

pubs.acs.org/joc Note

Redox Inversion: A Radical Analogue of Umpolung Reactivity for Base- and Metal-Free Catalytic C(sp³)—C(sp³) Coupling

Chris M. Seong,[†] Annabel Q. Ansel,[†] and Courtney C. Roberts*

Cite This: J. Org. Chem. 2023, 88, 3935-3940

ACCESS I

III Metrics & More

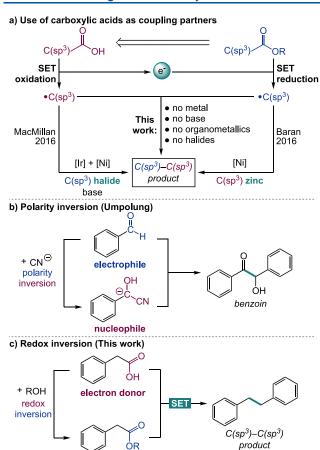
Article Recommendations

s Supporting Information

ABSTRACT: The construction of alkyl—alkyl bonds is a powerful tool in organic synthesis. Redox inversion, defined as switching the donor/acceptor profile of a functional group to its acceptor/donor profile, is used for $C(sp^3)-C(sp^3)$ coupling. We report a photocatalytic coupling of carboxylic acids to form bibenzyls through a radical—radical coupling. Mechanistic insight is gained through control reactions. This unexplored redox-opposite relationship between a carboxylic acid and its redox-active ester is implemented in catalysis.

he construction of $C(sp^3)-C(sp^3)$ bonds is a critical challenge in organic synthesis. 1-3 Beyond the retrosynthetic disconnections enabled by this transformation, its value lies in the profound impact on a molecule's biological activity. 4,5 Although metal-catalyzed alkyl-alkyl coupling has dominated this field, challenges remain in the use of benchstable coupling partners that do not generate stoichiometric metal and halide waste. 1-3 Baran, MacMillan, and others have popularized transition-metal-catalyzed C(sp³)-C(sp³) coupling reactions using carboxylic acid derivatives paired with a traditional coupling partner such as alkyl Zn reagents and alkyl halides (Figure 1a).^{6–19} In their work, carboxylic acids are commonly used as alkyl radical precursors via oxidative decarboxylation (acting as a single-electron donor), and redox-active N-hydroxyphthalimide (NHPI) esters typically utilized as alkyl precursors via reductive decarboxylation (acting as a single-electron acceptor). 6,20-24 During the preparation of this Note, more studies have paired carboxylic acids with nontraditional coupling partners. 25,26 However, to the best of our knowledge, the contrasting redox characteristics of these carboxylic acid-derived substrates have not been exploited in conjunction with radical-radical coupling to form $C(sp^3)-C(sp^3)$ bonds.

We were inspired by the use of polarity inversion (also known as umpolung) in benzoin condensation, one of the oldest known C–C bond-forming reactions in organic chemistry (Figure 1b). $^{27-30}$ In this transformation, 1 equiv of benzaldehyde, an electrophile, is converted to a nucleophile via an *in situ* functionalization, inverting its polarity. Subsequently, another equiv of the electrophilic aldehyde reacts with the newly formed nucleophile to form benzoin. Herein, we report redox inversion, which we define as switching the donor/acceptor profile of a functional group to its acceptor/donor profile, as the radical analogue of polarity inversion to form $C(sp^3)-C(sp^3)$ bonds (Figure 1c). We


hypothesized that through *in situ* activation, we could obtain a mixture of carboxylic acids and their redox-active ester derivatives in one pot, which could allow for alkyl-alkyl coupling via a net redox-neutral single-electron transfer (SET). In this reaction design, the starting material acts as both the oxidant and the reductant, analogous to the role of benzaldehyde as both the nucleophile and the electrophile in benzoin condensation. An initial version of this work was deposited in *chemRxiv* on August 22, 2022.³¹

To enable this strategy, we envisioned employing 2 equiv of carboxylic acid and in situ functionalizing only 1 equiv with NHPI to enable the generation of a single-electron donoracceptor pair (Figure 2). SET would then be aided by a photocatalyst, followed by decarboxylation to generate alkyl radicals. Two of these radicals can couple to form $C(sp^3)$ C(sp³) products in a metal-free process. To explore this concept, we focused on the use of $C(sp^3)-C(sp^3)$ bond formation in the context of bibenzyl synthesis, which are prevalent across pharmaceuticals and natural products. 32-36 Other methods for generating bibenzyls through non-redox inversion methods are known.^{37–41} We hypothesized that the homocoupling of long-lived, stabilized benzylic radicals would be an ideal proof-of-concept system. First, acid 1a was selected for optimization due to its precedent for undergoing lightinduced one-electron decarboxylation (Figure 3).6 Notably, the isolation of the prefunctionalized NHPI ester was not required. It could be generated in situ by addition of N,N'-

Received: November 30, 2022 Published: March 6, 2023

Figure 1. (a) Previous examples of radical generation for $C(sp^3)$ – $C(sp^3)$ coupling. (b) Benzoin condensation as a representative polarity inversion reaction. (c) $C(sp^3)$ – $C(sp^3)$ coupling as a representative redox inversion reaction.

electron acceptor

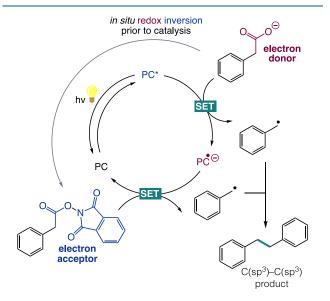
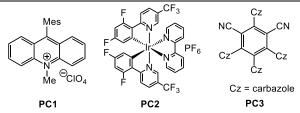



Figure 2. Proposed mechanism.

diisopropylcarbodiimide (DIC), NHPI, and catalytic 4-(dimethylamino)pyridine (DMAP) without further workup. First, the identity of the photocatalyst (PC) was explored. Multiple well-established PCs were screened (entries 1–3). We were pleased to discover that the organic

Entry	PC	Solvent	Time (h)	Cs ₂ CO ₃ (eq.)	Yield (%) ^a
1	PC1	MeCN	4	1.5	6
2	PC2	MeCN	4	1.5	66
3	PC3	MeCN	4	1.5	73
4	PC3	MeCN	4	1.0	63
5	PC3	MeCN	4	2.0	70
6	PC3	MeCN	4	-	51
7 ^b	PC3	MeCN	4	-	12
8	PC3	DMSO	4	=	40
9	PC3	DMF	4	-	45
10	PC3	DCM	4	=	70
11°	PC3	DCM	16	-	73
12 ^d	PC3	DCM	16	-	<2
13	-	DCM	16	-	2
14 ^e	PC3	DCM	16	-	32

Figure 3. Optimization. The reaction was performed on a 0.1 mmol scale at a concentration of 16.7 mM. Reaction conditions: (1) DIC (1.0 equiv), NHPI (1.0 equiv), DMAP (0.1 equiv), DCM (0.5 mL), rt, 1 h; (2) PC (2.5 mol %), C_2CO_3 , solvent (5.5 mL), 456 nm light. a Calculated via the GC-FID calibration curve. b Functionalization reagents added with a photocatalyst in 6 mL of MeCN. With 5.0 mol % PC instead of 2.5 mol %. d No light. e With 0.25 equiv of $C_3P(O)OH$ added with a photocatalyst.

photocatalyst PC3 provided the highest yield, thus precluding the need for less sustainable metal-based photocatalysts from our reaction conditions. Next, we investigated the amount of base necessary to deprotonate the carboxylic acid. Although 1.5 equiv of Cs₂CO₃ was optimal (entries 3–5) under standard acetonitrile conditions, excitingly, we discovered that an external base could be omitted from the reaction and it could still provide a moderate yield (entry 6). We hypothesized this was the case, due to the basic phthalimide byproduct formed upon the reduction of the NHPI ester. To improve this additional layer of cooperativity between the acid and its NHPI ester, multiple solvents were screened under external base-free conditions (entries 8-10), with DCM proving to be the best for this transformation (70%, entry 10). Increasing the loading of PC from 2.5% to 5% and increasing the reaction time to 16 h gave the final optimized yield of 73%, with no metal catalyst or external base required (entry 11). Finally, the exclusion of light or a photocatalyst (entries 12 and 13) from standard conditions formed a trace to no yield of 2a, demonstrating their crucial roles in the SET between the donor and the acceptor. It is also worth noting that the addition of diphenylphosphate did not increase the yield (entry 14), showing that the reaction does not benefit from a proton-coupled electron transfer. 46

Next, the occurrence of redox inversion was probed. Control reactions demonstrated that both the electron donor and the electron acceptor are necessary for the reaction to proceed to high conversion (Figure 4). When 2.0 equiv of acid 1a was

Figure 4. Mechanistic investigations for probing the necessity of both the electron donor and acceptor in the reaction.

irradiated with a photocatalyst without redox inversion, only 7% yield of **2a** was generated, likely due to the lack of an electron acceptor (NHPI ester). Likewise, when isolated NHPI ester **1a**' was irradiated without an additional electron donor (a carboxylic acid), a diminished yield of 20% was obtained. This latter reaction likely provided more product than the former, as side reactions of NHPI esters reported in the literature often involve hydrolysis of their acid counterparts.⁴⁷

This hydrolyzed phenylacetic acid could turn over the photocatalytic cycle, further alluding to the role of the acid as a single-electron donor. Regardless, the lower yields provided by the independent control reactions of 1a and 1a' emphasize the necessity of both the acid and the NHPI ester as donor—acceptor pairs in the reaction. With these results, as well as the literature precedent, a proposed mechanism is depicted in Figure 2.

With optimized conditions, the scope of this transformation was found to be successful across a variety of carboxylic acids (Figure 5). Substrates with electron-rich substituents performed best (2a-i), likely due to the stabilizing effect of electron-donating groups on radical intermediates. 48 Additionally, ortho-substituted phenylacetic acid derivatives gave moderately high-yield bibenzyl formation (2b and 2d) likely due to increased radical persistence in a more hindered environment.⁴⁹ A variety of heteroatoms (oxygen, sulfur, and nitrogen) provided good yields of the homocoupled products (2a-c and 2f-i), with the electron-donating p-thiophenol derivative giving the highest yield of 79% (2f). Unlike in traditional metal-mediated transformations, bromine substituents were well-tolerated across substitution patterns (2i and 2j). Similarly, boronic esters, typically non-innocent in coupling reactions, gave clean product formation in moderate yield, with no deprotected boronic acid detected (2k). This demonstrates, along with the bromine-containing substrates, a strategy for installing sensitive functionality, and a simple

Figure 5. Substrate scope of bibenzyls with isolated yields. The reaction was performed on a 0.1 mmol scale at a concentration of 16.7 mM. aReaction performed on a 1.0 mmol scale.

approach for efficiently building molecular cores with potential for further functionalization and diversification. Fluorine-containing substrates were tolerated, demonstrating facile access to valuable fluorine-containing motifs (2l and 2m). These results, along with the methyl ester-substituted bibenzyl, also demonstrate the ability to couple electron-deficient radical intermediates (2n). Finally, substrates typically challenging or unreactive in radical—radical transformations due to sterics can be employed as well (2p and 2q). For lower-yielding substrates, H atom abstraction and phthalimide-based byproducts were the majority of the mass balance.

After probing the scope of redox inversion, we wanted to apply the method to more complex, biologically relevant carboxylic acids. First, the secondary radical resulting from decarboxylation of Flurbiprofen can be homocoupled in moderate yield (2r). Likewise, Ibuprofen can undergo clean decarboxylation and radical combination (2s). The natural product Brittonin A can be accessed through this homocoupling in good yield, as well (2t). Finally, the decarboxylative coupling of Zaltoprofen provides the desired product in moderate yield, demonstrating the ability to couple functionally dense carboxylic acids via redox inversion and metal-free photocatalysis (2u).

To demonstrate the potential extension of this methodology beyond homocoupling, a reaction using two different carboxylic acids was carried out (Figure 6). The cross-coupled

Figure 6. Cross-coupling mediated by redox inversion.

products $(2\alpha, 2\beta, 2\gamma, \text{ and } 2\delta)$ were produced in moderate yield, with the remaining mass balance being homodimers of the starting materials. These transformations highlight the potential of redox inversion to access radical cross-coupling of carboxylic acids.

Finally, to further support the idea that a radical—radical coupling was involved in the reaction, the enantiopure antiinflammatory drug (*S*)-Naproxen was subjected to the optimized conditions (Figure 7). The reaction resulted in racemization of the stereocenter, giving a 1.0:1.3 diastereomeric ratio of the homocoupled products.

In summary, we have developed redox inversion as a mechanistic strategy for accessing opposing redox characteristics from a single functional group. Specifically, this strategy was implemented to photocatalytically generate two radicals from readily available carboxylic acids in a redox-neutral process. These radicals can couple to produce biologically relevant bibenzyls at good to moderate yields, with no metal or external base. It was also demonstrated that by utilizing two

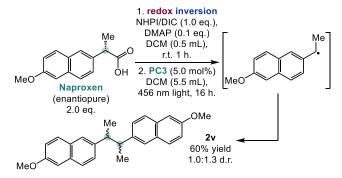


Figure 7. Racemization of the stereocenter.

different acids, unsymmetric bibenzyls can be formed, emphasizing the potential for $C(sp^3)-C(sp^3)$ cross-coupling. Ultimately, this work serves as an early utilization of the unexplored redox-opposite relationship of carboxylic acids and their redox-active esters for alkyl-alkyl bond formation. Ongoing work will investigate the cross-selectivity of this coupling process and an expansion of this radical-radical coupling to a wider range of substrates.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.2c02877.

Experimental details, procedures, and ¹H and ¹³C NMR spectra and characterization for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Courtney C. Roberts — Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; orcid.org/0000-0001-8177-4013; Email: ccrob@umn.edu

Authors

Chris M. Seong — Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; orcid.org/0000-0003-4792-1264

Annabel Q. Ansel — Department of Chemistry, University of Minnesota, Minneapolis, Minnesota \$5455, United States;
orcid.org/0000-0002-7456-5827

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.2c02877

Author Contributions

[†]C.M.S. and A.Q.A. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation Grant CHE-1954751 and University of Minnesota startup funds.

REFERENCES

- (1) Campeau, L.-C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. *Organometallics* **2019**, 38 (1), 3–35.
- (2) Choi, J.; Fu, G. C. Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry. *Science* **2017**, *356* (6334), No. eaaf7230.
- (3) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics as Reaction Partners. *Chem. Rev.* **2011**, *111* (3), 1417–1492.
- (4) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. *J. Med. Chem.* **2009**, 52 (21), 6752–6756.
- (5) Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. *Med. Chem. Commun.* **2013**, 4 (3), 515–519.
- (6) Karmakar, S.; Silamkoti, A.; Meanwell, N. A.; Mathur, A.; Gupta, A. K. Utilization of C(Sp3)-Carboxylic Acids and Their Redox-Active Esters in Decarboxylative Carbon-Carbon Bond Formation. *Adv. Synth. Catal.* **2021**, *363* (15), 3693–3736.
- (7) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. A General Alkyl-Alkyl Cross-Coupling Enabled by Redox-Active Esters and Alkylzinc Reagents. *Science* **2016**, 352 (6287), 801–805.
- (8) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters. *J. Am. Chem. Soc.* **2016**, *138* (7), 2174–2177.
- (9) Smith, J. M.; Harwood, S. J.; Baran, P. S. Radical Retrosynthesis. *Acc. Chem. Res.* **2018**, *51*, 1807–1817.
- (10) Zhang, B.; Gao, Y.; Hioki, Y.; Oderinde, M.; Qiao, J.; Rodriguez, K.; Zhang, H.-J.; Kawamata, Y.; Baran, P. Ni-Electrocatalytic C(Sp3)-C(Sp3) Doubly Decarboxylative Coupling. *Nature*. **2022**, *606*, 313–318.
- (11) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Metallaphotoredox-Catalysed Sp3-Sp3 Cross-Coupling of Carboxylic Acids with Alkyl Halides. *Nature* **2016**, *536* (7616), 322–325.
- (12) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging Photoredox with Nickel Catalysis: Coupling of α -Carboxyl Sp3-Carbons with Aryl Halides. *Science* **2014**, 345 (6195), 437–440.
- (13) Liu, W.; Lavagnino, M. N.; Gould, C. A.; Alcázar, J.; MacMillan, D. W. C. A Biomimetic SH2 Cross-Coupling Mechanism for Quaternary Sp3-Carbon Formation. *Science* **2021**, 374 (6572), 1258–1263.
- (14) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The Merger of Transition Metal and Photocatalysis. *Nat. Rev. Chem.* **2017**, *1* (7), 0052.
- (15) Leibler, I. N.-M.; Tekle-Smith, M. A.; Doyle, A. G. A General Strategy for C(Sp3)-H Functionalization with Nucleophiles Using Methyl Radical as a Hydrogen Atom Abstractor. *Nat. Commun.* **2021**, 12 (1), 6950.
- (16) Cartwright, K. C.; Tunge, J. A. Decarboxylative Elimination of N-Acyl Amino Acids via Photoredox/Cobalt Dual Catalysis. ACS Catal. 2018, 8 (12), 11801–11806.
- (17) Cartwright, K. C.; Lang, S. B.; Tunge, J. A. Photoinduced Kochi Decarboxylative Elimination for the Synthesis of Enamides and Enecarbamates from N-Acyl Amino Acids. *J. Org. Chem.* **2019**, *84* (5), 2933–2940.
- (18) Senaweera, S.; Cartwright, K. C.; Tunge, J. A. Decarboxylative Acetoxylation of Aliphatic Carboxylic Acids. *J. Org. Chem.* **2019**, 84 (19), 12553–12561.
- (19) Ni, S.; Padial, N. M.; Kingston, C.; Vantourout, J. C.; Schmitt, D. C.; Edwards, J. T.; Kruszyk, M. M.; Merchant, R. R.; Mykhailiuk, P. K.; Sanchez, B. B.; Yang, S.; Perry, M. A.; Gallego, G. M.; Mousseau, J. J.; Collins, M. R.; Cherney, R. J.; Lebed, P. S.; Chen, J. S.; Qin, T.; Baran, P. S. A Radical Approach to Anionic Chemistry: Synthesis of

- Ketones, Alcohols, and Amines. J. Am. Chem. Soc. 2019, 141 (16), 6726-6739.
- (20) Okada, K.; Okamoto, K.; Oda, M. A New and Practical Method of Decarboxylation: Photosensitized Decarboxylation of N-Acyloxyphthalimides via Electron-Transfer Mechanism. *J. Am. Chem. Soc.* 1988, 110 (26), 8736–8738.
- (21) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. Photosensitized Decarboxylative Michael Addition through N-(Acyloxy)Phthalimides via an Electron-Transfer Mechanism. *J. Am. Chem. Soc.* **1991**, *113* (24), 9401–9402.
- (22) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin. *J. Am. Chem. Soc.* **2014**, *136* (31), 10886–10889.
- (23) Hunsdiecker, H.; Hunsdiecker, Cl. Über Den Abbau Der Salze Aliphatischer Säuren Durch Brom. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1942, 75 (3), 291–297.
- (24) Niu, P.; Li, J.; Zhang, Y.; Huo, C. One-Electron Reduction of Redox-Active Esters to Generate Carbon-Centered Radicals. *Eur. J. Org. Chem.* **2020**, 2020 (36), 5801–5814.
- (25) Sakai, H. A.; MacMillan, D. W. C. Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C(Sp3)-C(Sp3) Cross-Coupling via Radical Sorting. *J. Am. Chem. Soc.* **2022**, *144* (14), 6185–6192.
- (26) Tsymbal, A. V.; Bizzini, L. D.; MacMillan, D. W. C. Nickel Catalysis via SH2 Homolytic Substitution: The Double Decarboxylative Cross-Coupling of Aliphatic Acids. *J. Am. Chem. Soc.* **2022**, *144* (46), 21278–21286.
- (27) Bugaut, X.; Glorius, F. Organocatalytic Umpolung: N-Heterocyclic Carbenes and Beyond. *Chem. Soc. Rev.* **2012**, *41* (9), 3511–3522.
- (28) Gaggero, N.; Pandini, S. Advances in Chemoselective Intermolecular Cross-Benzoin-Type Condensation Reactions. *Org. Biomol. Chem.* **2017**, *15* (33), 6867–6887.
- (29) Wang, S.; Cheng, B.-Y.; Sršen, M.; König, B. Umpolung Difunctionalization of Carbonyls via Visible-Light Photoredox Catalytic Radical-Carbanion Relay. *J. Am. Chem. Soc.* **2020**, *142* (16), 7524–7531.
- (30) Seebach, D. Methods of Reactivity Umpolung. Angew. Chem., Int. Ed. Engl. 1979, 18 (4), 239–258.
- (31) Seong, C.; Ansel, A.; Roberts, C. Redox Inversion: A Radical Analog of Umpolung Reactivity for Base and Metal-Free Catalytic C(Sp3)-C(Sp3) Coupling. *chemRxiv* **2022**, DOI: 10.26434/chemrxiv-2022-qm9wx-v2.
- (32) Zhang, X.; Xu, J.-K.; Wang, J.; Wang, N.-L.; Kurihara, H.; Kitanaka, S.; Yao, X.-S. Bioactive Bibenzyl Derivatives and Fluorenones from Dendrobium Nobile. *J. Nat. Prod.* **2007**, *70* (1), 24–28.
- (33) Song, Y.; Hwang, S.; Gong, P.; Kim, D.; Kim, S. Stereoselective Total Synthesis of (–)-Perrottetinene and Assignment of Its Absolute Configuration. *Org. Lett.* **2008**, *10* (2), 269–271.
- (34) Li, R.-J.; Zhao, Y.; Tokuda, H.; Yang, X.-M.; Wang, Y.-H.; Shi, Q.; Morris-Natschke, S. L.; Lou, H.-X.; Lee, K.-H. Total Synthesis of Plagiochin G and Derivatives as Potential Cancer Chemopreventive Agents. *Tetrahedron Lett.* **2014**, *55* (47), *6500*–*6503*.
- (35) Christensen, H.; Schjøth-Eskesen, C.; Jensen, M.; Sinning, S.; Jensen, H. H. Synthesis of 3,7-Disubstituted Imipramines by Palladium-Catalysed Amination/Cyclisation and Evaluation of Their Inhibition of Monoamine Transporters. *Chem. -Eur. J.* **2011**, *17* (38), 10618–10627.
- (36) Nandy, S.; Dey, A. Bibenzyls and Bisbybenzyls of Bryophytic Origin as Promising Source of Novel Therapeutics: Pharmacology, Synthesis and Structure-Activity. *DARU J. Pharm. Sci.* **2020**, 28 (2), 701–734.
- (37) Mendonça, A. J.; Inês, M.; Esteves, A. P.; Mendonça, D. I.; Medeiros, M. J. Kolbe Electrosynthesis of 1,2-Di(Bicyclo[2.2.1]-Heptan-2-Yl)Ethane and 1,2-Diphenylethane. *Synth. Commun.* **2011**, 41 (6), 820–825.

- (38) Lalitha, A.; Pitchumani, K.; Srinivasan, C. Induced Diaster-eoselectivity in Photodecarboxylation of 2-Phenylpropionic Acid in Faujasite Zeolites. *Tetrahedron* **2001**, *57* (20), 4455–4459.
- (39) Manley, D. W.; Walton, J. C. A Clean and Selective Radical Homocoupling Employing Carboxylic Acids with Titania Photoredox Catalysis. *Org. Lett.* **2014**, *16* (20), 5394–5397.
- (40) Zou, H.-X.; Li, Y.; Yang, Y.; Li, J.-H.; Xiang, J. Silver-Catalyzed Decarboxylative Couplings of Acids and Anhydrides: An Entry to 1,2-Diketones and Aryl-Substituted Ethanes. *Adv. Synth. Catal.* **2018**, 360 (7), 1439–1443.
- (41) Kurihara, H.; Fuchigami, T.; Tajima, T. Kolbe Carbon-Carbon Coupling Electrosynthesis Using Solid-Supported Bases. *J. Org. Chem.* **2008**, 73 (17), 6888–6890.
- (42) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. *Chem. Rev.* **2016**, *116* (17), 10075–10166.
- (43) Nicewicz, D. A.; Nguyen, T. M. Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. *ACS Catal.* **2014**, 4 (1), 355–360.
- (44) Speckmeier, E.; Fischer, T. G.; Zeitler, K. A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor-Acceptor Cyanoarenes. *J. Am. Chem. Soc.* **2018**, *140* (45), 15353–15365.
- (45) Teegardin, K.; Day, J. I.; Chan, J.; Weaver, J. Advances in Photocatalysis: A Microreview of Visible Light Mediated Ruthenium and Iridium Catalyzed Organic Transformations. *Org. Process Res. Dev.* **2016**, 20 (7), 1156–1163.
- (46) Murray, P. R. D.; Leibler, I. N.-M.; Hell, S. M.; Villalona, E.; Doyle, A. G.; Knowles, R. R. Radical Redox Annulations: A General Light-Driven Method for the Synthesis of Saturated Heterocycles. *ACS Catal.* **2022**, *12* (21), 13732–13740.
- (47) Sandfort, F.; O'Neill, M. J.; Cornella, J.; Wimmer, L.; Baran, P. S. Alkyl-(Hetero)Aryl Bond Formation via Decarboxylative Cross-Coupling: A Systematic Analysis. *Angew. Chem., Int. Ed.* **2017**, *56* (12), 3319–3323.
- (48) Creary, X. Super Radical Stabilizers. Acc. Chem. Res. 2006, 39 (10), 761–771.
- (49) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Radicals in Natural Product Synthesis. *Chem. Soc. Rev.* **2018**, 47 (21), 7851–7866.