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Abstract—Short-term future of automated driving can be
imagined as a hybrid scenario in which both automated and
human-driven vehicles co-exist in the same environment. In order
to address the needs of such road configuration, many technology
solutions such as vehicular communication and predictive control
for automated vehicles have been introduced in the literature.
Both aforementioned solutions rely on driving data of the human
driver. In this work, we investigate the currently available driving
datasets and introduce a real-world maneuver-based driving
dataset that is collected during our urban driving data collection
campaign. We also provide a model that embeds the patterns
in maneuver-specific samples. Such model can be employed for
classification and prediction purposes.

Index Terms—Cooperative driving, Driving dataset, CAV, Ran-
dom Forest, SVM, Connected Vehicles, Autonomous Vehicles

I. INTRODUCTION

Connected and automated vehicles (CAVs) have received
significant attention during the last decade. Especially, the rise
of artificial intelligence and sophisticated machine learning
algorithms sped up the research and development of CAVs.
Commercial level-4 autonomous vehicles [1] are expected to
emerge in the market as early as mid 2020s which will lead
to experiencing a hybrid artificial intelligence (AI)-human sce-
nario. In such hybrid scenarios, autonomous and human-driven
vehicles co-exist on and share the same road infrastructure, and
most importantly, interact with each other. The aforementioned
interaction translates to the concept of human-agent cooper-
ation in mixed-autonomy scenarios, agents, i.e., autonomous
vehicles, have an internal model of human behaviors [2] and
employ that to “manipulate” the behavior of human driven
vehicles, creating a potential cooperation among agents and
humans [3], [4]. Furthermore, by creating an understanding of
human driving patterns, autonomous vehicles are able to act in
a predictive and proactive fashion in order to prevent crashes
and safety-critical situations.

On the other hand, with regards to connected and cooper-
ative vehicles, agents share their situational awareness over
ad-hoc vehicular networks (VANETS), taking advantage of
vehicle-to-vehicle (V2V) communication technologies such
as Dedicated Short-range Communication (DSRC) [5], [6]
and Cellular Vehicle-to-everything (C-V2X) [7]-[9]. Recently,
authors in [10], [11] suggested a novel methodology for V2V
communication known as the model-based communication

(MBC). The main idea behind MBC is utilizing an abstracted
form of the vehicles’ situational awareness, i.e., an abstract
model of their state, as an alternative for the current standard
raw-data communication.

A vehicle’s mobility patterns can be classified mainly into a
dozen of short-term, or small-scale, maneuvers. Among which,
one can refer to maneuvers such as U-turns, lane changes,
left (and right) turns, hard-brakes, joining (and leaving) a
platoon, take-over, etc. Precise detection of such maneuvers
enables engineers and researchers to design robust safety and
collision avoidance systems for automated vehicles. Modeling
a maneuver provides us with an abstract representation of
the vehicle’s state which can be utilized within the con-
text of earlier discussed MBC framework. Furthermore, in a
hybrid human-agent scenario, recognizing a remote human-
driven vehicle’s intention to perform a maneuver will enable
autonomous vehicles to predict and react accordingly [12].

A wide spectrum of sensory data types is available from
each vehicle’s Controller Area Network (CAN) bus which
can be employed to model the mobility patterns and driving
maneuvers. As an instance of the most common features, one
can name steering angle, engine speed, GPS coordinates and
heading, and throttle position. Every specific maneuver has
different class-correlation with the features and thus can be
highly correlated to one and uncorrelated from the other. As an
illustration, a u-turn maneuver is more significantly observable
in the steering-angle/heading domain whereas a hard brake
maneuver stands out in the ground speed space. Figure 1 shows
the steering angle pattern in a given pair of u-turn and left-turn
maneuvers.

The rest of the paper is organized as follows. Section II
presents a brief review on the related work that exist in the
literature. In Section III, we demonstrate the field test and
data collection process and describe the dataset architecture.
In Section IV, we focus on the implemented maneuver classi-
fication algorithms and present the results and analysis before
concluding the paper in Section V.

II. RELATED WORK

It is expected that expressing driving maneuvers using the
above mentioned features will include redundant informa-
tion. From an information theory point-of-view this redun-
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Fig. 1. A comparison between a pair of given u-turn and left-turn maneuvers
and their pattern in the steering angle space and time-domain representation
(sampled with 10 Hz rate).

dancy enables us to achieve high accuracy both in classifi-
cation and regression operations. A few real-world driving
datasets currently exist in the literature which contain recorded
{GPS+CAN} data from human driven vehicles in urban and
highway environments. Among which, we can refer the SPMD
dataset [13] recorded in Ann Arbor and Greater Detroit area
in Michigan, as well as the 100-car near-crash dataset [14]
which focuses on critical near collision scenarios and can
be used for the safety related applications such as forward
collision warning (FCW), and NGSIM dataset [15] which is
extracted from video footage of a highway and includes short-
term maneuvers of vehicles in the field of view of the highway
cameras.

As opposed to the work that focus on the CAN-bus or
GPS data, a variety of research works are interested in the
computer vision aspects of cooperative vehicles and vehicular
communications. Among which, one can refer to the recent
work by the authors in [16] which proposes the idea of
sharing Dynamic Object Maps among vehicles to be used
in cooperative vehicle safety applications. Authors in [17]
study a method based on deep-learning that enables vehicles
to share their situational awareness. The closest perspective to
our approach is probably in [18] in which the authors control
an automated vehicle’s steering utilizing a long short-term
memory (LSTM) deep network and camera view that is shared
between the vehicles.

None of the mentioned works have parsed and labeled
the data into specific maneuvers which adds a burden for
the researchers to manually label the maneuvers in the post-
process stage. A main downside of post-process data labeling
is the low reliability and likelihood of false labeling which can
degrade the desired regression or classification application’s
performance. In this work, we present a maneuver-based real-
world driving dataset for the CAV applications, titled Driving
Dataset for Connected and Automated Vehicles (D2CAV).
The D?CAV dataset contains a large set of logged CAN
bus and GPS data from human-driven vehicles performing a

! Available online on: https://github.com/BehradToghi/D2CAV
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Fig. 2. Imbalanced dataset distribution for containing maneuvers

variety of maneuvers in the Orlando metro area in Florida. We
limited our interest mainly to a narrowed set of maneuvers,
i.e., left (and right) turns at intersections, u-turns, hard-brakes,
lane changes, and approaching intersections.

III. IN-FIELD DATA COLLECTION CAMPAIGN

For the purpose of data collection, we utilized the Ford
OpenXC [19] platform in addition to a Garmin Map-62s
handheld unit as the logging tools. Three drivers with different
driving styles (aggressive, moderate, and conservative) are
asked to drive a 2018 Ford Focus equipped with electric assist
steering and drive-by-wire throttle actuator. Our data collection
team performed ~ 1000 minutes of urban and highway driving
around the University of Central Florida (UCF) campus in
the metro Orlando area. During the field test, a co-pilot was
trained and assigned to manually label the maneuvers using a
custom-made logging interface, designed and implemented in
Connected & Autonomous Vehicle REsearch Lab (CAVREL).

The logged data fields include engine speed, total fuel
consumption since restarting the vehicle, odometer, accelerator
pedal position, torque at transmission, steering wheel angle,
vehicle speed, and fuel level recorded by the OpenXC logger
in addition to latitude, longitude, ground speed, and heading
recorded by the Garmin handheld GPS device. As a matter
of fact, this large number of features provide us with a set of
redundant data which can potentially improve the performance
of the applications implemented and trained utilizing our
dataset.

Our setup includes the OpenXC logger connected to the ve-
hicle’s OBD II connector, the handheld Garmin GPS mounted
on the windshield, and the labeling operator. Prior to per-
forming a driving maneuver, the driver notifies the co-pilot
about his intention and asks them to log the label via the
logging interface. The logging interface automatically ac-
quires the timestamp and records the label to be used in the
post-processing stage. Different maneuvers can take different
lengths of time, as an example, a u-turn is usually a longer
maneuver (in the time domain) compared to a hard-brake
maneuver. Hence, we set a +=10s window for each maneuver
and parse the trip data into smaller sub-trips, each of which
contain an isolated driving maneuver. The data is organized
with a straight-forward arrangement as follows. Each sub-
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Fig. 3. Illustration of a given right-turn maneuver in terms of 4 features, represented in time-domain (sampled with 10 Hz rate).

directory contains the ”.csv” file of the joint GPS+CAN data
of the maneuver as well as the time-domain plots of the
features and a schematic of the sub-trip, i.e., the geographic
representation of the maneuver.

Figure 4 shows the recorded driving path for the full dataset
illustrated on top of the Google Earth™, which contains a wide
variety of driving conditions and maneuvers. Considering the
fact that we utilized two different data sources, i.e., Vehicle
CAN bus and GPS device, leads us to a challenge in the
data collection campaign. These data sources not only have
different data rate but also are not synchronized in the time-
domain. In fact, the GPS logs have an average update rate
in the order of 1 Hz, where the CAN bus data is mostly
consistent on 10 Hz rate. Thus, aggregating the CAN and
GPS data logs is not straight-forward and in order to address
this issue, we interpolated, i.e., up-sampled the GPS logs and
synthetically created timestamps to match with the CAN logs.
Trying different interpolation methods showed us the cubic

Fig. 4. A sample view of the driving path during the data collection campaign
in the UCF campus (map courtesy of Google Earth™)

interpolation provides us with a more realistic vehicle mobility
behavior.

To summarize the discussion on dataset introduction, we
have demonstrated the unbalanced class distribution in Figure
2. It should be noted that higher precision is expected to
be achieved in applying either regression or classification
methods on some maneuvers such as u-turns in comparison
to the less visible (in the recorded data) maneuvers such
as lane changes. This matter will be more elaborated in the
next section. Each sample scenario contains the time series of
the aforementioned logged features, e.g., latitude, longitude,
steering angle, etc. Figure 3 shows an example sub-trip data
of an arbitrary right-turn maneuver.

A. OpenXC Platform

The Research and Innovation Center in Ford Motor Com-
pany have developed a new logging interface compatible with
all new-model Ford vehicles in order to support the research
requirements in the academia and industry. The project is
named the OpenXC [19] platform and includes an OBD II
CAN bus logger and data analysis API. The API can be run
on both Ubuntu machines as well as the Android cell phones
which provided us with more flexibility in the data collection
process.

IV. CLASSIFICATION METHODOLOGY

As it is mentioned earlier in the text, the dataset can
be utilized for both prediction (regression) and classification
purposes. However, in this work we focus on the latter and
apply two common classification methods on the dataset and
measure their performance for different maneuvers. We choose
Random Forest and Support Vector Machine classifiers as the
candidates and compare their performance to make a decision
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Fig. 5. Maneuver classification system architecture: Random Forest classifier
and Support Vector Machine

as the final classifier to be used as the decision block. Figure 5
shows an overview of the system architecture of our approach.

A. Random Forest Classifier

A Random Forest Classifier (RFC) [20] is a tree based
classifier which combines multiple weak learners, decision
trees, to produce a strong learner, so it falls into the family
of ensemble learning algorithms. We choose RFC as one of
the candidates for classification as it is well-known to be
robust with regards to noise, bias and over-fitting. Random
Forest belongs to a class of perfectly high performing and
unambiguous decision maker, therefore, it can significantly
tackle on the higher-order data set which are highly-correlated
as the case for the D2CAV dataset.

Random Forests are trained via the bagging method. Bag-
ging or Bootstrap Aggregating, consists of randomly sampling
subsets of the training data, fitting a Decision Tree to these
smaller data sets, and aggregating the predictions. This method
allows several instances to be used repeatedly for the training
stage given that we are sampling with replacement.

Consider the learning set represented as
{(X1,Y1),...,(Xn,Ys)} which is n iid. observation
from a random vector (X,Y). Vector X = (x1,...,%m)

X € R™ contains predictors, and Y € ¢ where c is class
labels. A classifier T is a mapping from R™ to c. A decision
tree classifier routes the input feature x; € X from the root
of the tree to its leaf. The final class prediction pertaining to
the feature x; can be obtained at the leaf L(T;(z;)), where
T} corresponds to a tree with an index j.

The predicted class for a new data is calculated by majority
vote of trees for that data, which results in more accuracy and
stability.

B. Support Vector Machine

Support Vector Machines (SVMs) are of most simple, yet
efficient, classifiers that can be applied on both linearly and
non-linearly separable data. The SVM classifier enjoys a
bound on the test error rate and can also employ complex
non-linear kernels such as Radio Basis Functions (RBF) and
exponential kernels. Therefore, we chose SVM as our second
classifier candidate to be trained using the D2CAV dataset.

The SVM classifier simply relies on maximizing the margin
between the classifier hyper-plane and the support vectors.
The well-known kernel trick can be utilized in order to
apply non-linear hyper-planes. The SVM algorithm can be
mathematically formulated as follows

1
minimize: ®(w) = inw

yi(wz; +b) > 1

(D
Subject to:

where w is the weight vector, x; is the input data and y; is
the corresponding label.

V. ANALYSIS & RESULTS

As discussed before, we implemented two classification
algorithms on our dataset and carefully measured the per-
formance of each classifier. Before exploring the results and
analysis, it is worth mentioning that one may arise the question
that why the left and right turn maneuvers are being consid-
ered as two separate and independent maneuvers while they
collectively can just simply be referred to as “turns”. In order
to address this question, we made observations on the patterns
of a given left and right turn scenarios from a driving trip.
The steering-angle time-series are illustrated in Figure 6 for
the sake of comparison and as it is obvious from the figure,
left and right turn maneuvers are not exactly symmetric. The
simple reason behind this is the geometry of our roads, as
an example in an intersection of a left-hand-drive road, the
driver needs to traverse a larger radius circle in the left-turn in
comparison to the right-turn. This is also in consistency with
the results shown in Figure 6.

In order to evaluate the classification performance, we
utilized three key performance indicators: F1-score, precision,
and recall. Moreover, we plotted the confusion matrices to
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Fig. 7. The confusion matrix demonstrating the classification performance of
the SVM classifier.

demonstrate the classification performance and errors for each
of the maneuvers. Figure 9 compares performance metrics
for both SVM and RF classifiers. As it is shown in the bar
plots, the SVM classifier demonstrates a noticeably lower
performance, almost in all metrics, compared to the RFC case.
Specifically, the SVM classifier suffers in the case of left
(and right) lane changes and is not able to correctly classify
most of the maneuvers. This may happen due to the intrinsic
similarity between two maneuvers. On the other hand, the
same problem is visible in the confusion matrix shown in
Figure 7 where most of the misclassified data samples belong
to the left and right switches. Another interesting observation
can be made from the confusion matrices. Both SVM and
RFC can classify all hard brake instances while there is a
very plausible reasoning behind this. During the hard brake,
the driver takes off their foot from the accelerator pedal and
puts high pressure on the brake pedal which in turn leads to
accelerator pedal position being dropped to zero alongside the
engine speed and vehicle speed decreasing rapidly. This result
from the confusion matrices is critical to safety applications
in CAVs as a hard brake signs a near-critical case.

The RFC performs better and demonstrates satisfactory
results in terms of classification performance. The Fl-score,
recall, and precision metrics are shown in Figure 9 which
shows that RFC is able to maintain > 80% measure in all
performance metrics. Moreover, the confusion matrix for the
RFC case is plotted in Figure 8 and obviously shows a more
diagonal distribution which translates to a better classification
performance. An interesting and informative discussion could
be analyzing the misclassified cases as some of the maneuvers
have sub-maneuvers in common. As an instance, a right-turn
maneuver is mostly accompanied by a break before performing
the turn. Thus, if the data is not precisely parsed, we may see
more misclassified data samples in this case.
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Fig. 8. The confusion matrix demonstrating the classification performance of
the Random Forest classifier.
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driving maneuvers.

VI. CONCLUDING REMARKS

With the introduction of Connected and Automated Vehicles
and consequently novel technologies for addressing the techni-
cal problems, such as the model-based communication (MBC)
and predictive decision making, the need for human-driven
driving datasets is arising. In this work, we investigated the
currently available datasets and concluded that the literature
lacks a driving dataset in which each data sample is parsed
with regards to driving maneuvers, e.g., left-turn, u-turn, lane-
change. We employed the Ford OpenXC in-vehicle logging
platform for our data collection campaign and recorded ur-
ban driving CAN-bus and GPS data. Such maneuver-specific
dataset enables the future work to benefit from the existing
patterns and commonalities among driving maneuvers. Finally,
two well-known classification algorithms, i.e., Support Vector
Machine (SVM) and Random Forest Classifier (RFC) are im-
plemented and trained using our dataset and their performance



is evaluated on each maneuver. We discuss the results and
show how such trained models can be utilized in cooperative
driving applications.
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