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The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation
(SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the efficiency
of Nash games. In particular, knowing the value of PoS can help with designing efficient networked systems, including
transportation networks and power market mechanisms. Motivated by the absence of efficient methods for computing the
PoS, first we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely
monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We
develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization
scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration
complexity of the order e~ that appears to be best known result for this class of constrained stochastic optimization problems,
where ¢ denotes an arbitrary bound on suitably defined infeasibility and suboptimality metrics. Second, we develop an
SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the
theoretical findings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.

CCS Concepts: » Mathematics of computing — Continuous optimization; « Computing methodologies — Stochastic
games.

Additional Key Words and Phrases: stochastic optimization, variational inequality, Nash equilibrium, price of stability

1 INTRODUCTION

The goal in this paper lies in the development of a stochastic approximation method, equipped with performance
guarantees, for computing the price of stability (PoS) ratio in monotone stochastic Nash games. Nash equilibrium
(NE) is a fundamental concept in game theory and captures a wide range of phenomena in engineering, economics,
and finance [12]. Consider a stochastic Nash game with N players, each associated with a strategy set X; C R™
and a cost function f;. Player i’s objective is to determine, for any collection of arbitrary strategies of the other
players, denoted by x(="), an optimal strategy x(!) that solves the stochastic minimization problem

minimize, E [ﬁ ((x(i);x(_i)) s §)] R (Pi(x(_i)))

subject to e X;,
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where f; ((x?;x(-") , &) denotes a random cost function associated with the ith player that is parameterized in
terms of the action of the player x| actions of other players denoted by x(~%), and a random variable &, where
& : Q — R? denotes a random variable associated with the probability space (Q, F, P).

Remark 1. Throughout, similar to [22, 31, 42], we focus on settings where the stochasticity is only present in
the objective function of the players. In particular, we assume that the strategy sets are deterministic.

An NE is described as a collection of specific strategies chosen by all the players, denoted by the tuple
x 2 (x(l); coaN )) where no player can reduce her cost by unilaterally changing her strategy within her feasible
strategy set. Mathematically, NE can be described as a vector x that satisfies, for alli = 1, ..., N, the inequality
given as

E [f,- ((x<">;x<-">) g)] <E [ﬁ- ((y<"’;x<—">),§)], for all y® € X;. (1)

Suppose n denotes the total number of dimensions associated with an NE, i.e., n £ Zfil n;. Let us define the set
X C R" as the Cartesian product of the players’ strategy sets, i.e., X £ [, X;. Also, under a differentiability
assumption, define the stochastic mapping F : R” x R — R” and its deterministic counterpart F : R — R" as
the collection of players’ gradient mappings as

F(x) £ E[F(x,£)], where F(x,£) 2 (Vi fi(x, &)yat, Vi fu (%, 6)) -

Note that for expository ease, we use F in naming both deterministic and stochastic mappings. Then, under
the convexity of the players’ objective functions, the problem of seeking an NE to the game characterized by
problems (P;(x"")) for i = 1,..., N, can be compactly formulated as a stochastic variational inequalities (VI)
problem, denoted by VI(X, F). Recall that a vector x* € X solves VI(X, F) if (y — x*)TF(x*) > 0, for all y € X.
Indeed, it can be observed that the inequality above compactly captures the optimality conditions of the convex
programs (1) written for all i = 1,..., N. To this end, computing a solution to VI(X, F) leads to finding an NE to
the described stochastic Nash game. Generally, a VI problem may admit multiple solutions leading to a collection
of NEs. Throughout, we let SOL(X, F) denote the solution set of the VI(X, F). In this paper, our aim is to develop
a provably convergent scheme for estimating the efficiency in stochastic Nash games with monotone mappings.
The notion of efficiency in Nash games is a storied area of research and dates back to the celebrated Prisoner’s
Dilemma. In fact, Nash equilibrium is provably known to be inefficient [11], in the sense that the competition
among the players often leadsto a degradation of the overall performance of the system of players. In view of this,
understanding the efficiency of an NE has received much attention in game theory. Among, the popular measures
of the efficiency of NE is a metric called price of stability (PoS) [35]. Given an arbitrary cost metric for quantifying
the overall performance of the system, PoS is defined as the ratio between the following two quantities: (1) the
minimal cost attained by the best Nash equilibrium (among possibly many NEs); (2) the optimal cost when the
competition among the players is (hypothetically) suppressed. Let stochastic function f : R” x R — R denote
the system’s overall performance metric. Mathematically and following our notation, PoS can be formulated as

miny eso(x, E[F(s, £)]) ELf (x, ©)]

PSS eex ELf (5, )]

(2)

Remark 2. We note that the function f may or may not relate to the individual objective functions of the players
denoted by f;. In the literature [1, 21], different choices have been considered. Two common examples include the
utilitarian approach where f is defined as the summation of all players’ objectives, and the egalitarian approach
where f is defined as the maximum of the individual objective functions.
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Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games + 3

Evaluating the PoS ratio, even in deterministic problems, is a computationally challenging task. To elaborate
on this, we provide a simple example in the following.

Example (PoS in saddle-point problems). The problem of
seeking a saddle-point in minmax optimization is an important
class of equilibrium problems that has received considerable at-
tention in game theory [12, 27, 30, 31] and more recently, in
adversarial learning [13], fairness in machine learning [38], and
distributionally robust federated learning [10]. In fact, the canon-
ical minmax problem can be viewed as a subclass of two-person
zero-sum games. The existence of equilibrium in such a game was
established by the von Neumann’s minmax theorem in 1928 [37].

. . . —29
To elaborate, consider a minmax problem given as -;'i%%

< ?3

. A

min max_ ¢(x1,xz) = 20 — 0.1xyx +5q. 20 5010 5 g
11<x; <60 10<x3 <50

Z5 -10 -15 —20

®)

. . . . Fig. 1. Function ¢ in problem (3)
Figure 1 shows the saddle-shaped function ¢. Associated with

problem (3), we can consider a pair of optimization problems as

®)

subject to x1 € X1 = [11,60], subject to x3 € X, £ [10,50].

{minimizex1 f1(x1, x2) £ 20— 0.1x1%3 + X3 {minimizexZ fa(31, x2) £ 20 +0.1x1%2 — X
4

Problems (4) and (5) together construct a two-person zero-sum Nash game. From [12, 1.4.2 Proposition], the set

of saddle-points are the solutions to the variational inequality problem VI(X, F) where we define

F(x1,x5) = (Vi fi(x), Vy, fo(x)) = (-0.1x2 +1,0.1x;) and X £ X, X Xo.

Note that the mapping F is merely monotone, in view of (F(x) — F(y))" (x — y) = 0 for all x € R? and y € R?.
We observe that the set of all the saddle-points is given by SOL(X, F) = {(x1,x2) | x1 € [11,60], x, = 10},
implying that there are infinitely many Nash equilibria to this game characterized by the convex set SOL(X, F).
To measure the PoS, let us consider the global metric defined as f(xy,x3) £ 20 + |x; — xy| for instance. This
implies that the numerator of the PoS in (2) is equal to 21, while its denominator is equal to 20. As such, we
obtain PoS = 1.05, implying that the competition in the game leads to an %5 loss in the metric f. Although in
this simple example, we are able to evaluate the PoS, in practice, we often encounter several challenges that
may make this impossible. Two main challenges are explained as follows: (i) The solution set of the VI is often
unknown. Even in deterministic settings, it is often impossible to determine the entire set SOL(X, F); (ii) Nash
games might be afflicted by the presence of uncertainty which motivates the need for leveraging Monte Carlo
sampling schemes, such as stochastic approximation, for contenting with stochasticity and the large-scale of
the problem. For example, in distributionally robust federated learning [10], the problem is cast a stochastic
minmax problem where the stochasticity emerges from the probability distribution of the local data sets, privately
maintained by the clients.

To estimate the PoS with guarantees, first, we need to solve the numerator of the right-hand side of (2) that is
characterized as a stochastic optimization with a stochastic VI constraint. Naturally, addressing the presence
of VI constraints is a challenging task in optimization. This is mainly because VI constraints do not appear to
lend themselves to standard Lagrangian relaxation schemes. In this work, this challenge is exacerbated due to
the presence of uncertainty in the mapping of the VI constraint. To this end, our goal is to employ stochastic
approximation (SA) schemes. SA is an iterative scheme that has been widely employed for solving problems
in which the objective function is corrupted by a random noise. In the context of optimization problems, the
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function values and/or higher-order information are estimated from noisy samples in a Monte Carlo simulation
procedure [4]. The SA scheme, first introduced by Robbins and Monro [34], has been studied extensively in recent
years for addressing stochastic optimization and stochastic variational inequality problems [22, 28, 33, 39].

In addressing constrained stochastic formulations, the majority of the SA schemes in the existing literature
address the standard cases where the constraints are in the form of functional inequalities, equalities, or easy-
to-project sets. However, motivated by the need for efficiency estimation in stochastic Nash games, we aim at
devising a provably convergent SA method for estimation of the PoS. To this end, our primary interest lies in
solving the following stochastic optimization problem whose constraint set is characterized as the solution set of
a stochastic VI problem. This optimization problem is given as

minimize E[f(x, &)] (6)
subject to x € SOL(X, E[F(e, £)]),

where f : R" x R? — R is a convex function, X C R” is the Cartesian product of the component sets X; C R™
where YN n; = n,ie, X £ [IY, X;. We let the ith block-coordinate of the mapping F(e, £) be denoted by
F; :R" xR? — R for any i € [N] £ {1,...,N}. As noted earlier, for the ease of presentation, throughout we
define f(x) £ E[f(x, {)] and F(x) £ E[F(x, £)].

Existing literature on VIs. The variational inequality problem has been extensively studied in the literature
due to its versatility in capturing a wide range of problems including optimization, equilibrium and comple-
mentarity problems, amongst others [12]. The extra-gradient method, initially proposed by Korpelevich [27]
and its extensions [5-7, 16, 22, 41, 43], is a classical method for solving VI problems which requires weaker
assumptions than standard gradient schemes [2, 36]. In stochastic problems, amongst the earliest schemes for
resolving stochastic variational inequalities via stochastic approximation was presented by Jiang and Xu [20]
under the strong monotonicity and smoothness assumptions of the mapping. Regularized variants of SA schemes
were developed by Koshal et al. [28] for addressing stochastic VIs with merely monotone mappings. Further,
smoothness requirements were weakened by leveraging randomized smoothing in [40, 42]. In the absence of
strong monotonicity, extra-gradient approaches that rely on two projections per iteration provide an avenue for
resolving merely monotone problems [17]. The per-iteration complexity can be reduced to a single projection via
projected reflected gradient and splitting techniques as examined in [8, 9] (also see [14]). When the assumption
on the mapping is weakened to pseudomonotonicity and its variants, rate statements have been provided in
[15, 24, 25] via a stochastic extra-gradient framework.

Gap in the literature. Despite these advances in addressing VIs and their stochastic variants, solving problem
(6) remains challenging. In fact, we are unaware of any provably convergent stochastic approximation method for
solving problem (6) that appears to be essential in estimating the PoS, defined as (2). One main approach to solve
(6), when the constraint set is the solution set of a deterministic VI and the objective function is also deterministic,
is the sequential regularization (SR) approach which is a two-loop framework (see [12, Chapter 12]). In each
iteration of the SR scheme, a regularized VI is required to be solved and convergence has been shown under the
monotonicity of the mapping F and closedness and convexity of the set X. However, the iteration complexity of
the SR algorithm is unknown and it requires solving a series of increasingly more difficult VI problems. To resolve
these shortcomings, recently, Kaushik and Yousefian [26] developed a more efficient first-order method called
averaging randomized block iteratively regularized gradient. Non-asymptotic suboptimality and infeasibility
convergence rates of O(1/K%2%) have been obtained where K is the total number of iterations. Here, we consider
a more general problem with a stochastic objective function and a stochastic VI constraint. Employing a novel
iterative penalization technique, we propose an extra-(sub)gradient-based SA method and we derive convergence
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results in expectation, of the same order of magnitude as in [26], despite the presence of stochasticity in the both
levels of the problem.

Main contributions. In this paper, we study a stochastic optimization problem with a nonsmooth and merely
convex objective function and a constraint set characterized as the solution set of a stochastic variational inequality
problem. Motivated by the absence of efficient and scalable SA methods for addressing this class of constrained
stochastic optimization problems, we develop a single-timescale first-order stochastic approximation method
with block-coordinate updates, called Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient
Method (aR-IP-SeG). We derive convergence rates in terms of suitably defined metrics for suboptimality and
infeasibility. In particular, in Theorem 1, we obtain an iteration complexity of the order of €™* where € denotes a
user-specified bound on both the objective function’s error and a suitably defined infeasibility metric (i.e., dual
gap function). This iteration complexity appears to be best known result for this class of constrained stochastic
optimization problems. Moreover, utilizing the proposed extra-(sub)gradient-based method, we derive lower and
upper bounds, both of the order 1/K%%, for approximating the price of stability. Such guarantees appear to be
new in computing the PoS.

Outline of the paper. Next, we introduce the notation that we use throughout the paper. In the next section,
we precisely state the main definitions and assumptions that we need for the convergence analysis. In Section 2,
we describe the aR-IP-SeG algorithm to solve problem (6) and the complexity analysis is provided in Section 4.
Additionally, in Section 5, we propose a scheme to approximate the price of stability in (2) with guarantees. Finally,
some empirical experiments are presented in Section 6 for addressing a stochastic Nash Cournot competition
over a network where we compare our proposed scheme with the few existing schemes that can be employed for
estimating the PoS.

Notation. Throughout, we often use column vectors. For a convex function h : R” — R with the domain
dom(h) and any x € dom(h), a vector Vh(x) € R" is called a subgradient of h at x if h(x) + 6h(x)T(y —x) < h(y)
for all y € dom(h). We let dh(x) denote the subdifferential set of function h at x. Given a vector x € R, we use
x) e R™ to denote its ith block-coordinate. We let V;h(x) denote the ith block-coordinate of VA(x). We use
similar notation for referring to the ith block-coordinate of mappings. We let E[e] denote the expectation with
respect to the all probability distributions under study. We use filtration to take conditional expectations with
respect to a subgroup of probability distributions. We denote the optimal objective value of the problem (6) by f*.
The Euclidean projection of vector x onto a convex set X is denoted by Px(x), where Px(x) = argmin, ¢ lly—x||%
Throughout the paper, unless specified otherwise, k denotes the iteration counter while K represents the total
number of steps employed in the proposed methods. Moreover, we define dist(x, X) = mingyex [ly — x]|.

2 ALGORITHM OUTLINE

Our goalin this section is to devise an SA scheme for solving problem (6). To this end, we develop a method, called
Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient (aR-IP-SeG) presented by Algorithm 1.
Compared with standard extra-gradient methods, a key novelty in the design of aR-IP-SeG lies in how we
iteratively penalize the stochastic mapping of the VI using the parameter py. Intuitively, this is done to penalize
the infeasibility of the generated iterate in terms of the stochastic VI constraint in problem (6). At each iteration k,
we select indices iy and iy uniformly at random and update only the corresponding blocks of the variables y; and
xi by taking a step in a negative direction of the partial sample subgradient V; f (e, &) and sample map F;(e, &)
for i = iy and i. Then, we compute the projection onto sets Xi, and Xj, . Note that each player is associated with
multi-dimensional strategies, denoted by n; fori =1, ..., N, where Zfil n; = n. Also, at each iteration, a player
is randomly chosen to update her/his full block of strategy. Also, yx and py denote the stepsize and the penalty
parameter, respectively. Finally, the output of the proposed algorithm is a weighted average of the generated
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sequence {yy }. This is done in a novel way through incorporating both the stepsize and the penalty parameter
into averaging weights.

Algorithm 1 Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient Method (aR-IP-SeG)

1: initialization: Set random initial points xy, yo € X, an initial stepsize y, > 0, an initial penalty parameter
po > Oascalar r < 1, gy = yo, and I, = 0.

2: fork=0,1,...,K—1do

3. Generate i and iy uniformly from {1,...,N}.

4. Generate & and §~k as realizations of the random vector &.

5. Update the variables yj and xj as

) Px; (X,(:) = Yi(Vif (i &) + picFixe gk))) if i = i,
ykl+1 = ' (7)
x) ifi # iy,

Px, (x,(f) — vk (Vif (Yrs1 &) + peFiYrsn, fk))) if i = i,
(O
X, = ®)
x](cl) if i # ig.

6:  Update I and gk using the following recursions:

D1 =T + (yepr) )

_ etk + (Yepi) Yk

Gow = =2 ri” ket (10)
+

7: end for
8: Return gk.

Throughout, we consider the following assumptions on map F, objective function f and set X in (6).

AssuMPTION 1 (PROBLEM PROPERTIES). Consider problem (6). Let the following holds.
(i) Mapping F(e) : R" — R™is vector-valued, continuous, and merely monotone on its domain, i.e., for all
x,y € dom(F), (F(x) = F(y))T (x - y) > 0.
(ii) Function f(e) : R® — R'is closed, proper, and merely convex on its domain.
(iii) Set X € int (dom(F) N dom(f)) is nonempty, compact, and convex.

Remark 3. In view of Assumption 1, the subdifferential set d f(x) is nonempty for all x € int(dom(f)). Also,
f has bounded subgradients over X. Throughout, we let scalars Dx and Dy be defined as Dx & sup,cx |1x|l
and D¢ £ sup,.cx | f(x)l, respectively. Also, we let Cr > 0 and C¢ > 0 be scalars such that ||F(x)|| < Cr, and
IV f(x)ll < Cp for all V£ (x) € df(x), for all x € X.

Next, we impose some standard conditions on the conditional bias and the conditional second moment on the
sampled subgradient V f (e, &) and sampled map F(e, &) produced by the oracle.

AssuMPTION 2 (RANDOM SAMPLES). (a) The random samples g;k and & are i.i.d, and i; and iy are iid. from the
range {1,...,N}. Also, all these random variables are independent from each other.
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(b) For all k > 0 the stochastic mappings F(e, fk) and F(e, £;) are both unbiased estimators of F(e). Similarly,
Vf(e, &) and Vf(e, &) are both unbiased estimators of Vf(e). i

(c) For all x € X, E[||F(x, &) — F(x)||* | x] < v& and E[||Vf(x, &) = Vf(x)|I* | x] < vZ, for some v, vf > 0.
Remark 4. Under Assumption 3, we can write E[||F(x, £)||? | x] = E[||F(x, &) — F(x)||? | x] + ||F(x)||* < VF + C2

where we use Remark 3. Similarly, we have that E[|Wf(x, % x] < vf + C]%

Remark 5. In the case when the stochastic VI represents a Nash game, we assume that each player has access
to stochastic gradient of its objective as well as stochastic gradient of the global function f.

3 PRELIMINARIES AND BACKGROUND
DEFINITION 1. We denote the history of the method by Ty for k > 0 defined as
7__]( é UI;:O{gt’ {h gt’ lt} U {x()’ yO}

Next, we define the errors for stochastic approximation of objective function f and operator F, and block-
coordinate sampling. We use the terms w, ; and w, i to denote the errors of stochastic approximation involved
at iteration k and similarly, the terms e, ; and €, i for the errors of block-coordinate sampling.

DEFINITION 2 (STOCHASTIC ERRORS). For allk > 0 we define

Wik = Flxe, &) = Flxi), Wp, k= V f o, &)~ V f (),

WEk - = F(Yrsr, &) = F(ys), Wik = VIUess k) = VIGrn),

€rk = NUlkF,k(xk, &) — Fxk, &), &k & NU; V; flxi, &) — Vf(x. &),
€Fk = NUthzk Yr+1> &) = F(Yrr1, Ek)- ef k.= 2 NU; Vlkf(yk+1, &) — 6f(yk+1, &r).

where Uy € R™"™ for £ € [N] such that [Uy, ..., Uy] =1, wherel, denotes the n X n identity matrix.

Based on the above definitions, we state some standard properties of the errors. The proof of the following
result can be found in the extended version of the paper [19].

LEMMA 1 (PROPERTIES OF STOCHASTIC APPROXIMATION AND RANDOM BLOCKS). Consider ér i, éf k., er,k, and
er,x given by Definition 2. Let Assumption 2 hold. Then, the following statements hold almost surely for all k > 0:

(a-i) E[Wwr k | Fr-1] =0, (c-i) Bl&r | Fe1 U{&}] =0,
(a-ii) E[wr.x | Fxa] =0, (c-ii) E[éf,k | Fi-1 U {&} =0,
(a-iii) E[wr,x | Fr-1 U {éjka;k}] =0, (c-iii) Eler k | Fx—1 U {fk,lk &1l =0,
(a-iv) Elwy i | Frr U {Eksiic}] = 0. (c-iv) Elef x | Fior U {&x ik, &k} = 0.
(b-i) E[Jlwr kI | Feil < v (d-0) Elllér&ll? | Fi-1 U (&)1 = (N = DIIF(xi, I
(b-if) Bl lI* | Fie-1] < v, (d-if) E[l1E7 k112 | Frr U {EH = (N = DIV Fxi, EIIZ
(b-iid) Efllwr.ll® | Fet U {&. ic}] < vE. (i) Elller ill? | Fror U {Ek ik &k = (N = DIF(Ygen, &2,
(b-i) Efllwr 12| Fies U (e ik} < v2 (@iv) Ellleg ill® | Far U {ks ik &3 = (N = DIV (girs G112

CoroLLARY 1. Consider €r k, €f k. eF,k, and ef x given by Definition 2. Let Assumption 2 hold. Then, the
following statements hold almost surely for all k > 0:

(@) E[wr, k] = E[wf k] = E[wr,i] = E[wfk] = 0, (c) E[ér,k] = E[éf,x] = Eler k] = Elesx] = 0,
(b-D) E[llwr,xll*] < vi, (d-1) E[llerxll* 1< (N - 1)(VF +C2),
(b-ii) E[||wr, i |I*] < v, (d-ii) E[[léf,k]1*] < (N - 1)(V + Cz)
(b-iii) E[|lwr,klI*] < v, (d-iii) E[ller,xl*] < (N - 1)(VF + Cz)
(b-iv) E[l|wy,xlI*] < V? (d-iv) Ellle,xlI] < (N - 1)(V + Cz)
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Proor. The relations (a-c) follow from taking expectations on both sides of the results in parts (a-c) of Lemma 1
and invoking the law of total expectation. We can show (d-i) as follows: (i) taking expectations with respect to & on
both sides of (d-i) in Lemma 1; (ii) applying Remark 4; (iii) lastly, taking expectations with respect to Fi_, on both
sides of the resulting inequality in (ii). This will complete the proof of (d-i) in Corollary 1. Similarly, we can show
(d-ii), (d-iii), and (d-iv) in Corollary 1. O

In the following lemma, we show that the update rules (7) and (8) in Algorithm 1 can be written compactly in
terms of the full subgradient V f and map F following the terms introduced in Definition 2.

LEmMMA 2 (COMPACT REPRESENTATION OF THE SCHEME). Consider Algorithm 1. The update rules (7) and (8) can
be compactly written as

Ykr1 = Px (xk - N7y (ﬁf(xk) +Wr k + €k + prF(xk) + prWr k + PkéF,k))
Xk+1 = Px (xk - Ny (6f(yk+1) +wr k +efk + prF(Yre1) + prwr i + ,DkeF,k)) ~

PROOF. Note that in view of X = [1X., X;, using the definition of the Euclidean projection operator, we have that
Px(e) = (Px,(e0),...,Pxy(®)), then update rule (7) can be written as

Yks1 = Px (xk — yk(UiVif(xk, &) + picFi(xe, gk))) , =k
The result follows using Definition 2. Similarly, one can obtain the compact form of the update rule (8). ]

In our analysis, we use the following properties of projection map.

LEMMA 3 (PROPERTIES OF PROJECTION MAPPING [3]). Let X C R” be a nonempty closed convex set.
(@) [|Px () — Px(@)|| < |lu—o|| for all u,v € R".
(b) (Px(u) —u)! (x — Px(u)) > 0 for all u € R” and x € X.

We will adopt the following error function to measure the quality of solution generated by Algorithm 1 in
terms of infeasibility.

DEFINITION 3 (THE DUAL GAP FUNCTION [29]). Let X C R" be a nonempty, closed, and convex set and F : X — R"
be a vector-valued mapping. Then, for any x € X, the dual gap function Gap™ : X — R U {+oo} is defined as

Gap*(x) 2 sup,cx F(y)"(x - y).

Remark 6. Notably when X # 0, the dual gap function is nonnegative over X. Also, when F is continuous and
monotone and X is closed and convex, Gap*(x*) = 0 if and only if x* € SOL(X, F) (cf. [22]).

LEMMA 4 (BOUNDS ON THE HARMONIC SERIES [26]). Let 0 < a < 1 be a given scalar. Then, for any integer

1 K-« K-1 1 K-«
K > 27a, we have =) < Zk:o "= < 9=

4 PERFORMANCE ANALYSIS

In this section, we develop a rate and complexity analysis for Algorithm 1. We begin with showing that gy
generated by Algorithm 1 is a well-defined weighted average.

LEMMA 5 (WEIGHTED AVERAGING). Let {7} be generated by Algorithm 1. Let us define the weights A4 x =
% fork € {0,...,K—1} and K > 1. Then, for any K > 1, we have jx = ZI,C:OI Ak kYk+1. Also, when X is
o
a convex set, we have Uk € X.

ACM Trans. Model. Comput. Simul.



Stochastic Approximation for Estimating the Price of Stability in Stochastic Nash Games + 9

Proor. We employ induction to show gx = Zfz_ol Ak.kYk+1 for any K > 1. For K = 1 we have 22:0 Ak 1Yk+1 =
Ao, 1Y1 = Y1, where we used Ag1 = 1. Also, from the equations (9)—(10) and the initialization Ty = 0, we have
_ Togo + (yopo)"y1 _ 0+ (yopo)

Uy = I = T+, =l

The preceding two relations imply that the hypothesis statement holds for K = 1. Next, suppose the relation holds for
some K > 1. From the hypothesis, equations (9)—(10), and that I'x = Iktol Y¢ forallK > 1, we have

Tk gk + (yrpK) Ykt (ZIk(:_()l(ykpk)r) SRz Ak kYker + (YK PK) Ykt

Tkt = )
YK+1 Teos -
Zk o(VkPK) Yr+1 ( o) ) K
vk ooy | Yk+1 = Ak,K+1yk+1,
Z“J O(YJPJ Z _I O(YJPJ) kgo

implying that the induction hypotheszs holds for K + 1. Thus, we conclude that the averaging formula holds for
all K > 1. Note that since Zk ' Ar.x = 1, under the convexity of the set X, we have g € X. This completes the

proof. ]

Next, we prove a one-step lemma to obtain an upper bound for F(y) (yx41 — y)+ p,;l(f(ykﬂ) — f(y)) in terms of
consecutive iterates and error terms. this result will later help us obtain upper bounds for both the suboptimality
of the objective function and the dual gap function in Proposition 1. The proof of the following lemma can be
found in the extended version of the paper [19].

LEmMMA 6 (AN ERROR BOUND). Consider Algorithm 1 for solving problem (6). Let Assumptions 1 and 2 hold. Let
the auxiliary stochastic sequence {uy} be defined recursively as

U1 = Px (wi + N7'yi(wr i + epk + peWr k + prer,k)) » (11)
where 1 := xp. Then for any arbitrary y € X and k > 0 we have
kPR F@) Wk = ) + Gape) o (fyesn) = F(©))
< 0.5N(yiepr) ™ (IIxk = yl1? = llxer = yll* + llux = yll* = llugsr — ylI?)
+ 2N )" i (667 + 3l k117 + 31187,k + oy il + dller, 12
+ 2N (yiepi) " H6CE + 3l1We klI* + 3llér ill® + dllwr, il + 4llerklI?)
Fyip T (whk + epk + prWE K + prerk) (U = k). (12)

In the following result, we show that one of the error terms that appear in the inequality (12) has a zero mean.
This result will help us with obtaining the convergence rates for Algorithm 1.

LEMMA 7. Consider the auxiliary sequence defined by (11). Let Assumptions 1 and 2 hold. Then for any k > 0
T
we have E [(Wf’k +ef k + PkWE K + prerk) (uk — yk+1)] =0.

Proor. Consider {u} defined by (11). From this definition and Algorithm 1 we observe that uy. is Fi.—1-measurable.
Also, note that ygq is Fr—1 U {§k, ix }-measurable. We can write

E [(Wf,k +efk + pEwek + prer k) (k= yer) | Fior U (& fk}]

~ . T
=E [(Wf,k +ef i+ pwrk + prerk) | Fr-1 U {&k, ik}] (Uk = Yk+1)- (13)
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Note that from Lemma 1 (a) we have
E[wr,x + prwr,k | Fie1 U {&k. ik} = 0. (14)

We also have from Lemma 1 (c) that Elef,x + prer,i | Fx-1 U {Sgk, i, &} = 0. Taking conditional expectations with
respect to & on both sides of the preceding equation, we obtain E[es i + prer,k | Fr-1 U {g;k, ir}] = 0. Combining
the preceding relation with (13) and (14), we have that

T sz
E [(Wf,k +efk + pkWEk + prerk) (k= Yrer) | T U {&k ik} | = 0.
Taking conditional expectations with respect to Fr_q U {ggk, ir} on the both sides, we obtain the result. ]

In the following, we employ the results of Lemmas 6 and 7 to obtain upper bounds on the suboptimality of the
objective function and the dual gap function associated with the stochastic VI constraint in problem (6). This will
prepare us to analyze the convergence speed of Algorithm 1 later in Theorem 1.

ProrosITION 1 (ERROR BOUNDS). Consider Algorithm 1 for solving problem (6). Let Assumptions 1 and 2 hold.
Suppose {yxpx} is nonincreasing, {py } is nondecreasing, and 0 <'r < 1 is a scalar. The following results hold for
allK > 2

4ND3 (yk-1px-1)"" pr-1.4 2N TR (vipi)™* pi (9F + HfPZZ)
Shco (vepr)”

AND? (yk-1pk-1)" "1+ 2NV X8 (yepic)” (prkpk +0ryept + 2NDfp;1)

SR Gepr)

) (15)

E[f@)] - " <

E[Gap"(7x)] < ; (16)

where 0 = (7N — 1)C2 + 7Nv& and 0y = (7N — l)CJZC + 7Nv]%.

PRrOOF. First we show the relation (15). Consider the inequality (12). Let y := x* where x* € X is an optimal
solution to the problem (6). This implies that x* € SOL(X, E[F(e, {)]) or equivalently, F(x*)T (yx41 — x*) > 0. We
obtain

(i) P (fyrs1) = £7) < 0.5N(aepr) ™ (I1xe = %117 = Iloegesn = 27117+ [lux = %117 = [fuger = x7[1%)
+ 2N (yrpi) T pi? (6C12r +3lwr k1 + 3l1ér i ll® + 4llwp i l|® + 4||ef,k||2>
+ 2N (yiepr)™ (6CE + 3lwr kI + 3l1er klI* + 4llwe. || + 4ller x]I)

r r—1

T
+yipr ! (wek + ek + pwr i + prer k) (U — Y1) (17)
Multiplying the both sides by py and then, adding and subtracting the term
0.5N(Yi-1pk-0)"" pret (Il = x"[1* + lluge = x"11%) ,
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we have for allk > 1

(1P (F @) = £7) < 05N (ricapica) " pies (e = <711 + e = x°[1)
— 0.5N(rrpe) ™ pr (ks = 712+ lgeen = %)
+0.5N ((ykpr)" ™" i = (rim1pr—1)" ™" pi=) (Il = X711 + Ik = ()
+ 2N epe)* pi (662 + 3l kl1? + 31187, kl? + g il + ey, 1)
+ 2NN (ipi) ™ e (6CH + 350,12+ 3l k11 + &llwr ]I + 4l eI

+ (yrpi)" (Wi +ep ik + pewEk + prer k)’ (uk = Ysr)- (18)
Note that because r < 1 and that {yypx} is nonincreasing and {py} is nondecreasing, we have
Yo Pk = vl pre1 2 0.
Thus, in view of Remark 3 we have

0.5N ((yrpi)"™ pr = (Yi-1pk-1)""" pe=a) (Il = x W2 + lluge — x*11%)
< 4ND§< ((}’kPk)r_lpk - (Yk—lpk—l)r_lpk—l) .
Substituting the preceding bound in (19) and then, summing the resulting inequality fork = 1,...,K — 1 we obtain
K-1
D ep) (fyern) = £7) < 0.5N(yopo) ™ po (llrs = <717 + lfus = x°117)
k=1

+ 4ND% ((yg-1Pk-1)"""pr-1 = (Yop0) "' po)

K-1
FINTU Y (rpi) it (6C3 + 35kl + 3, k12 + Allwy, k12 + 4ley 11
k=1

K-1
+2N7 ) (yipr) ™ pr (6CE + 3N1Wr i lI* + 3llép kll® + 4llwr, i |I* + 4ller, k1I%)
k=1
K-1
. T
+ Z(}’kpk) (Wrk +ep,k + pewr i + prerk) (Uk — Yrsr)- (19)
k=1

From (17) for k- = 0 we have

(Yopo)" (F(y1) = 1) < 0.5N(ropo)" o (Ilxw = x°II° = Iy = "2+ fltg = x°* = s = "2
+ 2N (ropu)" ™" " (6C5 + 3lsip ol + 3118 ol + Allwp,oll* + eyl
+ 2N (yop0) " po (6(3% +3|[WE.ol1? + 3llér,oll* + 4llwr,oll* + 4||€F,0||2)

+ (yopo)” (Wf,o +ef0+ PEWF0 + ,DkeF,o)T (uo — 11). (20)
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12« Jalilzadeh, Yousefian, and Ebrahimi

Summing the preceding two relations we obtain
K-1
D k) (Fan) = £5) < 0.5N(ropo) ™ po (1o = x*I1* + flug — x°[?)
k=0
+4ND% ((yk-1px-1)""" pr=1 = (Yop0) ™" po)
K-1

+ 2N Y () i (6C3 + 3l kI + 3l kI + allwy, il + ey, 1)
k=0
K-1
+2N7 Z(}’kPk)rHPk (6CE + 3llwr k|I* + 3l1ér kI* + 4llwr k||* +4ller «|I)
k=0
K-1 T
+ Z(Ykpk)r (Wr k +efk + prWr k + prer k) (Uk = Yisr): (21)
k=0

Note that from the convexity of f and Lemma 5, we have

Sico kp) flyrs) S ( (yep)" ) K-1 (K—l ) ]
T L\ yEag w) =4 +1) 2 Ak Yest | = :
Siso (kP ; S5 p) T i) ;) ki) = f ; kKYk+1 | = f(GK)

Dividing the both sides of (21) by Zlktol(ykpk)’, using the preceding relation, and ||xo — x*||* + ||up — x*||? < 8D§(,
we obtain

K-1 -1
f@) - f" < (Z(Ykpk)r) (4ND% (yopo) =" po + 4ND¥ ((yk-1px-1)""" pr—1 = (Yopo)" ™ po)
k=0

K-1
+2N! Z(Ykpk)mpil (6Cfc +3llwe ill® + 3l1er k1> + 4llwe i ll® + 4||€f,k||2)
k=0
K-1
#2NT1 3 (repie) ™ pic (6 + 3llwr k12 + 3llér, I + allwp 12 + 4ller 1)
k=0
K-1
N T
+ Z(Ykpk) (e +ep ik + prWE i + prerk) (ug — yk+1)) : (22)
k=0

Taking expectations on the both sides and applying Corollary 1 and Lemma 7, we obtain

K-1 -1
ElfG)] - f* < (Z(ychk)’) (4ND3 (yk-1px-1)""" pK—1
k=0

K-1

+2N71 kz:()/kpk)”lp,;l (6Cj% + 71/; +7(N — 1)(VJ§ + C]%))
=0

K-1
$2N71 3 (ypi)* i (6C2 + 7vE + 7(N = (v + Ci))) :
k=0

This implies that the inequality (15) holds for all K > 2. Next we show the inequality (16). Consider the inequality
(12) again for an arbitrary y € X. In view of Remark 3 we have f(yx+1) — f(y) < 2Dy. Rearranging the terms in (12)
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we obtain

(kPk) FO) (Wewr = ) < 05N (rip) ™ (Ilxi = ylI2 = ks =yl + e = ylI* = e = Il
+ 2N (pi) i (6C% + 3l kI + 316, k12 + allwy, il + dller, i)
+ 2N (pr)™ (6CE + 31, k12 + 3l k11 + Allwr, 12 + aler. ]I

r r-1

+yipr " (wek + ek + prwrk + PkeF,k)T (ur = Yk+1) + 2(ykpi) P Dy. (23)

Adding and subtracting (yepr) " (Ilxk — yll* + llux — yl|?), for allk > 1 we have

k) F@) (Yrs1 — ) < 05N (yi—1px-1)" " (Il = ylI® + [lux — ylI%)
= 0.5N(kpe) ™" (llxksr = ylI? + llugses — ylI?)
+0.5N ((yepi) ™" = (k—1pr=1)"") (I = ylI? + Nl — ylI*)
+ 2N (yepi) ™ i (6CJ% +3llwp kI +3ller i l® + 4llwr i l|® + 4||€f,k||2)
+ 2N (i) (6CE + 3llwr k|2 3llér i 1P+ 4llwr i |I* + 4llerx 1)

r r—1

T .
+yepe (wrk +er ke + peweke + prer k) (uk = Yrs1) + 2(vkp) P Dr. (24)

Note that because r < 1 and that {yrpr} is nonincreasing, we have (yrpr) ™' — (Yk_1px-1)""! = 0. Thus, in view of
Remark 3 we have

0.5N ((ykpk) ™" = W—1pk-1)""") (e = x* 1% + Nl = x*11?) < AND ((yrp) ™" = (yi-1pr-1)" ) -

Substituting the preceding bound in (24) and then, summing the resulting inequality fork = 1,...,K — 1 we obtain

K-1

D k) F@) (yer = y) < 0.5N(yopo) ™" (Il = yll* + Il — ylI”)
k=1

+4ND% ((yk-1pk-1)""" = (yopo)" ™)

K-1
+2N7! Z(Ykpk)mp;z (6CJ% +3llwe i ll® + 3ller k1> + 4llwp il + 4||€f,k||2)
k=1

K-1
+2N"! Z(Ykpk)r“ (6CF + 3lwrill® + 3l1erklI* + 4llwrkI* + 4ller,kll)
=1
K-1 K-1
_ T _
+ Z vipr " (wrk +ep i + prwr i + prer k) (uk — Yrr) + 2Dy Z(Ykpk)’/?kl~ (25)
k=1 k=1
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Consider (23) for k = 0. Summing that relation with (25) we have

F(y)"

D repr) Yers — y) < 0.5N(yopo)" ™" (Ilxo = yll* + lluo — yll*)

+4ND% ((yk-1px-1)""" = (Yopo) ")

K-1
+ 2NN (ipi) i (6CF + 3llwp il + 3,12 + allwy, k12 + 4l 11
k=0
K-1
+2N7! Z(Ykpk)rH (6CF + 3llwr,klI” + 3llér kIl + 4llwr,kI” + 4ller k1I%)
k=0
K-1
T -
+ Z Yirr ' (Wek + epk + pwrk + prerk) (U — yesr) + 2Dy Z(}’kpk)'pkl~ (26)
k=0

Dividing the both side of (26) by ¥ 8- (ykpx)", invoking Lemma 5, and ||xo=yl|> + lluo = yl|* < 8D?, we obtain

F@)'(gx —y) < (Z(Ykpk)’) (4ND3 (yk-1px-1)""

k=0
K-1
42N (pr) i (6C2 4 3llwgill® + 316, k12 + allwy, il + dller i)
k=0
K-1
2NN ()™ (6Ck 4 31k + 3012l + 4llwr, kI + dller i)
k=0

K-1
+ Z Yipit (wrk + epk + prwr ke + pier, o) (e = yran) + 2Dy Z(Ykpk)’ﬂk ) (27)
k=0 k=0

Taking the supremum on the both sides of (27) with respect to y over the set X and invoking Definition 3, we have

K-1 -1
Gap" (k) < (Z(Ykpk)’) (4ND% (y-1p-1)""
k=0

K-1

2NN () pi (6C% + 3l kI + 31187kl + g il + ey, 1)
k=0
K-1

2NN (ipi) ™ (6CH + 3l 12+ 3l kIl + 4llwr el + 4l )
k=0

K-1
T .
+ Z vipr " (Wrk +epk + pewr i + prerk) (uk — Yre) + 2Dy Z(Ykpk) Pkl) :
k=0
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Taking expectations on the both sides and applying Corollary 1 and Lemma 7, we obtain

K-1 -1
E[Gap'(gi)] < (Z(ykpk)r) (AND (yi-1px-1)""
k=0

K-1

+2N7! Z(ykpk)’“ P (60]% +TvE+T(N = D)(vE + CJ%))
k=0

K-1 K-1
+2N71 Z(ykpk)rH (6C§,~ + 7V?; + 7(N - 1)(1/1%7 + C%,)) + 2Dy Z(Ykpk)rplzl) )
k=0 =0

Hence, we obtain the infeasibility bound given by (16). ]

The main result of this section is presented in the following theorem where we obtain convergence rates for
solving problem (6). In particular, we specify update rules for stepsize y; and penalty parameter pj to guarantee
this performance for Algorithm 1.

THEOREM 1 (RATE STATEMENTS AND ITERATION COMPLEXITY GUARANTEES). Consider Algorithm 1 applied to
problem (6). Suppose r € [0, 1) is an arbitrary scalar. Let Assumptions 1 and 2 hold. Suppose, for any k > 0, the
stepsize and the penalty sequence are given by

Yo and  pr 2 poVk + 1.

AR

Then, for all K > 277 the following statements hold.
(i) The convergence rate in terms of the suboptimality is given as
(7—N’1)C}+7
2

VZ

f
~ . D Pg ) 4P0(2 - F)N
E[f@x)] - f* < yo;(o + (1.5-r)N VK ’

YoPo ((7—N'1)C§:+7v127+

(ii) The convergence rate in terms of the infeasibility is given as

N1 2 472
(7-N )Cf+7vf)

(7-N"HCL+7vi+
E[Gap"(7x)] < | ==+ " o Pi LD |42-nN
P YK = | o 7R (1-r)NVK $0(0.75-0.57) K

(iii) Given € > 0, let K. denote a deterministic integer to achieve E[f(gx )] — f* < € and E[Gap*(jk, )] < e.
Then the total iteration complexity and also, the total sample complexity of Algorithm 1 are the same and are
O(N*e™*) where N denotes the number of blocks (In particular, in the Nash game, N denotes the number of
players).

Proor. (i) Substituting the update rules of yx. and py. in (15), we obtain
AND? (yk-1pK-1)"""pr-1 + 2N 5 (viepi) ™ i (9F + efpiz)
Sko0 (vipr)”
3 ANDZ py(yopo) = K755 4 2N~y (65 + 07 p5%) (Yopo) ™" lefz_ol(k +1)7(0-25+0.57)
B (Yopo)" ZicZy (k + 1)70-r '

E[f @)l - f* <
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Because 0 < r < 1, note that both the terms 0.25 + 0.5r and 0.5r are nonnegative and smaller than 1. This implies
that the conditions of Lemma 4 are met. Employing the bounds provided by Lemma 4, from the preceding inequality
we have
) i} 4ND§(p0(Y0po)r—1K0.7570.5r + ZN—lpo (eF + GfPSZ) (Y0P0)1+r(0~75 _ O‘Sr)—1K0.75—0.5r
E[f @) - f" < 0 1-0.5
05(1 - 057') ()/()po)rK T

_ (2=1) (4ND} po(yopo)™ + 2N""po (OF + 07 p;?) (¥0p0)(0.75 = 0.5r)7")

- K0-25 :
Substituting 0y and Or by their values and then, rearranging the terms we obtain the desired rate statement in (i).

(i) Next we derive the non-asymptotic rate statement in terms of the infeasibility. Substituting the update rules of yi
and py in (16), and noting that yy and p;l are nonincreasing, we obtain

AND? (yk-1px-1)" "' + 2N YK (i pr)” (erkpk +Oryippt + 2NDfp;1)
Sk o)
4ND3 (yk-1pK-1)""" + 2N (OF + 07 pg?) 150 (vepr) ™ + 4D S5 (repr) Py
Sico o)
4ND? (yopoK™"%) ™ + 2N (6 + 07 p;?) (yopo) ' DKk + 1)70-50+7)
(Yopo)" Ty (k +1)7057
L 4Dr(ropo) pyt By (k + )02
(Yopo)” ZkK:_()l(k +1)70.5r
Employing the bounds provided by Lemma 4, from the preceding inequality we have

4ND; “IKT050-D L N (OF + O py? 1—0.5(1 + r))"LK170-5(1+7)
B[Gap (1)) < S xToP0) (6 + 0:95°) (opo)(1 = 0.5(1 + 1)
0.5(1 — 0.5r)"1K1-0-57

E[Gap"(7x)] <

4Dfpyt(1 - 0.5r — 0.25)"1K170-5r70-25
0.5(1 — 0.5r)71K1-0-57
ANDS (yopo)™! + 4N"" (0F + Orp5?) (opo)(1 = 1)

<@2-=7)

K05
4D py1(0.75 - 0.5r)7!
+(2-r) R0 .
The rate statement in (ii) can be obtained by substituting 0f and Or by their values and then, rearranging the terms.
(iii) The result of part (iii) holds directly from the rate statements in parts (i) and (ii). O

5 APPROXIMATING THE PRICE OF STABILITY

Our goal in this section lies in devising a stochastic scheme for approximating the price of stability, defined by
(2), in monotone stochastic Nash games. The proposed scheme includes three main steps described as follows:
(i) Employing Algorithm 1 for approximating a solution to the optimization problem (6).

(ii) Employing a stochastic approximation method for approximating a solution to the nonsmooth stochastic
optimization problem min,¢x E[ f(x, £)]. This can be done through a host of well-known methods including the
stochastic subgradient [32, 39] and its accelerated smoothed variants [18]. Another avenue for solving this class
of problems is stochastic extra-subgradient methods [15, 22, 31, 41, 43].
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(iii) Lastly, given the two approximate optimal solutions in (i) and (ii), we estimate the objective function value
E[f(x, £)] at each solution. The PoS is then approximated by dividing the sample average approximation of
optimal objective value of problem (6) by that of min,ex E[ f(x, £)].

An example of this scheme is presented by Algorithm 2. Here, vectors yj ; and xi ; are generated by Algorithm 1,
while yi , and x ; are generated by a standard stochastic extra-subgradient method for solving min,ex E[ f(x, £)].
We provide the following remark to make clarifications about this scheme.

Remark 7. As mentioned earlier, we do have several options in employing a method for solving the canonical
nonsmooth stochastic optimization problem minyex E[ f(x, £)]. Here, we use the stochastic extra-subgradient
method that is known to achieve the convergence rate of the order \/L? when employing a suitable weighted
averaging scheme specified by (35) (cf. [43]). We also note that Algorithm 2 can be compactly presented by the
two extra-subgradient schemes, separately. However, we note that there are different groups of random samples
generated in Algorithm 2 and the analysis of the scheme relies on what assumptions we make on these samples,
presented in the following.

AssumPTION 3. Let the following statements hold.
(i) The random samples {&,1}5_, {gk,l}fz‘ol, {Er2}r sy {fk,z},’jz—ol, and {{;}M71 are iid. associated with the
probability space (Q, F,P). Also, {fk’l}fz_ol, {;k,1}kK;01, {ik,z}sz_Ol, and {fk,z}sz_Ol are i.id. uniformly distributed
within the range {1,..., N}. Additionally, all the aforementioned random variables are independent from each
other.
(ii) f (e, &) is an unbiased estimator of the deterministic function f(e).

To approximate the PoS, we need upper and lower bounds for suboptimality of problem (6). We established
the upper bound in Theorem 1. Now we obtain the lower bound considering the following weak sharpness
assumption.

AssUuMPTION 4 (WEAK SHARPNESS [8]). The variational inequality problem VI(X,F) satisfies the weak sharpness
property implying that there exists an & > 0 such that (x — x*)T F(x*) > adist(x, X*) for any x € X*, where X*
denotes the solution set of VI(X, F).

CoROLLARY 2. Under the premises of Theorem 1 and considering Assumption 4, we have for all K > 2

O(N) _ . ON)
-— <E[fx) - f]1< —=.
VK VK
PROOF. From Assumption 4, we know that there exists @ > 0 such that E[dist(§x, X*)] < éE[Gap*(gK)]. Moreover,
since X* is a compact set, there exists §* € X* such that dist(jx, X™) = minyex- ||y — G|l = |§* — gk ||. Therefore,
using the result of Theorem 1, we have

B3~ 3l = 7ELGap )] < 2 (29

Moreover, using convexity of f and Cauchy-Schwartz inequality, we conclude that

_O(N)
where in the first inequality we used the fact that f* < f(§*) and the last inequality follows from (28) and the fact
that the gradient is bounded. ]

E[f@0] - f* 2 Elf @] = f§) 2 EIVFG)T Gk = §)1 2 =IVF@IIIElgx - 9111 >

The main result in this section is presented in the following
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LeEMMA 8 (ERROR BOUNDS IN APPROXIMATING THE PoS). Consider Algorithm 2. Let Assumptions 1, 2, 3, and 4
hold. Suppose, ry, r; € [0, 1) be fixed scalars and for any k > 0, let us define

N Yo,1 A 4 A Y02
Y1 = ———, prx=pVk+1, yr2= .
Sk + 1) Vik+1

Then the following holds for all K > 1.

1\ _ E[f(gx.1)] ( 1 )
O|—=| < ———>=-PoS<O0|—]. 29
(VE) Bl f(gx.0)] R #)
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Algorithm 2 Approximating PoS using randomized stochastic extra-gradient schemes

1: initialization: Set random initial points x 1, Xo,2, Yo,1, Yo,2 € X, initial stepsizes yo.1, yo,2 > 0, scalar 0 <
ri,r2 < 1, 4o,1 = Yo,2 := Yo, Lo,1 = Lo,z := 0, So,;1 = Sp,2 := 0.

2: fork=0,1,...,K—-1do

3. Generate iy 1, fk,l, ik,2, and fk,z uniformly from {1,...,N}.

4. Generate & 1, fk,l, &2, and fk,z as realizations of the random vector &.

5. Update the variables y 1, Xk 1, Yk,2, and xi ; as

" Px; (xﬁf’)1 = Ve (Vi f (e 10 1) + kai(xk,l,gk,l))) if i = ix1
1

Y11= G y (30)
) if i # i1
" Px; (xg’)l ~ Vi1 (Vi f Wrer,10 E,1) + PeFiien, 1o §k,1))) if7 = dg 1,
1
Xprr1 = ) (31)
x;cl’)l ifi # ik,l’
o Px; (x,(i)z ~ V2 Vi f (xk. 2, é;k,z)) if i =k,
1
Yrs1,2 = _ ¢ (32)
) if i # g o,
" Px; (x,(i)Z - Yk,zeif(ykﬂ,z,fk,z)) if i = g2,
1
Xtz 5 ' (33)
X if i # g,
6. Update I 1, Ik 2, k.1, and g » using the following recursions.
_ Tk 19k,1 + (Ve 1PK) " Ykt1
D1 =Te1 + (Ye1pe)™s e = T =, (34)
k+1,1
" . Tk, 20k,2 + Y,:fzykﬂ,z
Ter2 = Tk2 4y Gkerz = T (35)
’ k+1,2
7: end for
8: Generate the batch of samples {{;} as i.i.d realizations of ¢, fort = 0,...,M -1
9: Evaluate sample average approximations fu(gx,1) = ﬁ ?151 fUk1.¢) and fu(ikz) =
1 vM-1 ¢ (-
M 2i=0 Af (yK,z,évt)
10: Return M
fm(Fk,2)

Proor. We utilize the following notation in the proof.
Fr1 = U]f:o{sgt,h i1, &1in1t U {xo 1, Y01} forallk € {0,...,K -1},
Fr2 = Ultczo{gt,b ir.2,Easir2} U {x0,2, Yo.2}» forallk € {0,...,K —1}.

>
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Recall the definitions fy(ik.1) := &2 M f (g, ) and fu(ijk.2) = 5 MY f (9K.2- (t). Then, we may write

M-1
B[ fuk)| = B [B [ fu@x 0 | T || =B B |5 D f (50, 60) | T || =BLF @)
=0
From the preceding relation and Theorem 1 we have
_O(N) O(N)

R <E[fM(yK1)] fr< \/I?

where f* denotes the optimal objective value of problem (6). Let us define f(’gpt 2 minyex E[ f(x, &)]. Similarly,

M-1

i Z f(GK.2, &) | Fic-r2

t=0

B [fuia)| = B|B | fu@ica) | oo | = E|B = B[ f(gi.2))

and we also have that

r _ s O(N)
0<E [fM(yK,Z)] _fOpt < W
We show the result holds when f~, f(‘)‘pt > 0 and one can verify that the result also holds for other cases. From the
definition of PoS given by (2) and the two preceding inequalities, we may write

. « . ON)
Blige)]  F YR _ f o), o, 0N
ElfGx2)] ~ Jope © fop VK VK
We can also write
E[f(ﬂK,l)] - (N) = 1_0‘%) X PoS = —E[f(gK’l)] — PoS > _om
Blf k)] fopet "3? 1+ 9% Elfax2]l VK

Thus, in view of the two preceding inequalities, the result holds.

Remark 8. Wenote thatin Algorithm 2, in using the extra-gradient method employed for solving min,ex E[ f(x, £)],
we do not use any penalization. However, in solving min, esor(x, E[F(s, ))) E[f (x, )], we employ Algorithm 1 where
we utilize iterative penalization. Intuitively speaking, problem min,ex E[ f(x, £)] can be viewed as a special case
of miny esor(x,E[F(e, £))) ELf (x, £)] where the mapping F(x) is zero for all x. As such, we suppress the penalization
in solving minyex B[ f(x, £)]. This allows us to use larger stepsizes in solving min,cx E[ f(x, £)] and obtain faster

convergence for the optimality metric.
Moreover, in Algorithm 2, in solving min,cx E[ f(x, )], we employ the averaging weights ,g'f—;)r

. However,
j=0 \¥J, 2)

Yk, 1PK)"
S W)
choices of the stepsizes and penalty parameter in Lemma 8, the averaging weights of the two schemes are indeed
almost identical. This is because in Lemma 8, assuming that yo 100 = yo,2, we have yi 1px = yk,2 for all k.

in solving miny csor(x, E[F(s, £))) ELf (x, &)], we use the averaging weights We note that in view of the
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6 NUMERICAL EXPERIMENTS

In this section we present the performance of the proposed schemes in estimating the price of stability for a
stochastic Nash Cournot competition over a network. Cournot game is one of the most popular and amongst the
first economic models for formulating the competition among multiple firms (see [12, 21] for the applications of
Cournot models in imperfectly competitive power markets and also, rate control in communication networks).
The Cournot model is described as follows. Consider a collection of N firms who compete over a network with J
nodes to sell a product. The strategy of firm i € {1, ..., N} is characterized by the decision variables y;; and s;;,
denoting the generation and sales of firm i at the node j, respectively. Compactly, the decision variables of the
ith firm is denoted by x(!) £ (y;,s;) € R¥ where we assume that y; £ (yi1,...,yi7) and s; = (si1, ..., si7). The
goal of the i*# firm lies in minimizing the expected value of a net cost function f; (x(i), xD ¢ ) over the network
over the strategy set X;. This optimization problem for the firm i is defined as

J J

Z ¢ij(yij) = Z sijpj () €)

Jj=1 Jj=1

minimize E [ﬁ (x(i),x(‘i), g—’)] AR

J J
Subject to. D ex; & {(yi,si) | yij < Bij,Zyij = Zsij, Yijssij = 0, forall j=1,. ..,]} .
j=1 j=1
Here, 5; = Z‘ii:l s;j denotes the aggregate sales from all the firms at node j, p; : R X Q — R denotes the price
function characterized in terms of the aggregate sales at the node j and a random variable £, and ¢;; : R — R
denotes the production cost function of firm i at node j. The price functions are given as p; (57, &) = a;(£)—p; (3;)°,
where o;(£) is a random positive variable, f; is a positive scalar, and ¢ > 1. We assume that cost functions are
linear and the transportation costs are zero. The constraint y;; < B;; states that the generation is capacitated
where 8;; is a positive scalar for all i and j. Similar to [26], in defining a global objective function for the price of
stability, we consider the Marshallian aggregate surplus function defined as

N

B[f ()] 2 ) E[fi (x"x0.¢)|.

i=1

It has been shown [23] that when o > 1, f is convex and also, when eitherc = 1or1 <o <3and N < 3;%11,
the mapping associated with the Cournot game, i.e., F(x) £ (VX(I)E[ﬁ (x,0],....V.»E[fn(x, {)]) is merely
monotone.

Experiments and set-up. We compare the performance of Algorithm 1 with that of the two existing methods,
namely'aRB-IRG in [26] and the sequential regularization (SR) scheme (cf. [12, 26]). Note that both the SR
scheme and aRB-IRG can only use deterministic gradients. To apply these two methods, we use a sample average
approximation scheme by assuming that the deterministic gradient is approximated using a batch size of 1000
random samples. In Algorithm 1, however, we can use stochastic gradients (using a single sample &). In both
Algorithm 1 and aRB-IRG, we employ a randomized block-coordinate scheme with N number of blocks, where N
is the number of firms. We consider four different settings in our simulation results, where they differ in terms of
the choices of the initial stepsize, the initial regularization parameter used in aRB-IRG, and the initial penalty
parameter. For each setting, we implement the three methods on two different Cournot games, one with 4 players
over a network with 5 nodes, and another one with 10 players over a network with 2 nodes. We assume that
a;(£) is uniformly distributed for all the agents. To compare the simulation results, we generate 15 independent
sample-paths for any of the schemes that are stochastic and/or randomized.
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Table 1. The four settings for the algorithm parameters

H Algorithm ‘ Parameter(s) ‘ Setting 1  Setting 2 Setting 3 Setting 4 H
SR scheme Yo 0.1 0.1 1 1

aRB-IRG (Yo 10) (0.1,01) (0.1,1)  (1,0.1) (1,1)
aR-IP-SeG (Yo: Po) (0.01,10)  (0.1,1)  (0.1,10) (1,1)

Results and insights. The simulation results are presented in
Figures 3-4, and 5. Note that the legend for Figures 3-4 is presented
in Figure 2. Several observations can be made: (i) As it can be seen s 3 R-IP-SeG (r=0)
in Figures 3-4, Algorithm 1 outperforms the other two methods _e_ aR-IP-SeG (r=0.5)
in almost all the scenarios. We note that a smaller gap function — D= aRB-IRG (1=0)
value implies a smaller infeasibility for the solution iterate. How- a B
ever, because the solution iterate may be infeasible during the =¥ aRB-IRG (=0.5)
implementation of aRB-IRG.and aR-IP-SeG , a smaller objective === SR scheme
value may not necessarily imply a better solution. Instead, when  Fig. 2. The figure legend used in the numerical
comparing the objective function metric in the figures, it is im- experiments in Figures 3-4
portant to observe how fast the objective value of each method
reaches to a stable value. (i) Although both Algorithm 1 and aRB-IRG are equipped with the same convergence
speeds, Algorithm 1 enjoysa better performance with respect to the run-time. This is because it uses stochastic
gradients that are cheaper to compute in contrast with the sample average gradients used in aRB-IRG. (iii) We do
observe that as the size of the problem increases in terms of the number of players and the size of the network,
the performance of all the schemes is downgraded. However, Algorithm 1 seems to stay robust across most
settings and often outperforms the other two methods. (vi) In estimating the PoS in Figure 5, the methods seem
to converge to a PoS smaller than one. This is because in this numerical experiment, we have considered the
minimization of the negative of the profit function. As such, the optimal objective values of the minimization
problems become negative. Consequently, the PoS is theoretically less than or equal to one. This is indeed aligned
with the findings in Figure 5. Supplementary numerical experiments can be found in the extended version of the

paper [19].
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Fig. 3. Simulation results for a stochastic Nash Cournot game with 4 players over a network with 5 nodes, comparing
Algorithm (1) with other existing methods for solving problem (6).
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Fig. 4. Simulation results for a stochastic Nash Cournot game with 10 players over a network with 2 nodes, comparing
Algorithm (1) with other existing methods for solving problem (6).
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Fig. 5. Performance of Algorithm 2 in estimating PoS. 90% confidence intervals become tighter as the scheme proceeds.
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