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ABSTRACT: Recently rare earth elements have been used to (57 )
catalyze alkyl—alkyl cross coupling and other organic trans- Sc
formations. Herein we report the synthesis and characterization _
of a tris(amido) Lu complex, 1-Lu, analogous to the Sc and Y rare \f&\w
earth complexes known to participate in these transformations. (39
Complex 1-Lu displays similar solid state structural properties as its Y
Group 3 congeners, but EPR spectroscopy reveals differing ( vttrium
behavior. 1-Lu also was found to break the trends of reaction (Z7 777
rates related to oxidation potential and is able to catalyze an alkyl— Ln
alkyl cross-coupling reaction faster than the Sc and Y analogs. The
complex 1-Lu was also demonstrated to participate in two-electron =12/

Electroneg.
-
Sc Lu Y
—_—
lonic Radii

redox catalysis. » Redox-Active Ligands ¢ Lutetium Catalysis

here has been a growing interest in exploring redox-active analogous lanthanide complex with a redox-active ligand would

ligands with lanthanides and actinides because of the follow trends seen among Sc, Y, and Zr, or if the unique
novel properties that these complexes exhibit.'~ In particular, properties of these metals would give different results. We were
these complexes have applications as luminescent sensors/ also interested to see if Lu could participate in two-electron
probes, in materials chemistry (e.g, coordination polymers, redox chemistry as was recently reported with 1-Sc (Figure
metal—organic frameworks and molecular magnets), and even 1b).** For this study, we chose to investigate lutetium since it
in medicinal chemistry (e.g, Xcytrin, a Gd-based drug for is a diamagnetic lanthanide. Additionally, its propensity to exist
cancer therapy that contains a texaphyrin redox-active as Lu(Ill) is similar to how Sc and Y primarily exist as
ligand)."”"" Redox-active ligands have also been employed M(III).** Herein we report that a tris(amido)Lu complex is an
for the electro-kinetic separation of lanthanides.'” In addition, outlier among this group and actually gives the fastest rate of
Ln and An complexes with redox-active ligands display a alkyl—alkyl cross coupling as measured with initial rates,
myriad of reactivity ranging from redox isomerism, hetero- despite having an intermediate oxidation potential. It can also
bimetallic reactivity, CO, reduction as well as oxidation and participate in two-electron redox chemistry via a radical polar
reduction reactions with inorganic (e.g, S, Se”) and organic crossover mechanism.

(e.g, alkyl iodides) substrates.'> ™" Redox-active ligands are

also known to promote reductive elimination from An B RESULTS AND DISCUSSION

complexes as demonstrated by the radical reductive Lutetium complex (NNN)Lu(THF), (1-Lu) was prepared by
elimination of bibenzyl from UBn, via the coordination of addition of LuBnyTHF, to (NNN)H; in THF at —35 °C
o . Lo . . 28-30 ’
minoquinone or a-dumme. I‘AedOX-aCtIVE ligands. ) which results in the in situ deprotonation and metalation of the

The properties and reactivity of Group 3 metals Sc and Y is tris(amido) ligand and precursor affording (NNN)Lu(THE),

often equated with that of the lanthanides. While these metals (1-Lu) as a pale yellow solid in 74% yield (Figure 2). The 'H

are all rare earth elements, there can be marked differences in NMR spectrum of 1-Lu shows four aromatic peaks and a single

coordination number and the nature of metal-ligand peak for the TMS substituents of the ligand consistent with the

) 31 " 1
interactions.” Additionally, redox potential dlfferegc%s be- metalated ligand. Single crystals of 1-Lu suitable for X-ray
tween these metals can lead to different properties.”””” Our

group recently reported the first example of Group 3 metals for
alkyl—alkyl cross—c0u4pling catalysis enabled by a redox-active
ligand (Figure 1a).** Cross-coupling is incredibly important
due to its necessity to construct molecules of medicinal Received: December 31, 2022
importance that have C(sp*) character.*>~*® Follow up studies Published: February 24, 2023
correlated redox potential across different Group 3 and 4 d°

metals with rates of reactivity." We were interested if an
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a) Previous work: Tris(Amido) Sc, Y, and Zr redox catalysis

®/\ A 10mol% @\ /Q

equiv TMSN\M——NTMS R
= 0o ¢
Brzn” “R? THF — R2
1 equiv. 22°C, THF, 24 h

M =Y 1-Y, Sc 1-Sc, Zr 1-Zr Rates: Y > Sc > Zr

20 mol% @\ /Q

TMSN\SC———NTMS .
THF ~

F - @Y
F CTHF F

2 equiv. BnZnBr
22°C, THF, 24 h

b) This work: Tris(Amido) Lanthanide redox catalysis

Q.

TMSN\“LU_—NTMS TMSN\LU———NTMS TMSN\LU———NTMS
~
| R

THF

e Can 1 and 2 electron chemistry be harnessed?
e How do reaction rates compare between lanthanides and non-lanthanides?

Figure 1. a) Previous work using tris(amido) d° metals as catalysts for
organic transformations. b) This work demonstrating that tris-
(amido)Lu complexes can participate in redox catalysis.

diffraction were formed via vapor diffusion of pentane into a
concentrated THF solution of 1-Lu.

The crystal structure of 1-Lu shows that the geometry
around Lu is pseudo-octahedral with a N—Lu—N bond angle
of 146.02° with respect to the terminal nitrogens of the
tris(amido) ligand (Figure 2a). The C—C and C—N bond
distances of the ligand are consistent with aromatic C—C
bonds and C—N single bonds, which demonstrates that the
ligand is in its non-oxidized, neutral state. The Lu—N bond
distances range from 2.216 to 2.290 A. Comparing 1-Lu to the
structures of our previously reported Sc (1-Sc) and Y (1-Y)
analogs of 1-Lu demonstrates that 1-Lu has intermediate
structural parameters. For example, the N—M—N bond angles
decrease on the order of Sc > Lu > Y with values of
154.03(7)°, 146.02(12)° and 143.12(7)°, respectively. In
addition, the M—N bond distances increase following the
trend Sc < Lu < Y with values of 2.064(2)—2.157(2),
2.216(4)—2.290(2) and 2.255(2)—2.346(15) A, respectively.
These trends are consistent with the trend in the atomic radii
of these metals where the atomic radius of Lu is larger than Sc,
but smaller than Y. Last, the C—C and C—N bond distances of
the ligand are similar when comparing the complexes with
these three metals. The C—C bond distances range from
1.369(4)—1.434(3), 1.375(3)—1.433(2) and 1.381(5)—
1.436(4) A for 1-Sc, 1-Y and 1-Lu, respectively, indicating
that the ligand is in the non-oxidized neutral state and still
aromatic. The C—N bond distances range from 1.389(3)—
1.408(3), 1.395(12)—1.405(2) and 1.388(3)—1.405(4) A for
1-Sc, 1-Y and 1-Lu, respectively, indicating the single bond
ground state character of the ligand. The similar bond
distances demonstrate that changing the metal does not have
a significant effect on the ligand backbone.

Complex 1-Lu participates in one-electron chemical
oxidation reactivity (Figure 2b). Addition of 0.5 equiv of
PhICl, to 1-Lu in THF-dg results in an immediate color

1060
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Figure 2. a) Synthesis of tris(amido) complex 1-Lu. b) Single-
electron oxidation of 1-Lub to 2-Lu. c¢) Room temperature EPR
spectrum of 2-Lu, d) UV—vis NIR spectra of 1-Lu and 2-Lu.

change of the solution from yellow to dark green. The '

NMR spectrum of this reaction mixture shows the presence of
PhI, which forms when PhICI, acts as an oxidant, as well as a
broad peak at ~ —0.5 ppm that is assigned as the TMS peak of
the resulting paramagnetic complex (NNNe)LuCI(THF), (2-
Lu) (Figure S6). The X-band EPR spectrum of 2-Lu in fluid
THEF at 298 K displays an anisotropic signal with g, , . values of
1.9462, 2.0039 and 2.0496, respectively (Figure 2c§. Resolved
hyperfine coupling to each nitrogen of the tris(amido) chelate
(A, ("N, n=2) =673 MHz); A,,(**N,n = 1) = 18.5 MHz) is
observed. Interestingly, no superhyperfine coupling is observed
with the '*Lu nucleus (I = 7/2, 97.41% natural abundance).
The lack of coupling from Lu contrasts the EPR spectra of
previously reported 2-Sc and 2-Y where superhyperfine
coupling to *®Sc (I = 7/2, 100% natural abundance) and *Y
(I= 1/2, 100% natural abundance) was observed, giving rise to
some differences when a lanthanide metal is involved.** This
contrast led us to hypothesize that potentially reactivity could
be different as well. The g, . values and lack of coupling to
"Lu are consistent with 2-Lu containing a ligand-based
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radical. Complex 2-Lu displays many charge transfer bands
that span the UV—vis—NIR region (Figure 2d). A large 7 to #*
ligand-associated transition at A, = 295 nm (e = 10,370 M
cm™') was observed. Ligand-dominated absorptions were
observed at A = 358 nm (¢ = 4711 M™! ecm™), 425 nm (e
= 3246 M cm™!), and weaker transitions were observed at
866 nm (& = 591 M™! cm™), and 1130 nm (e = 1151 M™!
cm™"). The NIR absorptions are diagnostic for the singly
oxidized form of thls tris(amido) ligand, the semiquinonate
oxidation state.

Given the chemical oxidation of 1-Lu to 2-Lu, we wanted to
probe the electrochemical behavior of 1-Lu to determine if
multiple oxidations were feasible. The cyclic voltammogram of
1-Lu shows two oxidation events consistent with the ability of
this redox-active tris(amido) ligand to undergo two single-
electron oxidations (Figure 3). The oxidation potential of the

1x1078 4 Ep=-0.26V

5x107

Current (A)

-5x10 4

-2 -1 0
Potential (V)

Figure 3. Cyclic voltammogram of 1-Lu demonstrating two 1I-
electron oxidations.

first peak for 1-Lu is at —0.90 V. This is an intermediate value
to the first oxidation potentials of 1-Sc (—0.77 V) and 1-Y
(—0.97 V), which produces a trend of decreasing oxidation
potential of 1-Sc > 1-Lu > 1-Y. Interestingly, this follows the
trend in the electronegativity for these metals which decreases
following Sc > Lu > Y with values of 1.36, 1.27 and 1.22,
respectively (Figure SS). This suggests that there is a
relationship between the electronegativities of the metals and
their influence on the oxidation potential of the ligand in these
complexes. The decrease in the oxidation potentials for these
three complexes also follows the trend of decreasing pK, for
[M(OH,)¢)*" (Figure SS). Modulation of oxidation potentials
following these trends by varying the M(III) has been observed
for a variety of heterobimetallic systems.**™**

Given the ability of complex 1-Lu to exhibit electrochemical
properties indicating either one- or two-electron oxidation
events are accessible but also knowing that there are
differences in metal—ligand interactions as indicated by EPR
spectroscopy, we next wanted to determine if 1-Lu can also
participate in the reported catalysis of the analogous 1-Sc and
1-Y complexes. We have demonstrated that an important
proposed intermediate in these catalytic reactions is the
electron-rich anionic benzylated complex [(NNN)M(CH,Ph)-
(THF),]™. The lutetium derivative of this complex [(NNN)-
Lu(CH,Ph)(THF),][K] (3) was isolated in 88% yield via the
addition of one equiv of benzyl potassium to 1-Lu (Figure 4a).
The 'H and “C{'H} NMR spectra of complex 3 display
similar chemical shifts and multiplicities as our previously
reported Y analo§ of this complex, which suggests it has a
similar structure.” The UV—vis-NIR spectrum of complex 3 is
dominated by a # to #* ligand-associated transition at 4, =

a)
_ 1K
KCH,Ph
N (1 equiv)
HF,,Q | —_—
TMSN—{ y—NTMS THE TMSN\LU———NTMS
| THF 1h,22°C
THF THF
1-Lu 3
b) e
Br
N Ph Me.__Ph
.| Ph” “Me .
TMSN— ly—NTMS >
\THF Ph Me Ph Me
| THF-d
Bn 48 h, 22 °C 47%

in situ from BnZnBr cross-coupling homocoupling

Figure 4. a) Synthesis of anionic Bn complex 3. b) Stoichiometric
cross-coupling reaction using a bromide electrophile

385 nm (& = 19,388 M~ cm™!) (Figure S12). Complex 1-Lu
features a small charge transfer (CT) band at A = 438 nm (¢ =
472 M~ cm™"), whereas complex 3 does not exhibit this CT
band. When the in situ generated Bn complex is exposed to 1
equiv of the electrophile 1-(bromoethyl)benzene, 47% of the
cross-coupled product and near equimolar amounts of the
homocoupled product are observed, demonstrating proof-of-
concept for cross-coupling in a stoichiometric reaction (Figure
4b).

Complex 1-Lu was monitored over time as a catalyst for
alkyl—alkyl cross-coupling of 1 equiv of (l-bromoethyl)-
benzene with 1 equiv of benzyl zinc bromide affording the
cross-coupled product (Figure 5). We have previously
demonstrated that, for the first time, d’ metals (Sc, Y and
Zr) are able to catalyze the cross-coupling of secondary
benzylic bromide electrophiles with alkyl zinc nucleophiles as
enabled by a redox-active tris(amido) ligand. Experimental
evidence supports that the mechanism for this reaction

10 mol%
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Br ITHF,

TMSN\LU——-NTMS
Me + Brzn” “Ph STHE Me

THF
22 °C, THF, time

02+%
n
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| |}
—_— -
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' \
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Figure 5. Reaction monitoring of consumption of electrophile
(squares) for cross-coupling (circles) catalysis using 1-Lu.
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proceeds through a one-electron pathway where oxidation of
the ligand by a single electron generates an alkyl radical
intermediate that can participate in cross-coupling. In our
previous report, we demonstrated that the oxidation potentials
of these d° metal complexes play an important role in
determining the activity for cross-coupling catalysis, where
complexes with lower oxidation potentials had higher activity.
Interestingly, 1-Lu has the highest activity of all the complexes,
demonstrating improved catalysis rates for Lu over non-
lanthanides despite not having the lowest oxidation potential.*!
The higher activity of 1-Lu deviates from the previously
reported trends seen for other d’ non-lanthanide metals. The
observed anomalous behavior demonstrates the need for
studying lanthanides for C—C bond forming catalysis as the
unique properties can improve catalysis.

In addition to accessing cross-coupling catalysis with these
complexes via a one-electron pathway, we recently reported
that the two-electron chemistry of the tris(amido) ligand in 1-
Sc is also accessible for catalysis."”” This was demonstrated
through the ability of complex 1-Lu to perform radical-polar
crossover catalysis via the formation of gem-difluoroalkenes
from a-CF; benzylic bromide substrates. The proposed
mechanism for this reaction involves two sequential one-
electron oxidations of the complex. The first oxidation
generates a paramagnetic complex and an a-CF; benzylic
radical. The second oxidation generates the complex with the
fully oxidized redox-active ligand and converts the benzylic
radical to an anion achieving the radical-polar crossover.
Complex 1-Lu is also able to catalyze the formation of a gem-
difluorostyrene derivative through a putative radical-polar
crossover (Figure 6). This was demonstrated via the synthesis

20 mol%
N
Br HF, |
F TMSN—1y—NTMS ~F
| STHE O
£ THF F

2 equiv. BnZnBr

22 °C, THF, 24 h 1%

Figure 6. Formation of gem-difluorostyrene derivative as catalyzed by
1-Lu.

of 2-(2,2-difluoroethenyl)naphthalene from 2-(1-bromo-2,2,2-
trifluoroethyl)naphthalene in 71% yield using 20 mol % of 1-
Lu. Enabled by a redox-active ligand, this allows Lu to join Ce
and Sm as a lanthanide metal that can promote radical polar-
crossover catalysis, although through a thermal versus
photochemical method.”*""

B CONCLUSION

While many similarities can be drawn between the rare earth
elements, their differences contribute to rich reactivity.
Recently Group 3 complexes supported by tris(amido)
redox-active ligands have been used to catalyze cross-coupling
and other important reactions for the first time. While the
same reactivity can be displayed by Lu, the activity toward
cross-coupling in greater. These studies highlight the need for
further investigation of lanthanides ligated by redox-active
ligands for use in organic synthesis.
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