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ABSTRACT: Sodium triflinate (CF;SO,Na) is an inexpensive bench-
stable radical CF; source that is often activated by external oxidants
such as peroxides. However, despite the commercial accessibility of
CF;SO,Na, the salt has never been applied to decarboxylative
trifluoromethylation due to challenges in controlled cross-radical
coupling. We report a redox-neutral approach to decarboxylative
C(sp®) trifluoromethylation of carboxylic acid derivatives. Mechanistic

inquiry is performed to address the limitations in scope.

B INTRODUCTION

The importance of fluorine in medicinal chemistry cannot be
undermined.'™ By incorporating fluorine into organic
molecules, their physical, chemical, and biological propertles
can be drastically altered, making it vital for drug discovery.’ In
fact, 57 out of the Top 200 Small Molecule Pharmaceuticals by
Retail Sales in 2021 contain fluorine.” Trifluoromethylation,
especially, is an attractive and powerful method of introducing
fluorine into organic motifs, due to the vast number of
trifluoromethyl (CF;) reagents that have emerged over the
past few decades (Figure 1a).”*7' However, despite the
variety, a majority of CF; reagents are very expenswe, causing
them to be limited in commercial accessibility."' Trifluor-
omethyltrimethylsilane (TMSCF;, also known as Ruppert—
Prakash reagent) has been an effective solution to this end,
serving as an inexpensive nucleophilic CF; source when paired
with an anionic initiator such as a fluoride source or a strong
base (Figure 1b).'%">7'* Another attractive solution to this
problem is sodium triflinate (CF;SO,Na, also known as
Langlois reagent), which is an inexpensive, bench-stable, white
solid which allows convenient handling and easy storage."
Sodium triflinate can serve as a radical CF; source via
desulfonylation upon a single-electron oxidation, typically
achieved in thermal processes through (super)stoichiometric
amounts of peroxides.'® >’ Additionally, it was revealed that
sodium triflinate could also be activated via photocatalysis in
oxidant-free conditions, demonstrated by a radical trifluor-
omethylation of styrenes.”' ">° On the other hand, independ-
ent works from Li and MacMillan demonstrated the use of
aliphatic carboxylic acids as alkyl precursors in decarboxylative
trifluoromethylation (Figure 1c).”””® While organosulfinates
have been paired with carboxylic acid derivatives to photo-
catalytically generate sulfones, the use of sodium triflinates in
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decarboxylative C(sp®) trifluoromethylation has not been
studied before.”” This could be in part due to the challenges
in controlling the rate of alkyl and CFj; radical generation ina
cross-radical coupling process to avoid decomposition.’*™**
Since a higher fraction of C(sp®) in potential drug molecules
correlates to clinical success, the ability to pair commercially
and naturally abundant carboxylic acids with sodium triflinates
would be a powerful method of generating these pharmaceuti-
cally relevant C(sp>)—CF; bonds.” ™" This work aims to pair
carboxylic acid-derived redox-active esters, which are activated
by single-electron reduction, with sodium triflinates, which are
activated by single-electron oxidation to achieve redox
neutrality in a photocatalytic C(sp’>)—CF; bond forming
process (Figure 2). By doing so, the reaction avoids potentially
hazardous peroxide activators, and at the same time, avoids the
use of anionic initiators which can impact the functional group
tolerance of the reaction.

B RESULTS AND DISCUSSION

The work began with optimizing the appropriate conditions
that would allow a cross-radical trifluoromethylation (Figure
3). Thus, the decarboxylative trifluoromethylation of 1a was
chosen to be optimized. With 1 equiv of sodium triflinate and
5 mol % of 4CzIPN (E, ,, (PC*/PC"") = +1.43 V, E, , (PC/
PC*”) = —1.24 V in MeCN)), an organic photocatalyst, copper
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Figure 1. (a) Commercially available CF; reagents and their costs in
US$/mol. (b) Inexpensive CF; reagents and their modes of
activation. (c) Literature precedents of decarboxylative C(sp®)
trifluoromethylation.
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iodide (Cul) proved to be the most effective among all the
copper(I) halides (entries 1—3).*® Catalytic amounts of Cul
drastically decreased the yield, emphasizing the necessity of
stoichiometric amounts of copper in the reaction, likely due to
the formation of inactive copper phthalimide (entry 4). Other
cyanoarene-based photocatalysts, 3CzCIIPN (E,,, (PC*/
PC*) = +1.56 V, E,,, (PC/PC*") = —1.16 V in MeCN),
and 3DPAFIPN (E,,, (PC*/PC*) = +1.09 V, E,, (PC/
PC*7) = —1.59 V in MeCN), delivered trace to no product
(entries 5 and 6).** 3CzCIIPN is a strong photooxidant but a
mild reductant, while 3DPAFIPN is a strong photoreductant
and a mild oxidant. This result highlights the necessity of a
well-rounded photocatalyst with both sufficient oxidizing and
reducing potentials. Finally, upon increasing the triflinate

photocatalyst (56 mol%)

0 CF3;SO,Na (x eq.)
/Q/Y Cu source (y eq.) /@ACF:,,
ONPhth
Ph 1a MeCN, 16 h Ph 2a
456 nm light

entry photocatalyst X eq. Cu source (y eq.) yield(%)?
1 4CzIPN 1.0 CuCl (1.0) <2
2 4CzIPN 1.0 CuBr (1.0) 19
3 4CzIPN 1.0 Cul (1.0) 61
4 4CzIPN 1.0 Cul (0.2) 16
5 3CzCIIPN 1.0 Cul (1.0) <2
6 3DPAFIPN 1.0 Cul (1.0) 4
7 4CzIPN 15 Cul (1.0) 69
8 4CzIPN 2.0 Cul (1.0) 72
9b 4CzIPN 2.0 Cul (1.0) <2
10 - 2.0 Cul (1.0) <2
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Figure 3. Optimization of reaction conditions. (a) Yield calculated by
F NMR spectroscopy. (b) No light.

loading to 1.5 equiv, product 2a was generated at an improved
yield of 69% (entry 7). Specifically for this substrate, an
increase in loading to 2.0 equiv improved the yield slightly to
72% (entry 8). Finally, control reactions with no light, no
photocatalyst, or no copper, all gave no product, highlighting
the necessity of all reaction components (entries 9—11).

With the optimized conditions in hand, the substrate scope
was investigated (Figure 4). Overall, the reaction was effective
with primary benzylic substrates. The reaction of boronic ester
and bromide-containing substrates demonstrates orthogonality
to Pd-catalyzed cross-coupling (2b,c). The reaction is tolerant
with oxygen-containing functional groups (2d—i). Fluorine-
based substrates can also be trifluoromethylated efficiently,
hinting at the use of this methodology to make polyfluorinated
alkanes (2j,k). Simple hydrocarbons can also yield products at
good to moderate yields (2m—o), as well as the drug-based
substrate, isoxepac (2p). Most importantly, the reaction is
well-suited for substrates with both electron-donating
(2d,£f,gi,0) and electron-withdrawing functional groups
(2bse,j—1).

In addition to the scope, the carboxylic acid isoxepac could
also be functionalized to yield the crude redox-active ester 1p
and undergo subsequent photocatalytic trifluoromethylation
without purification steps in between to form 44% yield of 2p
at 1.0 mmol scale (Figure 5).

The main side product of the reaction is the homodimer of
the benzyl radical (Figure 4, bottom right). Initially, based on
literature precedents, the excited photocatalyst was hypothe-
sized to oxidize the triflinate salt to form the CF; radical and
then return to the ground state by reducing the redox-active
ester, generating the alkyl radical (Figure 6a).”"*” Sub-
sequently, the CF; radicals would undergo facile radical
capture by [Cu'] to form [Cu"]-CF;, and the [Cu"]-CF,
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Figure 4. Primary benzylic substrate scope. Yields reported are
determined by 'F NMR spectroscopy due to the volatility of several
products. For isolated yields and additional details, refer to the
Supporting Information (SI). (a) 2.0 equiv of CF;SO,Na instead of
1.0 equiv.
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Figure S. The 1.0 mmol scale functionalization—photocatalysis
sequence. Isolated yield is reported. Refer to SI for more details.

would capture the alkyl radical to form the alkyl-CF; product.
However, since [Cu"] species are known to react with alkyl
radicals at rates nearing diffusion, the presence of this
homodimer was surprising.”"*>*' Furthermore, upon applying

a) INITIALLY HYPOTHESIZED MECHANISM
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Figure 6. (a) Initially hypothesized mechanism and its discrepancy
with the observed side-product. (b) Substrate limitations of the
current method. For reaction conditions, refer to Figure 4. (c)
Additional side-reactivity of ibuprofen.

the optimized conditions to substrates other than those that
generate primary benzylic radicals, the reaction formed trace
product (instead forming the H-quench product) or the yields
were significantly reduced (Figure 6b). Upon a closer analysis
of the reaction of ibuprofen-based substrate, a styrene-based
product and a ditrifluoromethylated product were also
observed along with the desired product (Figure 6¢). The
acidic f-proton is an ample site for deprotonation to form
styrene (supported by a deleterious radical polar crossover),
and a CF; radical can add to the competitively reactive
terminal position of the styrene to yield a net-ditrifluorome-
thylated product. Furthermore, the increased stability of the
secondary radical encourages a faster radical generation, which
creates room for more undesired side-reactivity.”” If the
reaction was following the initially proposed mechanism, the
alkyl radical would be captured in diffusion-nearing rates, and
these side-reactions would not be observed.

Hence, we proceeded to address the substrate limitations of
this method through mechanistic inquiry. As a first step, a
Stern—Volmer quenching plot was obtained (Figure 7)."*** A
higher slope in a plot of Iy/I against the concentration of a
reagent indicates a higher likelihood of it quenching the excited
state photocatalyst in a reaction. The plot revealed the highest
slope for Cul, followed by CF;SO,Na and redox-active ester
(1m), respectively. This study demonstrated that Cul was the
most likely to quench the excited state 4CzIPN.
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Figure 7. Stern—Volmer quenching plot of the reagents.

Therefore, two different mechanisms were possible:
reductive quenching of the photocatalyst to form [Cu"], or
oxidative quenching to form [Cu’], although the latter is
unlikely due to challenging reduction potentials (Figure 8a).
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PC "~ quenching P+C* quenching PC

+RCO,NPhth F F . +CF3SO,N !
R =2 ewy [cu' fouly ZFeS0A 1O
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Figure 8. (a) Two possible quenching mechanisms. (b) Mechanistic
probe of the viability of copper salts as reductants and oxidants. [Cu’]
= Cu powder, [Cu'] = Cul, [Cu"] = CuBr,. Reaction run in CD;CN
and analyzed by 'H and '"F NMR spectroscopy.

After these copper species are formed, they would then oxidize
the sodium triflinate for the case of [Cu''] or reduce the redox-
active ester for the case of [Cu’]. Thus, the confirmation of the
viability of these copper-mediated reductive and oxidative
processes would unveil the possible oxidation state of the
copper after the photocatalyst is quenched. Therefore, a
mixture of 1.0 equiv of triflinate and 1.0 equiv of redox-active
ester 1lm was subjected to 3.0 equiv of copper salts of three
different oxidation states ([Cu®], [Cu'"], and [Cu'] as control,
Figure 8b). [Cu’] powder and [Cu'] iodide did not react with
either the triflinate or the redox-active ester. However, [Cu"]
bromide completely consumed the triflinate after 16 h of
stirring in the dark, with a peak detected by '’F NMR that
tentatively indicated a copper-CF; adduct at —19 ppm
(NOTE: CuBr, was used in place of Cul, because the latter
is unstable and therefore inaccessible. Refer to SI for more
details).*>*® This hints at a reductive quenching mechanism,
which would form [Cu'] as an oxidant that would then
desulfonylate the sodium triflinate. This is significant, as [Cu"]

is not commonly invoked in the activation of sodium triflinates
in the absence of peroxides or photocatalytic oxidants.
Finally, we wanted to study the relationship between the
rate-determining step and the redox-active ester. The presence
of the alkyl homodimer side-product indicated that a rapid
alkyl radical generation was in place in comparison to the rate-
determining step. Thus, we hypothesized that the redox-active
ester would be unrelated to the rate-determining step. The
initial rates of five different substrates 2a,d,j,k,m containing the
functional groups p-Ph, p-MeO, p-F, p-CF; and p-H,
respectively, were obtained to investigate whether there was
a linear free energy relationship in place (Figure 9). When
o)
R mphth
MeCN, 456 nm light 2o active ester is;
(25% intensity) : :

not a part of r.d.s
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Figure 9. Plots of log (ky/ky) with respect to (a) Hammett
parameters and (b) Creary parameters. r.d.s = rate-determining step.

log(ky/ky) was plotted against Hammett parameters, the plot
showed no trend, showing an absence of sensitivity to polar
functional groups on the redox-active ester.”” The rates were
also plotted against Creary parameters, as they are often
invoked for rate-determining transition states that have radical
character.*™° Similar to the Hammett parameters, Creary
parameters also showed no trend, showing an absence of
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sensitivity to radical stabilizing groups. Overall, this result
points to the lack of involvement of the redox-active ester in
the rate-determining step of the reaction either in a polar or a
radical manner as predicted.

Based on the observed side-products and experimental
evidence, a newly revised mechanism is proposed (Figure 10).

[Cul]
pC* CF3;SO,Na R.D.S radical
-SO capture
SET [CU"]&—% [Cul] [cu'
SET «CF,
CF;
hv pc®
0 fast
SET, Alkyle + (diffusion rates)
PC -CO2 A |
oY -[CU'INPhth
0 O
o T T D Y

Product

Figure 10. Revised proposed mechanism based on experimental data.
r.d.s. = rate-determining step.

+w radical

side-reactions

AIkyI)I\O’N

O

First, the photocatalyst is excited by light and then oxidizes the
Cul (supported by Figure 7). The photocatalyst in a reduced
state then returns to the ground state through a single-electron
reduction of the redox-active ester, which promptly undergoes
decarboxylation to generate an alkyl radical. This reduction
step is not rate-determining (supported by Figure 9).
Meanwhile, the [Cu"] species that is formed from the
photocatalytic quench oxidizes the sodium triflinate in a
single-electron transfer process to yield [Cu'] and CF; radical
(supported by Figure 8). The [Cu'] species then promptly
captures the CF; radical within the solvent cage to form a
[Cu"]-CF; adduct. As soon as the adduct is formed, the
aforementioned alkyl radical reacts with the adduct to form the
alkyl-CF; product. The exact detail of this bond-forming step is
unknown, as both an Sy2-type pathway and a one-electron
oxidative addition and then subsequent reductive elimination
pathway have been proposed in the literature.”>”"33%%5! 1
the total mechanism, the [Cu""]-mediated oxidation of sodium
triflinate is proposed to be rate-determining, in which case the
alkyl radicals that are rapidly generated either persists until
there is a significant buildup of [Cu"]-CF; or decomposes to
form side-products (supported by Figures 4, 6b, and 9).

B CONCLUSION

Overall, we have developed a novel cross-radical strategy in
constructing pharmaceutically relevant C(sp*)—CF; bonds
with an inexpensive bench-stable CF; source and an abundant
alkyl precursor. However, the current method is heavily limited
to primary benzylic substrates. These limitations are explained
by a deeper understanding of the mechanism driven by kinetic
analysis and experimental evidence. Based on these new
mechanistic insights, further work is currently underway in our
lab to improve the scope of this reaction to achieve a general
method for decarboxylative and desulfonylative C(sp?)
trifluoromethylation.
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