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1 Introduction

Quantum machine learning (QML) [1] presents a promising avenue for solving optimiza-
tion problems via quantum computers and is driven by the hope of realizing a quantum
advantage [2–4] over its classical counterpart. There has recently been an interest in prov-
ing training guarantees in QML, which resolve whether these models can be scaled up.
One widely-used method to train learning models is (stochastic) gradient descent for cost
functions. However, learning models based on quantum neural networks suffer from bar-
ren plateaus, meaning that gradients of a cost function are exponentially small. Hence,
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they prevent efficient training with this method at the large scale [5], as they demand an
exponential amount of resources. One way to ensure efficiency in training is to identify
circumstances under which barren plateaus can be avoided.

Barren plateaus can arise from using global cost functions [6], from using deep random
circuits [5], from entanglement [7, 8], from noise [9], and from expressibility [10]. Recently,
Holmes et al. [11] showed that barren plateaus can arise when learning random unitaries.
These results also extend to learning scramblers [12–17], namely unitaries which spread
local information, thereby uncovering a novel physical mechanism for engendering barren
plateaus. Moreover, an amalgam of results connecting scrambling and QML has recently
emerged [18, 19]. For instance, scrambling bounds the generalization capability of quan-
tum neural networks [20] and also bounds certain cost function gradients [21]. Importantly,
scrambler-induced barren plateaus inhibit learning the dynamics of chaotic quantum sys-
tems such as the mixed-field Ising model [22, 23], the kicked Dicke model [24–26], the non-
integrable Bose-Hubbard model [27], the SYK model [28, 29], and black holes (the fastest
scramblers known in nature) [30–32]. This notably poses a challenge to the Hayden-Preskill
decoding protocol, which is used to retrieve quantum information thrown into a black hole,
as it relies on learning black hole dynamics [33–35].

The scrambler-induced barren plateaus identified in [11] were found using a global
cost function of the form 〈ψ|U †V HV †U |ψ〉, where V HV † is a global observable.1 In
this case, a parameterized unitary U is trained to learn a random unitary V globally.
However, it has been proven generally that training with arbitrary global cost functions
produces barren plateaus for a variety of QML architectures, such as the alternating layered
ansatz [6], the dissipative QNN [36], and the matrix product state (MPS) architecture [37].
Therefore, local cost functions must be used to accurately characterize srambler-induced
barren plateaus. ‘Local’ refers to measurements taken on a subsystem. Local cost functions
can be used to access important quantities in quantum many-body physics. For example,
local projected outputs of Haar random unitaries and quantum chaotic dynamics have been
shown to produce emergent quantum state designs [38–40]. Furthermore, local properties
of non-integrable systems are instrumental in revealing the periodic behavior of quantum
many-body scars [41, 42].

Local cost functions stand out as powerful tools to avoid barren plateaus among other
approaches, such as initialization strategies [43], correlated parameters [44], and entan-
glement devised mitigation [8]. The central question we ask is: can local cost functions
be used to avoid barren plateaus when learning random unitary properties? A variety
of quantum neural network (QNN) architectures, such as the shallow alternating layered
ansatz [6], the quantum convolutional neural network (QCNN) [45, 46] and the dissipative
QNN [36] can avoid barren plateaus when training with local cost functions which satisfy
a special condition. Recently, it was shown that barren plateaus do not exist in the MPS
architecture when training with local cost functions defined via observables which are inde-
pendent of the system size [37]. We extend this barren plateau analysis to arbitrary local
cost functions and provide a physically relevant application.

1It is interesting to explore whether such a global cost function can be made to appear local if the input
state has the form ρin ⊗ In−1/2n−1.

– 2 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

In theorem 1, we show that, when training with arbitrary local cost functions, barren
plateaus can exist in the MPS architecture. On the other hand, we prove a condition
on the local cost function which allows one to avoid these barren plateaus. Our main
contribution is to prove theorem 2, a no-go result, which states that training QML models
to learn random unitary properties with local cost functions produces barren plateaus.
This implies that local probability distributions of random quantum states also cannot be
learned efficiently. Although we prove the existence of these barren plateaus using the
MPS architecture, we show how our results can extend to circuit-based architectures. Our
no-go theorem indicates that, in the absence of prior knowledge, QML is incompatible with
learning local properties of generic quantum many-body systems.

2 Main results

2.1 MPS architecture

We define a unitarily embedded MPS [37, 47, 48] of local dimension d, system size n and
virtual bond dimension D as:

|ψ(θ)〉 = U1 U2 Un

|0〉 |0〉 |0〉

· · ·

. (2.1)

Each Ui is a parameterized Dd × Dd-dimensional unitary. Blue lines indicate physical
indices, while the red lines (with implied periodic boundary conditions) indicate virtual
indices. Each Ui has the form Ui = U

(poly(Dd))
i · · ·U (2)

i U
(1)
i , where U (k)

i = e−iG
(k)
i θ

(k)
i and

G
(k)
i is a Hermitian operator. We assume that each parameter θ(k)

i ∈ θ is randomly
initialized such that each Ui forms a unitary 2-design. The values of 〈ψ(θ)|ψ(θ)〉 are
exponentially concentrated around unity.

We show how barren plateaus can arise and be avoided when using local cost functions
with the MPS architecture in eq. (2.1). Our local cost function is

C = 〈ψ(θ)| I⊗m−1
d ⊗O ⊗ I⊗n−md |ψ(θ)〉 , (2.2)

where O denotes a local (single-qudit) Hermitian operator on site m and Id is the identity
on a single qudit. The parameters of |ψ(θ)〉 are trained by optimizing C via gradient
descent [49, 50]. By utilizing the Weingarten calculus [51], it can be shown that the
average gradient of C vanishes.

Lemma 1 The average of ∂(k)
i C over θ vanishes:

〈∂(k)
i C〉θ = 0. (2.3)

We can show how ∂
(k)
i C concentrates about its average via Chebyshev’s inequality.

Taking δ > 0 and randomly initializing θ, ∂(k)
i C satisfies the following concentration in-

equality:

Probθ

[∣∣∣∂(k)
i C

∣∣∣ ≥ δ] ≤ Varθ[∂(k)
i C]

δ2 . (2.4)
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If the variance vanishes exponentially2 in n for all ∂(k)
i , i.e. Varθ[∂(k)

i C] = O(exp(−n)), then
by Chebyshev’s inequality, the probability of

∣∣∣∂(k)
i C

∣∣∣ being greater than δ is exponentially
small in n. This is referred to as a barren plateau. These exponentially vanishing gradients
make training via gradient descent exponentially costly. We say that a barren plateau is
avoided if there exists at least one partial derivative ∂(k)

i such that the variance decays at
worst polynomially, i.e. Varθ[∂(k)

i C] = Ω
(

1
poly(n)

)
. This scaling allows us to train the QML

model in polynomial time. This leads to our result bounding the variance scaling of the
MPS architecture.

Theorem 1 If Trd {O}2 and ||O||2∞ grow slower than exponential in n, then for large n
and fixed m, the variance of ∂(k)

i C with respect to θ satisfies

Varθ[∂(k)
i C] ≤ ε(O)O

(
P (D, d)
Q(D, d)

)
, (2.5)

where ε(O) ≡
∣∣∣∣∣∣O − Tr {O} Id

d

∣∣∣∣∣∣2
HS

. The functions P (D, d) and Q(D, d) are polynomials of

D and d. Moreover, there exists a partial derivative ∂(k)
i such that Ineq. (2.5) becomes an

equality.

The polynomials P (D, d) andQ(D, d) are independent of n. Hence, the variance scaling
with respect to n is completely determined by ε(O). In cases where O is exponentially
close to the identity (rescaled by Tr {O} /d), ε(O) decays exponentially. Hence, O must be
carefully chosen when defining C in eq. (2.2). This produces the following two corollaries.

Corollary 1 If ε(O) = O(exp(−n)), then the variance upper bound in Ineq. (2.5) decays
exponentially in n, inducing a barren plateau.

Corollary 2 If ε(O) = Ω
(

1
poly(n)

)
, then by theorem 1 there exists a partial derivative ∂(k)

i

such that Varθ[∂(k)
i C] = Ω

(
1

poly(n)

)
. Hence, there is no barren plateau.

The bounds in Corollaries 1 and 2 demonstrate how the choice of O in the local cost
function definition can be used to remove barren plateaus. Furthermore, these results high-
light previous work showing that barren plateaus do not to exist in the MPS architecture
when ε(O) = Ω(1) [37]; this condition is widely used in the literature. With these results,
we now turn our attention to the problem of learning random unitary properties.

2.2 Barren plateaus from random unitaries

In this section, we prove our main result, theorem 2. This no-go theorem states that
barren plateaus are encountered when learning random unitary properties with local cost
functions. Before proving this, we first consider the cost function C from eq. (2.2) to
examine the trainability of the MPS architecture when learning properties of an n-qudit,
Haar random unitary V . We let O in eq. (2.2) depend on V . To assess trainability, we
find the typical behavior of ∂(k)

i C via Chebyshev’s inequality: Probθ,V

[∣∣∣∂(k)
i C

∣∣∣ ≥ δ] ≤
2Since we use O to denote an operator, we use O to denote the mathematical notion of order.
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Varθ,V [∂(k)
i C]

δ2 . This bounds the probability that
∣∣∣∂(k)
i C

∣∣∣ is larger than δ when θ is randomly
initialized and V is sampled from the Haar measure on the unitary group. To find the
variance scaling, we modify theorem 1 to obtain the following lemma.

Lemma 2 Let O depend on an n-qudit, Haar random unitary V . If
∫

Haar dV Trd {O}2

and
∫

Haar dV ||O||
2
∞ grow slower than exponentially in n, then for large n and fixed m, the

variance of ∂(k)
i C with respect to θ and V satisfies

Varθ,V [∂(k)
i C] ≤

[∫
Haar

dV ε(O)
]
O
(
P (D, d)
Q(D, d)

)
, (2.6)

where P (D, d) and Q(D, d) are polynomials of D and d.

This lemma indicates that a barren plateau occurs if
∫

Haar dV ε(O) = O(exp(−n)). We
now formulate the problem of learning unitary properties by adopting explicit cost func-
tions, namely the cross-entropy and the linear cross-entropy benchmark. When probing
random unitaries and scramblers, we are often interested in the output probability distri-
bution on a subsystem of qubits, such that we learn the unitary’s non-local structure. For
simplicity, we presently consider the case of learning single-qubit probability distributions
and discuss the case of learning non-local distributions later on.

Let S = {|ψi〉 , {pi(V, x)}}NS
i=1 be a training set with NS training pairs. Input state |ψi〉

is an n-qubit computational basis state. The probability of measuring the first qubit in
state |x〉 ∈ {|0〉 , |1〉} when state V |ψi〉 is prepared is

pi(V, x) = 〈ψi|V †(|x〉 〈x| ⊗ I⊗n−1)V |ψi〉 , (2.7)

where I is the single-qubit identity. The set S contains local information about how V

maps computational basis states. The probabilities are useful for computing expectation
values of other local observables. For simplicity, and without loss of generality, we fix
the input state to |ψ0〉 = |0〉⊗n so that the target probability is p(V, x) ≡ p0(V, x). The
set S allows for training with classical output data. The case of incoherent training with
quantum state training pairs is explored in [11] when learning V globally.

The output probabilities of the MPS are q(x) = 〈ψ(θ)| (|x〉 〈x| ⊗ I⊗n−1) |ψ(θ)〉, where
|ψ(θ)〉 is given by eq. (2.1). We train the MPS such that {q(x)}x replicates {p(V, x)}x.
We stress that we do not require that |ψ(θ)〉 reproduce the output state V |ψ0〉, which can
generally be a highly entangled state.

To measure how well the MPS distribution {q(x)}x approximates the target distribu-
tion {p(V, x)}x, we adopt the cross-entropy as our cost function:

E(V ) = −
1∑

x=0
q(x)ln[p(V, x)]. (2.8)

The MPS is trained to optimize the cross-entropy and thereby learn the probability distri-
bution {p(V, x)}x. By defining the local observable

OE = −
1∑

x=0
ln[p(V, x)] |x〉 〈x|, (2.9)
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we can write the cross-entropy as a local cost function, E(V )=〈ψ(θ)| (OE⊗I⊗n−1) |ψ(θ)〉,
with a form similar to eq. (2.2).

Due to the logarithm in its definition, the cross-entropy is tedious to work with an-
alytically. To prove training guarantees, we concurrently consider a closely related cost
function, the linear cross-entropy benchmark (XEB) [52]:

χ(V ) = 2
1∑

x=0
p(V, x)q(x)− 1. (2.10)

By defining the local observable

Oχ =
1∑

x=0
(2p(V, x)− 1) |x〉 〈x|, (2.11)

the linear XEB can be written as a local cost function, χ = 〈ψ(θ)| (Oχ ⊗ I⊗n−1) |ψ(θ)〉.
With this cost function, we state the following no-go theorem.

Theorem 2 Learning local properties of a Haar random unitary using the linear XEB cost
function, χ, produces a barren plateau.

This theorem can be proved by first showing that
∫

Haar dV ε(Oχ) = 2
2n+1 . This then

implies that Varθ,V [∂(k)
i χ] vanishes at least exponentially in n by lemma 2, thereby inducing

a barren plateau. Theorem 2 provides a guarantee that a benchmark of the cross-entropy
produces exponentially vanishing gradients. This result complements the following obser-
vation on trainability using the cross-entropy cost function.

Observation 1 It can be verified numerically that learning local properties of a Haar ran-
dom unitary with the cross-entropy cost function, E, produces a barren plateau.

Observation 1 comes from numerically showing that
∫

Haar dV ε(OE) = O(exp(−n)).
This implies that Varθ,V [∂(k)

i E] vanishes at least exponentially in n by lemma 2, producing
a barren plateau. Both theorem 2 and observation 1 demonstrate that we encounter a bar-
ren plateau when attempting to learn local properties of a random unitary with local cost
functions. Furthermore, since V |ψ0〉 is a Haar random state, our results also imply that
we cannot efficiently learn local probability distributions of a large, generic quantum state.

2.3 Circuit architectures

Although we have adopted the MPS architecture to study barren plateaus, we show how
this phenomenon can also arise for variational quantum circuit architectures. Define the
cost function Cc = 〈ψ0|U †(O ⊗ IA

′)U |ψ0〉, where U(θ) is a parameterized unitary, |ψ0〉
is an n-qubit state, O is a local Hermitian operator on subsystem A of dimension dA,
and IA

′ is the identity on A′, the complement of A. We define U to have the general
form U =

∏L
i=1 USi , where USi = (e−iθ

polyn(n)
i V

poly(n)
i · · · e−iθ1

i V
1

i )⊗ IS′i acts non-trivially on
system Si and acts the identity on its complement S′i. Vi is a Hermitian operator. Each
parameter θi ∈ θ is random such that USi forms a 2-design on system Si. We assume that

– 6 –
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|ψ0〉

U ′

A
US5

US6

US3

US4

USO

US2

Figure 1. A quantum circuit with a brick-layer architecture. The parameterized unitary U acts
on an input state |ψ0〉; we perform a measurement on system A. The unitary U can be written as
U = USO

U ′, where USO
is the unitary which acts non-trivially on system SO such that A ⊆ SO.

We define U ′ as the unitary composed of the remaining unitaries in the architecture.

U can be written as U = USO
U ′ where USO

acts non-trivially on the support of O and U ′

contains the remaining unitaries in U . See figure 1 for an example.
We let ∂kCc denote the derivative of Cc with respect to θk. The following proposition

establishes the variance scaling of this derivative.

Proposition 1 The average of ∂kCc over θ satisfies 〈∂kCc〉θ = 0. The variance of ∂kCc
satisfies

Varθ[∂kCc] = ε(O)F, (2.12)

where ε(O) =
∣∣∣∣∣∣O − IA

dA
Tr {O}

∣∣∣∣∣∣2
HS

. F is an average over the circuit architecture. If
ε(O) = O(exp(−n)) and F grows at most polynomially in n, F = O(poly(n)), then the
variance vanishes exponentially in n. This induces a barren plateau.

Proposition 1 demonstrates that barren plateaus can arise due to the scaling of ε(O)
with respect to n. The value of F depends on the particular architecture used. The
assumption that U can be written as U = USO

U ′ is fairly general, as it is compatible with
the alternating layered ansatz and the QCNN. When training with the single-qubit cross-
entropy and the linear XEB cost functions, the average value of ε(O) decays exponentially
in n. By proposition 1, this can produce a barren plateau, given that F has at most
polynomial scaling. Furthermore, proposition 1 holds even when O acts on a large, non-
local subsystem A. In this case, the cross-entropy is used to learn the output probability
distribution on A. Hence, training inefficiencies can still arise even when learning the non-
local structure of a random unitary. This is especially relevant when probing scramblers.

– 7 –
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Figure 2. (Left) Plot of ε(O) defined in eq. (3.1) against qubit number n for O ∈ {OE , Oχ}. For
both values of O, ε(O) decays exponentially when n is sufficiently large. (Right) Sample plot of the
variance Varθ,V [∂(k)

i C] where C ∈ {χ,E} and D = d = 2. We use 5000 Haar random unitaries to
empirically compute ε(O) and the variance. Both variance plots approach exponential decay when
n is sufficiently large.

3 Numerical results

For simplicity, we define
ε(O) =

∫
Haar

dV ε(O). (3.1)

We substantiate observation 1 by figure 2, where we provide numerical values for (left)
ε(O) for O ∈ {Oχ, OE} and (right) Var[∂(k)

i C] for C ∈ {χ,E}. Here, OE and Oχ are local
observables, which define the cross-entropy and linear XEB, respectively. We compute
ε(O) by averaging ε(O) over 5000 unitaries randomly sampled from the Haar measure on
the unitary group. In figure 2 (right), the variance in eq. (B.35) is numerically computed,
which corresponds to the case where the derivative and the local observable are located on
the same site in the MPS architecture; we refer to appendix B for further details on this
equation.

Figure 2 (left) indicates that ε(Oχ) and ε(OE) decay exponential for sufficiently large n.
Hence, by lemma 2, the variances Varθ,V [∂(k)

i χ] and Varθ,V [∂(k)
i E] must decay at least ex-

ponentially in this limit. Figure 2 (right) confirms that Var[∂(k)
i χ] and Var[∂(k)

i E] indeed
approach exponential decay when n becomes large, validating theorem 2 and observation 1,
respectively. Moreover, for large n, figure 2 shows that ε(Oχ) and ε(OE) are in agreement
and Var[∂(k)

i χ] approaches Var[∂(k)
i E]. The discrepancy between the two variance plots

arises from an extra exponentially decaying term in the expression for Var[∂(k)
i E]. Fig-

ure 2 demonstrates that, in the context of identifying barren plateaus, χ exhibits similar
behavior as E.

4 Conclusion

We prove a condition under which barren plateaus may arise and be removed when training
the MPS architecture. Using this condition, we prove a no-go theorem by showing that
barren plateaus exist when learning random unitary properties with local cost functions.
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We conjecture that these barren plateaus should also exist for quantum circuit architec-
tures. Our results reveal a barrier impeding an application of QML to learn efficiently the
dynamics of generic quantum many-body systems.

This suggests the following question: can local cost functions be used to avoid barren
plateaus when learning the dynamics of integrable systems? Integrable systems are typi-
cally not scramblers, implying that they may potentially be efficiently learned with QML.
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Appendix

In this appendix, we give the proofs of the claims in the main body of our paper. We
prove lemma 1 in appendix A. We give a succinct proof of theorem 1 in appendix B and an
extended proof in appendix G. We prove theorem 2 in appendix C. In appendix D, we give
a condition to support observation 1. In appendix E, we prove proposition 1. We state
some identities in appendix F and give their proofs in appendix H.

A Proof of lemma 1

The cost function is defined as

C = 〈ψ(θ)| I⊗m−1
d ⊗O ⊗ I⊗n−md |ψ(θ)〉 , (A.1)

where |ψ(θ)〉 is a parameterized, n-qudit MPS state and O is a Hermitian operator acting
on site m. The cost function can be expressed diagrammatically as

C =
U1 U2 Um Un

U1 U2 Um Un

O

· · · · · ·

, (A.2)

where blue boxes correspond to a fixed state |0〉,

=
|0〉

. (A.3)
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Other single-qudit pure states can be used, but we fix each to the |0〉 state for simplicity.
Each Ui has the form Ui = U

(poly(Dd))
i · · ·U (2)

i U
(1)
i , where U (k)

i = e−iG
(k)
i θ

(k)
i and G(k)

i is a
Hermitian operator. We assume that each θ

(k)
i is randomly initialized such that each Ui

forms a unitary 2-design. We use the notation U i = U∗i to denote the conjugate. Each Ui
is a unitary of dimension Dd×Dd. Blue lines correspond to physical indices and red lines
correspond to virtual indices. We assume periodic boundary conditions for the red lines.

We define Ui+ = U
(k)
i · · ·U

(1)
i and Ui− = U

(poly(Dd))
i · · ·U (k+1)

i . The value of k will
determine which unitary, U+ or U−, forms a unitary t-design. Either only one forms a t-
design or both form a t-design. We define the following notation for the partial derivative:
∂

(k)
i = ∂

∂θ
(k)
i

. For simplicity of notation, we will set Ui → U , G(k)
i → G, θ(k)

i → θk,

∂
(k)
i → ∂k, and G0 = I.

The following identity will be useful:

∫
dU∂k(U ⊗ U) =

∫
dU(∂kU ⊗ U + U ⊗ ∂kU)

=
∫
dU−dU+(U−(−iG)U+ ⊗ U−U+ + U−U+ ⊗ U−(iG)U+)

=
∫
dU−dU+i(−U−GU+ ⊗ U−G

0
U+ + U−G

0U+ ⊗ U−GU+)

=
1∑

α=0
i(−1)α

∫
dU−dU+(U−GαU+ ⊗ U−G

1−α
U+).

(A.4)

In diagrammatic form, this is

∫
dU∂k(U ⊗ U) =

∑1
α=0 i(−1)α

∫
dU−dU+

U− U−

Gα G
1−α

U+ U+

. (A.5)

Black lines correspond to physical and virtual indices of dimension Dd.
We now turn our attention to computing the average of ∂kC. Without loss of gen-

erality, we assume that the derivative is taken on the first qudit site. Define 〈·〉 ≡∫
dU1U2 · · ·Un(·) =

∫
dUall. In the main text, we use the notation 〈·〉θ for the average,

but we omit the θ subscript here. We will show that ∂kC = 0. The diagram for the

– 10 –
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average derivative is

〈∂kC〉 =
∑1
α=0 i(−1)α

∫
dUall

U−

G
1−α

U+

U2 Um Un
U−

Gα

U+

U2 Um Un

O

· · · · · ·

.

(A.6)
When integrating over the unitaries, there are three possibilities: only U− forms a 2-design,
only U+ forms a 2-design, or both U− and U+ form 2-designs. We consider the first case
where only U− forms a 2-design. We evaluate the diagram on the first site by integrating
over U− and using the Weingarten calculus:

∑1
α=0 i(−1)α

∫
dU+ Gα G

1−α

U+ U+

=
∑1
α=0 i(−1)α

∫
dU+ G

U+ U+

. (A.7)

This produces 〈∂kC〉 = 0 because the diagram on the right-hand side is independent of
α and

∑1
α=0 i(−1)α = 0. Now take the case where only U+ forms a 2-design. The diagram

on the first site evaluates to

∑1
α=0 i(−1)α

∫
dU−

U− U−

Gα G
1−α =

∑1
α=0 i(−1)α

∫
dU−

U− U−

G

. (A.8)

This also produces 〈∂kC〉 = 0. The case where both U− and U+ form 2-designs also
produces 〈∂kC〉 = 0. Therefore, when either U− or U+ form a 2-design,

〈∂kC〉 = 0. (A.9)

In fact, the above holds even if U+ or U− form a 1-design.
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B Proof of theorem 1

The variance of ∂kC is
Var[∂kC] = 〈(∂kC)2〉 − 〈∂kC〉2. (B.1)

Since 〈∂kC〉 = 0, then
Var[∂kC] = 〈(∂kC)2〉. (B.2)

We now introduce the Weingarten calculus to evaluate the average. When Ui forms a
2-design, the following identity holds:

∫
Haar dUi

U i
Ui

U i
Ui

=

. (B.3)

On the right-hand side, each leg represents four legs on the left-hand side. The green
dot represents the sum of permutation operators

= S +A , (B.4)

where

S = , A =

. (B.5)

These permutation operators represent the possible ways we can contract the indices for
four input legs. The dashed line in eq. (B.3) represents the weight given by the Weingarten
function. The four possible values this weight can have are given by

S

S

=
A

A

= 1
q ≡

1
(Dd)2−1 ,

S

A

=
A

S

= − 1
Ddq

. (B.6)

We also define the following useful diagrams:

U± =
∫
dU± U± U± U± U±

, (B.7)

G =
∑1
α,β=0(−1)1+α+β Gα G

1−α Gβ G
1−β

, (B.8)
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O = O O

, (B.9)

=
. (B.10)

When U± forms a 2-design, eq. (B.7) reduces to eq. (B.3). The following identities will be
useful:

S

=
A

= 1,

(B.11)

S

S

=
A

A

= Ω2,

S

A

=
A

S

= Ω,

(B.12)

where Ω = d,D,Dd, depending on whether the legs are blue, red, or black respectively.
The variance can then be expressed diagrammatically as

Var[∂kC] =

S

S S

S

S

U−

G

U+ O

· · · · · ·

. (B.13)

From eq. (B.11), it follows that the variance can be simplified to

Var[∂kC] =

S

S S

S

S

U−

G

U+ O

· · · · · ·

∆− 1 n−∆− 1

, (B.14)

where we define ∆ = m − 1 as the distance between the derivative site and the site on
which O acts. We refer to the case where O and the derivative act on different sites as the
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off-site case. In the on-site case, where the local operator O acts on the derivative site, the
variance diagram is

Var[∂kC] =

S

S S S

U−

G

U+

O

n− 1

· · ·

. (B.15)

The variance takes on one of six possible forms, depending on whether the derivative
and O act on the same site, and whether U−, U+ or both form 2-designs.

B.1 Off-site case

Before evaluating the variance, it will be useful to define the following constants:

q = (Dd)2 − 1,

ξ = 1
q
D(d2 − 1),

η = 1
q
d(D2 − 1),

ΓL = 1− ηL

1− η ,

(B.16)

and

C1 = 2
∫
dU+

[
−Trd

{
TrD

{
U †+GU+

}2
}

+DTr
{
G2
}]
,

C2 = 2
∫
dU−

[
−Tr {ρGρG}+ Tr

{
G2ρ2

}]
,

C3 = 2
∫
dU−

[
−Tr {ρG}2 +DTr

{
ρG2

}]
,

C4 = 2[−Tr {G}2 +DdTr
{
G2
}

],

C5 = 2
∫
dU+Tr {σG[G, σ]} ,

C6 = 2
∫
dU+

[
− Trd

{(
TrD

{
U †+GU+

}
O
)2
}

+DTrd
{

TrD
{
U †+G

2U+
}
O2
} ]
.

(B.17)

In the above, we define ρ = U †−(ID ⊗ |0〉 〈0|)U− and σ = U+(ID ⊗O)U †+. We assume that
G is independent of n. C5 and C6 depend on O and can therefore depend on n. C1, C2, C3,
and C4 are independent of n.
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We evaluate the variance in the off-site case, when the derivative is not taken on the
site where O acts. Consider the case where U− forms a 2-design, but U+ does not. The
variance is

Var[∂kC] =

S

S S

S

S

G

U+ O

· · · · · ·

∆− 1 n−∆− 1

. (B.18)

This evaluates to

Var[∂kC] = C1η
∆−1

q2

[
ε(O)

(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
)

+ Trd {O}2
(D2−1)ηn−∆−1

d

]
,

(B.19)
where we define

ε(O) ≡
∣∣∣∣∣∣∣∣O − Trd {O}

Id
d

∣∣∣∣∣∣∣∣2
HS
. (B.20)

We assume Trd {O}2 grows slower than exponentially in n. When n is large, the variance
becomes

Var[∂kC] = ε(O)C1η
∆−1

q2

(
−1
d

+ Dξ

1− η

)
, (B.21)

where we assume d ≥ 2.
In the off-site case where only U+ forms a 2-design, the variance is

Var[∂kC] =

S

S S

S

S

U−

G

O

· · · · · ·

∆− 1 n−∆− 1

, (B.22)
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where

Var[∂kC] = η∆

q2

[
ε(O)

(
C2Dd

2 − C3 +
(
−C2d

D
+ C3d

)(
DξΓn−∆−2 +D2ηn−∆−2

))

+ Trd {O}2
(
−C2
D

+ C3

)
(D2 − 1)ηn−∆−2

]
. (B.23)

When n is large, this converges to

Var[∂kC] = ε(O)η
∆

q2

[
C2Dd

2 − C3 + d

(
−C2
D

+ C3

)(
Dξ

1− η

)]
. (B.24)

In the off-site case where both U− and U+ form 2-designs, the variance is

Var[∂kC] =

S

S S

S

S

G

O

· · · · · ·

∆− 1 n−∆− 1

. (B.25)

This evaluates to

Var[∂kC] = C4η
∆

q2

[
ε(O)

(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
)

+ 1
d

Trd {O}2 (D2−1)ηn−∆−1
]
.

(B.26)
In the large n limit,

Var[∂kC] =ε(O)C4η
∆

q2

(
−1
d

+ Dξ

1− η

)
. (B.27)
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B.2 On-site case

We now compute the variance in the on-site case, where the derivative acts on the same
site as O. When only U− forms a 2-design, the variance is

Var[∂kC] =

S

S S S

G

U+

O

· · ·

. (B.28)

This evaluates to

Var[∂kC] = 1
q

(
C5

(
− 1
Dd

+ ξΓn−1

)
+ C6η

n−1
)
. (B.29)

The variance can be upper bounded by:

Var[∂kC] ≤ ε(O)4 ||G||2∞
q

(
1 + Ddξ

1− η

)
. (B.30)

In the case where only U+ forms a 2-design, the variance is

Var[∂kC] =

S

S S S

U−

G

O

· · ·

. (B.31)

This evaluates to

Var[∂kC] = 1
q2

[
ε(O)

(
Dd2C2 − C3 +

(
−C2d

D
+ C3d

)(
ξΓn−2D + ηn−2D2

))

+ Trd {O}2 (D2 − 1)ηn−2
(
−C2
D

+ C3

)]
.

(B.32)
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In the large n limit, this simplifies to

Var[∂kC] =ε(O)
q

(
Dd2C2 − C3 +

(
−C2
D

+ C3

)
ξDd

1− η

)
. (B.33)

In the on-site case where both U− and U+ form 2-designs, the variance can be writ-
ten as:

Var[∂kC] =

S

S S S

G

O

· · ·

. (B.34)
This evaluates to

Var[∂kC] = C4
q2

[
ε(O)

(
−1
d

+DξΓn−1 +D2ηn−1
)

+ Trd {O}2
D2 − 1
d

ηn−1
]
. (B.35)

In the large n-limit,
Var[∂kC] = ε(O)C4

q2

(
−1
d

+ Dξ

1− η

)
. (B.36)

In all six cases, in the large n limit, we have an upper bound on the variance of the
following form:

Var[∂kC] ≤ ε(O)O
(
P (D, d)
Q(D, d)

)
, (B.37)

where P (D, d) and Q(D, d) are polynomial functions of D and d which are independent
of n.

C Proof of theorem 2

We first compute ε(Oχ), noting that Tr {Oχ} = 0:

ε(Oχ) =
∣∣∣∣∣∣∣∣Oχ − Tr {Oχ}

I

2

∣∣∣∣∣∣∣∣2
HS

= ||Oχ||2HS

= Tr
{
O2
χ

}
= Tr


(∑

x

(2p(V, x)− 1) |x〉 〈x|
)2

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=
∑
x,x′

(2p(V, x)− 1)(2p(V, x′)− 1)Tr
{
|x〉 〈x |x′〉 〈x′|

}
=
∑
x,x′

(2p(V, x)− 1)(2p(V, x′)− 1)δx,x′

=
∑
x

(2p(V, x)− 1)2

=
∑
x

(4p(V, x)2 − 4p(V, x) + 1)

= 4
∑
x

p(V, x)2 − 4 + 2

= 4
∑
x

p(V, x)2 − 2. (C.1)

We compute its average:∫
Haar

dV ε(Oχ) =
∫

Haar
dV

(
4
∑
x

p(V, x)2 − 2
)

= 4
∑
x

∫
Haar

dV Tr
{
V |ψ0〉 〈ψ0|V †(|x〉 〈x| ⊗ I⊗n−1)

}2
− 2

= 4
∑
x

∫
Haar

dV Tr
{
V ⊗2 |ψ0〉 〈ψ0|⊗2 V †⊗2(|x〉 〈x| ⊗ I⊗n−1)⊗2

}
− 2

= 4
∑
x

1
2n(2n + 1)Tr

{
(I + S)(|x〉 〈x| ⊗ I⊗n−1)⊗2

}
− 2

= 4
∑
x

1
2n(2n + 1)

(
Tr
{
|x〉 〈x| ⊗ I⊗n−1

}2
+ Tr

{
|x〉 〈x| ⊗ I⊗n−1

})
− 2

= 4
∑
x

1
2n(2n + 1)

((
2n−1

)2
+ 2n−1

)
− 2

= 8
(

2n−1 (2n−1 + 1
)

2n(2n + 1)

)
− 2

= 2
(2n (2n + 2)

2n(2n + 1) − 1
)

= 2
((2n + 2)

2n + 1 −
2n + 1
2n + 1

)
= 2

2n + 1 .

(C.2)

From the above calculations, one can verify that
∫

Haar dV ||Oχ||
2
∞≤

∫
Haar dV ||Oχ||

2
HS = 2

2n+1 .
Also,

∫
Haar dV Tr {Oχ}2 = 0. Therefore,

∫
Haar dV ||Oχ||

2
∞ and

∫
Haar dV Tr {Oχ}2 do not grow

exponentially in n. Hence, Varθ,V [∂kχ] vanishes at least exponentially in n by lemma 2,
inducing a barren plateau.

D Condition for observation 1

We show that
∫

Haar dV Tr {OE}2 and
∫

Haar dV ||OE ||
2
∞ grow slower than exponentially in n

if
∫

Haar dV Tr
{
O2
E

}
grows slower than exponentially in n. This implies that OE meets the
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Figure 3. Plot of Tr {O2
E} =

∫
Haar dV Tr

{
O2
E

}
against the qubit number, n. The quantity Tr {O2

E}
is empirically computed by averaging Tr

{
O2
E

}
over 2000 unitaries randomly sampled from the Haar

measure on the unitary group. The plot indicates that Tr {O2
E} does not increase exponentially in n.

conditions of lemma 2. First, we can show that ||OE ||2∞ ≤ ||OE ||
2
HS = Tr

{
O2
E

}
. Therefore,∫

Haar dV ||OE ||
2
∞ ≤

∫
Haar dV Tr

{
O2
E

}
.

Defining 〈·〉max = Tr
{
I
2 ·
}
, we derive the following inequality:

Tr {OE}2 = Tr
{

2I2OE
}2

= 4〈OE〉2max

≤ 4〈O2
E〉max

= 2Tr
{
O2
E

}
.

(D.1)

Therefore,
∫

Haar dV Tr {OE}2 ≤ 2
∫

Haar dV Tr
{
O2
E

}
.

We now give an explicit expression for Tr
{
O2
E

}
, which is useful for numerical compu-

tations:

Tr
{
O2
E

}
= Tr

{(
−
∑
x

ln[p(V, x)] |x〉 〈x|
)2}

= Tr

∑
x,x′

ln[p(V, x)]ln[p(V, x′)] |x〉 〈x|x′〉 〈x′|


=
∑
x,x′

ln[p(V, x)]ln[p(V, x′)]δx,x′

=
∑
x

ln[p(V, x)]2.

(D.2)

Figure 3 shows that Tr
{
O2
E

}
=
∫

Haar dV Tr
{
O2
E

}
decreases with n. Hence,

∫
Haar dV Tr {OE}2

and
∫

Haar dV ||OE ||
2
∞ do not grow exponentially in n. Lemma 2 can therefore be applied

by using E as the cost function.
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E Proof of proposition 1

Define the cost function

Cc = Tr
{
U |ψ0〉 〈ψ0|U †OA

}
, (E.1)

where OA = O ⊗ IA
′ is a local operator which acts O on the system A and the iden-

tity on A′, the complement system. U is a parameterized unitary and |ψ0〉 is an n-
qubit initial state. We assume that U has the general form U =

∏L
i=1 USi where USi =

(e−iθ
polyn(n)
i V

poly(n)
i · · · e−iθ1

i V
1

i )⊗ IS′i acts non-trivially on system Si and acts the identity on
its complement S′i. We assume that each θi is random such that USi forms a 2-design on
system Si. This model is general, as many parameterized circuits have this structure. As-
sume that the derivative is taken with respect to a parameter θk. We can write U = U−U+,
where U+ is the collection of unitaries to the right of and including e−iθkVk , the unitary on
which the derivative acts. Unitary U− is the collection of unitaries to the left of e−iθkVk .
Assume that the derivative is not taken on the layer USO

. The derivative of Cc with respect
to the parameter θk is

∂kCc = Tr
{
∂kU |ψ0〉 〈ψ0|U †OA + U |ψ0〉 〈ψ0| ∂kU †OA

}
= Tr

{
(U−(−iVk ⊗ IS

′
k)U+) |ψ0〉 〈ψ0|U †+U

†
−OA

+ U−U+ |ψ0〉 〈ψ0| (U †+(iVk ⊗ IS
′
k)U †−)OA

}
= Tr

{
U−

[
U+ |ψ0〉 〈ψ0|U †+, (iVk ⊗ IS

′
k)
]
U †−OA

}
= Tr

{
U
′
−

[
U+ |ψ0〉 〈ψ0|U †+, (iVk ⊗ IS

′
k)
]
U
′†
−U
†
SO
OAUSO

}
= Tr

{
QU †SO

OAUSO

}
.

(E.2)

In the above, we define Q = U
′
−

[
U+ |ψ0〉 〈ψ0|U †+, (iVk ⊗ IS

′
k)
]
U
′†
− . We also make the

assumption that there exists a unitary USO
∈ {USi}i such that A ⊆ SO and U− = USO

U
′
−,

where U ′− contains the remaining unitaries in U−. In other words, USO
acts on O en-

tirely. This assumption is compatible with, for example, the alternating layer ansatz and
the QCNN.

We now compute the average over all unitaries:

〈∂kCc〉U =
∫
dU+dU

′
−dUSO

Tr
{
QU †SO

OAUSO

}
=
∫
dU+dU

′
−

1
dSO

Tr {Q}TrSO

{
O ⊗ ISO\A

}
= 0.

(E.3)

In the above, we use that USO
forms a 2-design and that the trace of a commutator is zero.
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We now compute the variance:

VarU [∂kCc] = 〈(∂kCc)2〉U

=
∫
dU+dU

′
−dUSO

Tr
{
QU †SO

OAUSO

}2

=
∫
dU+dU

′
−dUSO

Tr
{
Q⊗2U †⊗2

SO
O⊗2
A U⊗2

SO

}
= 1
d2
SO
− 1

∫
dU+dU

′
−

[
Tr
{
Q⊗2(IS′O ⊗ ISO

)
}

TrSO

{
ISO

(O ⊗ ISO\A)⊗2
}

+ Tr
{
Q⊗2(IS′O ⊗ SSO

)
}

TrSO

{
SSO

(O ⊗ ISO\A)⊗2
}

− 1
dSO

Tr
{
Q⊗2(IS′O ⊗ ISO

)
}

TrSO

{
SSO

(O ⊗ ISO\A)⊗2
}

− 1
dSO

Tr
{
Q⊗2(IS′O ⊗ SSO

)
}

TrSO

{
ISO

(O ⊗ ISO\A)⊗2
} ]

= 1
d2
SO
− 1

∫
dU+dU

′
−

[
Tr {Q}2 TrSO

{
(O ⊗ ISO\A)

}2

+ TrSO

{
TrS′O {Q}

2
}

TrSO

{
(O ⊗ ISO\A)2

}
− 1
dSO

Tr {Q}2 TrSO

{
(O ⊗ ISO\A)2

}
− 1
dSO

TrSO

{
TrS′O {Q}

2
}

TrSO

{
(O ⊗ ISO\A)

}2 ]
= 1
d2
SO
− 1

∫
dU+dU

′
−TrSO

{
TrS′O {Q}

2
} [

TrSO

{
(O ⊗ ISO\A)2

}
− 1
dSO

TrSO

{
(O ⊗ ISO\A)

}2 ]
= 1
d2
SO
− 1

∫
dU+dU

′
−TrSO

{
TrS′O {Q}

2
}[

TrSO

{
O2 ⊗ ISO\A

}

− 1
dSO

(
TrA {O}

dSO

dA

)2 ]

= 1
d2
SO
− 1

∫
dU+dU

′
−TrSO

{
TrS′O {Q}

2
}[

TrA
{
O2
}(dSO

dA

)
− dSO

d2
A

TrA {O}2
]

= dSO

dA(d2
SO
− 1)

∫
dU+dU

′
−TrSO

{
TrS′O {Q}

2
} [

TrA
{
O2
}
− 1
dA

TrA {O}2
]

= ε(O)dSO

dA(d2
SO
− 1)

〈
TrSO

{
TrS′O {Q}

2
}〉

U+,U ′−

= ε(O)F1.

(E.4)

Line four follows from the Weingarten calculus. We define

ε(O) =
∣∣∣∣∣
∣∣∣∣∣O − IA

dA
Tr {O}

∣∣∣∣∣
∣∣∣∣∣
2

HS
= TrA

{
O2
}
− 1
dA

TrA {O}2 (E.5)
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and
F1 = dSO

dA(d2
SO
− 1)

〈
TrSO

{
TrS′O {Q}

2
}〉

U+,U ′−
. (E.6)

We adopt the notation: 〈·〉U+,U ′−
=
∫
dU+dU

′
−(·). In an abuse of notation, we let TrSO

{·}
denote the trace over system SO and its copy. We also let ISO

and SSO
denote the iden-

tity and swap permutations between SO and its copy. We let IS′O denote the identity
permutation on the complement of SO and its copy.

Now take the case where the derivative is taken with respect to a parameter θk within
layer USO

. The unitary U can be written as U = USO−USO+U+, where USO+U+ is the
collection of unitaries to the right of and including e−iθkVk . Unitary U− is the collection of
unitaries to the left of e−iθkVk . More explicitly, USO

= USO−USO+. The partial derivative
of Cc is:

∂kCc = Tr
{
∂kU |ψ0〉 〈ψ0|U †OA + U |ψ0〉 〈ψ0| ∂kU †OA

}
= Tr{(USO−(−iVk ⊗ IS

′
k)USO+U+) |ψ0〉 〈ψ0|U †+U

†
SO+U

†
SO−OA

+ USO−USO+U+ |ψ0〉 〈ψ0| (U †+U
†
SO+(iVk ⊗ IS

′
k)U †SO−)OA}

= Tr
{
USO−

[
USO+U+ |ψ0〉 〈ψ0|U †+U

†
SO+, (iVk ⊗ I

S
′
k)
]
U †SO−OA

}
= Tr

{[
USO+U+ |ψ0〉 〈ψ0|U †+U

†
SO+, (iVk ⊗ I

S
′
k)
]
U †SO−OAUSO−

}
= Tr

{
Q2 U

†
SO−OAUSO−

}
.

(E.7)

We define Q2 =
[
USO+U+ |ψ0〉 〈ψ0|U †+U

†
SO+, (iVk ⊗ IS

′
k)
]
. This has the same form as

eq. (E.2). Take the case where USO− forms a 2-design. Then

〈∂kCc〉U =
∫
dU+dUSO+dUSO−Tr

{
Q2 U

†
SO−OAUSO−

}
=
∫
dU+dUSO+

1
dSO

Tr {Q2}TrSO

{
O ⊗ ISO\A

}
= 0.

(E.8)

We use that Q2 is traceless. Similar to eq. (E.4), the variance is

VarU [∂kCc] = ε(O)F2, (E.9)

where
F2 = dSO

dA(d2
SO
− 1)

〈
TrSO

{
TrS′O {Q2}2

}〉
USO+,U+

. (E.10)

Now take the case where USO+ forms a 2-design, but USO− does not. First rewrite ∂kCc:

∂kCc = Tr
{
∂kU |ψ0〉 〈ψ0|U †OA + U |ψ0〉 〈ψ0| ∂kU †OA

}
= Tr{(USO−(−iVk ⊗ IS

′
k)USO+U+) |ψ0〉 〈ψ0|U †+U

†
SO+U

†
SO−OA

+ USO−USO+U+ |ψ0〉 〈ψ0| (U †+U
†
SO+(iVk ⊗ IS

′
k)U †SO−)OA}
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= Tr{U+ |ψ0〉 〈ψ0|U †+U
†
SO+U

†
SO−OAUSO−(−iVk ⊗ IS

′
k)USO+

+ U+ |ψ0〉 〈ψ0|U †+U
†
SO+(iVk ⊗ IS

′
k)U †SO−OAUSO−USO+}

= Tr
{
U+ |ψ0〉 〈ψ0|U †+U

†
SO+[(iVk ⊗ IS

′
k), U †SO−OAUSO−]USO+

}
= Tr

{
ρ̃U †SO+BUSO+

}
, (E.11)

where we define ρ̃ = U+ |ψ0〉 〈ψ0|U †+ and B = [(iVk ⊗ IS
′
k), U †SO−OAUSO−]. The average of

∂kCc is

〈∂kCc〉U =
∫
dU+dUSO+dUSO−Tr

{
ρ̃U †SO+BUSO+

}
=
∫
dU+dUSO−

1
dSO

Tr {ρ̃}TrSO

{
[iVk, U †SO−OAUSO−]

}
= 0.

(E.12)

The variance of ∂kCc is

VarU [∂kCc]
= 〈(∂kCc)2〉U

=
∫
dU+dUSO+dUSO−Tr

{
ρ̃U †SO+BUSO+

}2

=
∫
dU+dUSO+dUSO−Tr

{
ρ̃⊗2U †⊗2

SO+B
⊗2U⊗2

SO+

}
=
∫
dU+dUSO−
d2
SO
− 1

[
Tr
{
ρ̃⊗2(IS′O ⊗ ISO

)
}

TrSO

{
ISO

([iVk, U †SO−OAUSO−])⊗2
}

+ Tr
{
ρ̃⊗2(IS′O ⊗ SSO

)
}

TrSO

{
SSO

([iVk, U †SO−OAUSO−])⊗2
}

− 1
dSO

Tr
{
ρ̃⊗2(IS′O ⊗ ISO

)
}

TrSO

{
SSO

([iVk, U †SO−OAUSO−])⊗2
}

− 1
dSO

Tr
{
ρ̃⊗2(IS′O ⊗ SSO

)
}

TrSO

{
ISO

([iVk, U †SO−OAUSO−])⊗2
} ]

=
∫
dU+dUSO−
d2
SO
− 1

[
Tr {ρ̃}2 TrSO

{
[iVk, U †SO−OAUSO−]

}2

+ TrSO

{
TrS′O {ρ̃}

2
}

TrSO

{
([iVk, U †SO−OAUSO−])2

}
− 1
dSO

Tr {ρ̃}2 TrSO

{
([iVk, U †SO−OAUSO−])2

}
− 1
dSO

TrSO

{
TrS′O {ρ̃}

2
}

TrSO

{
[iVk, U †SO−OAUSO−]

}2 ]
=
∫
dU+dUSO−
d2
SO
− 1

(
TrSO

{
TrS′O {ρ̃}

2
}
− 1
dSO

Tr {ρ̃}2
)

TrSO

{
([iVk, U †SO−OAUSO−])2

}
≤
∫
dU+dUSO−
d2
SO
− 1

∣∣∣∣TrSO

{
TrS′O {ρ̃}

2
}
− 1
dSO

∣∣∣∣ ∣∣∣TrSO

{
([iVk, U †SO−OAUSO−])2

}∣∣∣
≤ ε(O)4dSO

||Vk||2∞
d2
SO
− 1

∫
dU+dUSO−

∣∣∣∣TrSO

{
TrS′O {ρ̃}

2
}
− 1
dSO

∣∣∣∣
= ε(O)F3, (E.13)
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where we define

F3 = 4dSO
||Vk||2∞

d2
SO
− 1

∫
dU+dUSO−

∣∣∣∣TrSO

{
TrS′O {ρ̃}

2
}
− 1
dSO

∣∣∣∣ . (E.14)

In line four, we let USO− denote the operator defined on only the SO system. In the last
inequality, we use:∣∣∣TrSO

{
([iVk, U †SO−OAUSO−])2

}∣∣∣
=

∣∣∣∣∣∣TrSO


([
iVk, U

†
SO−OAUSO− −

ISO

dA
Tr {O}

])2

∣∣∣∣∣∣

=
∣∣∣∣TrSO

{([
iVk, ÕA

])2
}∣∣∣∣

=
∣∣∣∣TrSO

{(
iVkÕA − ÕAiVk

)2
}∣∣∣∣

= 2
∣∣∣TrSO

{
iVkÕAiVkÕA − ÕA(iVk)2ÕA

}∣∣∣
≤ 2

[∣∣∣TrSO

{
iVkÕAiVkÕA

}∣∣∣+ ∣∣∣TrSO

{
ÕA(iVk)2ÕA

}∣∣∣]
= 2dSO

[∣∣∣∣∣TrSO

{
ISO

dSO

VkÕAVkÕA

}∣∣∣∣∣+
∣∣∣∣∣TrSO

{
ISO

dSO

ÕA(Vk)2ÕA

}∣∣∣∣∣
]

≤ 2dSO

[∣∣∣∣∣∣VkÕAVkÕA∣∣∣∣∣∣∞ +
∣∣∣∣∣∣ÕA(Vk)2ÕA

∣∣∣∣∣∣
∞

]
≤ 4dSO

||Vk||2∞
∣∣∣∣∣∣ÕA∣∣∣∣∣∣2∞

= 4dSO
||Vk||2∞

∣∣∣∣∣
∣∣∣∣∣U †SO−(O ⊗ ISO\A)USO− −

ISO

dA
Tr {O}

∣∣∣∣∣
∣∣∣∣∣
2

∞

= 4dSO
||Vk||2∞

∣∣∣∣∣
∣∣∣∣∣U †SO−

((
O − IA

dA
Tr {O}

)
⊗ ISO\A

)
USO−

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤ 4dSO
||Vk||2∞

∣∣∣∣∣
∣∣∣∣∣O − IA

dA
Tr {O}

∣∣∣∣∣
∣∣∣∣∣
2

HS

= 4dSO
||Vk||2∞ ε(O).

(E.15)

In line two, we define ÕA = U †SO−OAUSO− − ISO

dA
Tr {O}.

In all three cases, 〈∂kCc〉U = 0 and VarU [∂kCc] = ε(O)F , where F ∈ {F1, F2, F3}.

F Identities

We present identities which are useful in proving theorem 1. These identities are derived
simply by evaluating the diagrams. The first set of identities is:

S S

S

= 1,

S A

S

= ξ ≡ 1
qD(d2 − 1),
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A S

S

= 0,

A A

S

= η ≡ 1
qd(D2 − 1).

(F.1)

We also have

S S

O

S

= 1
q

(
D2Trd {O}2 − 1

dTrd
{
O2}) ,

S A

O

S

= D
q

(
Trd {O}2 − 1

dTrd
{
O2}) ,

A S

O

S

= D
q

(
−1
dTrd {O}2 + Trd

{
O2}) ,

A A

O

S

= 1
q

(
−1
dTrd {O}2 +D2Trd

{
O2}) .

(F.2)

From eq. (F.1), we can derive

S S

S S S

= 1,· · ·

L

S A

S S S

= ξΓL ≡ ξ 1−ηL

1−η ,
· · ·

L

A S

S S S

= 0,· · ·

L

A A

S S S

= ηL.
· · ·

L (F.3)
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This, combined with eq. (F.2), produces the identities:

S S

S S S

S

S SO

= 1
q

(
Trd {O}2

(
D2 − D

d ξΓL1

)
+Trd

{
O2} (DξΓL1 − 1

d

))
,

· · · · · ·

L1 L2
(F.4)

S A

S S S

S

S SO

= 1
q

(
Trd {O}2

(
D2ξΓL2 +DηL2

−D
d ξ

2ΓL1ΓL2 −
ηL2
d ξΓL1

)
+Trd

{
O2} (− ξ

dΓL2 − D
d η

L2

+Dξ2ΓL1ΓL2 +D2ηL2ξΓL1

))
,

· · · · · ·

L1 L2

(F.5)

A S

S S S

S

S SO

= DηL1
q

(
− 1

dTrd {O}2 + Trd
{
O2} ),· · · · · ·

L1 L2
(F.6)

A A

S S S

S

S SO

= 1
q

(
− Trd {O}2

(
D
d η

L1ξΓL2 + 1
dη

L1ηL2
)

+Trd
{
O2} (DηL1ξΓL2 +D2ηL1ηL2)

)
.

· · · · · ·

L1 L2
(F.7)

We now provide identities which will help us evaluate the variance diagrams when U−, U+,
or both form 2-designs. In the off-site case, when only U− forms a 2-design, the following
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identities follow:

S

S

S

G

U+

= 0,

S

A

S

G

U+

= − C1
Ddq ,

A

S

S

G

U+

= 0,

A

A

S

G

U+

= C1
q ,

(F.8)

where
C1 = 2

∫
dU+

[
− Trd

{
TrD

{
U †+GU+

}2
}

+DTr
{
G2
} ]
. (F.9)

When only U+ forms a 2-design in the off-site case, we obtain the useful identities:

S

S

S

S

U−

G = 0,

S

S

A

S

U−

G = η
q

(
d2C2 − C3

D

)
,

A

S

S

S

U−

G = 0,

A

S

A

S

U−

G = η
q

(
−C2d

D + C3d
)
,

(F.10)

where

C2 = 2
∫
dU−

[
−Tr {ρGρG}+ Tr

{
G2ρ2

}]
,

C3 = 2
∫
dU−

[
−Tr {ρG}2 +DTr

{
ρG2

}]
.

(F.11)
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We define ρ = U †−(ID ⊗ |0〉 〈0|)U− as an unnormalized state with a trace of Tr {ρ} = D.
In the off-site case, when both U− and U+ form 2-designs, we obtain the following useful
identities,

S

S

S

G = 0,

S

A

S

G = − C4
Ddqη,

A

S

S

G = 0,

A

A

A

G = C4
q η,

(F.12)

where

C4 = 2
[
−Tr {G}2 +DdTr

{
G2
}]
. (F.13)

Now consider the on-site case, where O acts on the derivative site. Then when only U−
forms a 2-design, we have the following identities:

S

S

S

G

U+

O

= − C5
Ddq ,

S

A

S

G

U+

O

= − C6
Ddq ,

A

S

S

G

U+

O

= C5
q ,

A

A

S

G

U+

O

= C6
q ,

(F.14)

where

C5 = 2
∫
dU+Tr {σG[G, σ]} ,

C6 = 2
∫
dU+

[
− Trd

{(
TrD

{
U †+GU+

}
O
)2
}

+DTrd
{

TrD
{
U †+G

2U+
}
O2
} ]
.

(F.15)

In the above, we define σ = U+(ID ⊗O)U †+.
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In the on-site case, when only U+ forms a 2-design, we have the following identities:

S S

S

S

U−

G

O

= 1
q2
(
Dd2C2 − C3

) (
−1
dTrd {O}2 + Trd

{
O2}) ,

(F.16)

S A

S

S

U−

G

O

= 1
q2

(
d2C2 − C3

D

) (
−1
dTrd {O}2 +D2Trd

{
O2}) ,

(F.17)

A S

S

S

U−

G

O

= 1
q2 (−dC2 +DdC3)

(
−1
dTrd {O}2 + Trd

{
O2}) ,

(F.18)
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A A

S

S

U−

G

O

= 1
q2

(
−dC2

D + dC3
) (
−1
dTrd {O}2 +D2Trd

{
O2}) .

(F.19)

In the on-site case, when both U− and U+ form 2-designs, we have the following
identities:

S

S

S

G

O

= C4
q2

[
1
d2 Trd {O}2 − 1

dTrd
{
O2}] ,

S

A

S

G

O

= C4
q2

[
1

Dd2 Trd {O}2 − D
d Trd

{
O2}] ,

A

S

S

G

O

= C4
q2

[
−D

d Trd {O}2 +DTrd
{
O2}] ,

A

A

S

G

O

= C4
q2

[
−1
dTrd {O}2 +D2Trd

{
O2}] .

(F.20)
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G Extended proof of theorem 1

G.1 Off-site case

Take the off-site case where only U− forms a 2-design. We use periodic boundary conditions
for the open red legs. Using the identities from eq. (F.8) and eqs. (F.4) to (F.7), we compute
the variance:

Var[∂kC] =

S

S S

S

S

G

U+ O

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

G

U+ O

A

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

S

S

G

U+ O

A

· · · · · ·

∆− 1 n−∆− 1

+

S

S

S

S

A

A

G

U+ O

A

· · · · · ·

∆− 1 n−∆− 1

.

(G.1)
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Upon evaluating these diagrams, we get the following expression for the variance

Var[∂kC]

=
(
− C1
Ddq

)(
Dη∆−1

q

[
−1
d

Trd {O}2 + Trd
{
O2
}])

+
(
C1
q

)(1
q

(
− Trd {O}2

[
D

d
η∆−1ξΓn−∆−1 + 1

d
η∆−1ηn−∆−1

]

+ Trd
{
O2
} [
Dη∆−1ξΓn−∆−1 +D2η∆−1ηn−∆−1

]))

= C1η
∆−1

q2

([ 1
d2 Trd {O}2 −

1
d

Trd
{
O2
}]
− Trd {O}2

[
D

d
ξΓn−∆−1 + 1

d
ηn−∆−1

]

+ Trd
{
O2
} [
DξΓn−∆−1 +D2ηn−∆−1

])

= C1η
∆−1

q2

(
Trd {O}2

( 1
d2 −

D

d
ξΓn−∆−1 −

1
d
ηn−∆−1

)

+ Trd
{
O2
}(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
))

= C1η
∆−1

q2

(
− 1
d

Trd {O}2
(
−1
d

+DξΓn−∆−1 + ηn−∆−1
)

+ Trd
{
O2
}(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
))

= C1η
∆−1

q2

(
− 1
d

Trd {O}2
(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1 + (1−D2)ηn−∆−1
)

+ Trd
{
O2
}(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
))

= C1η
∆−1

q2

((
Trd

{
O2
}
− 1
d

Trd {O}2
)(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
)

+ Trd {O}2
(D2 − 1)ηn−∆−1

d

)

= C1η
∆−1

q2

(
ε(O)

(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
)

+ Trd {O}2
(D2 − 1)ηn−∆−1

d

)
.

(G.2)
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In the last line, we use

ε(O) =
∣∣∣∣∣∣∣∣O − Trd {O}

Id
d

∣∣∣∣∣∣∣∣2
HS

= Trd

{(
O − Trd {O}

Id
d

)2
}

= Trd
{
O2
}
− 2
d

Trd {O}2 + Trd {O}2
Trd {Id}
d2

= Trd
{
O2
}
− 1
d

Trd {O}2 .

(G.3)

Taking the large n limit and fixing m (thereby fixing ∆),

lim
n→∞

Γn−∆−1 = lim
n→∞

1− ηn−∆−1

1− η = 1
1− η ,

lim
n→∞

Trd {O}2 ηn−∆−1 = 0,
(G.4)

where we used η < 1 and the assumption that Trd {O}2 grows slower than exponentially
in n. Therefore, in the large n limit, the variance is

Var[∂kC] = ε(O)C1η
∆−1

q2

(
−1
d

+ Dξ

1− η

)
. (G.5)

Using the identities from eq. (F.10), we compute the variance in the off-site case where
only U+ forms a 2-design:

– 34 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

Var[∂kC] =

S

S S

S

S

U−

G

O

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

U−

G

O

A

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

U−

G

O

A AS

· · · · · ·

∆− 1 n−∆− 2

+

S

S

S

S

U−

G

O

A AA

· · · · · ·

∆− 1 n−∆− 2

.

(G.6)
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For simplicity, we define L1 = ∆− 1 and L2 = n−∆− 2. The variance evaluates to

Var[∂kC] =
(
DηL1

q

[
−1
d

Trd {O}2 + Trd
{
O2
}])(η

q

(
d2C2 −

C3
D

))
+
(1
q

(
− Trd {O}2

(
D

d
ηL1ξΓL2 + 1

d
ηL1ηL2

)
+ Trd

{
O2
}(

DηL1ξΓL2 +D2ηL1ηL2
)))(η

q

(
−C2d

D
+ C3d

))
= η∆

q2

(
C2Dd

2 − C3
) [
−1
d

Trd {O}2 + Trd
{
O2
}]

+ η∆

q2

(
−C2d

D
+ C3d

)(
− Trd {O}2

(
D

d
ξΓL2 + 1

d
ηL2

)
+ Trd

{
O2
}(

DξΓL2 +D2ηL2
))

= η∆

q2

[
− Trd {O}2

(
C2Dd

2 − C3
d

+
(
−C2d

D
+ C3d

)(
D

d
ξΓL2 + 1

d
ηL2

))

+ Trd
{
O2
}(

(C2Dd
2 − C3) +

(
−C2d

D
+ C3d

)(
DξΓL2 +D2ηL2

))]

= η∆

q2

[
− 1
d

Trd {O}2
(
C2Dd

2 − C3

+
(
−C2d

D
+ C3d

)(
DξΓL2 + (D2 −D2 + 1)ηL2

))

+ Trd
{
O2
}(

C2Dd
2 − C3 +

(
−C2d

D
+ C3d

)(
DξΓL2 +D2ηL2

))]

= η∆

q2

[(
Trd

{
O2
}
− 1
d

Trd {O}2
)

·
(
C2Dd

2 − C3 +
(
−C2d

D
+ C3d

)(
DξΓL2 +D2ηL2

))

+ Trd {O}2
(
−C2
D

+ C3

)
(D2 − 1)ηL2

]

= η∆

q2

[
ε(O)

(
C2Dd

2 − C3 +
(
−C2d

D
+ C3d

)(
DξΓn−∆−2 +D2ηn−∆−2

))

+ Trd {O}2
(
−C2
D

+ C3

)
(D2 − 1)ηn−∆−2

]
.

(G.7)

In the large n limit, this becomes

Var[∂kC] = ε(O)η
∆

q2

(
C2Dd

2 − C3 +
(
−C2d

D
+ C3d

)
Dξ

1− η

)
. (G.8)
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Using the identities from eq. (F.12), we compute the variance in the off-site case where
both U− and U+ form a 2-design:

Var[∂kC] =

S

S S

S

S

G

O

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

G

O

A

· · · · · ·

∆− 1 n−∆− 1

=

S

S

S

S

S

S

G

O

A

· · · · · ·

∆− 1 n−∆− 1

+

S

S

S

S

A

A

G

O

A

· · · · · ·

∆− 1 n−∆− 1

.

(G.9)
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For simplicity, we define L1 = ∆− 1 and L2 = n−∆− 1. The variance is

Var[∂kC] =
(
− C4
Ddq

η

)(
DηL1

q

[
−1
d

Trd {O}2 + Trd
{
O2
}])

+
(
C4
q
η

)(1
q

(
− Trd {O}2

(
D

d
ηL1ξΓL2 + 1

d
ηL1ηL2

)
+ Trd

{
O2
}(

DηL1ξΓL2 +D2ηL1ηL2
)))

= C4η
∆

q2

[
− 1
d

[
−1
d

Trd {O}2 + Trd
{
O2
}]

− Trd {O}2
(
D

d
ξΓL2 + 1

d
ηL2

)
+ Trd

{
O2
}(

DξΓL2 +D2ηL2
)]

= C4η
∆

q2

[
Trd {O}2

( 1
d2 −

(
D

d
ξΓL2 + 1

d
ηL2

))]

+ Trd
{
O2
}(
−1
d

+
(
DξΓL2 +D2ηL2

))

= C4η
∆

q2

[
− 1
d

Trd {O}2
(
−1
d

+DξΓL2 + (D2 −D2 + 1)ηL2

)

+ Trd
{
O2
}(
−1
d

+DξΓL2 +D2ηL2

)]

= C4η
∆

q2

[(
Trd

{
O2
}
− 1
d

Trd {O}2
)(
−1
d

+DξΓL2 +D2ηL2

)

+ 1
d

Trd {O}2 (D2 − 1)ηL2

]

= C4η
∆

q2

[
ε(O)

(
−1
d

+DξΓn−∆−1 +D2ηn−∆−1
)

+ 1
d

Trd {O}2 (D2 − 1)ηn−∆−1
]
.

(G.10)

In the large n limit,

Var[∂kC] =ε(O)C4η
∆

q2

(
−1
d

+ Dξ

1− η

)
. (G.11)
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G.2 On-site case

We compute the variance in the on-site case when only U− forms a 2-design:

Var[∂kC] =

S

S S S

G

U+

O

· · ·

n− 1

=

S

S S S

S

G

U+

O

S S

· · ·

n− 1

+

S

S S S

S

G

U+

O

A S

· · ·

n− 1

+

S

S S S

A

G

U+

O

S A

· · ·

n− 1

+

S

S S S

A

G

U+

O

A A

· · ·

n− 1

.

(G.12)
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This evaluates to

Var[∂kC] =
(
− C5
Ddq

)
(1) +

(
− C6
Ddq

)
(0) +

(
C5
q

)
(ξΓn−1) +

(
C6
q

)
(ηn−1)

= 1
q

(
C5

(
− 1
Dd

+ ξΓn−1

)
+ C6η

n−1
)
.

(G.13)

We construct an upper bound on the variance using ε(O). Using the triangle inequality,
we get the following upper bound:

Var[∂kC] ≤ 1
q

(
|C5|

∣∣∣∣− 1
Dd

+ ξΓn−1

∣∣∣∣+ |C6| ηn−1
)

≤ 1
q

(
|C5|

( 1
Dd

+ ξΓn−1

)
+ |C6| ηn−1

)
.

(G.14)

We now bound |C5| and |C6|. Before proceeding, it will help to define the following oper-
ators: Od = ID ⊗ O, Õd = Od − Trd {O} IDd

d , and G+ = U †+GU+. In order to bound |C5|,
we first rewrite the following:

Tr {σG[G, σ]} = Tr {σGGσ} − Tr {σGσG}

= Tr
{
U+OdU

†
+GU+U

†
+GU+OdU

†
+

}
− Tr

{
U+OdU

†
+GU+OdU

†
+G
}

= Tr {OdG+G+Od} − Tr {OdG+OdG+}
= Tr {OdG+[G+, Od]}

= Tr
{
OdG+

[
G+, Od − Trd {O}

IDd
d

]}
= Tr

{
OdG+

[
G+, Õd

]}
= Tr

{
OdG+G+Õd

}
− Tr

{
OdG+ÕdG+

}
= Tr

{
OdG+G+Õd

}
− Tr

{
G+OdG+Õd

}
= Tr

{
[Od, G+]G+Õd

}
= Tr

{[
Od − Trd {O}

IDd
d
,G+

]
G+Õd

}
= Tr

{
[Õd, G+]G+Õd

}
= Tr

{
ÕdG+G+Õd

}
− Tr

{
G+ÕdG+Õd

}
.

(G.15)

Defining 〈·〉max = Tr
{

(·) IDd
Dd

}
as the expectation value over the maximally mixed state,

we can bound |C5|:

|C5| =
∣∣∣∣2 ∫ dU−Tr {σG[G, σ]}

∣∣∣∣
=
∣∣∣∣2 ∫ dU−

[
Tr
{
ÕdG+G+Õd

}
− Tr

{
G+ÕdG+Õd

}]∣∣∣∣
=
∣∣∣∣2Dd ∫ dU−

[〈
ÕdG+G+Õd

〉
max
−
〈
G+ÕdG+Õd

〉
max

]∣∣∣∣
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≤ 2Dd
∫
dU−

[∣∣∣〈ÕdG+G+Õd
〉

max

∣∣∣+ ∣∣∣〈G+ÕdG+Õd
〉

max

∣∣∣]
≤ 2Dd

∫
dU−

[∣∣∣∣∣∣ÕdG+G+Õd
∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣G+ÕdG+Õd

∣∣∣∣∣∣
∞

]
≤ 4Dd

∫
dU−

∣∣∣∣∣∣Õd∣∣∣∣∣∣2∞ ||G+||2∞

= 4Dd
∫
dU−

∣∣∣∣∣∣∣∣ID ⊗ (O − Trd {O} Id
d

)∣∣∣∣∣∣∣∣2
∞
||G||2∞

= 4Dd
∣∣∣∣∣∣∣∣O − Trd {O} Id

d

∣∣∣∣∣∣∣∣2
∞
||G||2∞

≤ 4Dd
∣∣∣∣∣∣∣∣O − Trd {O} Id

d

∣∣∣∣∣∣∣∣2
HS
||G||2∞

= ε(O)4Dd ||G||2∞ .

(G.16)

We now bound |C6|:

|C6| =
∣∣∣∣2 ∫ dU+

[
− Trd

{(
TrD

{
U †+GU+

}
O
)2
}

+DTrd
{

TrD
{
U †+G

2U+
}
O2
} ]∣∣∣∣

=
∣∣∣∣2 ∫ dU+

[
− Trd

{
(TrD {G+}O)2

}
+DTr

{
G2

+O
2
d

} ]∣∣∣∣
=
∣∣∣2 ∫ dU+

[
− E

PD

D2dTr
{

(ID ⊗OdG+)(PD ⊗ PD ⊗ Id)(ID ⊗OdG+)ρBD
}

+D2d
〈
G2

+O
2
d

〉
max

]∣∣∣
≤ 2

∫
dU+

[
E

PD

D2d
∣∣∣Tr

{
(ID ⊗OdG+)(PD ⊗ PD ⊗ Id)(ID ⊗OdG+)ρBD

}∣∣∣
+D2d

∣∣∣〈G2
+O

2
d

〉
max

∣∣∣ ]
≤ 2

∫
dU+

[
E

PD

D2d
∣∣∣∣∣∣(ID ⊗OdG+)(PD ⊗ PD ⊗ Id)(ID ⊗OdG+)

∣∣∣∣∣∣
∞

+D2d
∣∣∣∣∣∣G2

+O
2
d

∣∣∣∣∣∣
∞

]
≤ 2

∫
dU+

[
E

PD

D2d ||ID ⊗OdG+||∞
∣∣∣∣∣∣PD ⊗ PD ⊗ Id∣∣∣∣∣∣∞ ||ID ⊗OdG+||∞

+D2d ||G+||2∞ ||Od||
2
∞

]
= 2

∫
dU+

[
E

PD

D2d ||Od||2∞ ||G+||2∞
∣∣∣∣∣∣PD∣∣∣∣∣∣∞ ||PD||∞ +D2d ||G+||2∞ ||Od||

2
∞

]
= 2

∫
dU+

[
E

PD

D2d ||Od||2∞ ||G+||2∞ +D2d ||G+||2∞ ||Od||
2
∞

]
= 2

∫
dU+2D2d ||Od||2∞ ||G||

2
∞

= 4D2d ||Od||2∞ ||G||
2
∞

= 4D2d ||ID ⊗O||2∞ ||G||
2
∞

= 4D2d ||O||2∞ ||G||
2
∞ .

(G.17)

– 41 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

In the above, we used:

Trd
{
(TrD {G+}O)2} = G+

G+

O

O

= E
PD

D2d G+

G+

ρBD

PD PD O

O

= E
PD

D2dTr
{

(ID ⊗OdG+)(PD ⊗ PD ⊗ Id)(ID ⊗OdG+)ρBD
}
,

(G.18)
where we define the state ρBD = Id

d ⊗ ρBell,D, and where ρBell,D is the Bell state between
the D-dimensional subsystem and a reference system.

Using these bounds on |C5| and |C6|, Ineq. (G.14) becomes

Var[∂kC] ≤ 1
q

(
|C5|

( 1
Dd

+ ξΓn−1

)
+ |C6| ηn−1

)
≤ 1
q

((
ε(O)4Dd ||G||2∞

)( 1
Dd

+ ξΓn−1

)
+
(
4D2d ||G||2∞ ||O||

2
∞

)
ηn−1

)
= 4Dd ||G||2∞

q

(
ε(O)

( 1
Dd

+ ξΓn−1

)
+D ||O||2∞ η

n−1
)
.

(G.19)

In the large n limit, assuming ||O||2∞ grows slower than exponentially in n, we have the
following inequality

Var[∂kC] ≤ ε(O)4 ||G||2∞
q

(
1 + Ddξ

1− η

)
. (G.20)
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We now compute the variance for the on-site case where only U+ forms a 2-design:

Var[∂kC] =

S

S S S

U−

G

O

· · ·

n− 1

=

S

S S S

U−

G

O

· · ·

n− 1

. (G.21)
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This can be written as

Var[∂kC] =

S

S S S

U−

G

O

S SS

· · ·

n− 2

+

S

S S S

U−

G

O

S SA

· · ·

n− 2

+

S

S S S

U−

G

O

A AS

· · ·

n− 2

+

S

S S S

U−

G

O

A AA

· · ·

n− 2

. (G.22)
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Using the identities from eqs. (F.16) to (F.19), this evaluates to

Var[∂kC]

= (1)
( 1
q2

(
Dd2C2 − C3

)(
−1
d

Trd {O}2 + Trd
{
O2
}))

+ (ξΓn−2)
( 1
q2 (−dC2 +DdC3)

(
−1
d

Trd {O}2 + Trd
{
O2
}))

+ (0)
( 1
q2

(
d2C2 −

C3
D

)(
−1
d

Trd {O}2 +D2Trd
{
O2
}))

+
(
ηn−2

)( 1
q2

(
−dC2
D

+ dC3

)(
−1
d

Trd {O}2 +D2Trd
{
O2
}))

= 1
q2

[
− 1
d

Trd {O}2
(
Dd2C2 − C3 + ξΓn−2(−dC2 +DdC3) + ηn−2

(
−dC2
D

+ dC3

))
+ Trd

{
O2
}(

Dd2C2 − C3 + ξΓn−2(−dC2 +DdC3) + ηn−2D2
(
−dC2
D

+ dC3

))]
= 1
q2

[
− 1
d

Trd {O}2
(
Dd2C2 − C3 + ξΓn−2(−dC2 +DdC3)

+ (D2 −D2 + 1)ηn−2
(
− dC2

D
+ dC3

))
+ Trd

{
O2
}(

Dd2C2 − C3 + ξΓn−2(−dC2 +DdC3) + ηn−2D2
(
−dC2
D

+ dC3

))]
= 1
q2

[(
Trd

{
O2
}
− 1
d

Trd {O}2
)(

Dd2C2 − C3 + ξΓn−2(−dC2 +DdC3)

+ ηn−2D2
(
−dC2
D

+ dC3

))
+ 1
d

Trd {O}2 (D2 − 1)ηn−2
(
−dC2
D

+ dC3

)]

= 1
q2

[
ε(O)

(
Dd2C2 − C3 + ξΓn−2Dd

(
−C2
D

+ C3

)
+ ηn−2D2d

(
−C2
D

+ C3

))

+ Trd {O}2 (D2 − 1)ηn−2
(
−C2
D

+ C3

)]

= 1
q2

[
ε(O)

(
Dd2C2 − C3 +

(
−C2
D

+ C3

)(
ξΓn−2Dd+ ηn−2D2d

))

+ Trd {O}2 (D2 − 1)ηn−2
(
−C2
D

+ C3

)]
.

(G.23)

In the large n limit, assuming Trd {O}2 grows slower than exponentially in n, the variance is

Var[∂kC] = ε(O)
q2

(
Dd2C2 − C3 +

(
−C2
D

+ C3

)
ξDd

1− η

)
. (G.24)
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We now compute the variance for the on-site case where both U− and U+ form 2-designs:

Var[∂kC] =

S

S S S

G

O

· · ·

n− 1

=

S

S S S

S

S

G

O

S

· · ·

n− 1

+

S

S S S

S

S

G

O

A

· · ·

n− 1

+

S

S S S

A

A

G

O

S

· · ·

n− 1

+

S

S S S

A

A

G

O

A

· · ·

n− 1

.

(G.25)
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Using the identities from eq. (F.20), the variance evaluates to

Var[∂kC] =
(
C4
q2

( 1
d2 Trd {O}2 −

1
d

Trd
{
O2
}))

(1)

+
(
C4
q2

( 1
Dd2 Trd {O}2 −

D

d
Trd

{
O2
}))

(0)

+
(
C4
q2

(
−D
d

Trd {O}2 +DTrd
{
O2
}))

(ξΓn−1)

+
(
C4
q2

(
−1
d

Trd {O}2 +D2Trd
{
O2
}))

(ηn−1)

= C4
q2

[
Trd {O}2

(
1
d2 −

DξΓn−1
d

− ηn−1

d

)

+ Trd
{
O2
}(
−1
d

+DξΓn−1 +D2ηn−1
)]

= C4
q2

[
− 1
d

Trd {O}2
(
−1
d

+DξΓn−1 + (D2 −D2 + 1)ηn−1
)

+ Trd
{
O2
}(
−1
d

+DξΓn−1 +D2ηn−1
)]

= C4
q2

[(
Trd

{
O2
}
− 1
d

Trd {O}2
)(
−1
d

+DξΓn−1 +D2ηn−1
)

+ Trd {O}2
D2 − 1
d

ηn−1
]

= C4
q2

[
ε(O)

(
−1
d

+DξΓn−1 +D2ηn−1
)

+ Trd {O}2
D2 − 1
d

ηn−1
]
.

(G.26)

In the large n limit, this becomes

Var[∂kC] = ε(O)C4
q2

(
−1
d

+ Dξ

1− η

)
. (G.27)

H Proof of identities

We prove the identities in appendix F. We first prove the identities in eq. (F.1):

S S

S

=

S S

S

S

+

S S

A

S

=
(

1
q

)
(d2)(D2) +

(
− 1
Ddq

)
(d)(D) = 1

q

[
(Dd)2 − 1

]
= 1,

(H.1)

– 47 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

S A

S

=

S A

S

S

+

S A

A

S

=
(

1
q

)
(d2)(D) +

(
− 1
Ddq

)
(d)(D2) = D

q

[
d2 − 1

]
= ξ,

(H.2)

A S

S

=

A S

S

S

+

A S

A

S

=
(
− 1
Ddq

)
(d2)(D2) +

(
1
q

)
(d)(D) = 1

q [−Dd+Dd] = 0,

(H.3)

A A

S

=

A A

S

S

+

A A

A

S

=
(
− 1
Ddq

)
(d2)(D) +

(
1
q

)
(d)(D2) = d

q

[
D2 − 1

]
= η.

(H.4)

We now prove the identities from eq. (F.2):

S S

O

S

=

S S

S

O

S

+

S S

A

O

S

=
(

1
q

) (
Trd {O}2

)
(D2) +

(
− 1
Ddq

) (
Trd

{
O2}) (D)

= 1
q

[
D2Trd {O}2 − 1

dTrd
{
O2} ],

(H.5)

S A

O

S

=

S A

S

O

S

+

S A

A

O

S

=
(

1
q

) (
Trd {O}2

)
(D) +

(
− 1
Ddq

) (
Trd

{
O2}) (D2)

= D
q

[
Trd {O}2 − 1

dTrd
{
O2} ],

(H.6)

– 48 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

A S

O

S

=

A S

S

O

S

+

A S

A

O

S

=
(
− 1
Ddq

) (
Trd {O}2

)
(D2) +

(
1
q

) (
Trd

{
O2}) (D)

= D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ],

(H.7)

A A

O

S

=

A A

S

O

S

+

A A

A

O

S

=
(
− 1
Ddq

) (
Trd {O}2

)
(D) +

(
1
q

) (
Trd

{
O2}) (D2)

= 1
q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ].

(H.8)

In the above, we use the following relations:

S

O

S

= O O = Trd {O}2 ,

(H.9)

A

O

S

= O O = Trd
{
O2} .

(H.10)
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We derive the identities in eq. (F.3):

S S

S S S

=· · ·

L

S SS

S S S

+· · ·

S SA

S S S

· · ·

=

S SS

S S S

· · ·

=

S SS S

S S S

· · ·

= (1)L

= 1. (H.11)

In the first line, the second term vanishes by eq. (H.3). The fourth line follows from
eq. (H.1). We prove the third identity in eq. (F.3):

A S

S S S

=· · ·

L

A SS

S S S

+· · ·

A SA

S S S

· · ·

=

A SS

S S S

· · ·

=

A SS S

S S S

· · ·

= 0. (H.12)
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We prove the fourth identity in eq. (F.3):

A A

S S S

=· · ·

L

A AS

S S S

+· · ·

A AA

S S S

· · ·

=

A AA

S S S

· · ·

=

A AA A

S S S

· · ·

= ηL.

(H.13)

The first term in the first line vanishes by eq. (H.3). We prove the second identity in
eq. (F.3):

S A

S S S

=· · ·

L

S AS

S S S

+· · ·

S AA

S S S

· · ·

= ξ + η

S A

S S S

· · ·

L− 1

= ξ
∑L−1
i=0 η

i

= ξ 1−ηL

1−η

= ξΓL.

(H.14)
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The second line follows from eqs. (H.2) and (H.4). The second line is a recursion relation,
which produces the sum in the third line. The fourth line follows from an identity for a
geometric series, and the fifth line follows from the definition of ΓL.

We now prove the identities in eqs. (F.4) to (F.7):

S S

S S S

S

S SO

· · · · · ·

L1 L2

=

S S

S S

S

S SO

S S

· · · · · ·

L1 L2

+

S S

S S

S

S SO

S A

· · · · · ·

L1 L2

+

S S

S S

S

S SO

A S

· · · · · ·

L1 L2

+

S S

S S

S

S SO

A A

· · · · · ·

L1 L2

= (1)
(

1
q [D2Trd {O}2 − 1

dTrd
{
O2}]

)
(1) + (1)

(
D
q [Trd {O}2 − 1

dTrd
{
O2}]

)
(0)

+ (ξΓL1)
(
D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ]) (1)

+ (ξΓL1)
(

1
q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ]) (0)

= 1
q

[
D2Trd {O}2 − 1

dTrd
{
O2} ]+ ξΓL1D

q

[
− 1

dTrd {O}2 + Trd
{
O2} ]

= 1
q

[
Trd {O}2

(
D2 − ξΓL1

D
d

)
+ Trd

{
O2} (−1

d + ξΓL1D
)]
,

(H.15)
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S A

S S S

S

S SO

· · · · · ·

L1 L2

=

S A

S S

S

S SO

S S

· · · · · ·

L1 L2

+

S A

S S

S

S SO

S A

· · · · · ·

L1 L2

+

S A

S S

S

S SO

A S

· · · · · ·

L1 L2

+

S A

S S

S

S SO

A A

· · · · · ·

L1 L2

= (1)
(

1
q [D2Trd {O}2 − 1

dTrd
{
O2}]

)
(ξΓL2) + (1)

(
D
q [Trd {O}2 − 1

dTrd
{
O2}]

) (
ηL2

)
+ (ξΓL1)

(
D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ]) (ξΓL2)

+ (ξΓL1)
(

1
q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ]) (ηL2

)
= ξΓL2

q

[
D2Trd {O}2 − 1

dTrd
{
O2}]+ ηL2D

q

[
Trd {O}2 − 1

dTrd
{
O2}]

+ ξ2ΓL1ΓL2D
q

[
−1
dTrd {O}2 + Trd

{
O2}]+ ξΓL1η

L2

q

[
−1
dTrd {O}2 +D2Trd

{
O2}]

= 1
q

[
Trd {O}2

(
ξΓL2D

2 + ηL2D − ξ2ΓL1ΓL2
D
d − ξΓL1η

L2 1
d

)
+Trd

{
O2} (−ξΓL2

1
d − η

L2 D
d + ξ2ΓL1ΓL2D + ξΓL1η

L2D2
) ]
,

(H.16)
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A S

S S S

S

S SO

· · · · · ·

L1 L2

=

A S

S S

S

S SO

S S

· · · · · ·

L1 L2

+

A S

S S

S

S SO

S A

· · · · · ·

L1 L2

+

A S

S S

S

S SO

A S

· · · · · ·

L1 L2

+

A S

S S

S

S SO

A A

· · · · · ·

L1 L2

= (0)
(

1
q

[
D2Trd {O}2 − 1

dTrd
{
O2} ]) (1) + (0)

(
D
q

[
Trd {O}2 − 1

dTrd
{
O2} ]) (0)

+
(
ηL1

) (
D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ]) (1)

+
(
ηL1

) (
1
q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ]) (0)

= ηL1D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ],

(H.17)
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A A

S S S

S

S SO

· · · · · ·

L1 L2

=

A A

S S

S

S SO

S S

· · · · · ·

L1 L2

+

A A

S S

S

S SO

S A

· · · · · ·

L1 L2

+

A A

S S

S

S SO

A S

· · · · · ·

L1 L2

+

A A

S S

S

S SO

A A

· · · · · ·

L1 L2

= (0)
(

1
q [D2Trd {O}2 − 1

dTrd
{
O2}]

)
(ξΓL2) + (0)

(
D
q [Trd {O}2 − 1

dTrd
{
O2}]

) (
ηL2

)
+
(
ηL1

) (
D
q

[
− 1

dTrd {O}2 + Trd
{
O2} ]) (ξΓL2)

+
(
ηL1

) (
1
q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ]) (ηL2

)
= ηL1ξΓL2D

q

[
− 1

dTrd {O}2 + Trd
{
O2} ]+ ηL1ηL2

q

[
− 1

dTrd {O}2 +D2Trd
{
O2} ]

= 1
q

[
Trd {O}2

(
−ηL1ξΓL2

D
d − η

L1ηL2 1
d

)
+ Trd

{
O2} (ηL1ξΓL2D + ηL1ηL2D2

)]
.

(H.18)
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Before proving the identities in eq. (F.8), we first prove the following:

S S

S

G

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+Tr {G}2

= 0, (H.19)

S A

S

G

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ G G

U+ U+ U+ U+

= 0, (H.20)

A S

S

G

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+Tr

{
G2}

= 0, (H.21)
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A A

S

G

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+ G1+α−β

G1+β−α

U †+

U+

U †+

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+Trd

{
TrD

{
U †+G

1+α−βU+
}

TrD
{
U †+G

1+β−αU+
}}

= 2
∫
dU+

[
− Trd

{
TrD

{
U †+GU+

}2
}

+ Trd
{

TrD
{
U †+G

2U+
}

TrD {IDd}
} ]

= 2
∫
dU+

[
− Trd

{
TrD

{
U †+GU+

}2
}

+DTr
{
U †+G

2U+
} ]

= 2
∫
dU+

[
− Trd

{
TrD

{
U †+GU+

}2
}

+DTr
{
G2} ]

≡ C1.

(H.22)

– 57 –



J
H
E
P
0
1
(
2
0
2
3
)
0
9
0

Using the above results, we prove the identities in eq. (F.8):

S

S

S

G

U+

=

S

S

S

S

G

U+

+

S

S

S

A

G

U+

= 0,

(H.23)

S

A

S

G

U+

=

S

A

S

S

G

U+

+

S

A

S

A

G

U+

=
(
− 1
Ddq

)
(C1) ,

(H.24)

A

S

S

G

U+

=

A

S

S

S

G

U+

+

A

S

S

A

G

U+

= 0,

(H.25)

A

A

S

G

U+

=

A

A

S

S

G

U+

+

A

A

S

A

G

U+

=
(

1
q

)
(C1).

(H.26)
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Before proving the identities in eq. (F.10), we prove the following relations:

S

S

U−

G =
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

Gα G
1−α Gβ G

1−β

=
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

G G

= 0, (H.27)
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S

A

U−

G =
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

Gα G
1−α Gβ G

1−β

=
∑1
α=0(−1)1+α+β ∫ dU−

U †−

U−

G1+α−β

U †−

U−

G1+β−α

=
∑1
α=0(−1)1+α+β ∫ dU−Tr

{
ρG1+α−βρG1+β−α

}
= 2

∫
dU−

[
−Tr {ρGρG}+ Tr

{
G2ρ2}]

≡ C2, (H.28)
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A

S

U−

G =
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

Gα G
1−α Gβ G

1−β

=
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

G G

= 0, (H.29)

A

A

U−

G =
∑1
α=0(−1)1+α+β ∫ dU−

U− U− U− U−

Gα G
1−α Gβ G

1−β

=
∑1
α=0(−1)1+α+β ∫ dU−Tr

{
ρG1+α−β

}
Tr
{
ρG1+β−α

}
= 2

∫
dU−

[
−Tr {ρG}2 + Tr

{
ρG2}Tr {ρ}

]
= 2

∫
dU−

[
−Tr {ρG}2 +DTr

{
ρG2}]

≡ C3. (H.30)
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In the above, we define the unnormalized state ρ = U †−(ID ⊗ |0〉 〈0|)U− with a trace of
Tr {ρ} = D. Using the above, along with the identities in eq. (F.1), we prove the identities
in eq. (F.10):

S

S

S

S

U−

G =

S

S

S

S

U−

G = 0,

A

(H.31)

S

S

A

S

U−

G =

S

S

A

S

U−

G =

A

S

S

A

S

S

U−

G +

A

S

S

A

S

A

U−

G =
(
d2

q C2 − d
DdqC3

)
η,

A

(H.32)

A

S

S

S

U−

G =

A

S

S

S

U−

G = 0,

A

(H.33)
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A

S

A

S

U−

G =

A

S

A

S

U−

G =

A

A

S

A

S

S

U−

G +

A

A

S

A

S

A

U−

G =
(
− d2

DdqC2 + d
qC3

)
η.

A

(H.34)
Before proving the identities in eq. (F.12), we first prove the following:

S

S

G =
∑1
α,β=0(−1)1+α+β Gα G

1−α Gβ G
1−β = 0,

(H.35)

S

A

G =
∑1
α,β=0(−1)1+α+β Gα G

1−α Gβ G
1−β = 0,

(H.36)

A

S

G =
∑1
α,β=0(−1)1+α+β Gα G

1−α Gβ G
1−β = 0,

(H.37)

A

A

G =
∑1
α,β=0(−1)1+α+β Gα G

1−α Gβ G
1−β

=
∑1
α,β=0(−1)1+α+βTr

{
G1+α−β

}
Tr
{
G1+β−α

}
= 2

[
−Tr {G}2 + Tr

{
G2}Tr {IDd}

]
= 2

[
−Tr {G}2 +DdTr

{
G2}]

≡ C4. (H.38)
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Using the above, along with the identities in eq. (F.1), we prove the relations in
eq. (F.12):

S

S

S

G =

S

S

S

A

A

G =
(
− 1
Ddq

)
(C4) (0) = 0,

(H.39)

S

A

S

G =

S

A

S

A

A

G =
(
− 1
Ddq

)
(C4) (η) = −C4η

Ddq ,

(H.40)

A

S

S

G =

A

S

S

A

A

G =
(

1
q

)
(C4) (0) = 0,

(H.41)
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A

A

S

G =

A

A

S

A

A

G =
(

1
q

)
(C4) (η) = C4η

q .

(H.42)

Before proving the identities in eq. (F.14), we prove the following:

S S

S

G

U+

O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

O O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ G G

U+ U+ U+ U+

O O

= 0, (H.43)
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S A

S

G

U+

O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

O O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ G G

U+ U+ U+ U+

O O

= 0, (H.44)
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A S

S

G

U+

O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

O O

=
∑1
α=0(−1)1+α+β ∫ dU+

O

O

U+

U †+

G1+α−β

U+

U †+

G1+β−α

=
∑1
α=0(−1)1+α+β ∫ dU+Tr

{
σG1+α−βσG1+β−α

}
= 2

∫
dU+

[
−Tr {σGσG}+ Tr

{
σG2σ

}]
= 2

∫
dU+Tr {σG[G, σ]}

≡ C5, (H.45)
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A A

S

G

U+

O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ Gα G

1−α Gβ G
1−β

U+ U+ U+ U+

O O

=
∑1
α,β=0(−1)1+α+β ∫ dU+ G1+α−β

G1+β−α

O

O

U †+

U+

U †+

U+

=
∑1
α,β=0(−1)1+α+β ∫ dU+Trd

{
TrD

{
U †+G

1+α−βU+
}
OTrD

{
U †+G

1+β−αU+
}
O
}

= 2
∫
dU+

[
− Trd

{(
TrD

{
U †+GU+

}
O
)2
}

+ Trd
{

TrD
{
U †+G

2U+
}

TrD {IDd}O2
} ]

= 2
∫
dU+

[
− Trd

{(
TrD

{
U †+GU+

}
O
)2
}

+DTrd
{

TrD
{
U †+G

2U+
}
O2
} ]

≡ C6 .

(H.46)
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In the above, we define σ = U+(ID ⊗ O)U †+. Using the above, we prove the identities in
eq. (F.14):

S

S

S

G

U+

O

=

S

S

S

S

G

U+

O

+

S

S

S

A

G

U+

O

=
(

1
q

)
(0) +

(
− 1
Ddq

)
(C5) = − C5

Ddq ,

(H.47)

S

A

S

G

U+

O

=

S

A

S

S

G

U+

O

+

S

A
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Using the relations from eqs. (H.27) to (H.30) and the identities from eq. (F.2), we
prove the identities from eqs. (F.16) to (F.19):
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Using the relations from eqs. (H.35) to (H.38) and the identities from eq. (F.2), we
prove the identities from eq. (F.20):
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