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ABSTRACT:
The source angle localization problem is studied based on scattering of elastic waves in two dimensions by a

phononic array and the exceptional points of its band structure. Exceptional points are complex singularities of a

parameterized eigen-spectrum, where two modes coalesce with identical mode shapes. These special points mark the

qualitative transitions in the system behavior and have been proposed for sensing applications. The equi-frequency

band structures are analyzed with focus on the angle-dependent modal behaviors. At the exceptional points and criti-

cal angles, the eigen-modes switch their energy characteristics and symmetry, leading to enhanced sensitivity as the

scattering response of the medium is inherently angle-dependent. An artificial neural network is trained with ran-

domly weighted and superposed eigen-modes to achieve deep learning of the angle-dependent dynamics. The trained

algorithm can accurately classify the incident angle of an unknown scattering signal, with minimal sidelobe levels

and suppressed main lobewidth. The neural network approach shows superior localization performance compared

with standard delay-and-sum technique. The proposed application of the phononic array highlights the physical rele-

vance of band topology and eigen-modes to a technological application, adds extra strength to the existing localiza-

tion methods, and can be easily enhanced with the fast-growing data-driven techniques.
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I. INTRODUCTION

Traditional angle-of-arrival (AoA) measurements rely

on time-of-flight calculation or finding the maximum signal

strength during antenna rotation,1 and their precision is lim-

ited especially when strong noise is present. Among the tra-

ditional phased array approaches, it has been shown that

sensor arrays made of non-homogeneous material will pro-

vide extra information for localization calculations and

effectively enhance the sensing directivity.2 Non-

homogeneous media, especially mechanical metamaterials

(MMs) and phononic crystals (PCs), exhibit exotic proper-

ties associated with wave propagation due to the collective

or local behavior of their micro-structures. These micro-

structured media can lead to unique features, such as wave

attenuation,3–7 topological insulation,8 and angle-dependent

dynamic properties,9 breeding new technological opportuni-

ties in controlling wave propagation. In phased array sys-

tems, the use of micro-structured media creates certain

advantages10 as they may allow for sub-wavelength

response manipulation. Homogeneous medium as the sensor

backbone material can only produce plain sinusoidal waves

under oblique scattering. The wave phase is simply deter-

mined by Snell’s law, and the wave amplitude remains

constant along the interface. In contrast, periodic micro-

structured systems can generate richer features in their

responses not only through local amplitude and phase fields,

but also due to the emergence of singularities in their band

structure. This leads to enhanced angular sensitivity (against

incorrect estimation from adjacent angles) for measurement

along the scattering interface. The objective of this work is

to leverage the micro-structural features in phononic/meta-

material eigen-modes and exploit their angle-sensitive

nature for the purpose of AoA estimation.

An emerging field of study in phononic and metamate-

rial research is the topic of exceptional points (EPs). EPs11

are spectral singularities, initially identified in quantum

mechanics studies. An EP is a point in a parametric non-

Hermitian system, where two or more eigen-modes coalesce

with identical eigenvalues and eigen-modes. The unique

topology of the band structure near the EP degeneracy has

been shown to lead to improved sensitivity.12 In mechanical

systems, abrupt changes in the eigen-modes are identified

near the EPs.13,14 Therefore, it is proposed to develop sens-

ing devices in various physical setups15–17 using EPs.

However, the EP appears in the literature mostly as a mathe-

matical and abstract concept because accessing these EPs is

physically difficult [e.g., requires gain units in parity-time

(PT) symmetric medium13,18]. This work studies the eigen-

mode and EP behaviors in phononic crystal systems and

explores their potential applications, such as source localiza-

tion in sonar systems. The research questions to be answered

are (1) how to access the EP(s) in the wave scattering prob-

lem, (2) how an EP affects the scattering behavior witha)Email: alireza_amirkhizi@uml.edu
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changing angles of incidence, and (3) how to leverage the

eigen-mode knowledge to develop robust sensing

approaches.

The problem is attacked using a two-dimensional (2D)

stress wave oblique scattering setup. A periodic array of

phononic crystals is used as the sensor medium to collect

signals of oblique stress waves incident from a homoge-

neous medium (see Fig. 1). The wavevector k in this oblique

scattering problem includes two components: k1 parallel to

the interface and k2 normal to the interface. The parameter

k1 is related to the incident angles through Snell’s law in the

incident (homogeneous) domain. For linear elastodynamic

problems without loss or gain mechanism, the governing

equations are self-adjoint (Hermitian) with real-valued

eigenfrequencies, which prohibits the existence of EPs. An

alternative form of governing equations may be arrived at

by solving for the eigen-wavevector component k2ðx; k1Þ
(Ref. 19) and is useful for finding the oblique scattering

wave field when a wave is incident at the interface between

two domains.20 In such problems, the frequency x and

wavevector component k1 are prescribed as real values

based on the incident wave, and one solves for the complex

k2 wavevector normal to the interface. It has been shown

that this modified eigen-problem representation allows for

accessing EPs with real-valued frequencies and wavevec-

tors. This addresses the first research question.

The second question can be answered by analyzing the

k2ðx; k1Þ band structure and associated eigen-modes, as this

representation provides the critical opportunity to express

the reflected/transmitted scattering signals at the interface as

a weighted sum of the eigen-modes. Two types of branch

points are identified in this representation of the phononic

band structure. Both types of branch points have angle-

sensitive natures and are the spectral boundaries between

propagating modes and evanescent ones. The first type of

branch point is related to the critical angles21 (CAs), where

one wavevector solution transitions from purely real to

imaginary (or vice versa). The modes associated with the

CAs have zero wavevector component normal to the bound-

ary, which leads to total internal reflection.22 The second

type of branch point is identified as EPs where two modes

share identical eigenfunctions. In a setup23 similar to this

work, unusual energy transport is found at the EPs.

However, the use of EPs for sensing applications has not

been studied in elastodynamic problems. In the present

study, spontaneous symmetry breaking is found at the CAs

and the EPs, where the modes transition between propagat-

ing bulk modes, which exhibit symmetric eigenfunctions,

and zero-energy edge modes, having asymmetric eigenfunc-

tions. Since the eigen-modes may be used as basis functions

of the scattered wave, the analysis can be effectively con-

ducted within the subspace spanned by the dominant modes.

Such a subspace inherently has angle-dependent features of

the eigen-modes. This motivates the use of the spanned sub-

space to improve the estimation of angle of arrival in

response to the third research question.

The presence of the modal branch points, hence, will

lead to stronger qualitative sensitivity on the angle. To

leverage the knowledge of the rich modal features in sensing

applications, a deep neural network (NN) is constructed to

relate the modal features with the incident angle, thus, pro-

viding an effective tool for estimating the bearing angle.

Modern data-driven methods have the potential to learn hid-

den mechanisms and approximate complicated input-output

relations. Niu et al.24,25 showed the promising potential of

using three machine learning (ML) methods for estimating

acoustic source ranges. Ozanich et al.26 presented a thor-

ough study on AoA estimation with linear supervised learn-

ing methods and showed that the ML methods lead to

improved resolution over the conventional approach. While

previous works have primarily focused on ML methods with

traditional array setups, we extend the existing methods by

investigating the utilization of micro-structural features for

their potential additional sensitivity, harnessing the potential

of eigen-mode physics, to improve the accuracy of AoA

estimation. In the present study, the source localization

application is approached as a supervised multi-label classi-

fication problem. The eigen-mode behaviors are first studied

in Sec. II. In Sec. III, the eigen-modes associated with each

angle are randomly weighted and summed to serve as the

training input. With a large enough set of these training sam-

ples, the NN can learn and identify the angle-dependent fea-

tures of the subspace spanned by the eigen-modes. Although

the scattering signal is unknown to the trained NN, the

abstract features of its underlying subspace associated with

each angle have been fed into the NN. Therefore, the NN

can accurately identify the incident angle of an unknown

scattering signal. This approach is shown to have significant

improvements compared with conventional localization

algorithms, such as delay-and-sum (DAS), in terms of the

main lobewidth and the sidelobe levels. In addition, the sig-

nal sensitivity comparison between phononic crystals and

FIG. 1. (Color online) (a) The setup of

2D stress wave scattering at the inter-

face between a homogeneous medium

and an array of phononic crystals. Left

and right domains are semi-infinite.

The incident oblique wave is denoted

by the arrow with an angle h measured

from the normal to the interface. (b)

Example response amplitude from 77�

incidence along the interface over five

unit cells.
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homogeneous media is presented to highlight the impor-

tance of micro-structural features.

II. BAND STRUCTURE AND EIGEN-MODE ANALYSIS

In this section, we first briefly revisit the k2ðk1;xÞ
eigenvalue formulation for the oblique scattering problem.

Then we discuss the band structure topology and the eigen-

mode properties of a typical and simple phononic array,

with particular focus on the symmetry breaking at the

branch points.

The studied scattering problem is formulated similarly

as in a previous work27 except for the different frequency

range and unit cell size used here. An in-plane stress wave is

incident from a semi-infinite domain of homogeneous

medium to a phononic array with an incident angle h normal

to the interface, as illustrated in Fig. 1.

For the plane wave propagating problem in the two

semi-infinite domains, it is advantageous to know a priori
the band structure that characterizes the dynamics of each

domain. The common representation of a band structure

presents the eigenfrequency f ¼ x=2p as functions of

wavevector (k1, k2) within the irreducible Brillouin zone.

Figure 2(a) shows the first two eigen-surfaces of the studied

phononic unit cell. Of particular interest for the scattering

problem are the solutions at the constant operating fre-

quency, in this case, 1800Hz. The intersections of the eigen-

frequency surfaces with a constant frequency plane

(indicated by gray shading) are the eigen-modes of propa-

gating waves. Figure 2(b) shows the equi-frequency con-

tours for frequencies from 1740 to 1920Hz. Certain

branches are found to form collapsed modes. For example,

the red circular markers in Fig. 2(b) denote the coalesced

modes with merging k2 values for the same k1. These branch
points are the boundaries of the solutions with real k2.
Therefore, the identification of their locations is important

for understanding the scattering physics. It must be noted

that the eigen-modes obtained through this eigenfrequency

analysis only partially constitute the scattering solution,

because (1) the evanescent modes with complex k2 values

are absent, and (2) one also needs to consider higher order

modes not inside the irreducible Brillouin zone and select

the correct branches that carry energy in the correct k2 direc-
tion (away from the interface). Therefore, an alternative

formulation that can provide the full set of k2ðx; k1Þ solu-

tions is needed.

The displacement and stress solutions in one unit cell

have the form

uiðx1Þ ¼ �uiðx1Þ exp iðk1x1 þ k2x2 � xtÞ½ � (1)

and

rijðx1Þ ¼ �rijðx1Þ exp iðk1x1 þ k2x2 � xtÞ½ �: (2)

Here, ui is the displacement components, rij is the ij compo-

nent of stress tensor, k2 is the wavevector component normal

to the interface, and x is the angular frequency. The barred

quantities are the periodic parts within one unit cell. The

wavevector component k1 is parallel to the interface and is

hence related to the incident angle h through Snell’s law,

kin sin h ¼ k1; (3)

where kin ¼ x=c/ is the wavevector of the incident wave,

and c/ is the incident wave speed in the homogeneous

medium (longitudinal or shear). The continuity at the inter-

face between two domains requires that for each angle of

incidence, a real-valued k1h mod 2p is prescribed in the

non-Hermitian eigenvalue problem, from which an infinite

number of k2 eigenvalues can be found. With c ¼ ½k1; 0� and
n ¼ ½0; k2�, the k2ðx; k1Þ eigenvalue problem is formulated

as

A�/ ¼ k2B�/; (4)

where the mode shape is described by �/ ¼ ½�u; �r�>, and

A ¼ x2qðÞ r � ðÞ � iðÞ � c
�C : rðÞ þ iC : ðÞ � c I

� �
; (5)

B ¼ 0 iðÞ � n
�iC : ðÞ � n 0

� �
: (6)

The bold symbols f�u; �rg represent quantities as vec-

tors, which include the in-plane components, C is the elas-

ticity modulus, and q is the density. The details of this

eigenvalue problem can be found in Ref. 19. An alternative

method for computing complex k2 values is to use an

FIG. 2. (Color online) Eigenfrequency

band structure of the phononic unit cell

(a) and the equi-frequency contours at

different frequencies (b).
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optimization approach, which is briefly mentioned

in Ref. 28. In the solutions considered here, the frequency

f ¼ x=2p ¼ 1:8 kHz is constant, and the wavevector com-

ponent k2 values are solved as complex eigenvalues for the

varying parameter k1.

A. Scattering band structures

The k2ðx; k1Þ band structures of the homogeneous

domain and the phononic domain are partially shown in

Figs. 3(a) and 3(b), respectively. The complete spectra will

have symmetry with respect to k2 ¼ 0. Only the modes that

have physical meanings in the scattering problem are con-

sidered and shown here. Therefore, the phononic band

solved here partially overlaps with the previously shown

equi-frequency contour Fig. 2(b). A physically feasible

eigen-mode of the homogeneous medium, representing the

reflected wave solution, must (1) have non-positive energy

flux vector component F2 and (2) have =k2 � 0. Similarly,

to represent a transmitted wave solution, a phononic eigen-

mode must (1) have non-negative energy flux vector compo-

nent F2 and (2) have =k2 � 0. The modes violating these

requirements are not taken into consideration. The (1)

requirements ensure that the reflected/transmitted waves

transfer energy away from the interface. The (2) require-

ments prevent infinitely large amplitudes at x2 ¼ 61, given

the solution forms Eqs. (1) and (2). For each domain, only

several modes with lowest j=k2j values are shown in the

band structure. Each of the solved eigen-modes represents a

wave whose spatial features in x2 are determined by its k2
wavevector. A mode that has a real k2 eigenvalue will prop-
agate and carry energy in x2 direction. A mode with com-

plex eigenvalue, on the other hand, only allows the wave to

propagate along the interface and is evanescent in x2 direc-
tion. As the incident angle varies, certain modes can transi-

tion from propagating to evanescent and vice versa.

In the reflected solutions [Fig. 3(a)], mode 1 represents

the shear vertical wave reflected from the interface and is a

propagating mode for any incident angle h. The reflected

mode 2 contains three branches and two CAs (CA1 and

CA2) in between them. The real-valued branch from 0� to

30:3� is the longitudinal wave that can propagate in the bulk

of the homogeneous medium. The purely imaginary branch

from 30:3� to 47:2� is the surface mode that does not allow

energy flux along x2. The third branch, corresponding to

reflection angles from 47:2� to 89�, is the shear mode of the

second Brillouin zone and has real k2 eigenvalues. The two

CAs at 30:3� and 47:2� are boundaries between propagating

and evanescent modes.

The band structure of transmitted waves in Fig. 3(b) has

more spectral features due to the micro-structure of the lay-

ered medium. Mode 1 has purely real eigenvalues and is,

thus, a propagating mode. Modes 2 and 3 coalesce at the EP,

associated with the exceptional angle (EA: 35.1�). Two CAs

can be found in modes 2 and 3 (CA3, 48.8�; CA4, 78.4�).
The existence of these branch points is not particular to the

selected 1800Hz frequency and is dependent on the band

topology. Their corresponding k1 values vary with fre-

quency, as can be seen in Fig. 2. It is found that the EA

exists from 0 to 1855Hz. The CA CA3 appears in the fre-

quency range of 1720–1855Hz, as does its symmetric coun-

terpart CA4 in the second Brillouin zone.

These special angles are associated with the emergence

or annihilation of energy-carrying branches. At the EP, the

eigenvalues and eigenfunctions of the two modes (2 and 3)

will be identical. From 0� incidence to 35:1� incidence,

mode 2 has purely imaginary eigenvalues, while mode 3 has

real eigenvalues. At the EP, the eigenvalues of the two

modes are identical and close to zero. From EA (35.1�) to
CA3 (48.8�), the eigenvalues of modes 2 and 3 share the

same imaginary parts, while their real parts are negatives of

each other. Modes 2 and 3 become propagating from CA3 to

CA4 (78.4�) and have distinct real-valued eigenvalues. For

angles from CA4 to 89�, modes 2 and 3 again possess

complex-valued eigenvalues. For the entire angle range,

modes 4 and 5 share the same =k2h [the dotted lines over-

lapped as the right-most curve in Fig. 3(b)]. Their real parts

of k2h are negatives of each other. Due to their complex-

valued k2 eigenvalues, modes 4 and 5 are evanescent modes.

B. Modal symmetry and energy flux

In the oblique scattering problem, the reflected/trans-

mitted waves in two domains are composed of all the eigen-

solutions at the corresponding k1h value of the incident

wave. Therefore, the physical properties of scattering sig-

nals are affected by not only the k2 eigenvalues but also the

mode shapes. The displacement mode shapes of the periodic

FIG. 3. (Color online)Wavevector band

structures of the reflected waves in the

homogeneous domain (a) and the trans-

mitted waves in the phononic domain (b)

at 1.8 kHz. The k2h values have real

(solid) and imaginary (dotted) compo-

nents. Only the first several important

modes are shown.
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cell along the interface are analytically obtained from the

eigenvectors in Eq. (4). The normalized amplitudes and

complex arguments are shown for different incident angles,

in Figs. 4 and 5, respectively. The presented four mode

shapes are the displacement mode shapes corresponding to

the first four modes in Fig. 3(b). The unit cell inversion cen-

ter is set to be x1 ¼ 0. For each mode and each angle h, the
complex displacements are normalized so that

jj½�uðmÞ
1 ; �u

ðmÞ
2 �>jj ¼ 1, and =½�uðmÞ1 ðx1 ¼ �h=2Þ� ¼ 0, where

the superscript denotes the mth mode, and the bold symbol

denotes the vector form of a quantity along x1. For modes 2

and 3, three vertical dashed lines are plotted at EA (35.1�),
CA3 (48.8�), and CA4 (78.4�).

It can be seen that, for modes 1 and 4, the displacements

�u
ð1;4Þ
1;2 are relatively smooth and continuous with respect to

the variation in angle, as their eigenvalues k
ð1;4Þ
2 ðhÞ do not

undergo branch crossing or coalescence. Mode 5 is not

shown here but has a similar nature to mode 4. For modes 2

and 3, clear transitions in �u
ð2;3Þ
1;2 can be found at the three

special angles marked by the dashed lines, both in their

amplitudes and arguments. Spectral transitions in the k2
eigenvalues, therefore, lead to drastic changes in the associ-

ated wave mode shapes. Although only the displacement

components of the mode shapes are shown, the stress com-

ponents also share similar transitions at these angles.

The mode shape patterns change their symmetries as

well when the incident angle sweeps through the EA and

CAs. It turns out that the EP and CAs have underlying rela-

tions with spontaneous symmetry breaking. The phononic

unit cell shown in Fig. 1 possesses parity symmetry with

respect to its inversion center x1 ¼ 0. The governing equa-

tion is invariant if the phononic parity is reversed. Along a

line of constant x2, the displacement wave associated with a

certain mode with a positive k1 value is

uþ1;2ðx1; tÞ ¼ j�u1;2ðx1Þj exp ðið�u1;2ðx1Þ þ �u0 þ k1x1 � xtÞÞ;
(7)

where the superscript þ denotes a wave with positive k1
value, �uðx1Þ is the complex argument of �u1;2ðx1Þ, and the k2
dependence is omitted since x2 is constant here. Here, �u0 is

an arbitrary real phase applied to the eigen-mode displace-

ment field and should be consistent for both u1 and u2.
Similarly, for the same wave at �x1, we have

uþ1;2ð�x1;tÞ¼j�u1;2ð�x1Þjexpðið�u1;2ð�x1Þþ �u0�k1x1�xtÞÞ:
(8)

Now we consider a wave of the same mode propagating in a

reversed direction, the wavevector component k1 becomes

negative, and the displacement at �x1 is

u�1;2ð�x1; tÞ ¼ j�u1;2ð�x1Þj exp ðið��u1;2ð�x1Þ � �u0

þ k1x1 � xtÞÞ: (9)

Equation (9) is in such a form because <½uþ1;2ðtÞ�
¼ <½u�1;2ð�tÞ� must be satisfied. Given the parity symmetry

of the unit cell, it is expected that

uþ1;2ðx1; tÞ ¼ u�1;2ð�x1; tÞ (10)

FIG. 4. (Color online)Normalized mode shapes evaluated along the x1 interface as functions of incident angle h: (a) amplitudes of �u1; (b) amplitudes of �u2.

The angles associated with EP and CAs are marked by the vertical dashed lines in the mode 2 and 3 graphs.
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for a mode in the symmetry-unbroken phase. Equation (10)

reveals that a symmetry-unbroken mode shape (for the mth
mode) must satisfy

j�uðmÞ1;2 ðx1Þj ¼ j�uðmÞ1;2 ð�x1Þj;

�uðmÞ
1;2 ðx1Þ þ �uðmÞ

1;2 ð�x1Þ ¼ �2�uðmÞ
0 ¼ const: (11)

Since the displacement vector is normalized in such a way

that �uðmÞ
1 ð�h=2Þ ¼ 0, we have �uðmÞ

0 ¼ 0. In other words, the

amplitudes must be symmetric with respect to the cell inver-

sion center, while the arguments must be anti-symmetric. It is

shown in Figs. 4 and 5 that the symmetry-unbroken condi-

tions in Eq. (11) are satisfied for branches with purely real k2
eigenvalues, i.e., mode 1 from 0� to 89�, mode 2 from

CA3¼ 48:8� to CA4¼ 78:4�, and mode 3 from 0� to EA

and from CA3 to CA4. For the branches with complex eigen-

values (e.g., modes 4 and 5 and partially modes 2 and 3), the

corresponding modes are in symmetry-broken phases. The

spontaneous symmetry breaking occurs in reflected modes as

well. Between the two CAs, the reflected mode 2 has imagi-

nary k2 and displacement mode shapes that violate Eq. (11).

For all the branches with broken modal symmetry, their aver-

aged energy fluxes at the interface will be zero.

For the mth mode, its energy flux at the interface can be

calculated as

F
ðmÞ
2 ðx1Þ ¼

ðh=2
�h=2

� 1

2
< �rðmÞ

2j ðx1Þ � ð@t�uðmÞj ðx1ÞÞ	
h i

dx1; (12)

where the summation is done over j 2 f1; 2g, and super-

script 	 denotes complex conjugate. The flux represents the

time-averaged stress wave intensity in x2 direction. Figures
6(a) and 6(b) show the fluxes of the homogeneous medium

modes and the phononic crystal modes, related to the bands

in Fig. 3. Each mode shape used for this plot is normalized

so that jj½�uðmÞ
1 ; �u

ðmÞ
2 �>jj ¼ 1. In comparison with Fig. 3, one

finds that an eigenvalue branch with complex-valued k2 (see
Fig. 3) will have zero flux at the homogeneous-phononic

interface, e.g., reflected mode 2 between CA1 and CA2 in

Fig. 6(a) and transmitted mode 2 between 0� and CA3 in

Fig. 6(b). This is expected since the modes with complex k2
are evanescent in x2 and only propagate along the surface

(x1 interface). For the modes that possess branch points, the

first order derivatives of their fluxes with respect to h
become discontinuous at the special angles CAs and the EA.

Therefore, these modes (mode 2 of the homogeneous

medium, modes 2 and 3 of the phononic) undergo phase

transitions at the CAs and the EA. On the other hand, a

branch with real-valued k1 is capable of transporting energy

in x2, and its flux is non-zero. The branches with zero net

flux are exactly the ones in the symmetry-broken phase.

The breaking of symmetry affects the particle motion

trajectories as well. In time domain, the shape of the particle

deformation given by <½u1ðx1; tÞ; u2ðx1; tÞ� is in general an

ellipse or a circle. A special case occurs when

j/u1 �/u2j 2 f0; pg, and the motion will be polarized as a

straight line. Furthermore, the handedness of the trajectory

is determined by the phase difference between u1 and u2.

FIG. 5. (Color online)Normalized mode shapes evaluated along the x1 interface as functions of incident angle h: complex arguments of (a) �u1 and (b) �u2.
The angles associated with EP and CAs are marked by the vertical dashed lines in the mode 2 and 3 graphs.
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The particle moves clockwise in time if /ðu1=u2Þ < 0. The

handedness becomes counterclockwise if /ðu1=u2Þ > 0.

Based on the periodicity /ðu1=u2Þðx1Þ ¼ /ðu1=u2Þðx1 þ hÞ
and the parity symmetry Eq. (11), it can be seen that, only

when k2 is purely real, the motions at cell inversion centers

x1 ¼ 0;6h=2 will be polarized as lines, and the motions at

x1 and �x1 must have reversed handedness. Three examples

are shown in Fig. 7. The particle trajectories are plotted for

five points uniformly sampled along x1. The lack of symme-

try for complex k2 is evident here. Even for a purely imagi-

nary k2, the behavior is distinct from that of a purely real k2.
To summarize, the CAs and the EPs are identified as

the spectral branch points between the complex and real

eigenvalue branches. As the incident angle passes across

these limits (CAs and EAs), certain eigen-mode(s) will

switch between propagating ones and evanescent ones. A

propagating mode carries energy in x2, while an evanescent

one only propagates along the x1 interface. At the branch

points, spontaneous symmetry breaking occurs in the corre-

sponding mode shapes. The modal energy fluxes will vanish

in the symmetry-broken phases. The geometry and handed-

ness of the motion trajectories are highly dependent on the

k2 eigenvalues as well. The types of k2 eigenvalues of the

phononic modes are summarized in Fig. 8. The angle-

dependent modal behaviors, summarized in Table I, will

cause qualitative changes on the scattering signal and will

be used as the base of the proposed sensing application.

III. SOURCE LOCALIZATION

Section II presents the eigen-analysis of the phononic

medium and shows that the mode shapes vary drastically for

different angles of incidence due to the existence of the

branch points. In this section, we examine the oblique scat-

tering responses and propose a deep-learning approach for

source localization, based on the understanding of modal

properties and their influences on the measured signals.

A. Scattering responses

In a scattering configuration (with far-field assumption),

the displacement and stress fields may be written as

weighted summations of all the potential mode shapes (the

lowest orders of which are shown in Sec. II). On the

FIG. 6. (Color online) Time and unit

cell averaged modal fluxes in x2
direction: (a) modes of the homoge-

neous medium and (b) modes of the

phononic crystal.

FIG. 7. (Color online) Examples of particle trajectories. (a) Case of imaginary k2; (b) case of complex k2; (c) case of real k2.
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transmission side of the interface (phononic domain) where

the measurements are generally made, the field quantities

are

u1;2ðh; x1; x2Þ ¼ RnT
ðnÞ�u

ðnÞ
1;2 exp iðk1ðhÞx1 þ k

ðnÞ
2 x2Þ

h i
;

rijðh; x1; x2Þ ¼ RnT
ðnÞ�rðnÞ

ij exp iðk1ðhÞx1 þ k
ðnÞ
2 x2Þ

h i
;

(13)

where TðnÞ is the coefficient of the nth transmitted mode and

can be determined in a number of ways, including one based

on Betti–Rayleigh reciprocity.27

The response of the phononic array, as described in Eq.

(13), is first computed and then compared to that of a homo-

geneous medium to understand and highlight the effects of

the micro-structures. For this comparison, the operating fre-

quency and the incident/reflected domain material remain

the same. The transmitted homogeneous domain has the fol-

lowing material properties: Lam�e constants k ¼ 51:1GPa;
l ¼ 26:3GPa, and density q ¼ 7800 kg=m3. The calculation

of the solution follows standard analytical techniques,29

which are omitted here. To assess the angular sensitivity,

the Euclidean distance is computed between signals from

adjacent angles,

DðhÞ ¼ jjsðhÞ � sðhþ dhÞjj2: (14)

Here, dh ¼ 1� is used, and a different value can also be used

depending on the angular resolution of interest. The

response s is the measured r11 quantity along one unit cell

interface at the presumed sensor locations and is consis-

tently normalized. Such distances are shown in Fig. 9 for

both the PC and homogeneous system cases.

For the homogeneous medium, the eigen-modes and

inherent scattering responses along the measurement inter-

face always manifest as sinusoidal waves, regardless of the

nature of the energy carried by the wave. This is because of

the absence of micro-structural features in the medium. As a

result, both eigen-modes appear identical along the measure-

ment interface after amplitude normalization. Signal distan-

ces of consistently lower values are observed for the

homogeneous medium, indicating greater similarity between

sðhÞ and sðhþ 1Þ, particularly when the incident angle

approaches 90�. This suggests that sensing systems with a

homogeneous medium as the backbone material may be

more susceptible to errors and noise.

In contrast, higher values of DðhÞ are observed for the

phononic system, with several peaks at specific angles (CAs

and EA, marked by black vertical lines), indicating

increased sensitivity to angles. An additional peak near 46�

is marked by a green vertical line, which corresponds to an

anti-resonance behavior that has previously been reported27

and explained.30

Owing to the rich modal behaviors of the PC system,

the signals of the phononic medium show stronger angle

dependency, and a larger variation in the adjacent response

signals is observed. The enhanced sensitivity, especially

near the special angles, allows for better differentiation of

the scattering responses from different angles of incidence,

creating promising potential for source localization

applications.

B. Angle classification

The proposed source localization strategy leverages the

knowledge of feature-rich modal behaviors and is stated as

follows. The localization approach first seeks advantages

from the existence of branch points (EP and CA). As the

participating eigen-modes undergo symmetry breaking at

FIG. 8. (Color online) Summary of k2 eigenvalue types for the phononic

eigen-modes.

TABLE I. Modal properties for different types of k2 eigenvalues.

k2 Real Imaginary Complex

Eigen-mode symmetry Unbroken Broken Broken

Flux Non-zero Zero Zero

Trajectory at inversion center Line Ellipse Ellipse

Geometrya Anti-symmetric Symmetric Asymmetric

Chiralityb Anti-symmetric Symmetric Asymmetric

aThe shapes of the trajectories with respect to repeating unit cell (RUC)

inversion center.
bThe handedness directions of the trajectories with respect to RUC inver-

sion center.

FIG. 9. (Color online) Signal distance comparison between PC and homo-

geneous systems. Higher values for the PC case imply more distinguishable

angular responses over the adjacent angles.
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the exact angles associated with the branch points, the mea-

surable responses exhibit qualitative changes in addition to

the quantitative increase/decrease in the amplitudes. It is

observed through the signal distance comparison (Fig. 9)

that local peaks exist at these special angles, which indicate

relatively distinct response behaviors across these angles.

While the presence of EP/CA only promotes the sensi-

tivity at the certain relevant angles, the phononic response at

other angles still possesses micro-structural features (i.e.,

unlike simply sinusoidal waves in the homogeneous case).

These micro-structural features provide angle-dependent

information within each unit cell through previously deter-

mined eigen-modes. From the linear algebra point of view,

the scattered field is expected to lie in the subspace MðhÞ
spanned by the first few dominant modes. Assuming that np
measurements are taken per unit cell along the interface,

and nc cells are used, we have

sðhÞ 2 MðhÞ ¼ spanfmð1ÞðhÞ;mð2ÞðhÞ;mð3ÞðhÞg 
 C
npnc ;

(15)

where s is the frequency domain complex amplitudes mea-

sured at the sensors with length npnc, and mðnÞ is the nth
mode shape vector (stress or displacement quantities) of the

same length sampled at the same locations.

With the modal features showing sensitive angular

dependence, especially in their symmetry properties, both

the scattered field and the underlying subspace MðhÞ will

inherently possess high variance with respect to the angles.

For any complex vector s taken from measurement, if it is

identified as an element of subspace MðhÞ, then the incident

angle is h. This method takes advantage of the fact that the

subspace spanned by the dominant eigen-modes is sensitive

to incident angles. Therefore, a suitable data processing

method is needed to highlight and identify such information.

To implement localization, artificial neural networks

(ANNs) can be used to learn and extract the abstract features

of the subspace MðhÞ based on the modal knowledge.

In the following, an example of source localization is

shown using a feed-forward deep neural network (DNN)

setup. Notice that other NN architectures, such as convolu-

tional NNs, can also be used for this purpose. In brief, the

NN is trained using randomly weighted and summed mode

shapes that span the response subspace and contain the

angle-sensitive features for the NN to learn. The data proc-

essing procedures and the detailed implementation of the

NN are presented in Appendix A. The quantity selected for

measurement in this example is the normal stress component

r11. For practical measurement considerations, one can use

surface mount pressure sensors or optical methods, such as

interferometry, to collect the response signals. Alternatively

(and perhaps more suitably in practice), one can also employ

piezoelectric materials in the micro-structured sensor

design, which will convert stress into electric signals.

With the NN trained and converged, the test set, which

consists of the scattering signals from 1� to 89� (calculated

in this case based on the Betti–Rayleigh reciprocity

principle27), is then fed into the NN to verify the sensing

performance. The signals used here are slightly corrupted

with additive white Gaussian noises added to the frequency

domain complex amplitude. The signal-to-noise ratio (SNR)

is 25 dB. The localization performance of the trained NN is

compared with that of a conventional method, DAS, which

is applied to the same phononic response data. A simplified

DAS algorithm is used here and is shown in Appendix B.

Detailed studies of DAS can be found in the literature.31,32

Figure 10 shows the performance comparison between DAS

and DNN. While the branch points and mode shapes are pre-

sent for the same system, the DAS method does not benefit

from these micro-structural features. This is because the

DAS approach relies on the Fourier transform, which

focuses on the signal periodicity and is not designed to pick

up the micro-structural features. The DAS [Fig. 10(a)] pro-

duces wider main lobes and has higher side lobes. On the

contrary, the DNN approach takes advantage of the modal

information and produces [Fig. 10(b)] sharp peaks at the

predicted angles. The sidelobe levels are significantly sup-

pressed. The DNN also leads to higher precision (93.26%)

in identifying incident angles compared to the DAS

(84.27%). A detailed example can be seen in Fig. 10(c),

where the DNN outperforms the DAS and leads to the cor-

rect angle of incidence. However, the trained DNN is not

fully error-free either. In Fig. 10(d), for instance, the DNN

mistakenly predicts the 88� angle to be 87�. The end-fire

sources present challenges for any AoA estimation algo-

rithm. Improved performance may be achievable by adjust-

ing the NN architecture and fine tuning the hyper-

parameters or, more fundamentally, by design of micro-

structure for higher modal sensitivity at such angles of inci-

dence. In general, the proposed approach using the NN to

identify angle of incidence shows strong potential and bene-

fits in the localization application. By incorporating micro-

structural features and utilizing the eigen-mode physics, this

approach adds extra strength and can be implemented as a

parallel procedure to the existing ML-based approaches.

IV. CONCLUSION

In this work, we exploit the eigen-wavevector band

structure of micro-structured media under oblique scattering

and present the sensing potentials of the micro-structural

responses based on deep learning of the angle-dependent

modal features. In the studied oblique stress wave scattering

problem, the modal symmetry breaking at the CAs and the

EPs is identified and discussed in detail through its modal

shape symmetry, flux, and polarization. It is understood that

the scattering signals lie predominantly in the subspace

spanned by the lower eigen-modes, and this subspace has

inherently strong dependence on the incident angle.

We use the angle-dependent eigen-modes as the train-

ing data to develop a ML approach for source localization.

An ANN is trained with random sampling of the subspace

spanned by the eigen-modes as the training input. The

trained NN is able to identify the angle-dependent features
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of the modal subspace and shows major improvements in

identifying the angle of incidence based on scattering as

input test data in comparison with the standard DAS

approach, in terms of sidelobe size and main lobewidth.

Such an approach can be applied to localization problems

with a generic sensor domain whose 2D eigen-modes are

pre-extracted for ML.

The scope of this paper is limited to computational

investigation, and the example shown is a theoretical proof

of concept. Of practical importance is the evaluation of

imperfection effects, such as potential defects in the period-

icity, their influences on the EPs, and the resulting error

bounds. However, as existing computational methods

require perfect periodicity in the boundary condition, we

suggest that such an uncertainty analysis should be the sub-

ject of a future study.

To summarize, the proposed method

• highlights and utilizes the physics of the band structure

and eigen-modes for sensing purposes;
• shows that ANNs can be trained using eigen-modes in

order to identify incident angles;
• can be continuously improved with the fast-growing

deep-learning techniques; and
• can be optimized through careful micro-structural design,

leading to feature-rich and wavevector-sensitive modal

subspaces.

While the developed NN shows relatively successful

identification of each angle of incidence, such an approach

essentially relies on the fact that the signals are composed of

known modal components. Therefore, the sensing robust-

ness is subject to variation in the modal response, although

the accuracy can be numerically optimized through the

training process. To develop a more physically robust

approach, we suggest further leveraging the topological fea-

tures in the band structure and mode shapes and effectively

amplifying the switching in energy and symmetry of certain

modes at the branch points. To this end, one might seek to

develop kernels that highlight the mode-switching behaviors

near CAs and EPs by differentiating the expected scattering

response at neighboring angles. From the design perspec-

tive, two approaches can be considered to increase the angu-

lar sensitivity over many angles of interest. The first method

would be to seek micro-structural designs with tailored geo-

metrical or material features, so that the band structure

exhibits a relatively large number of branch points. These

branch points would create finer regions in the angular

space, and between different angle regions the response

would be inherently different. The second approach is to

manifest only one branch point instead of many and focus

on the response variation across this particular angle. By

rotating the sensor array and simultaneously evaluating the

collected data, abrupt changes will be observed whenever

the incoming angles align with the branch point angle, thus,

providing the angle(s) of arrival with high accuracy.
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APPENDIX A: NN IMPLEMENTATION

1. Data preprocessing

In the example here, np¼ 6 measurements are taken per

unit cell, and nc¼ 10 cells are used in total. The data collec-

tion points are measured along the interface x2 ¼ 0 with a

uniform spacing of h=6. Such a sensor array is referred to as

a uniform linear array (ULA).

The input to the NN will represent complex vectors in

MðhÞ in the training stage, and the output will indicate the

angle h. For each incident angle h, 2100 training samples

are prepared and labelled by the associated integer angle

h 2 ½1�; 89��. Each training sample is given by

tðhÞ ¼ cð1Þmð1ÞðhÞ þ cð2Þmð2ÞðhÞ þ cð3Þmð3ÞðhÞ: (A1)

Here, mðnÞðhÞ is the nth r11 mode shape vector of length

npnc associated with incident angle h, and it includes the

ik1ðhÞx1 phase. The complex coefficient cðnÞ of each mode is

randomly selected in such a way that both <cðnÞ and =cðnÞ
have uniform distributions between –0.5 and 0.5. A valida-

tion set is prepared in the same fashion and consists of 450

labelled samples vðhÞ for each value of h. Unlike the train-

ing and validation sets, the test set consists of the scattering

signals s instead of random vectors in MðhÞ. It should be

highlighted that the test set is unknown to the NN and will,

therefore, provide the evaluation of the sensing

performance.

It is necessary to normalize input data properly to ren-

der it independent of source strength. The complex vectors

b ¼ t; v; or s are normalized so that

jjbjj ¼ 1: (A2)

Then the complex vectors b ¼ t; v; or s are converted into

real-valued arrays b0 before feeding into the NN,

b0 ¼
jbj

cos/b

sin/b

0
@

1
A 2 R3npnc : (A3)

The amplitude and angle operators are applied to each com-

ponent of vector b separately. The redundancy of applying

the sin and cos operators separately is intentional.

2. NN

In this example, a feed-forward NN is used for deep

learning of the eigen-modes and for classifying the incident

angle of unknown signals. The NN architecture is shown in

Fig. 11. It includes an input layer with 180 neurons for

np¼ 6 and nc¼ 10. The NN parameters, such as layer and

node number, are determined using a hyper-parameter

search, as proposed in the literature.26 The input array is for-

matted based on Eq. (A3). The output layer has 89 neurons,

with each representing an integer angle 2 ½1�; 89�� through
one-hot encoding. The angle labels of the training and vali-

dation samples are represented by binary vectors of length

89. It is also possible to use a single continuous output as

the predicted angle. However, the discretized output layer is

used here for future extension of multi-source applications.

At the hidden layers (2–5), the NN operation is as fol-

lows. Let sj denote the number of neurons (bias unit not

included) of the jth layer. The neuron values at the jth layer

can be written as a column vector aðjÞ. The vector aðjÞ has a
length of sj þ 1 to include the bias unit (for j � 5). For

example, the training input is að1Þ ¼ ½1; t0�>, and t0 is a real

vector of length 180. The value of each neuron is obtained

by first computing a weighted sum of all neurons (with the

bias unit) in the previous layer. This can be written as a

matrix calculation,

zðjÞ ¼ Hðj�1Þaðj�1Þ; (A4)

where Hðj�1Þ is an sj by sj�1 þ 1 real matrix representing the

connection weights between layer j – 1 and layer j. Then the

batch normalizing transform is applied to the updated vector

zðjÞ to obtain �zðjÞ. The batch normalization effectively re-

centers and re-scales the data array to achieve faster and

more stable performance of the NN.33 This is followed by a

non-linear activation using the rectified linear unit (ReLU)

function,

ReLUðxÞ ¼ maxð0; xÞ: (A5)

The ReLU activation is widely chosen for NNs due to its

multiple advantages,34 such as better gradient propagation

and computational efficiency. Finally, the updated state of

the layer is given by

aðjÞ ¼ ReLUð�zðjÞÞ: (A6)

For the output layer, we have

zð6Þ ¼ Hð5Það5Þ: (A7)

The final output is activated through the sigmoid function,

að6Þ ¼ Sðzð6ÞÞ ¼ 1

1þ exp ð�zð6ÞÞ : (A8)

FIG. 11. The feed-forward (fully connected) NN architecture. The numbers

of neurons (excluding the bias unit) are labelled under the layers. The bias

units of the first five layers are not shown.
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The sigmoid function, for each output neuron, returns a

value in the range 0–1. The output h ¼ að6Þ predicts the

probability of each angle.

The NN is first randomly initialized. In the training pro-

cess, the training set (2100 samples per angle) is randomly

separated into 25 mini-batches and fed into the NN for 100

epochs. At each training iteration, one batch of training data

is passed through the NN. A cross-entropy cost function35 is

then evaluated as

JðPÞ ¼ � 1

N

XN
n¼1

XK
i¼1

Ti;n log ðhi;nÞ þ ð1� Ti;nÞ log ð1� hi;nÞ
� �

;

(A9)

where N ¼ 2100 	 89=25 and K¼ 89 are the numbers of

samples and incident angles, respectively. The target value

of the ith output neuron for the nth sample is Ti;n 2 f0; 1g.
The output value of the ith neuron for the nth sample is

hi;n 2 ½0; 1�. Here, the vectorized variable P contains all

the NN parameters to be optimized, including the connec-

tion weights H, the offset factors, and the re-scale factors.

At the end of each iteration, the cost J and its gradients

with respect to P are evaluated. Then the parameters P are

updated based on gradient descent and will be used for the

next iteration. The training process aims to minimize the

cost and find the best set of NN parameters. Figure 12

shows the convergence of the training accuracy for each

iteration.

The final training accuracy for the last batch is

93.93%. Then the NN is tested using a validation set that

has 450 labelled samples per angle. The validation set is a

secondary set of data that is not learned by the NN and

can, therefore, provide an unbiased evaluation of the NN

fitness. In this case, the accuracy for the validation set is

93.96%. Recall that all the samples in the training set and

the validation set are made up by randomly weighted

eigen-modes. The relatively good accuracy achieved on

these eigen-modes indicates that the subspace spanned by

the eigen-modes indeed has angle-sensitive features that

can be learned by the NN.

APPENDIX B: DAS

DAS is one of the fundamental source localization algo-

rithms. It utilizes the spatial discrete Fourier transform to

identify the dominant wavevector components/the incident

angle. The DAS output for a given signal s is

yð/Þ ¼ w	ð/Þðsþ nÞ; (B1)

where yð/Þ is the beamformer output for trial angle /, 	

denotes complex conjugate, the signal s is a column vector

associated with an unknown angle, and n is the additive

noise. The weight array is

wð/Þ ¼ 1 exp ðikind sin/Þ exp ð2ikind sin/Þð
� � � exp ðiðnpnc � 1Þkind sin/Þ

�
; (B2)

where kin is the incident wavevector, d is the sensor dis-

tance, and npnc is the total number of sensors. The trial

angle / that maximizes y is the evaluated angle of

incidence.

1P. Chiariotti, M. Martarelli, and P. Castellini, “Acoustic beamforming for

noise source localization—Reviews, methodology and applications,”

Mech. Syst. Signal Process. 120, 422–448 (2019).
2D. Joffre, C. Niezrecki, and P. Avitabile, “Array directivity enhancement

by leveraging angle-dependent scattering,” J. Acoust. Soc. Am. 147(3),

1673–1680 (2020).
3S. Nemat-Nasser, H. Sadeghi, A. Amirkhizi, and A. Srivastava,

“Phononic layered composites for stress-wave attenuation,” Mech. Res.

Commun. 68, 65–69 (2015).
4F. Aghighi, J. Morris, and A. V. Amirkhizi, “Low-frequency micro-

structured mechanical metamaterials,” Mech. Mater. 130, 65–75 (2019).
5L. D’Alessandro, R. Ardito, F. Braghin, and A. Corigliano, “Low fre-

quency 3D ultra-wide vibration attenuation via elastic metamaterial,” Sci.

Rep. 9(1), 8039 (2019).
6W. Elmadih, D. Chronopoulos, and J. Zhu, “Metamaterials for simulta-

neous acoustic and elastic bandgaps,” Sci. Rep. 11(1), 14635 (2021).
7J. Morris, W. Wang, D. Shah, T. Plaisted, C. J. Hansen, and A. V.

Amirkhizi, “Expanding the design space and optimizing stop bands for

mechanical metamaterials,” Mater. Des. 216, 110510 (2022).
8Y. Guo, T. Dekorsy, and M. Hettich, “Topological guiding of elastic

waves in phononic metamaterials based on 2D pentamode structures,”

Sci. Rep. 7(1), 18043 (2017).
9A. V. Amirkhizi and V. Alizadeh, “Overall constitutive description of

symmetric layered media based on scattering of oblique SH waves,”

Wave Motion 83, 214–226 (2018).
10R. Adlakha, M. Moghaddaszadeh, M. A. Attarzadeh, A. Aref, and M.

Nouh, “Frequency selective wave beaming in nonreciprocal acoustic

phased arrays,” Sci. Rep. 10(1), 21339 (2020).
11W. D. Heiss, “Exceptional points of non-Hermitian operators,” J. Phys.

A: Math. Gen. 37(6), 2455–2464 (2004).
12G. Shmuel and N. Moiseyev, “Linking scalar elastodynamics and non-

Hermitian quantum mechanics,” Phys. Rev. Appl. 13(2), 024074 (2020).
13W. Wang and A. V. Amirkhizi, “Exceptional points and scattering of dis-

crete mechanical metamaterials,” Eur. Phys. J. Plus 137(4), 414 (2022).
14A. V. Amirkhizi and W. Wang, “Reduced order derivation of the two-

dimensional band structure of a mixed-mode resonator array,” J. Appl.

Phys. 124(24), 245103 (2018).
15J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting

detection by using exceptional points: Application to microcavity sensors

for single-particle detection,” Phys. Rev. Lett. 112(20), 203901 (2014).
16J. Wiersig, “Sensors operating at exceptional points: General theory,”

Phys. Rev. A 93(3), 033809 (2016).
17P. Djorwe, Y. Pennec, and B. Djafari-Rouhani, “Exceptional point enhan-

ces sensitivity of optomechanical mass sensors,” Phys. Rev. Appl. 12(2),

024002 (2019).

FIG. 12. (Color online) The convergence plot shows the training accuracy

for each iteration (mini-batch).

J. Acoust. Soc. Am. 154 (5), November 2023 Wang et al. 2915

https://doi.org/10.1121/10.0022325

https://doi.org/10.1016/j.ymssp.2018.09.019
https://doi.org/10.1121/10.0000845
https://doi.org/10.1016/j.mechrescom.2015.05.001
https://doi.org/10.1016/j.mechrescom.2015.05.001
https://doi.org/10.1016/j.mechmat.2018.12.008
https://doi.org/10.1038/s41598-019-44507-6
https://doi.org/10.1038/s41598-019-44507-6
https://doi.org/10.1038/s41598-021-94053-3
https://doi.org/10.1016/j.matdes.2022.110510
https://doi.org/10.1038/s41598-017-18394-8
https://doi.org/10.1016/j.wavemoti.2018.10.001
https://doi.org/10.1038/s41598-020-77489-x
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1103/PhysRevApplied.13.024074
https://doi.org/10.1140/epjp/s13360-022-02626-6
https://doi.org/10.1063/1.5057707
https://doi.org/10.1063/1.5057707
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1103/PhysRevA.93.033809
https://doi.org/10.1103/PhysRevApplied.12.024002
https://doi.org/10.1121/10.0022325


18X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, “PT -symmetric

acoustics,” Phys. Rev. X 4(3), 031042 (2014).
19A. A. Mokhtari, Y. Lu, and A. Srivastava, “On the properties of pho-

nonic eigenvalue problems,” J. Mech. Phys. Solids 131, 167–179

(2019).
20A. Srivastava and J. R. Willis, “Evanescent wave boundary layers in

metamaterials and sidestepping them through a variational approach,”

Proc. R. Soc. A 473(2200), 20160765 (2017).
21S. I. Rokhlin and W. Wang, “Critical angle measurement of elastic con-

stants in composite material,” J. Acoust. Soc. Am. 86(5), 1876–1882

(1989).
22D. A. Abraham, Underwater Acoustic Signal Processing, Modern
Acoustics and Signal Processing (Springer, Cham, Switzerland, 2019),

pp. 3–32.
23B. Lustig, G. Elbaz, A. Muhafra, and G. Shmuel, “Anomalous energy

transport in laminates with exceptional points,” J. Mech. Phys. Solids

133, 103719 (2019).
24H. Niu, E. Reeves, and P. Gerstoft, “Source localization in an ocean

waveguide using supervised machine learning,” J. Acoust. Soc. Am.

142(3), 1176–1188 (2017).
25H. Niu, E. Ozanich, and P. Gerstoft, “Ship localization in Santa Barbara

Channel using machine learning classifiers,” J. Acoust. Soc. Am. 142(5),

EL455–EL460 (2017).
26E. Ozanich, P. Gerstoft, and H. Niu, “A feedforward neural network for

direction-of-arrival estimation,” J. Acoust. Soc. Am. 147(3), 2035–2048

(2020).

27A. A. Mokhtari, Y. Lu, Q. Zhou, A. V. Amirkhizi, and A. Srivastava,

“Scattering of in-plane elastic waves at metamaterial interfaces,” Int. J.

Eng. Sci. 150, 103278 (2020).
28W. Wang and A. V. Amirkhizi, “Reduced order modeling of dynamic

mechanical metamaterials for analysis of infinite and finite systems,”

J. Appl. Mech. 90(9), 091009 (2023).
29J. Achenbach, “Plane harmonic waves in elastic half-spaces,” in Wave
Propagation in Elastic Solids (Elsevier, Amsterdam, 1975), pp. 165–201.

30H. Khodavirdi, A. A. Mokhtari, and A. Srivastava, “Scattering of mechan-

ical waves from the perspective of open systems,” Mech. Mater.

172(February), 104399 (2022).
31M. R. Bai, J.-G. Ih, and J. Benesty, Acoustic Array Systems (Wiley,

Singapore, 2013).
32V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So you think you can DAS?

Aviewpoint on delay-and-sum beamforming,” Ultrasonics 111, 106309 (2021).
33S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML 2015), Lille, France
(July 6–11, 2015) (Microtome Publishing, Brookline, MA), Vol. 37, pp.

448–456.
34X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

in Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics (AISTATS), Fort Lauderdale, FL (April 11–13, 2011)

(Microtome Publishing, Brookline, MA), pp. 315–323.
35K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT,

Cambridge, MA, 2012).

2916 J. Acoust. Soc. Am. 154 (5), November 2023 Wang et al.

https://doi.org/10.1121/10.0022325

https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1016/j.jmps.2019.07.005
https://doi.org/10.1098/rspa.2016.0765
https://doi.org/10.1121/1.398566
https://doi.org/10.1016/j.jmps.2019.103719
https://doi.org/10.1121/1.5000165
https://doi.org/10.1121/1.5010064
https://doi.org/10.1121/10.0000944
https://doi.org/10.1016/j.ijengsci.2020.103278
https://doi.org/10.1016/j.ijengsci.2020.103278
https://doi.org/10.1115/1.4062888
https://doi.org/10.1016/j.mechmat.2022.104399
https://doi.org/10.1016/j.ultras.2020.106309
https://doi.org/10.1121/10.0022325

	s1
	l
	n1
	s2
	d1
	d2
	d3
	d4
	d5
	d6
	s2A
	s2B
	d7
	d8
	d9
	d10
	f4
	d11
	d12
	f5
	s3
	s3A
	f7
	d13
	d14
	s3B
	f8
	t1
	t1n1
	t1n2
	f9
	d15
	s4
	app1
	s5A
	dA1
	dA2
	dA3
	s5B
	dA4
	dA5
	dA6
	dA7
	dA8
	f11
	dA9
	app2
	dB1
	dB2
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	f12
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35

