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We present the results of a study where we provided students with textual explanations for learning content recommendations
along with adaptive navigational support, in the context of a personalized system for practicing Java programming. We evaluated
how varying the modality of access (no access vs. on-mouseover vs. on-click) can influence how students interact with the learning
platform and work with both recommended and non-recommended content. We found that the persistence of students when solving
recommended coding problems is correlated with their learning gain and that specific student-engagement metrics can be supported

by the design of adequate navigational support and access to recommendations’ explanations.
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1 INTRODUCTION

Over the last 20 years, the Computer Science Education community has developed and tested a large variety of advanced
tools to support teaching and learning programming. These tools frequently referred to as interactive or “smart” learning
content [4] include a variety of “worked example” tools (annotated examples [15], code animations [31], codecasts [30])
focused on communicating code understanding and code construction knowledge to the learners and various types of
automatically assessed problems (code tracing problems [6], Parson’s problems [27], coding problems [17]) engaging
students in applying and mastering this knowledge. While some types of smart content are used for assessment purposes
(i.e., labs, exams, and homework assignments) more and more frequently, collections of smart content are released for
students in a free practice mode, i.e., something that they can do in their spare time for self-study and self-assessment.

The availability of free practice content is becoming increasingly important to support learning programming
due to the increased numbers and diversity of students enrolled in programming courses. For most less-prepared
students, mandatory class activities such as labs and assignments offer too few practice opportunities to learn complex
programming concepts. In contrast, free practice content opens an opportunity for everyone to practice as much as

necessary to achieve mastery while also focusing on the most important or least studied topics. Unfortunately, it becomes
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increasingly harder for less-prepared students to efficiently use this opportunity due to rapidly increasing volumes of
available smart content. Large collections of smart content are now frequently provided by the publishers as additions
to programming textbooks ! or embedded into online interactive textbooks [11, 29]. Moreover, a number of dedicated
practice systems were developed to provide access to large volumes of interactive examples and problems [5, 12, 22].
Faced with these large volumes of available practice content, less-prepared students lack sufficient domain knowledge
to choose the most appropriate content for their practice, which due to the known paradox of choice, decreases their
engagement in practice [18].

This paper argues that the increasing volumes of smart learning content should be balanced by the availability of
personalized support helping each learner to find practice content that is most relevant to their current needs and level
of knowledge. We present a personalized programming practice system (JP?) that attempts to guide each student to the
most appropriate practice through adaptive navigation support and explainable content recommendation.

The paper presents the implementation of these technologies in programming practice content and reviews the
results of a semester-long classroom study to assess the impact of these technologies on student work with smart
content. Among other issues, our study was designed to assess the added value of explanations, a new technology that

is applied to increase the understandability and acceptance of recommendations.

2 RELATED WORK

Adaptive navigation support [3] is a group of technologies that adapt the presentation of links on hypertext or
hypermedia pages in order to guide users to the most relevant information. Among a range of link adaptation approaches
such as ranking, generating, or disabling links, adaptive link annotation emerged as the most popular and efficient in
educational hypermedia [7]. This technology attempts to augment links with personalized visual cues (i.e., color, font,
icons, comments) to express why a specific link could be relevant or not relevant to the learner at the given moment [7].
For example, progress-based navigation support could visualize the estimated amount of knowledge acquired by the
learner on a specific topic or content item [26] guiding learners to topics less studied. Prerequisite-based navigation
support stresses the presence or absence of knowledge of prerequisite concepts [13] helping students to avoid content
for which they do not have sufficient prerequisite knowledge.

Content recommendation, another popular approach to guide learners to the most relevant content in educational
systems [10], could be considered as an alternative to adaptive navigation support. It does generate a ranked list
of relevant content; however, it does not make clear why a specific recommended content might be relevant to the
learner [19, 21]. To date, the Recommender Systems research community has an extensive body of work on how to
provide users with information about why certain items have been recommended to them in several domains (e.g.
music recommendations [24], artwork recommendations [23]). In this context, Tintarev and Masthoff presented a
framework to design and evaluate these explanations for recommendations [32]. Multiple benefits have been found
from adding explanations to recommender systems, e.g., the increase in users’ trust in the system, the increment of
recommendations’ persuasiveness, and higher levels of user satisfaction. Notwithstanding the above, this focus has not
been replicated to the same extent in the educational recommender systems community, where the focus has been kept
mainly on the usefulness of the recommendations more than the effect that these have on students’ adoption and their

overall behavior within online learning platforms.

Lhttps://www.wiley.com/learn/horstmann/
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Recently some promising work has begun to fill this gap [1, 25], demonstrating that explanatory features for learning
content recommendations can influence students’ attitudes towards their adoption. Finally, and in parallel with these
efforts, the Artificial Intelligence in Education (AIED) community has increased its attention to explanations in Al-based
educational systems, proposing some unique learning-related metrics associated with explainable systems, such as

students’ agency of their own learning [20].

3 PERSONALIZED PRACTICE SYSTEM: GUIDING STUDENTS THROUGH A MAZE OF SMART CONTENT

The JP3? system is an online learning platform that provides personalized access to different types of online learning
activities to practice Java programming. It augments students with several features that allow them to navigate through

the learning content (152 activities in total) in a personalized way.

3.1 Access to Learning Content and Adaptive Navigation Support

The learning content provided by the system is organized by topic (see the upper part of Fig.1) reflecting the topic
structure of the course. Once the student clicks on one of the topic cells, the system opens access to learning activities
for this topic, presented as content cells and arranged by activity type, one on each row. The three available types
of learning activities include (1) Worked examples (2) Challenges, simple problems where students need to complete
missing lines of a code to solve a problem[16]; and (3) Coding problems, where solution code should be written from
scratch. To help students in selecting the best activities for the current state of their knowledge, the system provides
adaptive navigation support, direct recommendation, and explanation of recommendations.

The progress-based navigation support is provided by the intensity of green-color filling of the topic and content
cells. The darker the color is, the more work has been done with corresponding activities or whole topics. The gray
color indicates topics and activities not yet attempted by the student. In addition, a combination of goal-based and
prerequisite-based navigation support is provided when the student mouses over each activity cell. To provide this
support, the system uses a concept-based open learner model (OLM) shown at the bottom of Fig. 1. The OLM visually
presents the state of learner knowledge for each Java concept using the progress bar. When the mouse cursor is placed
over an activity cell, the system highlights all concepts associated with this activity. Target concepts for the current
topic are shown inside the dashed rectangle, while prerequisite concepts (i.e., concepts that were studied in earlier topics,
but required to work with the selected problem) are shown to the left of this rectangle. This visual navigation support
helps students to assess the state of the prerequisite knowledge for the selected problem as well as to see how much it
contributes to learning the target concepts.

While navigation support is valuable for decision-making, it could be still hard for less-prepared students to select
the best activity. To address these needs, JP* directly recommends the three best problems with an optimal balance of
prerequisite and target concepts. Recommendations are shown on the left of the activity cells. Also, a cell corresponding
to the recommended content is marked with a red star. To provide further help with recommended content, the
system generates textual explanations for each recommended example or problem. The explanation is displayed when
the student places the mouse cursor over the recommended problem. No mouseover explanation is provided for

non-recommended problems, although navigation support is shown for all problems, recommended or not.

3.2 Student Modeling and Explainable Recommendations

Student Modeling: The ability to model a student’s current level of knowledge for every domain concept or topic is the

foundation of all personalization power in JP3. In contrast to Bayesian knowledge tracing [9] used in the majority of
3
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Table 1. Rules for generating explanations for educational recommendations

Verbal explanation template for prerequisite concepts 9}, >.6 9;, >.75 9;, >.95

It looks like on average, you have a ... understanding in good proficient | excellent
the main prerequisite concepts.

Verbal explanation template for target concepts 6, <6 | 6, <4 0: <2
You have a ... opportunity for increasing your knowledge | fair good excellent
on key concepts introduced in this topic.

personalized learning systems, JP? using more complex Bayesian network approach [8] to update mastery estimation
of Java programming concepts after each learner’s interaction with learning content (either correct or incorrect). The
parameters of the Bayesian Network are trained using student data from previous Java programming courses. More
details on Bayesian student modeling in JP3 could be found in [14].

Recommendation approach: The key idea of JP® content recommendations algorithm is balancing the amount of
prerequisite knowledge that learners need to solve/understand the activity and the amount of new knowledge that they
can acquire while working with it [2]. In this context, a desired case (high recommendation score) would be a learning
activity where the student has a high average mastery level on the prerequisite concepts (i.e., ready to attempt) and a
low average mastery level on the outcome concepts (i.e., good opportunity for knowledge gain). The algorithm uses the
concept knowledge estimations from the Bayesian student model and scores the learning activities by following these
rules: (a) only non-completed content is recommended; (b) worked examples have priority over problems when they

introduce a concept that has not been practiced previously; (c) for problems, a score is calculated using the Equation 1,

1
rec score;j = W(pr*gpj+zwt*(l—9tj)) 1)
7 7

where p denotes the prerequisite concepts and ¢ represents the outcome concepts associated with content i. 0, ; and 0y
are the knowledge estimations of learner j for both concept categories. w represents the topic-level importance of the
concepts (either p or t) calculated by using tf-idf (i.e., the more unique a concept in a topic, the higher its importance),
and W is the sum of the weights for the associated concepts (both prerequisite and outcome ones). Finally, N denotes
the number of concepts associated with activity i. Learning activities within the topic are sorted based on these scores
and the top-3 items are recommended to the learner.

Explanations’ generation: Textual explanations in JP* attempt to make more transparent why the algorithm judged
the recommended activity as a good choice given the current knowledge level of the student. To generate an explanation
for a problem, we average the knowledge estimations for the top three prerequisite and outcome concepts (9:0 and 6;).
and use it to generate short paragraphs for the prerequisite and outcome parts of the explanations. Table 1 presents
samples of textual explanations for several thresholds. The thresholds and wording were selected to offer a simplified
qualitative explanation of numerical values used in the recommendation process. A recommended example was justified

by stating that “it presents concept(s) that are new to you (e.g. concept_name)”.

4 THE CLASSROOM STUDY
4.1 Participants

The subjects of the classroom study were college students taking an introductory programming course in Java at a
public US university. Students were offered a 1% of extra credit for taking the pre-test, another 1% for taking the post-test
and post-questionnaire, and finally, another 1% for completing a minimum threshold of activity within the system. This
threshold was completing 2 coding problems, out of many available, for each topic.

4
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Fig. 1. Version of JP? that includes content recommendations (shown as stars) , an Open Learner Model which shows the estimated
knowledge of students at a conceptual level, and textual explanations that explain why recommendations were generated.
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Fig. 2. Version of JP3 where textual explanations for recommendations of learning content are shown when students click on the

“Why?” icon.

A total of 208 students were enrolled in the different sections of the class, but given the non-mandatory nature of

the system’s usage, we ended up having only 67 “active students” in the system. In the context of the study, we define

“active students” as learners that attempted at least two coding problems. We chose that as the minimum threshold of

meaningful activity after examining the skewed distribution of attempts and after identifying that a big proportion of

students attempted only one or two activities. After removing them, the distribution resembled a normal shape.

5
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4.2 Procedure

At the beginning of the study, we collected informed consent forms and administered a 10-question pretest to measure
students’ starting level of knowledge in Java programming. Following that, JP? was introduced to the students and
they were invited (but not required) to use the system to practice Java topics as they progress through them in the
class. The system was available for the students for the whole duration of the course. At the end of the semester, we
administered the same set of 10 questions as a post-test to measure students learning. In addition, we administered a
questionnaire to collect student feedback about the system, its recommendations, as well as the understandability and
usefulness of the navigational support and explanations. The questionnaire was created by combining questions from

several questionnaires for evaluating recommender systems [28] and explanations of recommendations [24].

4.3 Control and Treatments

To assess the added value of explanations for content recommendations, we randomly split students into three groups.
The examination of pre-test results confirmed that there were no significant differences between groups, i.e., the
students had a similar level of knowledge about Java programming at the beginning of the study. All groups had access
to OLM, navigation support and recommendations, but differed in their access to textual explanations. The no-exp group
worked with a version of JP? with disabled textual explanations. The exp-on-mouseover group has standard access to
explanations, i.e., it received textual explanations of recommendations when performing mouseovers on recommended
activities (in addition to visual navigation support). The exp-on-click group received explanations by clicking on icon
“Why?” attached to each recommended activity in the ranked list (Figure 2). In this group, just like in no-exp group
only visual navigation support was provided through mouseovers on recommended activities. The reason to introduce
the exp-on-click group was our attempt to separate the presentation of explanation and the presentation of navigation
support. Indeed, from the logs produced by exp-on-mouseover group is not clear whether a mouseover was performed to
examine navigation support or textual explanations and whether the duration of the mouseover indicates examination
of explanation or navigation support information. In contrast, in the logs of exp-on-click group make it clear which

information was requested by students and how long it was studied.

5 RESULTS
5.1 Access to Navigation Support and Explanations

The usage of the navigational support features and textual explanation access in exp-on-mouseover group could be
assessed by examining the average frequency and duration of the mouseover on learning activities. The mouseover data
were pre-processed by removing mouseovers with a duration of less than a second. Data analysis indicated that a large
number of short mouseovers were logged when students moved the cursor from one area of the interface to another,
and including them would add noise to the analysis. By considering “long mouseovers” only, we made sure that we
keep the interactions that most likely reflect student access and examination of navigation support visualization (and
textual explanation in the exp-on-mouseover group). In the same way, we removed mouseovers that were too long (over
10 seconds, based on mouseover duration distribution).

The left side of Figure 3, shows that students performed a large number of long mouseovers on activity cells in all
three groups (Medno—exp = 4O’Medexp—on—click = 60,Medexp—on—mouseover = 57). This data indicate extensive use of
navigation support functionalities. We also detected significant differences in the total number of mouseovers among
the three groups by performing a Kruskal test (p = .03). When checking pairwise differences among groups using

6
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Fig. 3. Left: Distribution of the number of long mouseovers on activities per group. Right: Distribution of the number of clicks that
triggered the display of textual explanations on exp-on-click group

group 6
204 no-exp
exp-on-click

exp-on-mouseover

oo

154

10

Number of students
Number of students

100 150 200 250 6 3 10 14
Number of long mouseovers on activities Clicks on explanations

Dunn’s test with Holm correction, only marginal differences were found between the control group and both treatment
groups (p = .06), which shows that overall, students with access to textual explanations performed more exploration
through long mouseovers.

We also calculated students’ engagement with textual explanations in the exp-on-click group, measured through
the number of clicks on the “Why?” icon (see Figure 2). The right side of Figure 3 shows that users did use textual
explanations — the median of clicks of explanations is 5. We also found that all active students in exp-on-click group

clicked on the explanations icon at least once, i.e., all students in that group were exposed to textual explanations.

5.2 Adaptive Navigation Support, Recommendations, and Exploration of Learning Content

Through the navigation support, JP* allowed students to explore learning content in two different ways. First, they can
use mouseovers to examine the potential relevance of content to their knowledge. Second, they can open an activity and
examine its relevance directly. In this section, we explore whether recommended problems received more attention from
students in the exploration process. We started by examining the differences between the duration of the mouseovers
on recommended and non-recommended activities (Figure 4 left). The Figure shows that students generally pay more
attention to the exploration of recommended problems. After running a Mann-Withney U test on the mean difference
in the duration of long mouseovers between recommended and non-recommended content per group, we found that
only in the exp-on-mouseover group students, in fact, spent more time (in average) when mousing over recommended
activities compared with non-recommended ones (pexp-on-mouseover = 0.0001,U = 510). This result suggests that
students in the exp-on-mouseover took some considerable time to examine the textual explanations which were shown
to this group on mouseover only for recommended problems, in parallel with navigation support information.

Next, we examined significant differences in the percentage of the total opened activities that were recommended
(see Fig.4 right). Here we combined the two treatment groups, as for the exp-on-click all students clicked at least one
explanation, so all of them were exposed to the existence of textual explanations within the JP? system (combined
group exp). We found that for coding problems, the proportion of open problems which were recommended in the
treatment groups was significantly higher than the no-exp group (Mednoexp = .28,Medexp = .43,U = 340,p = .039) —the
same result did not hold for challenge problems. This result reflects that students who had access to textual explanations

7
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Fig. 4. Left: Distribution of mean duration of long mouseovers on each of the groups, for both recommended and non-recommended
learning content (exp-on-mouseover). Right: Difference in proportion of opened coding problems that were recommended between
no-exp and treatment groups
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were more eager to open recommended problems (15% difference) compared to the students that did not have access to

explanations.

5.3 Adaptive Navigation Support and Engagement with Learning Content

While exploration activity reflects students’ interest in learning content it is the engagement with the activities that
truly matter. This section examines whether access to textual explanations affected the willingness of students to work
on the practice content provided by the system, i.e., are there engagement differences between exp-on-mouseover and
exp-on-click groups that had access to textual explanations and no-exp group that did not have access to them. Again, the
groups that had access to textual explanations were merged into group exp to examine statistical differences. We found no
differences in attempts on coding problems, however, we found significant differences for challenge problems in coverage,
the percentage of total activities that were attempted (Mednoexp = 7%,Medexp = 12%,p = .001,U = 430). Furthermore,
when checking for coverage of attempts on “hard” challenge problems (topics in the second half of the course) the
difference becomes a bit larger (Medpnoexp = 5%.Medexp = 13%), but marginally significant (p = .057,U = .057).

In order to examine the association between the usage of navigation support features within the JP? system and
their work with the learning content in more detail, we ran a series of multivariate linear regression models to try to
predict the conversion and persistence values of students when working on both recommended and non-recommended
problems. Before fitting the regressions, we divided the data in a different way: into two groups given the different nature
of the mouseovers on the different groups, i.e. exp-on-mouseover group students had access to textual explanations
when mousing over the recommended content while the other two groups did not have access to that. Thus, we
combined these last two groups into one, (from now on no-exp-on-mouseover), which includes the control group and the

exp-on-click treatment group. The independent variables that we considered were:

e Mean duration of long mouseovers for both recommended and non-recommended activities.

e Number of long mouseovers for both recommended and non-recommended activities.

o Clicks on explanations for group exp-on-click.

e Proportions of mean duration and frequency of long mouseovers on recommended activities relative to the

values of the non-recommended ones.
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We followed a stepwise regression schema when fitting the regression models and we made sure the independent
variables of the final models were not highly correlated (VIF<2.5).
The dependent student engagement-related metrics that we examined from the logs of activity, both associated with

the recommendations’ persuasiveness dimension presented in [32], were the following:

o Conversion rate: Proportion of the problems that were opened and attempted at least once (range: 0 to 1).
o Persistence rate: Proportion of the problems that were attempted at least ones in which the student kept working

on them until solving them correctly, i.e., submitting a correct answer (range: 0 to 1).

5.3.1  Without textual explanations on mouseover.

Conversion rate: For no-exp-on-mouseover students, the conversion rate on recommended problems (p = .018,df =
38,ad justedR? = .15) was found marginally correlated with pretest (p = .06, f = .01) and significantly correlated with the
proportion of long mouseovers on recommended problems relative to non-recommended ones (p = 027, f = .45). This
shows the tendency that better-prepared students are more confident in working on recommended problems and that the
more long-mouseovers they perform on recommended problems make them more willing to work on them. On the other
hand, we found that students’ conversion rate on non-recommended problems (p = .0001,df = 36,ad justed R? = .39) is
also positively correlated with the pretest (p = 0.027,5 = .01) and mean duration of long mouseovers on recommended
problems (p = .001, = 0.17). In this case, we see the same effect on students’ pre-existent knowledge and possibly
longer mouseover times reflect doubt of students on trying the recommended problems, which gets reflected in higher
conversion rates for non-recommended problems.

Persistence rate: For recommended problems, we did not find any significant model to explain their persistence rate
based on students’ navigational behavior on the system. Regarding non-recommended problems, the pretest was again
found as a significant predictor of the persistence of students’ work on non-recommended problems (p = .037,8 = .024).
Additionally, this was the only descriptor of students’ work that was found to be correlated with students’ clicks on
explanations. In this context, the more they access textual explanations (through clicks), the lower their persistence on
non-recommended problems (p = .01, = —.04). Also, the more students mouse over on recommended problems the

less persistent they are when working on the non-recommended ones (p = .059,8 = —.005).

5.3.2  With textual explanations on mouseover.

Conversion rate: In the exp-on-mouseover group (p = .04, adjusted R* = .16, df = 18), we observed a significant
negative correlation between the number of long mouseovers on non-recommended activities and the conversion rate
on recommended problems. This could be interpreted as the more the students use the navigational features to explore
the non-recommended options for them, the less encouraged they felt for attempting the recommended problems they
opened as a reflection of that exploratory behavior. On the other hand, for exp-on-mouseover students, we did not find
any significant behavioral pattern that could explain their conversion rate on non-recommended problems.
Persistence rate: For the exp-on-mouseover students, we found a marginally significant regression model (p = .09,
df = 16, adjustedR?> = 0.19) which reflects that there is a positive correlation between the average duration of
mouseovers on non-recommended problems (p = .03,8 = .86) and their probability of solving recommended problems
once they started working on them (i.e., submitting a solution). Through the model, we also found that the proportion of
the frequency of mouseovers on recommended problems relative to non-recommended problems is positively correlated
with their persistence in solving recommended content (p = .07, = 1.07). Finally, the proportion of the duration of the
mouseovers on recommended problems relative to non-recommended ones was also found positively correlated to
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(p = 0.029, § = 0.7). This model reflects that there is a tendency that the longer and more frequent student mouseovers
on recommended content (in comparison with non-recommended problems), the more likely is that they are persistent
on those recommended problems they work on. On the other hand, the longer the exploration of non-recommended
ones increases the likeliness of persistent work on the recommended ones, which could be taken as a sign of students’
reflecting on how appropriate is the recommended content for them by contrasting them with the non-suggested ones.
For non-recommended problems, the only significant predictor of students’ persistence in the exp-on-mouseover group
is their pretest (p = 0.03, 8 = .04), but in a marginally significant regression model (p = .08,ad justed R> = .2,df = 16).

5.4 Navigation Behavior and Knowledge Growth

To understand how the work with the learning content within the system was correlated with students’ knowledge
growth during the course, we used the data collected from the pretest and posttest. We attempted to correlate students’
knowledge growth with variables that describe students’ work with recommended and non-recommended problems
in terms of the navigational behaviors examined above (i.e., conversion and persistence rate). We found a significant
regression model (p = .0001,adjusted R? = .29,df = 44) where the students’ persistence on recommended problems
(p = .02,8 = 1.93) and pretest scores (p = .02, = .54) can help to predict the posttest scores . These two variables,
pretest and persistence on recommended problems are not correlated with each other (VIF<1.5). The impact of pretest
scores on posttest is a standard result: students who start the class with stronger knowledge usually end it with
stronger knowledge. However, the impact of student persistence on recommended problems on the final knowledge
demonstrates that the system, as we hoped, recommended relevant problems for the students to practice. Note that

other engagement-related factors were not found to be significant in the model.

5.5 Subjective Evaluation

As mentioned in section 4.2, a questionnaire was applied at the end of the study period. This instrument collected
students’ opinions about the helpfulness, quality, and understandability of the explanations shown along the learning
content recommendations. For this analysis, we filtered out students who selected the same option in all items to ensure

the quality of the replies. After the filtering process, we analyzed the internal consistency of each scale.

5.5.1 Overall Evaluation of JP3. We investigated the overall evaluation of JP? by checking students’ responses to
questionnaire questions like "Using the practice system improves my academic performance in the course’ and ’Seeing my
progress in the tool motivated me to work on the available resources’ (Cronbach’s o = .85). We calculated a mean overall
evaluation score from these responses. We conducted a Wilcoxon ranked sum test to check differences between no-exp
and combined experiment groups (exp-on-click and exp-on-mouseover). We found a marginally significant difference
(U =359, p = .09) between the no-exp group (M = 3.39) and the exp group (M = 3.63). Students who received textual

explanations rated the system higher.

5.5.2 Recommendation quality. No significant difference was found between the no-exp(M = 3.89) and combined
treatment groups (M = 3.7) on recommendation quality (e.g., I liked the learning materials recommended by the system’)

(a = .85), with a tendency of higher ratings by the control group.

5.5.3 Understanding Recommendations and Explanations. Finally, we explored if students understood why the system
recommends certain content and the provided explanations for these recommended activities. Thus, we explored two
factors in this analysis: understanding recommendations (o = .80) and understanding explanations (& = .74).

10
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Fig. 5. Interaction effect between pretest score and access to explanations on self-reported textual explanations’ understanding
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We found no significant difference (U = 526.5, p = .27) between no-exp (Mnoexp = 3.88) and combined experiment
groups (Mexp = 3.69) in understanding why the learning activities were recommended to them (e.g., T understood why
the activities were recommended to me.).

Next, we checked if students could understand the presented textual explanations for these recommendations. For this
analysis, we compared exp-on-click and exp-on-mouseover groups. We found no significant difference (t = —0.04,p = .97)
between exp-on-mouseover (Mexponmouseover = 3.36) and exp-on-click groups (Mexponclick=3-37) in understanding
explanations.

It is also critical to mention that the overall understanding level of explanations was relatively low in both conditions
(M = 3.37). Thus, we examined what might be the underlying reason behind the relatively low understanding of
explanations. We checked if the prior knowledge of the students (i.e., pretest scores) and how much they accessed these
explanations affected their evaluations. We calculated a score for explanation access by applying z-transformation to
the number of clicks in exp-on-click group and the mean duration seconds of mouseovers to recommended activities in
exp-on-mouseover group. Then, we combined these two z-scores as a single measure (i.e., ’exp-access’).

We fit a regression model with the 'understanding explanation’ factor score as the dependent variable. We used
the pretest scores, ’exp-access’, and the interaction term as independent variables. We found a significant model
(F(3,32), p = .008) with a significant interaction effect (B = —0.42, p = .012), significant pretest scores (B = 0.45, p = .002)
and no significant ’exp-access’ (B = —0.01, p = .90). As shown in the interaction effect plot in Fig. 5, students with lower
pretest scores (red line) had higher explanation understanding with higher access to these explanations. Thus, those
with low prior knowledge started to understand the explanations with more access. On the other hand, it seems like

high prior knowledge students (blue line) might get confused and rate these explanations lower with more accesses.

6 DISCUSSION AND CONCLUSION

From the analysis of the students’ activity logs within JP* on a term-long classroom study, we were able to discover
that the navigational support features (e.g. long mouseovers on non-recommended activities across all groups) were
considerably used by the learners while using the system. These actions were found to be correlated with some students’
decisions about, for example, being more or less persistent in attempting recommended activities when students did not

have access to textual explanations. We also observed that the persistence of the students on recommended problems
11
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was significantly correlated with their learning gain in the course, which shows that the recommended problems seemed
to be adequately suggested based on their appropriateness for the student’s current state of learning.

On the other hand, we observed that the sole addition of textual explanations to describe why a certain learning
activity was suggested to the student (either accessed by clicking or on mousing over) seemed to have a positive
impact on the student’s engagement with the content (challenge problems, specifically) and their willingness to explore
the recommended content (through activity openings). We collected evidence that these explanations were, in fact,
considerably accessed by the students multiple times.

Furthermore, the multivariate regression we performed on the relationship between students’ navigational behavior
and students’ engagement with the learning content, let us find out that, overall, students who did not have access to
textual explanations on the mouseover of recommended activities tend to heavily rely on their pre-existent level of
knowledge (pretest) to build their confidence on working with the learning content (i.e., conversion and persistence
rates). This means that for students with lower pretest levels, it is hard to make them work on the programming
problems in general. However, by providing textual explanations on mouseover we discovered that the predicted values
for conversion and persistence on recommended problems do not depend on the pretest score and only depend on
the overall navigational behavior and access to explanations. Providing understandable explanations on educational
recommendations can fill the gap that exists in low-pretest students by making them understand a bit more what are
they getting recommended and how that relates to their current state or learning.

In conclusion, the data collected from this study suggest that encouraging the persistence of students on appropriate
recommended learning content by providing meaningful and understandable textual recommendations’ explanations
on top of adequate navigational support features is possible, and it could be a very important factor in improving

students learning within an online learning environment.

7 LIMITATIONS AND FUTURE WORK

The low number of students considered for the analysis ( 20 students or less per group) limits the power of our findings.
We could see that when combining groups no-exp and exp-on-click into one, no-exp-on-mouseover (both groups’ students
did not have access to textual explanations on mouseovers) when analyzing the relations between behavioral patterns
within the educational system and their work on the learning activities increased the significance of the obtained
regression models. Also, considering that time and frequency of long mouseovers is a signal of student attention to
recommendations is a bold assumption. Using eye-tracking to get a better picture of how students inspect these different
explanatory features instead of using mean duration as a proxy of their real attention would be required for future

studies.
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