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ABSTRACT:

The source angle localization problem is studied based on scattering of elastic waves in two dimensions by a
phononic array and the exceptional points of its band structure. Exceptional points are complex singularities of a
parameterized eigen-spectrum, where two modes coalesce with identical mode shapes. These special points mark the
qualitative transitions in the system behavior and have been proposed for sensing applications. The equi-frequency
band structures are analyzed with focus on the angle-dependent modal behaviors. At the exceptional points and criti-
cal angles, the eigen-modes switch their energy characteristics and symmetry, leading to enhanced sensitivity as the
scattering response of the medium is inherently angle-dependent. An artificial neural network is trained with ran-
domly weighted and superposed eigen-modes to achieve deep learning of the angle-dependent dynamics. The trained
algorithm can accurately classify the incident angle of an unknown scattering signal, with minimal sidelobe levels
and suppressed main lobewidth. The neural network approach shows superior localization performance compared
with standard delay-and-sum technique. The proposed application of the phononic array highlights the physical rele-
vance of band topology and eigen-modes to a technological application, adds extra strength to the existing localiza-
tion methods, and can be easily enhanced with the fast-growing data-driven techniques.
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I. INTRODUCTION responses not only through local amplitude and phase fields,
but also due to the emergence of singularities in their band
structure. This leads to enhanced angular sensitivity (against
incorrect estimation from adjacent angles) for measurement
along the scattering interface. The objective of this work is
to leverage the micro-structural features in phononic/meta-
material eigen-modes and exploit their angle-sensitive
nature for the purpose of AoA estimation.

An emerging field of study in phononic and metamate-
rial research is the topic of exceptional points (EPs). EPs''
are spectral singularities, initially identified in quantum
mechanics studies. An EP is a point in a parametric non-
Hermitian system, where two or more eigen-modes coalesce
with identical eigenvalues and eigen-modes. The unique
topology of the band structure near the EP degeneracy has
been shown to lead to improved sensitivity.'? In mechanical
systems, abrupt changes in the eigen-modes are identified
near the EPs."*'* Therefore, it is proposed to develop sens-
10 ing devices in various physical setups'>™'’ using EPs.
advantages " as they may allow for sub-wavelength  powever, the EP appears in the literature mostly as a mathe-
response manipulation. Homogeneous medium as the sensor  mjgical and abstract concept because accessing these EPs is
backbone material can only produce plain sinusoidal waves physically difficult [e.g., requires gain units in parity-time
under oblique scattering. The wave phase is simply deter-  (pT) symmetric medium'*'®]. This work studies the eigen-
mined by Snell’s law, and the wave amplitude remains  mode and EP behaviors in phononic crystal systems and
constant along the interface. In contrast, periodic micro-  explores their potential applications, such as source localiza-
structured systems can generate richer features in their  tjon in sonar systems. The research questions to be answered
are (1) how to access the EP(s) in the wave scattering prob-
YEmail: alireza_amirkhizi@uml.edu lem, (2) how an EP affects the scattering behavior with

Traditional angle-of-arrival (AoA) measurements rely
on time-of-flight calculation or finding the maximum signal
strength during antenna rotation,' and their precision is lim-
ited especially when strong noise is present. Among the tra-
ditional phased array approaches, it has been shown that
sensor arrays made of non-homogeneous material will pro-
vide extra information for localization calculations and
effectively enhance the sensing directivity.> Non-
homogeneous media, especially mechanical metamaterials
(MMs) and phononic crystals (PCs), exhibit exotic proper-
ties associated with wave propagation due to the collective
or local behavior of their micro-structures. These micro-
structured media can lead to unique features, such as wave
attenuation,”’ topological insulation,® and angle-dependent
dynamic properties,” breeding new technological opportuni-
ties in controlling wave propagation. In phased array sys-
tems, the use of micro-structured media creates certain
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changing angles of incidence, and (3) how to leverage the
eigen-mode knowledge to develop robust sensing
approaches.

The problem is attacked using a two-dimensional (2D)
stress wave oblique scattering setup. A periodic array of
phononic crystals is used as the sensor medium to collect
signals of oblique stress waves incident from a homoge-
neous medium (see Fig. 1). The wavevector k in this oblique
scattering problem includes two components: k; parallel to
the interface and k, normal to the interface. The parameter
ky is related to the incident angles through Snell’s law in the
incident (homogeneous) domain. For linear elastodynamic
problems without loss or gain mechanism, the governing
equations are self-adjoint (Hermitian) with real-valued
eigenfrequencies, which prohibits the existence of EPs. An
alternative form of governing equations may be arrived at
by solving for the eigen-wavevector component kj(w, ki)
(Ref. 19) and is useful for finding the oblique scattering
wave field when a wave is incident at the interface between
two domains.”’ In such problems, the frequency @ and
wavevector component k; are prescribed as real values
based on the incident wave, and one solves for the complex
k, wavevector normal to the interface. It has been shown
that this modified eigen-problem representation allows for
accessing EPs with real-valued frequencies and wavevec-
tors. This addresses the first research question.

The second question can be answered by analyzing the
ka(w, k) band structure and associated eigen-modes, as this
representation provides the critical opportunity to express
the reflected/transmitted scattering signals at the interface as
a weighted sum of the eigen-modes. Two types of branch
points are identified in this representation of the phononic
band structure. Both types of branch points have angle-
sensitive natures and are the spectral boundaries between
propagating modes and evanescent ones. The first type of
branch point is related to the critical angles?' (CAs), where
one wavevector solution transitions from purely real to
imaginary (or vice versa). The modes associated with the
CAs have zero wavevector component normal to the bound-
ary, which leads to total internal reflection.”?> The second
type of branch point is identified as EPs where two modes
share identical eigenfunctions. In a setup® similar to this
work, unusual energy transport is found at the EPs.
However, the use of EPs for sensing applications has not
been studied in elastodynamic problems. In the present
study, spontaneous symmetry breaking is found at the CAs
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and the EPs, where the modes transition between propagat-
ing bulk modes, which exhibit symmetric eigenfunctions,
and zero-energy edge modes, having asymmetric eigenfunc-
tions. Since the eigen-modes may be used as basis functions
of the scattered wave, the analysis can be effectively con-
ducted within the subspace spanned by the dominant modes.
Such a subspace inherently has angle-dependent features of
the eigen-modes. This motivates the use of the spanned sub-
space to improve the estimation of angle of arrival in
response to the third research question.

The presence of the modal branch points, hence, will
lead to stronger qualitative sensitivity on the angle. To
leverage the knowledge of the rich modal features in sensing
applications, a deep neural network (NN) is constructed to
relate the modal features with the incident angle, thus, pro-
viding an effective tool for estimating the bearing angle.
Modern data-driven methods have the potential to learn hid-
den mechanisms and approximate complicated input-output
relations. Niu et al.>** showed the promising potential of
using three machine learning (ML) methods for estimating
acoustic source ranges. Ozanich er al.*® presented a thor-
ough study on AoA estimation with linear supervised learn-
ing methods and showed that the ML methods lead to
improved resolution over the conventional approach. While
previous works have primarily focused on ML methods with
traditional array setups, we extend the existing methods by
investigating the utilization of micro-structural features for
their potential additional sensitivity, harnessing the potential
of eigen-mode physics, to improve the accuracy of AoA
estimation. In the present study, the source localization
application is approached as a supervised multi-label classi-
fication problem. The eigen-mode behaviors are first studied
in Sec. II. In Sec. III, the eigen-modes associated with each
angle are randomly weighted and summed to serve as the
training input. With a large enough set of these training sam-
ples, the NN can learn and identify the angle-dependent fea-
tures of the subspace spanned by the eigen-modes. Although
the scattering signal is unknown to the trained NN, the
abstract features of its underlying subspace associated with
each angle have been fed into the NN. Therefore, the NN
can accurately identify the incident angle of an unknown
scattering signal. This approach is shown to have significant
improvements compared with conventional localization
algorithms, such as delay-and-sum (DAS), in terms of the
main lobewidth and the sidelobe levels. In addition, the sig-
nal sensitivity comparison between phononic crystals and

FIG. 1. (Color online) (a) The setup of
2D stress wave scattering at the inter-
face between a homogeneous medium
and an array of phononic crystals. Left
and right domains are semi-infinite.
The incident oblique wave is denoted
by the arrow with an angle  measured

homogeneous  pc
medium

(a)
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from the normal to the interface. (b)
Example response amplitude from 77°
incidence along the interface over five

(b) unit cells.
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homogeneous media is presented to highlight the impor-
tance of micro-structural features.

Il. BAND STRUCTURE AND EIGEN-MODE ANALYSIS

In this section, we first briefly revisit the ky(ki,®)
eigenvalue formulation for the oblique scattering problem.
Then we discuss the band structure topology and the eigen-
mode properties of a typical and simple phononic array,
with particular focus on the symmetry breaking at the
branch points.

The studied scattering problem is formulated similarly
as in a previous work?’ except for the different frequency
range and unit cell size used here. An in-plane stress wave is
incident from a semi-infinite domain of homogeneous
medium to a phononic array with an incident angle 0 normal
to the interface, as illustrated in Fig. 1.

For the plane wave propagating problem in the two
semi-infinite domains, it is advantageous to know a priori
the band structure that characterizes the dynamics of each
domain. The common representation of a band structure
presents the eigenfrequency f = w/2n as functions of
wavevector (ky, k,) within the irreducible Brillouin zone.
Figure 2(a) shows the first two eigen-surfaces of the studied
phononic unit cell. Of particular interest for the scattering
problem are the solutions at the constant operating fre-
quency, in this case, 1800 Hz. The intersections of the eigen-
frequency surfaces with a constant frequency plane
(indicated by gray shading) are the eigen-modes of propa-
gating waves. Figure 2(b) shows the equi-frequency con-
tours for frequencies from 1740 to 1920Hz. Certain
branches are found to form collapsed modes. For example,
the red circular markers in Fig. 2(b) denote the coalesced
modes with merging k, values for the same k;. These branch
points are the boundaries of the solutions with real k..
Therefore, the identification of their locations is important
for understanding the scattering physics. It must be noted
that the eigen-modes obtained through this eigenfrequency
analysis only partially constitute the scattering solution,
because (1) the evanescent modes with complex k, values
are absent, and (2) one also needs to consider higher order
modes not inside the irreducible Brillouin zone and select
the correct branches that carry energy in the correct k, direc-
tion (away from the interface). Therefore, an alternative

formulation that can provide the full set of k»(w, k;) solu-
tions is needed.

The displacement and stress solutions in one unit cell
have the form

u;i(xy) = i;(xy) exp [i(k1x; + koxy — wt)] (1

and

oii(x1) = 6i(x1) exp [i(kixy + koxo — ot)]. 2)
Here, u; is the displacement components, ¢;; is the ij compo-
nent of stress tensor, &, is the wavevector component normal
to the interface, and o is the angular frequency. The barred
quantities are the periodic parts within one unit cell. The
wavevector component k; is parallel to the interface and is
hence related to the incident angle 0 through Snell’s law,

kinsin 0 = ky, 3)
where k;; = o/ ¢y is the wavevector of the incident wave,
and ¢4 is the incident wave speed in the homogeneous
medium (longitudinal or shear). The continuity at the inter-
face between two domains requires that for each angle of
incidence, a real-valued kj4 mod2rn is prescribed in the
non-Hermitian eigenvalue problem, from which an infinite
number of &, eigenvalues can be found. With y = [k, 0] and
n = [0, k], the ky(w, k;) eigenvalue problem is formulated
as

A¢ = kBg, )

where the mode shape is described by ¢ = [u,6

_ @’p() V-0 =iy
A_<—C:V()+iC:()®y I ) ©)

b= <—iC :0()®n ioo'n)'

The bold symbols {u,a} represent quantities as vec-
tors, which include the in-plane components, C is the elas-
ticity modulus, and p is the density. The details of this
eigenvalue problem can be found in Ref. 19. An alternative
method for computing complex k, values is to use an

(6)
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FIG. 2. (Color online) Eigenfrequency
band structure of the phononic unit cell
(a) and the equi-frequency contours at
different frequencies (b).

kl h kZh
(a)

2906  J. Acoust. Soc. Am. 154 (5), November 2023

,;;i,’,','l}' 2 1860
1 { 1§ 1800
1740
0
0 0 1

koh
(b)

Wang et al.


https://doi.org/10.1121/10.0022325

optimization approach, which 1is briefly mentioned
in Ref. 28. In the solutions considered here, the frequency
f =/2n = 1.8kHz is constant, and the wavevector com-
ponent k, values are solved as complex eigenvalues for the
varying parameter ;.

A. Scattering band structures

The ky(w,k;) band structures of the homogeneous
domain and the phononic domain are partially shown in
Figs. 3(a) and 3(b), respectively. The complete spectra will
have symmetry with respect to k; = 0. Only the modes that
have physical meanings in the scattering problem are con-
sidered and shown here. Therefore, the phononic band
solved here partially overlaps with the previously shown
equi-frequency contour Fig. 2(b). A physically feasible
eigen-mode of the homogeneous medium, representing the
reflected wave solution, must (1) have non-positive energy
flux vector component F, and (2) have 3k, < 0. Similarly,
to represent a transmitted wave solution, a phononic eigen-
mode must (1) have non-negative energy flux vector compo-
nent F, and (2) have Sk, > 0. The modes violating these
requirements are not taken into consideration. The (1)
requirements ensure that the reflected/transmitted waves
transfer energy away from the interface. The (2) require-
ments prevent infinitely large amplitudes at x, = *o0, given
the solution forms Egs. (1) and (2). For each domain, only
several modes with lowest |Sk;| values are shown in the
band structure. Each of the solved eigen-modes represents a
wave whose spatial features in x, are determined by its &,
wavevector. A mode that has a real &, eigenvalue will prop-
agate and carry energy in x, direction. A mode with com-
plex eigenvalue, on the other hand, only allows the wave to
propagate along the interface and is evanescent in x, direc-
tion. As the incident angle varies, certain modes can transi-
tion from propagating to evanescent and vice versa.

In the reflected solutions [Fig. 3(a)], mode 1 represents
the shear vertical wave reflected from the interface and is a
propagating mode for any incident angle 0. The reflected
mode 2 contains three branches and two CAs (CAl and
CA2) in between them. The real-valued branch from 0° to
30.3° is the longitudinal wave that can propagate in the bulk
of the homogeneous medium. The purely imaginary branch
from 30.3° to 47.2° is the surface mode that does not allow

energy flux along x,. The third branch, corresponding to
reflection angles from 47.2° to 89°, is the shear mode of the
second Brillouin zone and has real k, eigenvalues. The two
CAs at 30.3° and 47.2° are boundaries between propagating
and evanescent modes.

The band structure of transmitted waves in Fig. 3(b) has
more spectral features due to the micro-structure of the lay-
ered medium. Mode 1 has purely real eigenvalues and is,
thus, a propagating mode. Modes 2 and 3 coalesce at the EP,
associated with the exceptional angle (EA: 35.1°). Two CAs
can be found in modes 2 and 3 (CA3, 48.8°; CA4, 78.4°).
The existence of these branch points is not particular to the
selected 1800 Hz frequency and is dependent on the band
topology. Their corresponding k; values vary with fre-
quency, as can be seen in Fig. 2. It is found that the EA
exists from O to 1855 Hz. The CA CA3 appears in the fre-
quency range of 1720-1855 Hz, as does its symmetric coun-
terpart CA4 in the second Brillouin zone.

These special angles are associated with the emergence
or annihilation of energy-carrying branches. At the EP, the
eigenvalues and eigenfunctions of the two modes (2 and 3)
will be identical. From 0° incidence to 35.1° incidence,
mode 2 has purely imaginary eigenvalues, while mode 3 has
real eigenvalues. At the EP, the eigenvalues of the two
modes are identical and close to zero. From EA (35.1°) to
CA3 (48.8°), the eigenvalues of modes 2 and 3 share the
same imaginary parts, while their real parts are negatives of
each other. Modes 2 and 3 become propagating from CA3 to
CA4 (78.4°) and have distinct real-valued eigenvalues. For
angles from CA4 to 89°, modes 2 and 3 again possess
complex-valued eigenvalues. For the entire angle range,
modes 4 and 5 share the same kA [the dotted lines over-
lapped as the right-most curve in Fig. 3(b)]. Their real parts
of kyh are negatives of each other. Due to their complex-
valued k, eigenvalues, modes 4 and 5 are evanescent modes.

B. Modal symmetry and energy flux

In the oblique scattering problem, the reflected/trans-
mitted waves in two domains are composed of all the eigen-
solutions at the corresponding k4 value of the incident
wave. Therefore, the physical properties of scattering sig-
nals are affected by not only the k, eigenvalues but also the
mode shapes. The displacement mode shapes of the periodic

)
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\ FIG. 3. (Color online) Wavevector band

q EA structures of the reflected waves in the

< homogeneous domain (a) and the trans-
mitted waves in the phononic domain (b)
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cell along the interface are analytically obtained from the
eigenvectors in Eq. (4). The normalized amplitudes and
complex arguments are shown for different incident angles,
in Figs. 4 and 5, respectively. The presented four mode
shapes are the displacement mode shapes corresponding to
the first four modes in Fig. 3(b). The unit cell inversion cen-
ter is set to be x; = 0. For each mode and each angle 0, the
complex displacements are normalized so that
N@™, a1 | =1, and S\ (x = —h/2)] =0, where
the superscript denotes the mth mode, and the bold symbol
denotes the vector form of a quantity along x;. For modes 2
and 3, three vertical dashed lines are plotted at EA (35.1°),
CA3 (48.8°), and CA4 (78.4°).

It can be seen that, for modes 1 and 4, the displacements

_(1,4) . . .
u; ;" are relatively smooth and continuous with respect to
the variation in angle, as their eigenvalues k§1’4)(0) do not
undergo branch crossing or coalescence. Mode 5 is not
shown here but has a similar nature to mode 4. For modes 2
and 3, clear transitions in ﬁff) can be found at the three
special angles marked by the dashed lines, both in their
amplitudes and arguments. Spectral transitions in the &,
eigenvalues, therefore, lead to drastic changes in the associ-
ated wave mode shapes. Although only the displacement
components of the mode shapes are shown, the stress com-
ponents also share similar transitions at these angles.

The mode shape patterns change their symmetries as
well when the incident angle sweeps through the EA and
CAs. It turns out that the EP and CAs have underlying rela-
tions with spontaneous symmetry breaking. The phononic

respect to its inversion center x; = (. The governing equa-
tion is invariant if the phononic parity is reversed. Along a
line of constant x,, the displacement wave associated with a
certain mode with a positive k; value is

iy (x, 1) = iy 2 (1)  exp (i((Py 2 (x1) + Po + kixy — 1)),
@)

where the superscript + denotes a wave with positive k;
value, @ (x;) is the complex argument of i »(x;), and the k,
dependence is omitted since x; is constant here. Here, ¢, is
an arbitrary real phase applied to the eigen-mode displace-
ment field and should be consistent for both u; and u,.
Similarly, for the same wave at —x;, we have

uy o (=x1,0) =i 2(—x1)|exp (i(@ 1 o (—x1) +Po —k1x1 — 01)).

(3)

Now we consider a wave of the same mode propagating in a

reversed direction, the wavevector component k; becomes
negative, and the displacement at —x; is

uy o (=x1,1) = i1 2(=x1)[exp (i(—=@ 2 (—x1) — Pg
+ kix; — wt)). )
Equation (9) is in such a form because R[u],(7)]

= R[u;,(—1)] must be satisfied. Given the parity symmetry
of the unit cell, it is expected that

+ —u (=
unit cell shown in Fig. 1 possesses parity symmetry with o0, 1) = g5 (=21, 1) (10)
12 mode #1 mode #2 mode #3
0.02
=
~
g
0.01
-1/2 0
0 30 60 89 0 30 60 89
0 (degree) 0 (degree) 0 (degree)
(a) w; amplitudes
" mode #1 mode #2 mode #3 mode #4
0.02
= -
= ;
g -
0.01
-1/2 0
0 30 60 89 0 30 60 89 0 30 60 89
0 (degree) 0 (degree) 0 (degree) 0 (degree)

(b) @y amplitudes

FIG. 4. (Color online) Normalized mode shapes evaluated along the x; interface as functions of incident angle 6: (a) amplitudes of i;; (b) amplitudes of i15.
The angles associated with EP and CAs are marked by the vertical dashed lines in the mode 2 and 3 graphs.
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FIG. 5. (Color online) Normalized mode shapes evaluated along the x; interface as functions of incident angle 0: complex arguments of (a)u; and (b) u5.
The angles associated with EP and CAs are marked by the vertical dashed lines in the mode 2 and 3 graphs.

for a mode in the symmetry-unbroken phase. Equation (10)
reveals that a symmetry-unbroken mode shape (for the mth
mode) must satisfy

2
o) + 6\ (—x1) = 25"

= const. (11D
Since the displacement vector is normalized in such a way
that qﬁsm)(—h/Z) =0, we have (Z)f)m) = 0. In other words, the
amplitudes must be symmetric with respect to the cell inver-
sion center, while the arguments must be anti-symmetric. It is
shown in Figs. 4 and 5 that the symmetry-unbroken condi-
tions in Eq. (11) are satisfied for branches with purely real &,
eigenvalues, i.e., mode 1 from 0° to 89°, mode 2 from
CA3=48.8° to CA4=78.4°, and mode 3 from 0° to EA
and from CA3 to CA4. For the branches with complex eigen-
values (e.g., modes 4 and 5 and partially modes 2 and 3), the
corresponding modes are in symmetry-broken phases. The
spontaneous symmetry breaking occurs in reflected modes as
well. Between the two CAs, the reflected mode 2 has imagi-
nary k, and displacement mode shapes that violate Eq. (11).
For all the branches with broken modal symmetry, their aver-
aged energy fluxes at the interface will be zero.

For the mth mode, its energy flux at the interface can be
calculated as

(m) SERNS IO s _(m) Ny
FP) = | =3 R[a ) 0" ()|, 12)
—h/2
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where the summation is done over j € {1,2}, and super-
script * denotes complex conjugate. The flux represents the
time-averaged stress wave intensity in x, direction. Figures
6(a) and 6(b) show the fluxes of the homogeneous medium
modes and the phononic crystal modes, related to the bands
in Fig. 3. Each mode shape used for this plot is normalized
so that ||[ﬁ(1m), ﬁ(z'")]TH = 1. In comparison with Fig. 3, one
finds that an eigenvalue branch with complex-valued k, (see
Fig. 3) will have zero flux at the homogeneous-phononic
interface, e.g., reflected mode 2 between CA1l and CA2 in
Fig. 6(a) and transmitted mode 2 between 0° and CA3 in
Fig. 6(b). This is expected since the modes with complex k,
are evanescent in x, and only propagate along the surface
(x; interface). For the modes that possess branch points, the
first order derivatives of their fluxes with respect to 60
become discontinuous at the special angles CAs and the EA.
Therefore, these modes (mode 2 of the homogeneous
medium, modes 2 and 3 of the phononic) undergo phase
transitions at the CAs and the EA. On the other hand, a
branch with real-valued k; is capable of transporting energy
in x,, and its flux is non-zero. The branches with zero net
flux are exactly the ones in the symmetry-broken phase.

The breaking of symmetry affects the particle motion
trajectories as well. In time domain, the shape of the particle
deformation given by R[u;(x1,17), us(x1,¢)] is in general an
ellipse or a circle. A special case occurs when
|£uy — Luy| € {0, 7}, and the motion will be polarized as a
straight line. Furthermore, the handedness of the trajectory
is determined by the phase difference between u; and u,.
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0 (degree)

(a)

The particle moves clockwise in time if £ (u;/uy) < 0. The
handedness becomes counterclockwise if Z (u;/up) > 0.
Based on the periodicity Z (u; /uy)(x1) = £ (uy/uz)(x1 + h)
and the parity symmetry Eq. (11), it can be seen that, only
when k, is purely real, the motions at cell inversion centers
x; =0, =h/2 will be polarized as lines, and the motions at
x1 and —x; must have reversed handedness. Three examples
are shown in Fig. 7. The particle trajectories are plotted for
five points uniformly sampled along x;. The lack of symme-
try for complex k, is evident here. Even for a purely imagi-
nary k,, the behavior is distinct from that of a purely real &,.

To summarize, the CAs and the EPs are identified as
the spectral branch points between the complex and real
eigenvalue branches. As the incident angle passes across
these limits (CAs and EAs), certain eigen-mode(s) will
switch between propagating ones and evanescent ones. A
propagating mode carries energy in x, while an evanescent
one only propagates along the x; interface. At the branch
points, spontaneous symmetry breaking occurs in the corre-
sponding mode shapes. The modal energy fluxes will vanish
in the symmetry-broken phases. The geometry and handed-
ness of the motion trajectories are highly dependent on the

- , t=T
20 degree mode #2
T Fal W
A AN
t=20
0.5 0 0.5
Il/h

—1
2
3
—
—5 FIG. 6. (Color online) Time and unit
cell averaged modal fluxes inx;
: direction: (a) modes of the homoge-
\ _— neous medium and (b) modes of the
~— phononic crystal.
EA CA3 60 CA4
0 (degree)

(b)

k, eigenvalues as well. The types of k, eigenvalues of the
phononic modes are summarized in Fig. 8. The angle-
dependent modal behaviors, summarized in Table I, will
cause qualitative changes on the scattering signal and will
be used as the base of the proposed sensing application.

lll. SOURCE LOCALIZATION

Section II presents the eigen-analysis of the phononic
medium and shows that the mode shapes vary drastically for
different angles of incidence due to the existence of the
branch points. In this section, we examine the oblique scat-
tering responses and propose a deep-learning approach for
source localization, based on the understanding of modal
properties and their influences on the measured signals.

A. Scattering responses

In a scattering configuration (with far-field assumption),
the displacement and stress fields may be written as
weighted summations of all the potential mode shapes (the
lowest orders of which are shown in Sec. II). On the

. . t=T
40 degree mode #2
%0“ I Lo \
CINJ T
t=20
0.5 0 0.5
xl/h
(b)
t=T

Z'Q/h
o

-0.5 0

0.5

FIG. 7. (Color online) Examples of particle trajectories. (a) Case of imaginary k»; (b) case of complex k,; (c) case of real k5.
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FIG. 8. (Color online) Summary of k, eigenvalue types for the phononic
eigen-modes.

transmission side of the interface (phononic domain) where
the measurements are generally made, the field quantities
are

ui2(0,x1,x2) = ZnT(”)IZ(&) exp [i(kl(G)xl + k§">x2)],

aii(ﬁ,xl,xz) = ZnT(”)a'l(j”) CXP I:l(kl (H)Xl + kgn))(,'z)] y
(13)

where T is the coefficient of the nth transmitted mode and
can be determined in a number of ways, including one based
on Betti—Rayleigh reciprocity.*’

The response of the phononic array, as described in Eq.
(13), is first computed and then compared to that of a homo-
geneous medium to understand and highlight the effects of
the micro-structures. For this comparison, the operating fre-
quency and the incident/reflected domain material remain
the same. The transmitted homogeneous domain has the fol-
lowing material properties: Lamé constants A = 51.1 GPa,
it = 26.3 GPa, and density p = 7800kg/m?>. The calculation
of the solution follows standard analytical techniques,®
which are omitted here. To assess the angular sensitivity,
the Euclidean distance is computed between signals from
adjacent angles,

D(0) = [[s(0) — (0 + 60)]],.- (14)

Here, 00 = 1° is used, and a different value can also be used
depending on the angular resolution of interest. The

TABLE I. Modal properties for different types of &, eigenvalues.

k> Real Imaginary Complex
Eigen-mode symmetry Unbroken Broken Broken
Flux Non-zero Zero Zero
Trajectory at inversion center Line Ellipse Ellipse

Geometry” Anti-symmetric Symmetric Asymmetric

Chirality” Anti-symmetric Symmetric Asymmetric

“The shapes of the trajectories with respect to repeating unit cell (RUC)
inversion center.

"The handedness directions of the trajectories with respect to RUC inver-
sion center.
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FIG. 9. (Color online) Signal distance comparison between PC and homo-
geneous systems. Higher values for the PC case imply more distinguishable
angular responses over the adjacent angles.

response s is the measured oy, quantity along one unit cell
interface at the presumed sensor locations and is consis-
tently normalized. Such distances are shown in Fig. 9 for
both the PC and homogeneous system cases.

For the homogeneous medium, the eigen-modes and
inherent scattering responses along the measurement inter-
face always manifest as sinusoidal waves, regardless of the
nature of the energy carried by the wave. This is because of
the absence of micro-structural features in the medium. As a
result, both eigen-modes appear identical along the measure-
ment interface after amplitude normalization. Signal distan-
ces of consistently lower values are observed for the
homogeneous medium, indicating greater similarity between
s(0) and s(0 + 1), particularly when the incident angle
approaches 90°. This suggests that sensing systems with a
homogeneous medium as the backbone material may be
more susceptible to errors and noise.

In contrast, higher values of D(0) are observed for the
phononic system, with several peaks at specific angles (CAs
and EA, marked by black vertical lines), indicating
increased sensitivity to angles. An additional peak near 46°
is marked by a green vertical line, which corresponds to an
anti-resonance behavior that has previously been reported®’
and explained.™

Owing to the rich modal behaviors of the PC system,
the signals of the phononic medium show stronger angle
dependency, and a larger variation in the adjacent response
signals is observed. The enhanced sensitivity, especially
near the special angles, allows for better differentiation of
the scattering responses from different angles of incidence,
creating promising potential for source localization
applications.

B. Angle classification

The proposed source localization strategy leverages the
knowledge of feature-rich modal behaviors and is stated as
follows. The localization approach first seeks advantages
from the existence of branch points (EP and CA). As the
participating eigen-modes undergo symmetry breaking at
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the exact angles associated with the branch points, the mea-
surable responses exhibit qualitative changes in addition to
the quantitative increase/decrease in the amplitudes. It is
observed through the signal distance comparison (Fig. 9)
that local peaks exist at these special angles, which indicate
relatively distinct response behaviors across these angles.

While the presence of EP/CA only promotes the sensi-
tivity at the certain relevant angles, the phononic response at
other angles still possesses micro-structural features (i.e.,
unlike simply sinusoidal waves in the homogeneous case).
These micro-structural features provide angle-dependent
information within each unit cell through previously deter-
mined eigen-modes. From the linear algebra point of view,
the scattered field is expected to lie in the subspace M(0)
spanned by the first few dominant modes. Assuming that n,,
measurements are taken per unit cell along the interface,
and n,. cells are used, we have

s(0) € M(0) = span{m()(0), m®'(0), m®(0)} ¢ ",
15)

where s is the frequency domain complex amplitudes mea-
sured at the sensors with length n,n., and m® is the nth
mode shape vector (stress or displacement quantities) of the
same length sampled at the same locations.

With the modal features showing sensitive angular
dependence, especially in their symmetry properties, both
the scattered field and the underlying subspace M(0) will
inherently possess high variance with respect to the angles.
For any complex vector s taken from measurement, if it is
identified as an element of subspace M(#), then the incident
angle is 0. This method takes advantage of the fact that the
subspace spanned by the dominant eigen-modes is sensitive
to incident angles. Therefore, a suitable data processing
method is needed to highlight and identify such information.
To implement localization, artificial neural networks
(ANNSs) can be used to learn and extract the abstract features
of the subspace M(0) based on the modal knowledge.

In the following, an example of source localization is
shown using a feed-forward deep neural network (DNN)
setup. Notice that other NN architectures, such as convolu-
tional NNs, can also be used for this purpose. In brief, the
NN is trained using randomly weighted and summed mode
shapes that span the response subspace and contain the
angle-sensitive features for the NN to learn. The data proc-
essing procedures and the detailed implementation of the
NN are presented in Appendix A. The quantity selected for
measurement in this example is the normal stress component
d1,. For practical measurement considerations, one can use
surface mount pressure sensors or optical methods, such as
interferometry, to collect the response signals. Alternatively
(and perhaps more suitably in practice), one can also employ
piezoelectric materials in the micro-structured sensor
design, which will convert stress into electric signals.

With the NN trained and converged, the test set, which
consists of the scattering signals from 1° to 89° (calculated
in this case based on the Betti-Rayleigh reciprocity
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principle®’), is then fed into the NN to verify the sensing
performance. The signals used here are slightly corrupted
with additive white Gaussian noises added to the frequency
domain complex amplitude. The signal-to-noise ratio (SNR)
is 25 dB. The localization performance of the trained NN is
compared with that of a conventional method, DAS, which
is applied to the same phononic response data. A simplified
DAS algorithm is used here and is shown in Appendix B.
Detailed studies of DAS can be found in the literature.*'-*?
Figure 10 shows the performance comparison between DAS
and DNN. While the branch points and mode shapes are pre-
sent for the same system, the DAS method does not benefit
from these micro-structural features. This is because the
DAS approach relies on the Fourier transform, which
focuses on the signal periodicity and is not designed to pick
up the micro-structural features. The DAS [Fig. 10(a)] pro-
duces wider main lobes and has higher side lobes. On the
contrary, the DNN approach takes advantage of the modal
information and produces [Fig. 10(b)] sharp peaks at the
predicted angles. The sidelobe levels are significantly sup-
pressed. The DNN also leads to higher precision (93.26%)
in identifying incident angles compared to the DAS
(84.27%). A detailed example can be seen in Fig. 10(c),
where the DNN outperforms the DAS and leads to the cor-
rect angle of incidence. However, the trained DNN is not
fully error-free either. In Fig. 10(d), for instance, the DNN
mistakenly predicts the 88° angle to be 87°. The end-fire
sources present challenges for any AoA estimation algo-
rithm. Improved performance may be achievable by adjust-
ing the NN architecture and fine tuning the hyper-
parameters or, more fundamentally, by design of micro-
structure for higher modal sensitivity at such angles of inci-
dence. In general, the proposed approach using the NN to
identify angle of incidence shows strong potential and bene-
fits in the localization application. By incorporating micro-
structural features and utilizing the eigen-mode physics, this
approach adds extra strength and can be implemented as a
parallel procedure to the existing ML-based approaches.

IV. CONCLUSION

In this work, we exploit the eigen-wavevector band
structure of micro-structured media under oblique scattering
and present the sensing potentials of the micro-structural
responses based on deep learning of the angle-dependent
modal features. In the studied oblique stress wave scattering
problem, the modal symmetry breaking at the CAs and the
EPs is identified and discussed in detail through its modal
shape symmetry, flux, and polarization. It is understood that
the scattering signals lie predominantly in the subspace
spanned by the lower eigen-modes, and this subspace has
inherently strong dependence on the incident angle.

We use the angle-dependent eigen-modes as the train-
ing data to develop a ML approach for source localization.
An ANN is trained with random sampling of the subspace
spanned by the eigen-modes as the training input. The
trained NN is able to identify the angle-dependent features
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FIG. 10. (Color online) Localization
outputs of DAS and DNN algorithms
applied to the same collected data set
and sensors. To compare between two
methods, all the outputs are re-scaled
from O to 1 and are shown in the linear
scale. (a) DAS, 84.27% accuracy; (b)
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of the modal subspace and shows major improvements in
identifying the angle of incidence based on scattering as
input test data in comparison with the standard DAS
approach, in terms of sidelobe size and main lobewidth.
Such an approach can be applied to localization problems
with a generic sensor domain whose 2D eigen-modes are
pre-extracted for ML.

The scope of this paper is limited to computational
investigation, and the example shown is a theoretical proof
of concept. Of practical importance is the evaluation of
imperfection effects, such as potential defects in the period-
icity, their influences on the EPs, and the resulting error
bounds. However, as existing computational methods
require perfect periodicity in the boundary condition, we
suggest that such an uncertainty analysis should be the sub-
ject of a future study.

To summarize, the proposed method

* highlights and utilizes the physics of the band structure
and eigen-modes for sensing purposes;

» shows that ANNs can be trained using eigen-modes in
order to identify incident angles;

e can be continuously improved with the fast-growing
deep-learning techniques; and

 can be optimized through careful micro-structural design,
leading to feature-rich and wavevector-sensitive modal
subspaces.

While the developed NN shows relatively successful
identification of each angle of incidence, such an approach
essentially relies on the fact that the signals are composed of
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(d)

known modal components. Therefore, the sensing robust-
ness is subject to variation in the modal response, although
the accuracy can be numerically optimized through the
training process. To develop a more physically robust
approach, we suggest further leveraging the topological fea-
tures in the band structure and mode shapes and effectively
amplifying the switching in energy and symmetry of certain
modes at the branch points. To this end, one might seek to
develop kernels that highlight the mode-switching behaviors
near CAs and EPs by differentiating the expected scattering
response at neighboring angles. From the design perspec-
tive, two approaches can be considered to increase the angu-
lar sensitivity over many angles of interest. The first method
would be to seek micro-structural designs with tailored geo-
metrical or material features, so that the band structure
exhibits a relatively large number of branch points. These
branch points would create finer regions in the angular
space, and between different angle regions the response
would be inherently different. The second approach is to
manifest only one branch point instead of many and focus
on the response variation across this particular angle. By
rotating the sensor array and simultaneously evaluating the
collected data, abrupt changes will be observed whenever
the incoming angles align with the branch point angle, thus,
providing the angle(s) of arrival with high accuracy.
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APPENDIX A: NN IMPLEMENTATION
1. Data preprocessing

In the example here, 1, = 6 measurements are taken per
unit cell, and .= 10 cells are used in total. The data collec-
tion points are measured along the interface x, = 0 with a
uniform spacing of //6. Such a sensor array is referred to as
a uniform linear array (ULA).

The input to the NN will represent complex vectors in
M(0) in the training stage, and the output will indicate the
angle 0. For each incident angle 0, 2100 training samples
are prepared and labelled by the associated integer angle
0 € [1°,89°]. Each training sample is given by

t(0) = cVmV(0) + cPm?(0) + PmP(9). (A1)
Here, m")(0) is the nth o;; mode shape vector of length
npn. associated with incident angle 0, and it includes the
ik; (0)x, phase. The complex coefficient ¢ of each mode is
randomly selected in such a way that both ¢ and S
have uniform distributions between —0.5 and 0.5. A valida-
tion set is prepared in the same fashion and consists of 450
labelled samples v(0) for each value of 0. Unlike the train-
ing and validation sets, the test set consists of the scattering
signals s instead of random vectors in M(0). It should be
highlighted that the test set is unknown to the NN and will,
therefore, provide the evaluation of the sensing
performance.

It is necessary to normalize input data properly to ren-
der it independent of source strength. The complex vectors
b =t, v, ors are normalized so that

bl = 1. (A2)
Then the complex vectors b =t, v,or s are converted into
real-valued arrays b’ before feeding into the NN,

[b|
cos Zb
sin Zb

b/ _ c RSnpn(.. (A3)

The amplitude and angle operators are applied to each com-
ponent of vector b separately. The redundancy of applying
the sin and cos operators separately is intentional.

2. NN

In this example, a feed-forward NN is used for deep
learning of the eigen-modes and for classifying the incident
angle of unknown signals. The NN architecture is shown in
Fig. 11. It includes an input layer with 180 neurons for
n,=6 and n.=10. The NN parameters, such as layer and
node number, are determined using a hyper-parameter
search, as proposed in the literature.?® The input array is for-
matted based on Eq. (A3). The output layer has 89 neurons,
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FIG. 11. The feed-forward (fully connected) NN architecture. The numbers
of neurons (excluding the bias unit) are labelled under the layers. The bias
units of the first five layers are not shown.

with each representing an integer angle € [1°,89°] through
one-hot encoding. The angle labels of the training and vali-
dation samples are represented by binary vectors of length
89. It is also possible to use a single continuous output as
the predicted angle. However, the discretized output layer is
used here for future extension of multi-source applications.

At the hidden layers (2-5), the NN operation is as fol-
lows. Let s; denote the number of neurons (bias unit not
included) of the jth layer. The neuron values at the jth layer
can be written as a column vector a¥). The vector at) has a
length of s; + 1 to include the bias unit (for j < 5). For
example, the training input is al) = [1,¢]", and t' is a real
vector of length 180. The value of each neuron is obtained
by first computing a weighted sum of all neurons (with the
bias unit) in the previous layer. This can be written as a
matrix calculation,

V) — @U*l)a(/*l)’ (Ad)
where ®U~Y is an s; by s;_1 + 1 real matrix representing the
connection weights between layer j — 1 and layer j. Then the
batch normalizing transform is applied to the updated vector
zU) to obtain z'). The batch normalization effectively re-
centers and re-scales the data array to achieve faster and
more stable performance of the NN.** This is followed by a
non-linear activation using the rectified linear unit (ReLU)
function,

ReLU(x) = max(0,x). (AS)
The ReLU activation is widely chosen for NNs due to its
multiple advantages,®® such as better gradient propagation
and computational efficiency. Finally, the updated state of
the layer is given by

al) = ReLU(z"). (A6)
For the output layer, we have
79 = @%al), (A7)

The final output is activated through the sigmoid function,

1

© _ g6y L
a (Z ) 1+6Xp(—l(6>)

(A8)
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The sigmoid function, for each output neuron, returns a
value in the range O—1. The output h = a(® predicts the
probability of each angle.

The NN is first randomly initialized. In the training pro-
cess, the training set (2100 samples per angle) is randomly
separated into 25 mini-batches and fed into the NN for 100
epochs. At each training iteration, one batch of training data
is passed through the NN. A cross-entropy cost function® is
then evaluated as

N K
J(P) - _]l\]z Z(Ti.n lOg (hi,n) + (1 - Ti,n) 10g (1 - hi,n))7

n=1 i=1

(A9)

where N = 2100 % 89/25 and K =289 are the numbers of
samples and incident angles, respectively. The target value
of the ith output neuron for the nth sample is 7;,, € {0, 1}.
The output value of the ith neuron for the nth sample is
hin €10, 1]. Here, the vectorized variable P contains all
the NN parameters to be optimized, including the connec-
tion weights O, the offset factors, and the re-scale factors.
At the end of each iteration, the cost J and its gradients
with respect to P are evaluated. Then the parameters P are
updated based on gradient descent and will be used for the
next iteration. The training process aims to minimize the
cost and find the best set of NN parameters. Figure 12
shows the convergence of the training accuracy for each
iteration.

The final training accuracy for the last batch is
93.93%. Then the NN is tested using a validation set that
has 450 labelled samples per angle. The validation set is a
secondary set of data that is not learned by the NN and
can, therefore, provide an unbiased evaluation of the NN
fitness. In this case, the accuracy for the validation set is
93.96%. Recall that all the samples in the training set and
the validation set are made up by randomly weighted
eigen-modes. The relatively good accuracy achieved on
these eigen-modes indicates that the subspace spanned by
the eigen-modes indeed has angle-sensitive features that
can be learned by the NN.

100

IM’ T
80f
60' /

40¢

accuracy %

20(/

500 1000 1500 2000 2500
iteration

FIG. 12. (Color online) The convergence plot shows the training accuracy
for each iteration (mini-batch).
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APPENDIX B: DAS

DAS is one of the fundamental source localization algo-
rithms. It utilizes the spatial discrete Fourier transform to
identify the dominant wavevector components/the incident
angle. The DAS output for a given signal s is

¥(@) = w(d)(s +n), (B1)

where y(¢) is the beamformer output for trial angle ¢, *
denotes complex conjugate, the signal s is a column vector
associated with an unknown angle, and n is the additive
noise. The weight array is

w(p)=(1

- exp (i(mpne

exp (ikiy,d sin @)  exp (2ik;,d sin ¢)

— 1)kind sin q,’))) , (B2)

where k;, is the incident wavevector, d is the sensor dis-
tance, and npn. is the total number of sensors. The trial
angle ¢ that maximizes y is the evaluated angle of
incidence.
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