. However, the complex relationship between environmental variables and blooms
makes the forecast challenging. In this study, we build a pipeline incorporating four commonly
used machine learning models, Support Vector Regression (SVR), Random Forest Regression (RFR),
Wavelet Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term Mem-
ory (LSTM), to predict chlorophyll-a in coastal waters. Two areas with distinct environmental features,
the Neuse River Estuary, NC, USA—where machine learning models are applied for short-term
algal bloom forecast at single stations for the first time—and the Scripps Pier, CA, USA, are selected.
Applying the pipeline, we can easily switch from the NRE forecast to the Scripps Pier forecast with
minimum model tuning. The pipeline successfully predicts the occurrence of algal blooms in both
regions, with more robustness using WA-LSTM and WA-BPNN than SVR and RFR. The pipeline
allows us to find the best results by trying different numbers of neuron hidden layers. The pipeline
is easily adaptable to other coastal areas. Experience with the two study regions demonstrated
that enrichment of the dataset by including dominant physical processes is necessary to improve
chlorophyll prediction when applying it to other aquatic systems.

Keywords: water quality forecast; coastal ocean; algal blooms; machine learning models

1. Introduction

Chlorophyll 4 (Chl-a), a pigment that absorbs the light needed for plants to photosyn-
thesize, is a measure of the amount of phytoplankton in a water body. It has been used as
an indicator of algal blooms and the state of water quality in coastal and estuarine oceans.
With harmful algal blooms (HABs) and an overgrowth of algae in water becoming a major
environmental problem in aquatic systems, algal bloom monitoring and prediction are
crucial for water management [1-4]. The accurate Chl-a simulation and forecast, even just
a few days in advance of bloom occurrence, can provide useful early warning information
to water managers and the public for decision making [2,5-8]. Different approaches have
been taken to predict Chl-a, which in general are categorized into two groups: mechanistic
models [9-12] and data-driven models [13-16].

The mechanistic models depend on a mechanistic understanding of the relationship
between physiological processes and environmental factors, because the phytoplankton’s
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growth is driven by multiple factors, including temperature, daily duration of sunlight, sun-
light intensity, nutrients concentrations (e.g., nitrate, ammonium, phosphate, silicate), etc.
Such models use predefined characteristics and assumptions about how the primary and
secondary producers interact with the environment, as well as predator—prey interactions
and nutrient cycling [17,18]. Although powerful, the wide implementation of mechanistic
models is limited by several factors. Firstly, a mechanistic ecological model usually needs
to be coupled with a complex hydrodynamic model. Often, hydrodynamic simulations
have a large uncertainty, generating errors that propagate to water quality models [19].
Secondly, mechanistic models often simplify the phytoplankton community to include only
a few functional groups. Information on the rates/parameters of processes impacting the
phytoplankton is usually estimated based on laboratory studies or empirical observations
from similar water bodies found in the literature, which can also cause errors. Thirdly, as
the mechanistic models get more complex, they require more resources in computational
time, energy and sampling to calibrate and validate the model.

With the extensive availability and quick accumulation of in situ and remotely sensed
data and the rapid progress in the development of complex data-driven models such as
piecewise regressions, wavelet analysis (WA) and deep neural networks to fill the spatial
and temporal gaps in field observations, a growing number of data-driven models have
been developed to forecast water quality [20-23]. However, the complexity of stressors,
including solar radiation, nutrients, temperature and salinity and stressor interactions make
it challenging to predict Chl-a [24] with a standard system /process that can be applied to
multiple areas. In this paper, we build a pipeline solution that can potentially automate
the model building and prediction process and help predict blooms in different aquatic
systems. Using the HABs-prone Neuse River Estuary (NRE) in NC, U.S., and the Scripps
Pier station, CA, U.S., as examples, we build a pipeline composed of data processing, feature
engineering and deep neural networks. This automated pipeline can allow researchers to
enrich a dataset using any features that could be helpful for Chl-a prediction and produce
the optimal model for a given aquatic system.

The NRE is a sub-estuary to the Pamlico Sound estuarine system, which is the second
largest estuarine complex in the U.S (Figure 1a). Along the U.S. east coast, approximately
half of the nursery area for commercially fished species occurs within the Pamlico Sound
system [25]. The NRE is a particularly important spawning area for many commercially and
recreationally important fish including shad, striped bass and red drum, and an important
harvest area for shrimp and blue crabs [26]. Additionally, the Pamlico Sound system sup-
ports a $3.7 billion outdoor recreation industry, much of which is related to water activities
including swimming, sailing, paddling, waterfowl hunting and recreational fishing [27].
Therefore, the sustainable management of NRE-Pamlico Sound coastal ecosystems is essen-
tial for the environment and benefits local economies by maintaining fish populations and
adequate water quality for recreation.

The NRE has a history of eutrophication symptoms, including hypoxia and HABs [28-30].
Serving as an important fisheries habitat and recreational area, accurate forecasts of water
quality in NREs are critical for decision making for various stakeholders, including water
resource and fisheries managers and anglers. The monitoring and prediction of Chl-a, an
important indicator of water quality, is a critical step in sustainable ecological management.
Long-term (1994—present) monitoring of Chl-a and other biogeochemical and ecological pa-
rameters has been conducted by the Neuse River Estuary Modeling and Monitoring Program
(ModMon; [31]) and remotely via satellite observations (e.g., by NOAA VIIRS-SNPP).

Red tides and other HABs have also been a burden on the coastal ecosystems of
California, resulting in fish and shellfish mortality, poisoning in marine mammal/bird
populations, illness including respiratory irritation and failure and indirect impacts on the
economy [6,7,32]. Programs including the Harmful Algal Bloom Monitoring and Alert
Program (HABMAP) have been implemented to monitor HABs and facilitate information
exchange among scientists (https://calhabmap.org (accessed on 1 August 2022)). The
Scripps Pier is on the coast of California, USA, in La Jolla (Figure 1b). It is one of the
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monitoring sites offering regular and frequent samplings of biological and environmental
variables, now a part of the Southern California Coastal Ocean Observing System (SCCOQOS;
http:/ /www.sccoos.org (accessed on 12 January 2023)). Different approaches including
machine learning attempts have been used to predict water quality in this area [7,22,33]. In
this study, we apply our machine learning pipeline to the Scripps Pier station to predict
Chl-a and examine the pipeline’s performance.
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Figure 1. Locations of study areas, the NRE system and Scripps Pier, in the USA (a), and locations
of sampling stations at the (b) NRE and (c) Scripps Pier. Red dots in both study areas represent
sampling stations, with Station 180 (b) being excluded due to the lack of data from 1994 to 1998.

In this paper, we build a pipeline incorporating four commonly used machine learning
models, Support Vector Regression (SVR), Random Forest Regression (RFR), Wavelet
Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term
Memory (LSTM), to find the optimal model for Chl-a prediction in NRE, NC and the
Scripps Pier, CA.

2. Materials and Methods
2.1. Datasets

To predict water quality at the NRE and Scripps Pier, we collected observational data
from various reliable and publicly available sources to build data-driven models and assess
the models’ performance through statistical matrices.

For the NRE system, we used 24 years (1994-2017) of historical hydrologic and water
quality data from the ModMon program. The ModMon dataset comprises 11 mid-river
water quality sampling stations along the NRE from the river head to its mouth at Pamlico
Sound (Figure 1a). The program sampled hydrographic, chemical and ecological param-
eters from the surface (with sampling depths < 1 m from the surface, of which 99% are
within 0.5 m from the surface) and bottom (0.5 m above bottom) depths on an approximate
bi-weekly basis throughout the year [28]. To develop the machine learning models, we
built a dataset to include non-equal (irregular) interval surface sampling of 10 NRE stations
(Station 0, 20, 30, 50, 60, 70, 100, 120, 140, 160) from 1994 to 2017. Station 180 data were
excluded from the dataset because the station 180 dataset lacked data from 1994 to 1998.
For the accuracy of the data-driven model, we kept 10 ModMon features that are related
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to Chl-a in aquatic systems as input forcings, which are date, the distance (km) of the
station downstream from Station 0, water temperature, salinity, dissolved oxygen (DO),
pH value, particulate organic carbon (POC), nitrate/nitrite (NO3/NO;), ammonium (NHj)
and orthophosphate (POy) (see Table Al in Appendix A for their units). Chl-a was included
in the dataset for model calibration and assessment.

Our datasets also included daily averaged weather data, including winds, air pressure
and air temperature at NOAA station near Cape Lookout Bight, NC (station CLKN7;
https:/ /www.ndbc.noaa.gov (accessed on 1 August 2022)), and daily averaged river flow
from the Neuse River at the US Geological Survey (USGS) site 02091814 near Fort Barnwell,
NC (https://waterdata.usgs.gov/nwis/ (accessed on 1 August 2022)). To capture the
weather’s cumulative effect on Chl-a, we used the accumulative form of wind speed,
pressure, air temperature and discharge. It is derived by adding data from the observations
over continuous n days; the n value selection will be discussed in Section 3.1. In the
contents below, the dataset that combines ModMon data, weather data and the Neuse River
discharge is referred to as the “NRE dataset”.

The dataset for Scripps Pier water quality prediction (Figure 1b) was from the Southern
California Coastal Ocean Observing System (SCCOQOS, https:/ /erddap.sccoos.org/erddap/
tabledap/HABs-ScrippsPier.html (accessed on 1 August 2022)) [22]. This dataset included
NHj, Chl-a, NOs, NO,, phaeophytin, POy, silicate (SiO4) and water temperature. Chl-a
was used for model assessment. Unlike the NRE dataset, samplings of Scripps Pier are
nearly equally spaced (shown in the Appendix A) and collected at a single station. Like
the NRE dataset, we combined the SCCOOS Scripps Pier data with wind data from NCEP
North American Regional Reanalysis (NARR). The combined dataset is called the “Scripps
Pier dataset” below.

Different variables were included in the modeling datasets for these two areas, which
were determined by data availability in each area and their distinct environment features.
Both datasets included nutrient features and meteorological data, considering their strong
correlation with phytoplankton growth and water mixing. In contrast, the NRE, an estuary
with large freshwater input, is more susceptible to river discharge and seawater intrusion
compared with the Scripps Pier station. Therefore, river discharge and offshore distance
from the river mouth station were included in the NRE dataset. The variables are further
selected as input features for the machine learning models (Section 2.3).

2.2. Methods

The pipeline we implemented for NRE and Scripps Pier water quality prediction used
models that have shown reliable performance in water quality prediction. It was run on
Google Colaboratory with the free plan (a 2-core CPU with 12.7 GB RAM). It included
two benchmark models, Support Vector Regression (SVR) and Random Forest Regression
(RFR) [34,35] and another two coupled models that are more commonly adopted for water
quality data processing and prediction, WA-Back Propagation Neural Network (BPNN)
and WA-Long Short-Term Memory (LSTM) [23,35,36].

2.2.1. Support Vector Regression (SVR)

SVR is a supervised learning algorithm used for prediction [37], based on the statistical
learning theory by Cortes and Vapnik [38]. It determines two flexible hyperplanes with the
same distance, ¢, around the predicted function symmetrically. The model only penalizes
the samples outside the boundaries with a penalization coefficient C, reducing prediction
error by minimizing the sum of the squared weight (w) and the penalization terms (§ and

&), ||w|[> +C Xl (& +&*) (Figure 2).


https://www.ndbc.noaa.gov
https://waterdata.usgs.gov/nwis/
https://erddap.sccoos.org/erddap/tabledap/HABs-ScrippsPier.html
https://erddap.sccoos.org/erddap/tabledap/HABs-ScrippsPier.html

J. Mar. Sci. Eng. 2023, 11, 1608 50f18

F@) |
y=wx+b+e
&
y=wx+b
&
y=wx+b-—e¢
X

Figure 2. Support vector regression scheme, in which C is the penalization coefficient and ¢ is the
distance between the boundary and the predicted function, both of which are hyperparameters that
are pre-determined. ¢ is the distance from a sample satisfying y > wx + b + ¢ to the upper boundary
y = wx +b+e and & is the distance from a sample satisfying y < wx + b — ¢ to the lower boundary
y = wx + b — e. For a single penalized sample (represented by red dots), depending on where it
lies, either & or & is larger than 0. When the sample satisfies y > wx +b +¢, & >0 and £" should be
treated as 0; when it satisfiesy < wx +b —¢, &' >0 and £ should be treated as 0.

2.2.2. Random Forest Regression (RFR)

REFR is a supervised learning algorithm that uses an ensemble learning method for
regression, which combines several decision trees and aggregates multiple machine learn-
ing models to make better predictions than a single model [39]. The decision trees are
constructed in parallel, with no interaction among them. The maximum number of features
used at each tree and the number of trees to be grown are two user-defined parameters. At
each node, one sample feature among the selected features is searched for the best splitting.
The random forest regression consists of k trees, where k is the user-defined number of trees
to be grown [39—-41]. The diagram in Figure 3 shows the structure of a Random Forest with
200 decision trees.

Test Sample Input

—

g s \ N\
Tree 1 Tree 2 Tree 200
Tree 3-199
\ _ _ L J _ _ _/
/ ! N\
Prediction 1 Prediction 2 Prediction 3-199 Prediction 200

e P

Average All Predictions

l

Random Forest Prediction

Figure 3. Random forest regressor scheme with 200 decision trees.

2.2.3. Wavelet Analysis (WA)

WA is a method that can decompose a signal into elementary forms at different scales
and positions and then reconstruct the signal with high precision. WA has been widely
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applied in noise filtering, data compression and signal analysis [42]. Compared with the
classic Fourier transform which only provides information on signals in frequency space,
WA can capture both time and frequency information [42,43]. Therefore, WA can better
resolve non-stationary signals and has demonstrated reliable performance in numerical
applications in different fields.

Multiple wavelet-related transforms exist for different applications. In this study,
we used discrete wavelet transform (DWT) to decompose the Chl-a concentration into
detailed or approximate components. The DWT is discrete in shift and scale parameters, but
continuous in time. Consequently, WA analysis of the NRE and Scripps datasets required
interpolation of the datasets to a constant time interval as described below. ¢y, ,(t) is
the set of child wavelets, which is scaled and shifted from the given mother wavelet §(f).
Following Akansu et al. [44], we defined the child wavelet as:

P, n(t) = ao_%lp(ﬂo_mt — nbo) @)

where ay, by, m, n are constant integers, with m being the scale parameter and 7 being the
shift parameter. As a dyadic discrete wavelet, we set ag as 2 and by as 1 [45]. Equation (1)
can be rewritten as

P, n(t) =27 29 (27"t — n) )

Then, we used the child wavelet to define the wavelet transform of a signal f(¢) [44].

A, n(t) =273 /f(t)¢(2*mt—n)dt ©)

By using DWT, a time series can be divided into two different types of coefficients:
approximation and detail coefficients at every decomposition level. The result can be
shown as a binary-like tree (Figure 4). The coefficients’ frequency and vector length
gradually decrease to half of the upper level as we move down the decomposition tree. For
example, the detail coefficient, cD1, in the first level should be half the length of the original
signal, S. If the original signal, S, has a frequency ranging from 0 to f,, the cD1 frequency
should range from f,, /2 to f,. Generally, only approximation coefficients are decomposed
continuously [46], so our model used detail components in all levels and the approximation
component in the deepest level only as features.

f €0, fn)
[ S I
high pass filter | low pass filter
. reo’
pelp o —fab— "
) ] low pass filter
high pass filter fa
£ F e
n n
fE (117) | cD, | cA, .
low pass filter
high pass filter fa
L 2 f € (01_)
fo fa 1 8

fe (ET) | cD; | l l_lc A [ l

Figure 4. The structure of wavelet decomposition. S represents the original signal; cDx and cAx repre-
sent the detail component and approximation component coefficients in each decomposition level.
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2.2.4. Back Propagation Neural Network (BPNN)

BPNN is one of the most typical neural network models [47], which is also known
as Artificial Neural Network (ANN). It consists of an input layer, several hidden layers
and an output layer (Figure 5). For the forward process, each node (except that in the
input layer) receives the linear combination of outputs from the previous layer as its input
and generates output to the next layer by applying an activation function (f[-] in Figure 5)
to the input. Classic activation functions include sigmoid, tanh, ReLU, etc. To minimize
error, back propagation should be carried out to properly adjust the weight of the linear
combination mentioned above, in which the partial derivative of the loss function with
respect to all weights is calculated, and the weights are changed in the direction of the
steepest descent of the loss function. Compared with traditional machine learning models,
a significant advantage of BPNN is that it can simulate all functions, theoretically. In this
study, we used the Pytorch package to construct the network with one hidden layer and
chose the ReLU as the activation function. The loss was calculated by the mean squared
error (MSE) function.

n(i-1) nm
xij=fl z Wi, ipXi-1e) Y= Z W(m,k) Xm,k
k=1 k=1

input layer m hidden layers output layer

Figure 5. A general structure of BPNN. In the flowchart, x(; represents the it input feature;
x;; (i=1,2, ..., m) represents the i value in the i hidden layer; W(i_1),(i,j) represents the weight
of x;_1 x in the linear combination of x; j; w ,, 1) , represents the weight of x;, x in the linear combina-
tion of the result y; and f[-] is the activation function.

2.2.5. Long Short-Term Memory Networks (LSTM)

LSTM is a well-known neural network that has been used in time-series prediction [48],
including successful prediction of temporal-based water quality of Chl-a concentration [21],
total phosphorus [49] and dissolved oxygen [34,49]. Therefore, we chose LSTM as another
machine learning model to predict Chl-a.

A standard LSTM unit comprises three key structures (Figure 6): a forget gate, the
input gate layer and the output gate layer. The first step for an LSTM model design is to
decide what should be discarded by the forget gate layer. This gate maps the output, 1;_1,
from the last cell and the input, x¢, to a feature vector within [0, 1] through a sigmoid layer.
Next, the input gate layer will decide what will be updated and stored in the new cell state,
Ct, by using it and C~t. Finally, the output information, h;, will be filtered after the output
gate layer based on our cell state.
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Figure 6. Scheme of LSTM neurons. For each time step, t, the forget gate first helps the cell state,
C;_1, to forget unnecessary information by multiplying it with f;, the sigmoid-processed information
provided by output, /;_1, and current time step state, x;. Then, the input gate helps the cell state,
C;_1, to obtain new information by adding it with the multiplication of i; (information about which
values should be updated) and C (candidate values that can be added to the cell state). In the end,
the current output, h, is derived from tanh-processed cell state, C;, with the help of the multiplication
of sigmoid-processed x; so that we only obtain part of the state as the output as we wish.

2.3. Feature Engineering

Water quality change can lag behind its predictors, and the lag is determined by
domain features [50,51]. To better capture the time sequence of water quality information,
we aggregated features of wind speed, water pressure and air temperature over several
days preceding the prediction time with window sizes of 1 to 7 days and 30 days, then
applied an input feature selection method to evaluate these aggregated features.

Feature selection is a necessary step in modeling nonlinear systems [52]. Selecting the
combination of the best subset of features and ignoring irrelevant features can effectively
improve model accuracy /reliability, lead to shorter training time and reduce both input
dimensionality and unnecessary model complexity. Many features have been selected for
Chl-a prediction, of which certain features are more useful than others [21,34]. In this study,
we applied the chi-squared (CHI) algorithm to identify the most relevant features for Chl-a
prediction. CHI is a non-parametric algorithm that evaluates correlations between variables
and assesses whether the independents are positively correlated or not. It performs best
for multi-class data [53]. The higher the CHI score, the more relevant the feature is, and it
can be selected for model training. To reduce errors in model training and allow models to
converge faster, we normalize the input features into [0, 1] for prediction [54].

2.4. Model Assessment

The models’ performance in predicting Chl-a concentrations was measured by Root
Mean Square Errors (RMSE) and R? score. In addition, we used skill metrics for binary
event forecasts [8,55] to assess the model’s performance in predicting the occurrence of
algal bloom, with Chl-a exceeding a threshold of 40 pg/L [56]. The metrics include the
probability of detection (POD), the probability of false detection (POFD), frequency bias (B)
and the Pierce skill score (PSS). They are defined as,

a

POD = @)
a-+c
poFD = ®)
C b+d
a+b
B= a+c ©)
PSS = POD — POFD = — % —-b¢ @)

(b+d)(a+c)
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where a represents the number of correctly predicted occurrence of blooms (hits); b, incor-
rectly predicted blooms (false alarms); ¢, false negatives (misses); and d, correctly predicted
absence of blooms. Higher PODs represent better performance with values in the range
[0, 1], while higher POFDs represent worse performance in the range of [0, 1]. B is the
ratio of predicted events to observed events, in the range of [0, oo], with 1 representing
an unbiased forecast. PSS is in the range of [—1, 1], with larger values representing a
better performance.

3. Data Engineering and Model Building
3.1. Data Processing

Data cleaning is the process of improving data quality by fixing and removing incorrect,
corrupted, duplicate and incomplete data within a dataset, and it should be performed
before model training. For the NRE dataset, river discharge and atmospheric data are
available at regular intervals. However, the ModMon dataset sampling has irregular
intervals (Table A2 in Appendix A). Because WA requires strictly equally spaced temporal
data, we linearly interpolated water quality data using an interval of 14 days. For all
10 stations used, we chose 5 January 1999 as the first day of linear interpolation and
31 October 2017 as the last day. With 14 days as the forced interval, there are 474 samples
for each depth at each station. Among them, data earlier than 24 March 2014 (80% of all
data) were used as training data, while the rest of the data were considered as testing data.

The Scripps Pier dataset in [22] has a regular sampling interval of ~7 days (Table A3 in
Appendix A), so the original dataset was used for prediction. Similarly for the NRE dataset,
the first 80% of Scripps Pier data were selected as training data and the rest as testing
data. The numbers of observations in the original (before-interpolation) dataset used in the
training data and testing data for both areas are shown in Table A4 in Appendix A.

Then, we constructed useful accumulative features using the aggregation approach
mentioned in Section 2.3 and evaluated their relevance by CHI algorithm feature selection.
For the NRE dataset, the results of feature importance for different window sizes are shown
in Figure 7. The features with the first highest local feature importance were selected,
including accumulative wind speed over 2 days preceding the time at which the forecast
is made for (referred to as prediction date below), air pressure over 3 days preceding
the prediction date and air temperature and river discharge over 5 days preceding the
prediction date. For the Scripps Pier dataset, through the feature selection process, we
found that the weather data on the prediction date showed the highest feature importance.

(a) Wind Speed (b) Air Pressure
8.0
7.0
7.0
6.0
6.0
5.0 50
1 2 3 4 5 6 T 8 1 2 3 4 5 6 7 8
(b) Air Temperature (d) Neuse River Discharge
22 180 1|
{
18 140 {
{
14
100 {
10 / |
f 60 |
1 2 3 4 5 6 7 8 1 2 3 4 5 [ 7 8
Window Aggregation Size (day) Window Aggregation Size (day)

Figure 7. Feature importance (CHI score) for 1-8 days aggregated (a) Wind speed, (b) air pressure,
(c) air temperature and (d) the Neuse River discharge.
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3.2. Model Implementation

To tune the baseline models of RFR and SVR, we utilized the grid search method to
find the optimal hyperparameters of a model. Grid search, as one of the widely used global
optimization approaches, searches exhaustively to find the best parameter combination out
of all the possible parameter choices [57,58].

When tuning RFR, we set the parameters “max depth”, “max features”, “min samples
split” and “n estimators” as objects of the grid search. When tuning SVR, we also set
parameters such as C, gamma and Kernel types (e.g., polynomial kernel, linear kernel and
Gaussian radial basis kernel).

For the WA-LSTM and WA-BPNN models, WA was applied to the Chl-a feature
before model training. We chose Wavelet Daubechies 4 (db4; [59]) as our wavelet type, and
constructed a 4-level WA model to decompose the Chl-a features (Figure 8). When building
the neural network models of LSTM and BPNN, CHI feature importance was implemented
again to select the most important features in the NRE and Scripps Pier datasets, including
features from the original dataset and the additional accumulative features constructed
above by aggregating over a window size. Together, we had 30 input features for the NRE
model and 22 for the Scripps Pier. We ranked the features by their feature importance from
highest to lowest and chose the first P features for model training, in which the optimal P
was determined by traversals.

e B’

|
Chl—a gy v de e

|
Chi-aq; Ao

Chl—ag e BPNN
avele . N
% Transform Chl=ags Afiepripy or Chl—a,
Chl-a, sy

Chl—a g4

Chl—a 4

N _/

Figure 8. Construction of the WA process for LSTM and BPNN models. Chl — a; represents Chl-a
at time t. Chl — a,, represents the detail component at the x" decomposition level and Chl — a,4
represents the approximation component at the 4 decomposition level.

This data processing was carried out for both BPNN and LSTM. Finally, we searched
for the best subset of features with an increase of three features from half of the features
to the number of all the features and the number of hidden layers with an increase of two
layers from half of the input dimensions to twice the input dimensions.

4. Results

Our models used historical observations at each station to execute a one-step forecast,
predicting the next time step in a sequence. The time step is 1 week for the Scripps Pier
and 2 weeks for NRE. Parameters for the best-performing RFR and SVR models and their
overall (station-averaged) performance in modeling Chl-a concentration measured by
RMSE are shown, respectively, in Tables 1 and 2, and the performance in binary event
forecasts (modeling the occurrence of blooms) in Table 3. According to Tables 1-3, the RFR
and SVR models had large RMSEs (>10 ug/L) in predicting Chl-a concentrations in NRE.
Although their performance in false detection was high (with low POFD), they failed to
capture any algal blooms with poor bias (B) and PSS scores.
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Table 1. Parameter and overall (station-averaged) performance of baseline models (RFR).

Best Performance Parameters Max Depth Max Features Min Samples Split N Estimators RMSE
NRE 20 sqrt ! 2 300 11.0
Scripps Pier 20 sqrt 2 300 0.5

L. If there are n features originally, then /7 features will be considered for each best split by RFR.

Table 2. Parameter and overall (station-averaged) performance of baseline models (SVR).

Best Performance

Parameters C Gamma Kernel Type RMSE
NRE 100 0.1 Gaussian 10.9
Scripps Pier 10 0.1 Gaussian 0.5

Table 3. Skill assessment for prediction of algal bloom occurrence using 940 pairs of predictions and
observations in the training dataset for baseline models and WA models for all NRE stations (0-160).
Skill metrics for binary predictions include the bias (B) and Pierce skill score (PSS). We also include 4,
the number of hits; b, false alarms; c, false negatives (misses); and d, correct negatives, probability of
detection (POD) and probability of false detection (POFD).

Models a b c d POD POFD B Pss
RFR 0 0 31 909 0.0 0.0 0.0 0.0
SVR 0 0 31 909 0.0 0.0 0.0 0.0
WA-LSTM 9 5 16 910 0.4 0.005 0.6 0.4
WA-BPNNO 16 7 9 908 0.6 0.008 0.9 0.6
WA-BPNN 16 6 9 909 0.6 0.007 0.9 0.6
Figure 9 compares observations and model results from baseline models (RFR and
SVR) and the neural network model of WA-LSTM for NRE. The WA-LSTM model utilized
the top P features among the 30 features on each station. Here we presented the results of
the best-performing model on each station with P shown in Table 4. The best models on each
station did not necessarily use the same subset of features. For example, the “aggregated
discharge” feature was more important for stations closer to the river mouth than the
offshore stations, potentially related to the river discharge’s dilution and advection effects.
Table 4. Performance skills (RMSE and R?) and model parameters from baseline models and WA
models for individual NRE stations (0-160) and the Scripps Pier station.
Site 0 20 30 50 60 70 100 120 140 160 Scripps
RFR RMSE 2.24 5.79 23.14 15.02 10.14 9.97 11.23 22.95 14.38 8.97 0.51
SVR RMSE 3.56 6.17 23.33 17.02 10.09 11.86 12.80 24.54 15.05 9.70 0.53
RMSE 1.27 2.55 7.40 7.96 3.68 3.96 4.86 12.05 9.51 6.48 0.43
R? 0.70 0.70 0.75 0.70 0.63 0.79 0.67 0.48 0.41 0.53 0.70
WALSIM Neuron 59 53 53 59 29 53 35 59 40 59 32
P 30/30 27/30 27/30 30/30 15/30 27/30 18/30 30/30 21/30 30/30 17/22
RMSE 1.21 2.66 497 6.38 4.48 4.11 5.69 8.51 8.42 3.84 0.47
WA-BPNNO ! R? 0.72 0.70 0.89 0.81 0.69 0.78 0.65 0.74 0.57 0.83 0.65
neuron 19 19 19 15 19 17 15 19 19 13 19
RMSE 1.14 2.49 5.00 5.87 4.01 4.05 527 8.45 7.82 3.79 0.41
A-BPNN 2 R? 0.76 0.73 0.89 0.84 0.75 0.78 0.70 0.75 0.63 0.83 0.73
WA-BPNN neuron 53 27 53 59 59 37 51 29 35 59 32
P 30/30 24/30 30/30 30/30 30/30 27/30 27/30 18/30 27/30 30/30 17/22
Obs. std 2.30 4.83 15.27 14.52 8.05 8.70 9.58 16.75 12.88 9.43 0.79

1. The BPNN models that used only the Chl-a feature from WA. 2. The BPNN models that used feature selection
among (a) the Chl-a feature from WA, (b) the other features from the original dataset (such as dissolved oxygen
and ammonium) and (c) accumulative features generated (such as the accumulative air pressure from 3 days
preceding the prediction date).
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Figure 9. Comparison of the Chl-a (ug/L) prediction using RFR, SVR and WA-LSTM with in situ
observations (Obs.) at NRE stations 0, 20, 30, 50, 60, 70, 100, 120, 140 and 160.

Figure 9 and Table 3 show that WA-LSTM can capture the occurrence of most algal
blooms in NRE, especially for stations inshore of station 120, although it tends to underes-
timate the peak magnitude. More specifically, WA-LSTM predicted the occurrence of an
algal bloom in October 2015 at station 30, with a peak concentration ~100 pug/L (137 ug/L
on September 22 and 92 ng/L on 6 October). Although much smaller than the actual obser-
vation of 207 ug/L, it captured the occurrence of the bloom event. In contrast, RFR and
SVR models predicted much smaller fluctuations in Chl-a and failed to capture any major
bloom. To quantitatively compare the model’s performance, we calculated the RMSEs and
R? for all the models (Table 4). The RMSEs for WA-LSTM were 43-69% smaller than for
RFR and 51-69% smaller than for SVR for stations inshore of 120. For the most downstream
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stations 120 and 160, WA-LSTM also underestimated the magnitude of major blooms but
still captured the bloom timing and performed better than RFR and SVR with larger bias
and PSS (Table 3). The R? for RFR and SVR ranged from —0.88 to 0.26 (not shown in the
table), significantly smaller than for WA-LSTM.

Figure 10 shows comparisons between WA-LSTM and WA-BPNN with enriched
features including accumulative wind, air pressure and river discharge. WA-BPNN better
performed at predicting the bloom magnitude than WA-LSTM, even for station 120 and its
offshore stations (Figure 10h—j). The average RMSE for WA-BPNN was 13% smaller than
for WA-LSTM, with R? increasing by 0.12. WA-BPNN also captured more blooms than
WA-LSTM with larger B and PSS (Table 3).
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Figure 10. Comparison of the Chl-a (1g/L) prediction using WA-LSTM and WA-BPNN with in situ
observations at NRE stations 0, 20, 30, 50, 60, 70, 100, 120, 140 and 160.

For the WA-BPNN results shown in Figure 10, we used the same enriched dataset,
including discharge, winds and air temperature. We know that solely using the features
from WA may also produce decent results, following the method in [60]. However, to
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examine the contribution of the additional nutrients and other environmental features, we
compared the performance of models that consider all the possible features (WA-BPNN)
versus the models that take only Chl-a wavelets analysis results as the model input (referred
to as WA-BPNNO below); then, we used the results from the best-so-far BPNN model for
this comparison. We also tuned the models for the best results by trying different numbers
of hidden layers of neurons. The performance of such models and the final selected
parameters are shown in Table 4.

The results demonstrate that adding more potentially useful features will improve the
performance of neural network models. By adding additional features, the RMSE dropped
by 5.5%, and the R? increased by 0.03 on average compared with the models that used only
the features from WA. Although the increase in R? is small, it is consistent throughout the
stations. The performance in binary event forecasts using WA-BPNNO and WA-BPNN was
comparable (Table 3).

We applied the same pipeline to the Scripps Pier Chl-a prediction and assessed the
models’ performance in predicating Chl-a concentration. The performance in binary event
forecasts was not evaluated because it is more traditional to use a Pseudo-nitzschia cell
count as a bloom indicator in the Pacific Northwest [61]. The results showed a smaller
RMSE using WA-LSTM than RFR and SVR, and an even smaller RMSE and larger R? using
WA-BPNN with the enriched dataset. Only the WA-LSTM and WA-BPNN models captured
the significant bloom event that occurred in late May to early June where Chl-a increased
to about 5 times the time series average (Figure 11).

(o)

m— RFR 51 ——  WA-BPNN

— Obs. — Observation
h WA-LSTM

w— SVR
WA-LSTM

Figure 11. Comparison of the Chl-a (ug/L) prediction using (a) RFR, SVR and WA-LSTM and using
(b) WA-BPNN and WA-LSTM with observations at Scripps Pier station.

5. Discussion and Conclusions

Predicting chlorophyll is critical to water quality management across aquatic systems,
as chlorophyll has been used to indicate algal blooms and the state of water quality in
coastal and estuarine waters. In addition, the enhanced ability to predict blooms will also
help scientists to understand how blooms develop. Knowing that a bloom is about to
happen, researchers can adjust their sampling plan to better understand the drivers of
bloom formation, considering that the development of a bloom may destroy the conditions
that spawn it. In this study, we created a pipeline to predict water quality using four
machine learning models that are commonly used in water quality prediction. The pipeline
includes two benchmark models, SVR and RFR and another two models incorporating WA,
which are WA-LSTM and WA-BPNN. The same pipeline was applied to two bloom-prone
locations, NRE, NC—where machine learning models were applied for short-term (2-week
forward) algal bloom forecasts at single stations for the first time—and Scripps Pier, CA.

We found that while SVR and REFR failed to capture bloom events at most NRE stations,
WA-LSTM and WA-BPNN successfully predicted blooms’ occurrence and magnitude, espe-
cially for stations closer to the river mouth for the NRE area. The pipeline can also find the
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best results by trying different numbers of hidden layers neurons. Through the experiments,
we found that the addition of meteorological and/or river flow data—determined by the
environmental features of the study area—in addition to water quality data is a necessary step
to further improve chlorophyll prediction.

Different variables were included in the dataset for each area, which was determined
by data availability and environmental features of the study area. While both datasets
included nutrients and meteorological data, only the NRE dataset included river discharge
because of its direct influence by the Neuse River. Since the stations closer to the river
mouth are more susceptible to river discharge, we also included distance from the river
mouth station as an input feature for the NRE dataset. Although minimum tuning was
needed for the switch from the NRE Chl-a forecast to Scripps Pier forecast, the WA-BPNN
model works well for both regions, with an R? of 0.73 for the Scripps Pier and 0.77 for
the NRE.

Considering that the pipeline works well for chlorophyll prediction for two distinct
regions with different hydrodynamics and geometry, the pipeline can be potentially applied
to other aquatic systems. Our experience with the NRE and Scripps Pier demonstrates that
when applying the pipeline to a different aquatic system, in addition to water quality fea-
tures that are considered essential growth limiting factors for phytoplankton, the inclusion
of dominant physical features may improve the model’s accuracy. We provide the source
code of our pipeline on GitHub (https://github.com/QiangianLiu/WaterQuality (accessed
on 15 August 2023)) to support future applications in other areas.
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Appendix A

Table A1l. ModMon features in the NRE dataset.

Feature Unit
date /
depth level of measurement /
distance from Station 0 km
water temperature °C
salinity ppt
dissolved oxygen (DO) %
pH /
particulate organic carbon (POC) ug/L
nitrate/nitrite (NO3 /NO;) pg/L
ammonium (NHy) ng/L

orthophosphate (POy) ug/L
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Table A2. Time interval of samplings in Station 0 of the ModMon dataset in days.

Interval of Sampling (Days) Sampling Number Proportion
5~11 13 4.64%
12 20 7.14%
13 46 16.43%
14 56 20.00%
15 37 13.21%
16 17 6.07%
>=17 91 32.50%
In total 280 100%

Table A3. Time intervals of samplings for the Scripps Pier dataset in days. This dataset has a relatively
uniform sampling interval.

Interval of Sampling (Days) Sampling Number Proportion
6 29 8.06%
7 302 83.89%
8 28 7.78%
9 1 0.28%
In total 360 100%

Table A4. Number of original (before-interpolation) observations used in training and testing dataset
for NRE and Scripps pier machine learning models.

. Number of Obs. in Number of Obs. in
Dataset Station Training Data Testing Data Total
0 342 79 421
20 342 79 421
30 358 80 438
50 358 80 438
60 356 80 436
NRE 70 358 80 438
100 356 80 436
120 358 80 438
140 350 80 430
160 351 80 431
Scripps pier 300 61 361
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