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We introduce a framework to study discrete-variable (DV) quantum systems based
on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection
state (MSPS), and a new convolution. Some interesting consequences are: The MS
is the closest MSPS to a given state with respect to the relative entropy; the MS
is extremal with respect to the von Neumann entropy, demonstrating a “maximal
entropy principle in DV systems.” We obtain a series of inequalities for quantum
entropies and for Fisher information based on convolution, giving a “second law of
thermodynamics for quantum convolutions.” We show that the convolution of two
stabilizer states is a stabilizer state. We establish a central limit theorem, based on
iterating the convolution of a zero-mean quantum state, and show this converges to its
MS. The rate of convergence is characterized by the “magic gap,” which we define in
terms of the support of the characteristic function of the state. We elaborate on two
examples: the DV beam splitter and the DV amplifier.

convolution | entropy | central limit theorem

Quantum information and quantum computation come in two forms, continuous-
variable (CV) and discrete-variable (DV) systems. CV quantum information has been
widely used in quantum optics and other settings to deal with continuous degrees of
freedom (1). Gaussian states, and processes which can be represented in terms of a
Gaussian distribution, are the primary tools used in studying CV quantum information.
One important property of Gaussian states is their extremality within all CV states,
under some constraint on the covariance matrix (2–6). Gaussian states also minimize
the output entropy or maximize the achievable rate of communication by Gaussian
channels. One sees this using quantum entropy–power inequalities on the convolution
of CV states (7–17). This statement is a quantum analogue of Shannon’s entropy power
inequality (18–20). These states have both been realized in experiment, and also applied in
quantum information tasks, such as quantum teleportation (21–23), quantum-enhanced
sensing (24–27), quantum-key distribution (28), and quantum-speed limits (29).

However, computational processes with only Gaussian states and processes can be
efficiently simulated on a classical computer (30–32). Hence, non-Gaussian states and
processes are necessary to implement universal quantum computing (33, 34). To quantify
the non-Gaussian nature of a quantum state or process, the framework of resource theory
has been used (35–37). CV quantum systems have also been considered as a platform
to implement quantum computation and realize quantum advantage. Several sampling
tasks have been proposed (38–41), including Gaussian boson sampling, a modification of
the original boson sampling proposed by Aaronson and Arkhipov (42). This has attracted
much attention and has been realized experimentally; it is claimed that they display a
quantum advantage over classical computers (43–45).

This raises a natural question, “what states in DV quantum systems play the role of
Gaussian states in CV quantum systems?” Here, we focus on stabilizer states. They are
the common eigenstates of certain abelian subgroups of the qubit Pauli group and were
introduced by Gottesman to study error correction (46). There are several indications that
stabilizer states are the finite-dimensional analogue of Gaussian states in CV quantum
systems. For example, the Hudson theorem for CV systems states that the Wigner
function of a pure state is nonnegative, if and only if the state is Gaussian (47, 48). On
the other hand, Gross proved in DV systems with the local dimension being an odd
prime number, that the discrete Wigner function of a pure state is nonnegative, if and
only if the state is a stabilizer (49).

From the Gottesman–Knill theorem (50), we infer that stabilizer circuits comprising
Clifford unitaries with stabilizer inputs and measurements can be efficiently simulated on
a classical computer. In fault-tolerant quantum computation, logical Clifford unitaries
can be implemented transversally so they are considered to be low-cost. However, the
Eastin–Knill theorem (51) states that there is no quantum error correction code in which
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any universal gate set can be implemented transversally. Hence,
nonstabilizer resources are necessary to achieve universal quan-
tum computation.

In recent literature, the property of not being a stabilizer has
been called magic. To quantify the amount of magic, several
magic measures have been proposed (52–62), and applied in the
classical simulation of quantum circuits (56–61, 63) and unitary
synthesis (54, 55). Moreover, to achieve a quantum advantage
for DV quantum systems, several sampling tasks have been
proposed (64–70). Some of these proposals have been realized in
experiment, which were used to claim a computational advantage
over classical supercomputers (71–73).

A. Summary of Main Results. Little had been known about the
extremality of stabilizer states, or their role in the convolution
of DV states. We propose a framework to study these questions,
based on defining a convolution for DV quantum systems. We
explain the intuition behind our approach and state our key
results in this paper. The complete details and proofs, as well as
a theory of the convolution of quantum channels, appear in an
extended, companion work (74).

Our approach is different from the one in refs. 75 and 76.
Our convolution of states ρ � σ depends on a chosen Clifford
unitary, along with a partial trace. We study our approach, with
the special goal to reveal extremality of stabilizer states in relation
to the convolution. This work includes the following:

1. We introduce the notion of a mean state (MS), which is the
closest state in the set of minimal stabilizer-projection states
(MSPS) with respect to the relative entropy in Definition 3.
We prove the extremality of MSPS: Within all quantum states
having the same MS up to Clifford conjugation, the MSPS
attains the maximal Rényi entropy. One implication of the
extremality of the MS is that it provides a nontrivial, resource-
destroying map in the resource theory of magic; Corollary 5.

2. We introduce the notion of the magic gap, which is the
difference between the first and second largest absolute values
in the support of the characteristic function in Definition 6.
We prove that the magic gap can serve as a magic measure;
it provides a lower bound on the number of the non-Clifford
gates in the synthesis of the unitary. We formulate these results
in Propositions 7 and 8.

3. We introduce our convolution � in Definition 10. A
fundamental property is Proposition 12, showing that sta-
bilizer states are closed under convolution. Convolution also
increases the generalized quantum Rényi entropy, as stated in
Theorem 14. Convolution decreases the Fisher information,
as stated in Theorem 15. We state in Theorem 16 that the
convolutional channel achieves minimal output entropy, if
and only if the input states are pure stabilizer states. We study
the Holevo channel capacity of the convolutional channel, and
show that the convolutional channel achieves the maximal
Holevo capacity if and only if the state is a stabilizer, see
Theorem 19.

4. Our convolutional approach includes two important exam-
ples, the DV beam splitter and the DV amplifier, both of
which share a similar structure to their CV counterparts. We
compare our DV results on the beam splitter to the known
results for CV quantum systems in Section D, Table 2. We
also compare CV and DV cases for the amplifier in Section
D, Table 3.

5. We establish a quantum central limit theorem for finite-
dimensional quantum systems, based on our discrete
convolution, Theorem 24. We also find a “second law

of thermodynamics for quantum convolution,” Proposition
22. This means that quantum Rényi entropy Hα(�Nρ) is
nondecreasing with respect to the number N of convolu-
tions. Moreover, the repeated convolution of any zero-mean
quantum state converges to the MS, with an exponential rate
of convergence that is bounded by the magic gap of the state,
all stated precisely in Theorem 24.

In the case of CV quantum systems, central limit theorems
have an interesting history that goes back to Cushen and Hudson
(77), and related work of Hepp and Lieb (78, 79). Many
other quantum or noncommutative versions of the central limit
theorem appeared later, refs. 80–95.

For example, in free probability theory Voiculescu introduced
and studied free convolution and proved a free central limit
theorem: the repeated, normalized (additive) free convolution of
a probability measure (with some assumptions) converges to a
semicircle distribution (96–99). The semicircle distribution in
free probability plays a role similar to the Gaussian distribution
in classical probability theory.

Several additional central limit theorems have been established
in other frameworks. These include results for subfactor the-
ory (90, 91), for quantum walks on a lattice (95), and for CV
quantum information theory (93, 94).

1. Preliminaries

We focus on the n-qudit system H⊗n, where H ' Cd is a
d -dimensional Hilbert space and d is any natural number. Let
D(H⊗n) denote the set of all quantum states on H⊗n. In the
Hilbert space H, we consider the orthonormal, computational
basis {|k〉}k∈Zd . The Pauli X and Z operators are

X : |k〉 7→ |k + 1〉, Z : |k〉 7→ ξ k
d |k〉, ∀k ∈ Zd ,

where Zd is the cyclic group over d , and ξd = exp(2π i/d) is a
d -th root of unity. In order to define our quantum convolution,
one needs to restrict d to be prime. If d is an odd prime number,
the local Weyl operators (or generalized Pauli operators) are

defined as w(p, q) = ξ
−2−1pq
d Z pX q. Here, 2−1 denotes the

inverse d+1
2 of 2 in Zd . If d = 2, the Weyl operators are defined as

w(p, q) = i−pqZ pX q. Weyl operators for general local dimension
d are given in ref. 100. In the n-qudit system, the Weyl operators
are defined as

w(Ep, Eq) = w(p1, q1)⊗ ...⊗ w(pn, qn),

with Ep = (p1, p2, ..., pn) ∈ Zn
d , Eq = (q1, ..., qn) ∈ Zn

d , which
forms an orthonormal basis with respect to the inner product
〈A, B〉 = 1

dn Tr
{
A†B

}
. Denote V n := Zn

d × Zn
d ; this represents

the phase space for n-qudit systems (49).

Definition 1: For any n-qudit state ρ, its characteristic function
4ρ : V n

→ C is

4ρ(Ep, Eq) := Tr
{
ρw(−Ep,−Eq)

}
.

Hence, any quantum state ρ can be written as a linear
combination of the Weyl operators

ρ =
1

dn

∑
(Ep,Eq)∈V n

4ρ(Ep, Eq)w(Ep, Eq). [1]
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The process of taking characteristic functions is the quantum
Fourier transform that we consider. The characteristic function
has been used to study quantum Boolean functions (101). See
also a more general framework of quantum Fourier analysis (102).
The Clifford unitaries on n qudits are the unitaries that map
Weyl operators to Weyl operators. Pure stabilizer states are pure
states of the form U |0〉⊗n, where U is some Clifford unitary.
Equivalently, pure stabilizer states are the common eigenstates
of an abelian subgroup of the Weyl operators with size dn.
In general, let us consider any abelian subgroup of the Weyl
operators with r(≤ n) generators {w(Epi, Eqi)}i∈[r], and [r] denotes
the set {0, 1, 2, ..., r}.

Definition 2: A quantum state ρ is a minimal stabilizer-
projection state (MSPS) associated with an abelian subgroup
generated by {w(Epi, Eqi)}i∈[r], if it has the following form

ρ =
1

dn−r5
r
i=1Eki∈Zd [ξ

xi
d w(Epi, Eqi)]ki ,

for some (x1, ..., xr) ∈ Zr
d , with Eki∈Zd ( · ) := 1

d
∑

ki∈Zd
( · ).

An equivalent, alternative definition is provided in the com-
panion paper (74). Let us consider an example with the abelian
group S = {Z1, ..., Zn−1} for an n-qudit system. The states
{

1
d |
Ej〉〈Ej| ⊗ I }Ej∈Zn−1

d
are MSPS. Moreover, a quantum state ρ is

called a stabilizer state if it can be written as a convex combination
of pure stabilizer states.

2. Mean State

In this section, we introduce the notion of mean state for a given
quantum state.

Definition 3 [Mean state (MS)]: Given an n-qudit state ρ, the
mean stateM(ρ) is the operator with the characteristic function:

4M(ρ)(Ep, Eq) :=
{
4ρ(Ep, Eq), |4ρ(Ep, Eq)| = 1,
0, |4ρ(Ep, Eq)| < 1.

[2]

The mean state M(ρ) is an MSPS.

We call M(ρ) the mean state because we use it to define the
mean-value vector of the state ρ in Eq. 22 and the zero-mean
state in Definition 23. Moreover, we find that the MS is the
closest MSPS in quantum Rényi relative entropy Dα , where

Dα(ρ||σ ) :=
1

α − 1
log Tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
,

and the quantum Rényi entropy is

Hα(ρ) :=
1

1− α
log Tr

{
ρα
}

,

for any α ∈ [0, +∞]. For example, the relative entropy
D(ρ||σ ) = limα→1 Dα(ρ||σ ), and the von Neumann entropy
H(ρ) = limα→1 Hα(ρ).

Theorem 4 (Extremality of MSPS). Given an n-qudit state ρ
and α ∈ [1, +∞], one has

min
σ∈MSPS

Dα(ρ||σ ) = Dα(ρ||M(ρ)) = Hα(M(ρ))−Hα(ρ).

Moreover, M(ρ) is the unique minimizer, i.e., for any σ ∈ MSPS
with σ 6= M(ρ), we have

Dα(ρ||σ ) > Dα(ρ||M(ρ)).

Based on the above result, we can rewrite the quantum Rényi
entropy as follows

Hα(M(ρ)) = Hα(ρ) + Dα(ρ||M(ρ)). [3]

This equation shows the extremality of MSPS with respect
to quantum Rényi entropy: Within all quantum states having
the same MS up to Clifford conjugation, the MSPS M(ρ)
attains the maximal value for quantum Rényi entropy, which
we call “maximal entropy principle in DV systems.” Recall the
extremality of Gaussian states in CV systems, i.e., within all
states having a given covariance matrix, Gaussian states attain
the maximum von Neumann entropy (2, 3). Hence, the above
theorem is the discrete version of the extremality of Gaussian
states with the same covariance matrix in CV systems.

In this work, we consider extremality properties of stabilizer
states for quantum entropy. One can also consider the classical
representation of quantum states, for example by studying the
characteristic functions. One entropic measure, such as the 0-
Rényi-quantum-Fourier entropy of a pure state ρ (defined as
the logarithm of the Pauli rank RP(ρ) = |Supp(4ρ)|) also
achieves its minimal value, iff ρ is a stabilizer state (60). Other
literature also touches on classical descriptions of quantum states;
for example extremality of pure coherent states in the Wehrl
entropy is known, as are some variants (20, 103–105).

Corollary 5. In the resource theory of magic with MSPS being the
set of free states, the map from quantum states to MSPS, namely
ρ →M(ρ), provides a nontrivial, resource-destroying map.

Note that a map λ from states to states is called a resource-
destroying map (106) if it satisfies two conditions: i) it maps all
quantum states to free states, i.e., λ(ρ) ∈ F for any quantum
state ρ, where F is the set of free states; ii) it preserves free
states, i.e., λ(σ ) = σ for any state σ ∈ F . The natural
resource-destroying maps are known in resource theories such as
coherence, asymmetry, and non-Gaussianity (Table 1). However,
it was unknown what a nontrivial, resource-destroying map is in
the resource theory of magic. Here, our work shows that, the
map M : D(H⊗n) → MSPS is a resource-destroying map,
which satisfies minσ∈MSPS Dα(ρ||σ ) = Dα(ρ||M(ρ)).

Since every quantum state ρ can be written as a linear com-
bination of the Weyl operators together with the characteristic
function 4ρ , the information of the state is encoded in the
characteristic function. We consider the gap between the largest
absolute value, namely 1, and the second-largest absolute value in
the support of the characteristic function. We call this the magic
gap (or nonstabilizer gap).

Table 1. Resource theories with a nontrivial, resource-destroying map
Theory Resource-destroying map

Coherence 1(�) =
∑

i 〈i|�|i〉 |i〉〈i|, where 1 is the complete dephasing channel:{|i〉} w.r.t. the reference basis (107, 108)
Asymmetry G(�) =

∫
G d�(U)U�U†, where the integral is taken over the Haar measure on G (109)

Non-Gaussianity �(�) = �G, where �G is the Gaussian state with the same mean displacement and covariance matrix as � (110)
Magic M(�), the closest MSPS (Theorem 4 in this work)
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Definition 6 (Magic gap): Given an n-qudit state ρ ∈ D(H⊗n)
for any integer d ≥ 2, the magic gap of ρ is

MG(ρ) = 1− max
(Ep,Eq)∈Supp(4ρ):|4ρ(Ep,Eq)|6=1

|4ρ(Ep, Eq)|.

If {(Ep, Eq) ∈ Supp(4ρ) : |4ρ(Ep, Eq)| 6= 1} = ∅, define MG(ρ) =
0, i.e., there is no gap on the support of the characteristic function.

Proposition 7. The magic gap (MG) of a state ρ satisfies the
following properties:

1. The MG(ρ) = 0, iff ρ is an MSPS. Also 0 ≤ MG(ρ) ≤

1 −
√

dnTr{ρ2}−dk

RP(ρ)−dk , where RP(ρ) = |Supp(4ρ)| is the Pauli

rank (60).
2. The MG is invariant under Clifford unitaries.
3. MG(ρ1 ⊗ ρ2) = min{MG(ρ1), MG(ρ2)}.

Since − log(1 − x) = x + O(x2), we can also consider the
logarithmic magic gap (LMG), that is,

LMG(ρ) = − log max
(Ep,Eq)∈Supp(4ρ):|4ρ(Ep,Eq)|6=1

|4ρ(Ep, Eq)|.

This LMG(ρ) also satisfies conditions (1–3) in Proposition 7 by
changing the upper bound in (1) to 1

2 log
[

RP(ρ)−dk

dnTr{ρ2}−dk

]
.

Now, let us consider the application of the magic gap
in the unitary synthesis. In an n-qubit system, the universal
quantum circuits consist of Clifford gates and T gates. From the
Gottesman–Knill theorem (50), we infer that Clifford unitaries
can be simulated efficiently on a classical computer. So the T
gates (or other non-Clifford gates) are the source of any quantum
computational advantage. Hence, it is important to determine
how many T gates are necessary to generate the target unitary.
We find that the logarithm of the magic gap can provide a lower
bound on the number of T gates.

Proposition 8. Given an input state ρ and a quantum circuit VN ,
consisting of Clifford unitaries and N magic T gates, the log magic
gap of the output state VNρV †

N satisfies,

LMG(VNρV †
N ) ≤ LMG(ρ) +

N
2
.

3. Convolution in DV Quantum Systems

We introduce the convolution between 2 different n-qudit
systems, denoted by HA and HB, respectively. In other words,
the Hilbert spaces are HA = H⊗n, and HB = H⊗n, where dim
H = d .

A. Discrete Convolution. Given a prime number d , consider the
2× 2 invertible matrix of parameters,

G =
[

g00 g01
g10 g11

]
:= [g00, g01; g10, g11], [4]

with entries in Zd . We assume that G is invertible in Zd , so
det G = g00g11 − g01g10 6≡ 0 mod d . The inverse in Zd is

G−1 = N
[

g11 −g01
−g10 g00

]
, where N = (det G)−1. [5]

The matrix G is called positive if none of gij ≡ 0 mod d . In this
work, we focus on the case where G is positive and invertible.
If d is an odd prime number, there always exists a positive and
invertible matrix G in Zd , e.g., G = [1, 1; 1, d − 1]. If d = 2,
there is no positive and invertible matrix G, as the only positive
matrix [1, 1; 1, 1] is not invertible in Z2.
Definition 9 (Key unitary): Given a positive and invertible
matrix G, a 2n-qudit unitary U is

U =
∑
Ei,Ej

∣∣Ei′〉 〈Ei| ⊗ ∣∣Ej′〉 〈Ej| , [6]

where the state |Ei〉 = |i1〉 ⊗ · · · ⊗ |in〉 ∈ H⊗n, and
[

i′k
j′k

]
=

(G−1)T
[

ik
jk

]
, for k ∈ [n].

That is, U maps the state |Ei,Ej〉 to the state
∣∣Ng11Ei−

Ng10Ej,−Ng01Ei + Ng00Ej
〉
, where N = (det G)−1 = (g00g11 −

g01g10)−1.
Definition 10 (Convolution of states): Given the Clifford
unitary U in Eq. 6, and two quantum states ρ ∈ D(HA), σ ∈
D(HB), the convolution of ρ and σ is

ρ � σ = TrB

{
U (ρ ⊗ σ )U †

}
. [7]

The partial trace is taken on the second n-qudit system HB. The
corresponding quantum convolutional channel E is

E(ρAB) = TrB

{
U (ρAB)U †

}
, [8]

for any quantum state ρAB on HA ⊗HB.

Proposition 11 (Convolution-multiplication duality). Given
the convolution with the parameter matrix G, the characteristic
function satisfies

4ρ�σ (Ep, Eq) = 4ρ(Ng11Ep, g00Eq) 4σ (−Ng10Ep, g01Eq),

for any Ep, Eq ∈ Zn
d .

In classical probability theory, the convolution of two Gaussian
distributions is still a Gaussian. Here, we find the analogous
property for stabilizer states.
Proposition 12 (Convolutional stability). Given two n-qudit
stabilizer states ρ and σ , ρ � σ is a stabilizer state.

It is well-known that the distance measure is monotone under
the convolution ∗ in classical probability theory,

D(µ1 ∗ ν,µ2 ∗ ν) ≤ D(µ1,µ2),

for measuresµ1,µ2, ν on Rd , where D is either the classical total
variation distance, relative divergence, or Wasserstein distance.
Here, we establish a quantum version of the monotonicity of
distance measures under quantum convolution, for the distance
measures including the L1 norm, relative entropy, and quantum
Wasserstein distance (defined in ref. 111).
Proposition 13 (Monotonicity under convolution). Let the
distance measure D : D(H⊗n)×D(H⊗n)→ R be the L1 norm,
relative entropy, or quantum Wasserstein distance. Then, for any
convolution � with respect to the positive and invertible matrix G,
we have

D(ρ � τ , σ � τ ) ≤ D(ρ, σ ). [9]
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B. Quantum Entropy and Fisher-Information Inequalities.
Consider the behavior of the generalized quantum Rényi entropy
(112) under convolution. Here,

Hα(ρ) :=
sgn(α)
1− α

log
∑

i

λαi , ∀α ∈ [−∞, +∞], [10]

where λi are the eigenvalues of ρ, and sgn(α) = ±1.

Theorem 14 (Convolution increases Rényi entropy). Let the
parameter matrix G be positive and invertible, and ρ, σ be two
n-qudit states. The generalized Rényi entropy satisfies

Hα(ρ � σ ) ≥ max{Hα(ρ), Hα(σ )}, [11]

for any α ∈ [−∞, +∞].

Besides quantum Rényi entropies, we also consider the
divergence-based quantum Fisher information (9): Given a
smooth one-parameter family of states {ρθ }θ , the divergence-
based quantum Fisher information at 0 is defined as

J(ρθ ; θ)
∣∣
θ=0 :=

d2

dθ2

∣∣∣∣
θ=0

D(ρ||ρθ ).

Since the first derivative d
dθ

∣∣
θ=0D(ρ||ρθ ) = 0, the second

derivative J(ρθ ; θ)|θ=0 quantifies the sensitivity of the diver-
gence with respect to the change of parameter θ . Since we
only consider the divergence-based quantum Fisher information
J(ρθ ; θ)|θ=0 in this work, we call it the quantum Fisher
information for simplicity. If {ρθ }θ is a family of parameterized
states defined by ρθ = exp(iθH)ρ exp(−iθH) with respect to a
Hermitian operator H for all θ ∈ R , then the quantum Fisher
information can be written as

J(ρ; H) =
d2

dθ2

∣∣∣∣
θ=0

D(ρ||ρθ ) = Tr
{
ρ[H, [H, log ρ]]

}
.

In n-qudit systems, we denote Xk (resp., Zk) to be the Pauli
X (resp., Z ) operator on k-th qudit. For R = Xk or Zk (1 ≤
k ≤ n), denote |j〉R to be an eigenvector of R corresponding
to the eigenvalue ξ j

d with j ∈ Zd . Let us define the Hermitian
operator HR

j for j ∈ [d ] as HR
j = |j〉〈j|R , and the corresponding

parameterized unitary U R
j (θ) as U R

j (θ) = exp(iθHR
j ). Then, for

any quantum state ρ, let us consider the family of parameterized
states ρR,θ = U R

j (θ)ρU R
j (θ)†, θ ∈ R, and the corresponding

quantum Fisher information J(ρ; HR
j ). Let us denote

J(ρ) =
n∑

k=1

d∑
j=1

J(ρ; HXk
j ) + J(ρ; HZk

j ). [12]

Theorem 15 (Convolution decreases Fisher information). Let
the parameter matrix G be positive and invertible, and ρ, σ be two
n-qudit states. The quantum Fisher information satisfies

J(ρ � σ ) ≤ min{J(ρ), J(σ )}. [13]

C. Stabilizer States in the Convolutional Channel. What kind
of input states ρ, σ will make the output state have the minimal
output entropy?

Theorem 16. Let the parameter matrix G be positive and invert-
ible, and ρ, σ be two n-qudit states. The output state E(ρ ⊗ σ )
has the minimal output entropy iff both ρ and σ are pure stabilizer
states, and the stabilizer groups S1 and S2 of ρ and σ satisfy

S1 = {w(−g−1
10 g11Ex, g−1

01 g00Ey) : w(Ex, Ey) ∈ S2}. [14]

Besides, we consider the Holevo capacity of the quantum
channel, which can be used to quantify the classical capacity
of a memoryless quantum channel (113, 114).

Definition 17 (Holevo capacity): Given a quantum channel E ,
the Holevo capacity χ(E) is

χ(E) = max
{pi ,ρi}

H

(∑
i

piE(ρi)

)
−

∑
i

piH(E(ρi)),

where the maximum is taken over all ensembles {pi, ρi} of possible
input states ρi occurring with probabilities pi.

Given a quantum state σ , the quantum channel Eσ (·) =
E(· ⊗ σ ). That is, for any input state ρ, the output state of the
channel Eσ is ρ�σ . We find that the Holevo capacity of Eσ can
be bounded by the entropies of both σ and M(σ ).

Theorem 18 (Holevo capacity bound: general case). Let the
parameter matrix G be positive and invertible, and σ be an n-qudit
state. The Holevo capacity of the quantum channel Eσ is

n log d −H(M(σ )) ≤ χ(Eσ ) ≤ n log d −H(σ ). [15]

If σ ∈ MSPS, then

χ(Eσ ) = n log d −H(σ ). [16]

Besides, we find that the pure stabilizer states are the only
states making the convolutional channel Eσ achieve the maximal
Holevo capacity.

Theorem 19 (Maximizer for Holevo capacity: pure stabilizer
states). Let the parameter matrix G be positive and invertible. The
quantum channel Eσ has the maximal Holevo capacity n log d iff σ
is a pure stabilizer state.

D. Examples: Discrete Beam Splitter and Amplifier. Now, let
us consider two examples of convolutions. The first one is the
discrete beam splitter with G = [s, t; t,−s] and s2 + t2

≡ 1
mod d . This is a discrete version of the condition (

√
λ)2 +

(
√

1− λ)2 = 1 that occurs in CV beam splitter. In fact, the
condition s2 + t2

≡ 1 mod d can be satisfied for any prime
number d ≥ 7 by some number theory guarantee. Formally, we
have the following definition of discrete splitter beam.

Definition 20 (Discrete beam splitter): Given s2 + t2
≡ 1

mod d , the unitary operator Us,t is

Us,t =
∑
Ei,Ej∈Zn

d

|sEi + tEj〉〈Ei| ⊗ |tEi − sEj〉〈Ej|, [17]

where the state|Ei〉 = |i1〉 ⊗ · · · ⊗ |in〉 ∈ H⊗n. The convolution
of two n-qudit states ρ and σ is

ρ �s,t σ = TrB

{
Us,t(ρ ⊗ σ )U †

s,t

}
. [18]
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Table 2. Comparison of results for the CV and DV beam splitters
Beam splitter CV quantum systems DV quantum systems

Parameter (
√
�,
√

1− �), � ∈ [0,1] (s, t), s2 + t2 ≡ 1 mod d

Convolution � �� � = TrB
{
U��⊗ �U†

�

}
, � �s,t � = TrB

{
Us,t�⊗ �U†

s,t

}
,

U�: beam splitter Us,t : discrete beam splitter

Characteristic function 4����(Ex) = 4�(
√
�Ex)4�(

√
1− �Ex) 4��s,t�(Ex) = 4�(sEx)4�(tEx)

Quantum entropy inequality H(� �� �) ≥ �H(�) + (1− �)H(�) (9) H�(� �s,t �) ≥max{H�(�), H�(�)},
eH(����)/n ≥ �eH(�)/n + (1− �)eH(�)/n (9, 10) � ∈ [−∞,∞](Theorem 14)

Quantum Fisher information inequality w2J(� �� �) ≤ w2
1 J(�) + w2

2 J(�), J(� �s,t �) ≤min{J(�), J(�)}

w =
√
�w1 +

√
1− �w2 (9) (Theorem 15)

We summarize and compare our results on discrete beam splitter
with the known results for CV quantum systems in Table 2.

Besides the discrete beam splitter, we define the discrete
amplifier with G = [l,−m;−m, l ] and l2

− m2
≡ 1 mod d .

This is a discrete version of the condition (
√
κ)2 +(

√
κ − 1)2 =

1 with κ ∈ [1,∞] that occurs in CV squeezing unitary. In fact,
the condition l2

− m2
≡ 1 mod d can also be satisfied for

any prime number d ≥ 7 by some number theory guarantee.
Formally, we have the following definition of discrete amplifier.

Definition 21 (Discrete amplifier): Given l2
−m2

≡ 1 mod d ,
the unitary operator Vl,m is

Vl,m =
∑
Ei,Ej∈Zn

d

|lEi + mEj〉〈Ei| ⊗ |mEi + lEj〉〈Ej|. [19]

The convolution of two n-qudit states ρ and σ is

ρ �l,m σ = TrB

{
Vl,m(ρ ⊗ σ )V †

l,m

}
. [20]

We summarize and compare our results on discrete amplifier
with the known results for CV quantum systems in Table 3.

4. The Central Limit Theorem

Let us denote that �N+1ρ = (�Nρ)�ρ, and �0ρ = ρ, where
� is short for the beam splitter convolution �s,t in 17 (which
does not require s ≡ t mod d ). By applying Theorem 14, we
find that quantum Rényi entropy Hα(�Nρ) is increasing w.r.t.
the number of convolutions N .

Proposition 22 (Second law of thermodynamics for quantum
convolution). For any n-qudit state ρ, the quantum Rényi entropy
satisfies the following property,

Hα(�N+1ρ) ≥ Hα(�Nρ), ∀N ≥ 0, [21]

for any α ∈ [−∞, +∞].

Note that in the classical case (20, 115, 116), it was proved
that H

(
X1+X2+...XN+1
√

N+1

)
≥ H

(
X1+X2+...XN√

N

)
, where X1, X2, ...

are i.i.d., square-integrable random variables; this is a classical
analogue of the second law of thermodynamics.

Before considering the quantum central limit theorem, let us
first look at the classical case. Given a random variable X with
probability density function f , if X has zero mean, then 1

√
N

X1 +
· · ·+ 1

√
N

XN will converge to some normal random variable, that
is, the probability density function f�N converges to a normal
distribution as N →∞, where f�N denotes the balanced N -th
convolution of f . The condition that X has zero mean cannot be
removed. For example, if X ∼ N (1, 1), 1

√
N

X1+· · ·+ 1
√

N
XN ∼

N (
√

N , 1) and does not have a limit distribution. Hence, given
a random variable X , we should consider the zero-mean variable
X − EX instead of X , where EX denotes the mean value
of X .

For classical multivariable random variable EX ∈ Rr , its
characteristic function is

φX (Et) = E EX exp(iEt · EX ), ∀Et = (t1, .., tr) ∈ Rr ,

and mean-value vector Eµ equals to the gradient of φX (Et) atEt = E0,
i.e.,

Table 3. Comparison of results for the CV and DV amplifiers
Amplifier CV quantum systems DV quantum systems

Parameter (
√
�,
√
� − 1), � ∈ [1,∞] (l,m), l2 −m2

≡ 1 mod d

Convolution � �� � = TrB
{
V��⊗ �V †

�

}
, � �l,m � = TrB

{
Vl,m�⊗ �V †

l,m

}
,

V� : squeezing unitary Vl,m : discrete squeezing unitary

Characteristic function 4����(Ep, Eq) = 4�(
√
�Ep,
√
�Eq) 4�(

√
� − 1Ep,−

√
� − 1Eq) 4��l,m�(Ep, Eq) = 4�(lEp, lEq) 4�(mEp,−mEq)

Quantum entropy inequality eH(����)/n ≥ �eH(�)/n + (� − 1)eH(�)/n H�(� �l,m �) ≥max{H�(�), H�(�)},
(10) � ∈ [−∞,+∞](Theorem 14)

Quantum Fisher information w2J(� �� �) ≤ w2
1 J(�) + w2

2 J(�), J(� �l,m �) ≤min{J(�), J(�)}

inequality w =
√
�w1 +

√
� − 1w2 (9) (Theorem 15)
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Eµ =

(
−i

d
dtj

∣∣∣∣
Et=E0

φX (Et)

)r

j=1

.

If X is zero-mean, then Eµ = (0, ..., 0).
For the quantum case, we also need to define the zero-

mean state to consider the quantum central limit theorem.
Given an n-qudit state ρ, the MS M(ρ) has the characteristic
function

4M(ρ)

( r∑
i=1

ti(Epi, Eqi)

)
= 5r

i=1ξ
tiki
d = ξ

∑
i tiki

d ,

where we assume the abelian group of M(ρ) is generated by the
Weyl operators {w(Epi, Eqi)}i∈[r], and 4ρ(Epi, Eqi) = ξ

ki
d ,∀i ∈ [r].

Similar to the classical case, we define the mean-value vector of
the state ρ w.r.t. the generators {w(Epi, Eqi)}i∈[r] as

EµM(ρ) = (k1, ..., kr) mod d . [22]

Definition 23 (Zero-mean state): Given an n-qudit state ρ,
ρ is called a zero-mean state if M(ρ) has mean-value vector
EµM(ρ) = (0, ..., 0) mod d , or equivalently the characteristic
function of M(ρ) takes values in {0, 1}.

In fact, ifρ is not a zero-mean state, there exists a Weyl operator
w(Ep, Eq) such that w(Ep, Eq)ρw(Ep, Eq)† is a zero-mean state. Now, we
have the following result on the quantum central limit theorem
for the L2 norm, where the rate of convergence is controlled by
the magic gap.

Theorem 24 (Central limit theorem via magic gap). Given a
zero-mean n-qudit state ρ, we have∣∣∣∣�Nρ −M(ρ)

∣∣∣∣
2 ≤ (1−MG(ρ))N ∣∣∣∣ρ −M(ρ)

∣∣∣∣
2 . [23]

If ρ 6= M(ρ), then MG(ρ) > 0, and the rate of convergence is
exponentially small with respect to the time of convolution.

5. Some Open Problems

There are many open questions, such as:

1. Aside from Clifford unitaries, matchgate (117), or Gaussian
fermionic operations (118–120) is another tractable family of
quantum circuits. Could our convolution be helpful to define
matchgates for qudits?

2. In graph theory, the Cheeger constant measures the edge
expansion of a graph. The Cheeger inequalities relate the
spectral gap of the adjacency matrix of a graph to its Cheeger
constant (121–123). Is there a quantum Cheeger constant
that corresponds to the magic gap?

3. Can one generalize our convolution using picture languages,
such as the Quon language (100), the tensor network (124,
125), the ZX calculus (126, 127), or so on?

4. Following the convolution proposed and studied in refs. 75
and 76, many generalizations have been studied (128, 129),
including a generalization to certain von Neumann alge-
bras (129). Will similar generalizations be possible for the
convolution in this paper?

5. Similar to the classical case (130, 131), we can explore the
entropic limit theorem for quantum convolution. Due to the
continuity of relative entropy, D(�Nρ||M(ρ)) converges to
0. Can one determine the rate of convergence?

6. Clarify the relation between the convolution and central
limit theorem in this work to their counterparts in free
probability theory. The free convolution corresponds to the
free independence of random variables. What independence
relation corresponds to our convolution?
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