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The goal in this paper is to approximate the Price of Stability (PoS) in stochastic Nash games using stochastic approximation

(SA) schemes. PoS is amongst the most popular metrics in game theory and provides an avenue for estimating the eiciency

of Nash games. In particular, knowing the value of PoS can help with designing eicient networked systems, including

transportation networks and power market mechanisms. Motivated by the absence of eicient methods for computing the

PoS, irst we consider stochastic optimization problems with a nonsmooth and merely convex objective function and a merely

monotone stochastic variational inequality (SVI) constraint. This problem appears in the numerator of the PoS ratio. We

develop a randomized block-coordinate stochastic extra-(sub)gradient method where we employ a novel iterative penalization

scheme to account for the mapping of the SVI in each of the two gradient updates of the algorithm. We obtain an iteration

complexity of the order ϵ−4 that appears to be best known result for this class of constrained stochastic optimization problems,

where ϵ denotes an arbitrary bound on suitably deined infeasibility and suboptimality metrics. Second, we develop an

SA-based scheme for approximating the PoS and derive lower and upper bounds on the approximation error. To validate the

theoretical indings, we provide preliminary simulation results on a networked stochastic Nash Cournot competition.

CCS Concepts: ·Mathematics of computing→Continuous optimization; ·Computingmethodologies→ Stochastic

games.

Additional Key Words and Phrases: stochastic optimization, variational inequality, Nash equilibrium, price of stability

1 INTRODUCTION

The goal in this paper lies in the development of a stochastic approximation method, equipped with performance

guarantees, for computing the price of stability (PoS) ratio in monotone stochastic Nash games. Nash equilibrium

(NE) is a fundamental concept in game theory and captures a wide range of phenomena in engineering, economics,

and inance [12]. Consider a stochastic Nash game with N players, each associated with a strategy set Xi ⊆ Rni
and a cost function fi . Player i’s objective is to determine, for any collection of arbitrary strategies of the other

players, denoted by x (−i), an optimal strategy x (i) that solves the stochastic minimization problem

minimizex (i ) E

[
fi

((
x (i);x (−i)

)
, ξ
)]
, (Pi (x (−i)))

subject to x (i) ∈ Xi ,
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where fi
( (
x (i);x (−i)

)
, ξ
)
denotes a random cost function associated with the ith player that is parameterized in

terms of the action of the player x (i), actions of other players denoted by x (−i), and a random variable ξ , where

ξ : Ω → Rd denotes a random variable associated with the probability space (Ω,F ,P).

Remark 1. Throughout, similar to [22, 31, 42], we focus on settings where the stochasticity is only present in

the objective function of the players. In particular, we assume that the strategy sets are deterministic.

An NE is described as a collection of speciic strategies chosen by all the players, denoted by the tuple

x ≜
(
x (1); . . . ;x (N )) where no player can reduce her cost by unilaterally changing her strategy within her feasible

strategy set. Mathematically, NE can be described as a vector x that satisies, for all i = 1, . . . ,N , the inequality

given as

E

[
fi

((
x (i);x (−i)

)
, ξ
)]

≤ E
[
fi

((
y(i);x (−i)

)
, ξ
)]
, for all y(i) ∈ Xi . (1)

Suppose n denotes the total number of dimensions associated with an NE, i.e., n ≜
∑N

i=1 ni . Let us deine the set

X ⊆ Rn as the Cartesian product of the players’ strategy sets, i.e., X ≜
∏N

i=1Xi . Also, under a diferentiability

assumption, deine the stochastic mapping F : Rn × Rd → Rn and its deterministic counterpart F : Rn → Rn as

the collection of players’ gradient mappings as

F (x) ≜ E[F (x , ξ )], where F (x , ξ ) ≜
(
∇x (1) f1(x , ξ ), . . . ,∇x (N ) fN (x , ξ )

)
.

Note that for expository ease, we use F in naming both deterministic and stochastic mappings. Then, under

the convexity of the players’ objective functions, the problem of seeking an NE to the game characterized by

problems (Pi (x (−i))) for i = 1, . . . ,N , can be compactly formulated as a stochastic variational inequalities (VI)

problem, denoted by VI(X , F ). Recall that a vector x∗ ∈ X solves VI(X , F ) if (y − x∗)T F (x∗) ≥ 0, for all y ∈ X .

Indeed, it can be observed that the inequality above compactly captures the optimality conditions of the convex

programs (1) written for all i = 1, . . . ,N . To this end, computing a solution to VI(X , F ) leads to inding an NE to

the described stochastic Nash game. Generally, a VI problem may admit multiple solutions leading to a collection

of NEs. Throughout, we let SOL(X , F ) denote the solution set of the VI(X , F ). In this paper, our aim is to develop

a provably convergent scheme for estimating the eiciency in stochastic Nash games with monotone mappings.

The notion of eiciency in Nash games is a storied area of research and dates back to the celebrated Prisoner’s

Dilemma. In fact, Nash equilibrium is provably known to be ineicient [11], in the sense that the competition

among the players often leads to a degradation of the overall performance of the system of players. In view of this,

understanding the eiciency of an NE has received much attention in game theory. Among, the popular measures

of the eiciency of NE is a metric called price of stability (PoS) [35]. Given an arbitrary cost metric for quantifying

the overall performance of the system, PoS is deined as the ratio between the following two quantities: (1) the

minimal cost attained by the best Nash equilibrium (among possibly many NEs); (2) the optimal cost when the

competition among the players is (hypothetically) suppressed. Let stochastic function f : Rn × Rd → R denote

the system’s overall performance metric. Mathematically and following our notation, PoS can be formulated as

PoS ≜
minx ∈SOL(X , E[F (•,ξ )]) E[f (x , ξ )]

minx ∈X E[f (x , ξ )]
. (2)

Remark 2. We note that the function f may or may not relate to the individual objective functions of the players

denoted by fi . In the literature [1, 21], diferent choices have been considered. Two common examples include the

utilitarian approach where f is deined as the summation of all players’ objectives, and the egalitarian approach

where f is deined as the maximum of the individual objective functions.
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Evaluating the PoS ratio, even in deterministic problems, is a computationally challenging task. To elaborate

on this, we provide a simple example in the following.

x1
201510505101520

x2
201510505101520

(x1 , x2 )

20

0

20

40

60

Fig. 1. Function ϕ in problem (3)

Example (PoS in saddle-point problems). The problem of

seeking a saddle-point in minmax optimization is an important

class of equilibrium problems that has received considerable at-

tention in game theory [12, 27, 30, 31] and more recently, in

adversarial learning [13], fairness in machine learning [38], and

distributionally robust federated learning [10]. In fact, the canon-

ical minmax problem can be viewed as a subclass of two-person

zero-sum games. The existence of equilibrium in such a game was

established by the von Neumann’s minmax theorem in 1928 [37].

To elaborate, consider a minmax problem given as

min
11≤x1≤60

max
10≤x2≤50

ϕ(x1,x2) ≜ 20 − 0.1x1x2 + x1. (3)

Figure 1 shows the saddle-shaped function ϕ. Associated with

problem (3), we can consider a pair of optimization problems as{
minimizex1 f1(x1,x2) ≜ 20 − 0.1x1x2 + x1

subject to x1 ∈ X1 ≜ [11, 60],
(4)

{
minimizex2 f2(x1,x2) ≜ −20 + 0.1x1x2 − x1

subject to x2 ∈ X2 ≜ [10, 50].
(5)

Problems (4) and (5) together construct a two-person zero-sum Nash game. From [12, 1.4.2 Proposition], the set

of saddle-points are the solutions to the variational inequality problem VI(X , F ) where we deine
F (x1,x2) ≜ (∇x1 f1(x),∇x2 f2(x)) = (−0.1x2 + 1, 0.1x1) and X ≜ X1 × X2.

Note that the mapping F is merely monotone, in view of (F (x) − F (y))T (x − y) = 0 for all x ∈ R2 and y ∈ R2.
We observe that the set of all the saddle-points is given by SOL(X , F ) = {(x1,x2) | x1 ∈ [11, 60], x2 = 10},
implying that there are ininitely many Nash equilibria to this game characterized by the convex set SOL(X , F ).
To measure the PoS, let us consider the global metric deined as f (x1,x2) ≜ 20 + |x1 − x2 | for instance. This
implies that the numerator of the PoS in (2) is equal to 21, while its denominator is equal to 20. As such, we

obtain PoS = 1.05, implying that the competition in the game leads to an %5 loss in the metric f . Although in

this simple example, we are able to evaluate the PoS, in practice, we often encounter several challenges that

may make this impossible. Two main challenges are explained as follows: (i) The solution set of the VI is often

unknown. Even in deterministic settings, it is often impossible to determine the entire set SOL(X , F ); (ii) Nash
games might be alicted by the presence of uncertainty which motivates the need for leveraging Monte Carlo

sampling schemes, such as stochastic approximation, for contenting with stochasticity and the large-scale of

the problem. For example, in distributionally robust federated learning [10], the problem is cast a stochastic

minmax problem where the stochasticity emerges from the probability distribution of the local data sets, privately

maintained by the clients.

To estimate the PoS with guarantees, irst, we need to solve the numerator of the right-hand side of (2) that is

characterized as a stochastic optimization with a stochastic VI constraint. Naturally, addressing the presence

of VI constraints is a challenging task in optimization. This is mainly because VI constraints do not appear to

lend themselves to standard Lagrangian relaxation schemes. In this work, this challenge is exacerbated due to

the presence of uncertainty in the mapping of the VI constraint. To this end, our goal is to employ stochastic

approximation (SA) schemes. SA is an iterative scheme that has been widely employed for solving problems

in which the objective function is corrupted by a random noise. In the context of optimization problems, the

ACM Trans. Model. Comput. Simul.
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function values and/or higher-order information are estimated from noisy samples in a Monte Carlo simulation

procedure [4]. The SA scheme, irst introduced by Robbins and Monro [34], has been studied extensively in recent

years for addressing stochastic optimization and stochastic variational inequality problems [22, 28, 33, 39].

In addressing constrained stochastic formulations, the majority of the SA schemes in the existing literature

address the standard cases where the constraints are in the form of functional inequalities, equalities, or easy-

to-project sets. However, motivated by the need for eiciency estimation in stochastic Nash games, we aim at

devising a provably convergent SA method for estimation of the PoS. To this end, our primary interest lies in

solving the following stochastic optimization problem whose constraint set is characterized as the solution set of

a stochastic VI problem. This optimization problem is given as

minimize E[f (x , ξ )] (6)

subject to x ∈ SOL(X ,E[F (•, ξ )]),

where f : Rn × Rd → R is a convex function, X ⊆ Rn is the Cartesian product of the component sets Xi ⊆ Rni
where

∑N
i=1 ni = n, i.e., X ≜

∏N
i=1Xi . We let the ith block-coordinate of the mapping F (•, ξ ) be denoted by

Fi : R
n × Rd → Rni for any i ∈ [N ] ≜ {1, . . . ,N }. As noted earlier, for the ease of presentation, throughout we

deine f (x) ≜ E[f (x , ξ )] and F (x) ≜ E[F (x , ξ )].
Existing literature on VIs. The variational inequality problem has been extensively studied in the literature

due to its versatility in capturing a wide range of problems including optimization, equilibrium and comple-

mentarity problems, amongst others [12]. The extra-gradient method, initially proposed by Korpelevich [27]

and its extensions [5ś7, 16, 22, 41, 43], is a classical method for solving VI problems which requires weaker

assumptions than standard gradient schemes [2, 36]. In stochastic problems, amongst the earliest schemes for

resolving stochastic variational inequalities via stochastic approximation was presented by Jiang and Xu [20]

under the strong monotonicity and smoothness assumptions of the mapping. Regularized variants of SA schemes

were developed by Koshal et al. [28] for addressing stochastic VIs with merely monotone mappings. Further,

smoothness requirements were weakened by leveraging randomized smoothing in [40, 42]. In the absence of

strong monotonicity, extra-gradient approaches that rely on two projections per iteration provide an avenue for

resolving merely monotone problems [17]. The per-iteration complexity can be reduced to a single projection via

projected relected gradient and splitting techniques as examined in [8, 9] (also see [14]). When the assumption

on the mapping is weakened to pseudomonotonicity and its variants, rate statements have been provided in

[15, 24, 25] via a stochastic extra-gradient framework.

Gap in the literature. Despite these advances in addressing VIs and their stochastic variants, solving problem

(6) remains challenging. In fact, we are unaware of any provably convergent stochastic approximation method for

solving problem (6) that appears to be essential in estimating the PoS, deined as (2). One main approach to solve

(6), when the constraint set is the solution set of a deterministic VI and the objective function is also deterministic,

is the sequential regularization (SR) approach which is a two-loop framework (see [12, Chapter 12]). In each

iteration of the SR scheme, a regularized VI is required to be solved and convergence has been shown under the

monotonicity of the mapping F and closedness and convexity of the set X . However, the iteration complexity of

the SR algorithm is unknown and it requires solving a series of increasingly more diicult VI problems. To resolve

these shortcomings, recently, Kaushik and Youseian [26] developed a more eicient irst-order method called

averaging randomized block iteratively regularized gradient. Non-asymptotic suboptimality and infeasibility

convergence rates of O(1/K0.25) have been obtained where K is the total number of iterations. Here, we consider

a more general problem with a stochastic objective function and a stochastic VI constraint. Employing a novel

iterative penalization technique, we propose an extra-(sub)gradient-based SA method and we derive convergence

ACM Trans. Model. Comput. Simul.
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results in expectation, of the same order of magnitude as in [26], despite the presence of stochasticity in the both

levels of the problem.

Main contributions. In this paper, we study a stochastic optimization problem with a nonsmooth and merely

convex objective function and a constraint set characterized as the solution set of a stochastic variational inequality

problem. Motivated by the absence of eicient and scalable SA methods for addressing this class of constrained

stochastic optimization problems, we develop a single-timescale irst-order stochastic approximation method

with block-coordinate updates, called Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient

Method (aR-IP-SeG). We derive convergence rates in terms of suitably deined metrics for suboptimality and

infeasibility. In particular, in Theorem 1, we obtain an iteration complexity of the order of ϵ−4 where ϵ denotes a

user-speciied bound on both the objective function’s error and a suitably deined infeasibility metric (i.e., dual

gap function). This iteration complexity appears to be best known result for this class of constrained stochastic

optimization problems. Moreover, utilizing the proposed extra-(sub)gradient-based method, we derive lower and

upper bounds, both of the order 1/K0.25, for approximating the price of stability. Such guarantees appear to be

new in computing the PoS.

Outline of the paper. Next, we introduce the notation that we use throughout the paper. In the next section,

we precisely state the main deinitions and assumptions that we need for the convergence analysis. In Section 2,

we describe the aR-IP-SeG algorithm to solve problem (6) and the complexity analysis is provided in Section 4.

Additionally, in Section 5, we propose a scheme to approximate the price of stability in (2) with guarantees. Finally,

some empirical experiments are presented in Section 6 for addressing a stochastic Nash Cournot competition

over a network where we compare our proposed scheme with the few existing schemes that can be employed for

estimating the PoS.

Notation. Throughout, we often use column vectors. For a convex function h : Rn → R with the domain

dom(h) and any x ∈ dom(h), a vector ∇̃h(x) ∈ Rn is called a subgradient of h at x if h(x) + ∇̃h(x)T (y − x) ≤ h(y)
for all y ∈ dom(h). We let ∂h(x) denote the subdiferential set of function h at x . Given a vector x ∈ Rn , we use
x (i) ∈ Rni to denote its ith block-coordinate. We let ∇̃ih(x) denote the ith block-coordinate of ∇̃h(x). We use

similar notation for referring to the ith block-coordinate of mappings. We let E[•] denote the expectation with

respect to the all probability distributions under study. We use iltration to take conditional expectations with

respect to a subgroup of probability distributions. We denote the optimal objective value of the problem (6) by f ∗.
The Euclidean projection of vector x onto a convex setX is denoted by PX (x), where PX (x) ≜ argminy∈X ∥y−x ∥2.
Throughout the paper, unless speciied otherwise, k denotes the iteration counter while K represents the total

number of steps employed in the proposed methods. Moreover, we deine dist(x ,X ) ≜ miny∈X ∥y − x ∥.

2 ALGORITHM OUTLINE

Our goal in this section is to devise an SA scheme for solving problem (6). To this end, we develop a method, called

Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient (aR-IP-SeG) presented by Algorithm 1.

Compared with standard extra-gradient methods, a key novelty in the design of aR-IP-SeG lies in how we

iteratively penalize the stochastic mapping of the VI using the parameter ρk . Intuitively, this is done to penalize

the infeasibility of the generated iterate in terms of the stochastic VI constraint in problem (6). At each iteration k ,

we select indices ik and ĩk uniformly at random and update only the corresponding blocks of the variables yk and

xk by taking a step in a negative direction of the partial sample subgradient ∇̃i f (•, ξk ) and sample map Fi (•, ξk )
for i = ik and ĩk . Then, we compute the projection onto sets Xik and X ĩk

. Note that each player is associated with

multi-dimensional strategies, denoted by ni for i = 1, . . . ,N , where
∑N

i=1 ni = n. Also, at each iteration, a player

is randomly chosen to update her/his full block of strategy. Also, γk and ρk denote the stepsize and the penalty

parameter, respectively. Finally, the output of the proposed algorithm is a weighted average of the generated

ACM Trans. Model. Comput. Simul.
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sequence {yk }. This is done in a novel way through incorporating both the stepsize and the penalty parameter

into averaging weights.

Algorithm 1 Averaging Randomized Iteratively Penalized Stochastic Extra-Gradient Method (aR-IP-SeG)

1: initialization: Set random initial points x0,y0 ∈ X , an initial stepsize γ0 > 0, an initial penalty parameter

ρ0 > 0 a scalar r < 1, ȳ0 = y0, and Γ0 = 0.

2: for k = 0, 1, . . . ,K − 1 do

3: Generate ik and ĩk uniformly from {1, . . . ,N }.
4: Generate ξk and ξ̃k as realizations of the random vector ξ .

5: Update the variables yk and xk as

y
(i)
k+1

:=




PXi

(
x
(i)
k

− γk (∇̃i f (xk , ξ̃k ) + ρkFi (xk , ξ̃k ))
)

if i = ĩk ,

x
(i)
k

if i , ĩk ,

(7)

x
(i)
k+1

:=




PXi

(
x
(i)
k

− γk (∇̃i f (yk+1, ξk ) + ρkFi (yk+1, ξk ))
)

if i = ik ,

x
(i)
k

if i , ik .

(8)

6: Update Γk and ȳk using the following recursions:

Γk+1 := Γk + (γkρk )r , (9)

ȳk+1 :=
Γkȳk + (γkρk )ryk+1

Γk+1
. (10)

7: end for

8: Return ȳK .

Throughout, we consider the following assumptions on map F , objective function f and set X in (6).

Assumption 1 (Problem properties). Consider problem (6). Let the following holds.

(i) Mapping F (•) : Rn → R
n is vector-valued, continuous, and merely monotone on its domain, i.e., for all

x ,y ∈ dom(F ), (F (x) − F (y))T (x − y) ≥ 0.

(ii) Function f (•) : Rn → R is closed, proper, and merely convex on its domain.

(iii) Set X ⊆ int (dom(F ) ∩ dom(f )) is nonempty, compact, and convex.

Remark 3. In view of Assumption 1, the subdiferential set ∂ f (x) is nonempty for all x ∈ int(dom(f )). Also,
f has bounded subgradients over X . Throughout, we let scalars DX and Df be deined as DX ≜ supx ∈X ∥x ∥
and Df ≜ supx ∈X | f (x)|, respectively. Also, we let CF > 0 and Cf > 0 be scalars such that ∥F (x)∥ ≤ CF , and

∥∇̃f (x)∥ ≤ Cf for all ∇̃f (x) ∈ ∂ f (x), for all x ∈ X .

Next, we impose some standard conditions on the conditional bias and the conditional second moment on the

sampled subgradient ∇̃f (•, ξ ) and sampled map F (•, ξ ) produced by the oracle.

Assumption 2 (Random samples). (a) The random samples ξ̃k and ξk are i.i.d., and ĩk and ik are i.i.d. from the

range {1, . . . ,N }. Also, all these random variables are independent from each other.

ACM Trans. Model. Comput. Simul.
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(b) For all k ≥ 0 the stochastic mappings F (•, ξ̃k ) and F (•, ξk ) are both unbiased estimators of F (•). Similarly,

∇̃f (•, ξ̃k ) and ∇̃f (•, ξk ) are both unbiased estimators of ∇̃f (•).
(c) For all x ∈ X , E[∥F (x , ξ ) − F (x)∥2 | x] ≤ ν2F and E[∥∇̃f (x , ξ ) − ∇̃f (x)∥2 | x] ≤ ν2

f
, for some νF ,νf > 0.

Remark 4. Under Assumption 3, we can write E[∥F (x , ξ )∥2 | x] = E[∥F (x , ξ ) − F (x)∥2 | x]+ ∥F (x)∥2 ≤ ν2F +C
2
F ,

where we use Remark 3. Similarly, we have that E[∥∇̃f (x , ξ )∥2 | x] ≤ ν2
f
+C2

f
.

Remark 5. In the case when the stochastic VI represents a Nash game, we assume that each player has access

to stochastic gradient of its objective as well as stochastic gradient of the global function f .

3 PRELIMINARIES AND BACKGROUND

Definition 1. We denote the history of the method by Fk for k ≥ 0 deined as

Fk ≜ ∪k
t=0{ξ̃t , ĩt , ξt , it } ∪ {x0,y0}.

Next, we deine the errors for stochastic approximation of objective function f and operator F , and block-

coordinate sampling. We use the termsw•,k and w̃•,k to denote the errors of stochastic approximation involved

at iteration k and similarly, the terms e•,k and ẽ•,k for the errors of block-coordinate sampling.

Definition 2 (Stochastic errors). For all k ≥ 0 we deine

w̃F ,k ≜ F (xk , ξ̃k ) − F (xk ),
wF ,k ≜ F (yk+1, ξk ) − F (yk+1),
ẽF ,k ≜ NUĩk

Fĩk (xk , ξ̃k ) − F (xk , ξ̃k ),
eF ,k ≜ NUik Fik (yk+1, ξk ) − F (yk+1, ξk ).

w̃f ,k ≜ ∇̃f (xk , ξ̃k ) − ∇̃f (xk ),
wf ,k ≜ ∇̃f (yk+1, ξk ) − ∇̃f (yk+1),
ẽf ,k ≜ NUĩk

∇̃ĩk
f (xk , ξ̃k ) − ∇̃f (xk , ξ̃k ),

ef ,k ≜ NUik ∇̃ik f (yk+1, ξk ) − ∇̃f (yk+1, ξk ).
where Uℓ ∈ Rn×nℓ for ℓ ∈ [N ] such that [U1, . . . ,UN ] = In where In denotes the n × n identity matrix.

Based on the above deinitions, we state some standard properties of the errors. The proof of the following

result can be found in the extended version of the paper [19].

Lemma 1 (Properties of stochastic approximation and random blocks). Consider ẽF ,k , ẽf ,k , eF ,k , and

ef ,k given by Deinition 2. Let Assumption 2 hold. Then, the following statements hold almost surely for all k ≥ 0:

(a-i) E[w̃F ,k | Fk−1] = 0,

(a-ii) E[w̃f ,k | Fk−1] = 0,

(a-iii) E[wF ,k | Fk−1 ∪ {ξ̃k , ĩk }] = 0,

(a-iv) E[wf ,k | Fk−1 ∪ {ξ̃k , ĩk }] = 0.

(b-i) E[∥w̃F ,k ∥2 | Fk−1] ≤ ν2F ,

(b-ii) E[∥w̃f ,k ∥2 | Fk−1] ≤ ν2
f
,

(b-iii) E[∥wF ,k ∥2 | Fk−1 ∪ {ξ̃k , ĩk }] ≤ ν2F ,

(b-iv) E[∥wf ,k ∥2 | Fk−1 ∪ {ξ̃k , ĩk }] ≤ ν2
f
.

(c-i) E[ẽF ,k | Fk−1 ∪ {ξ̃k }] = 0,

(c-ii) E[ẽf ,k | Fk−1 ∪ {ξ̃k }] = 0,

(c-iii) E[eF ,k | Fk−1 ∪ {ξ̃k , ĩk , ξk }] = 0,

(c-iv) E[ef ,k | Fk−1 ∪ {ξ̃k , ĩk , ξk }] = 0.

(d-i) E[∥ẽF ,k ∥2 | Fk−1 ∪ {ξ̃k }] = (N − 1)∥F (xk , ξ̃k )∥2,
(d-ii) E[∥ẽf ,k ∥2 | Fk−1 ∪ {ξ̃k }] = (N − 1)∥∇̃f (xk , ξ̃k )∥2,
(d-iii) E[∥eF ,k ∥2 | Fk−1 ∪ {ξ̃k , ĩk , ξk }] = (N − 1)∥F (yk+1, ξk )∥2,
(d-iv) E[∥ef ,k ∥2 | Fk−1 ∪ {ξ̃k , ĩk , ξk }] = (N − 1)∥∇̃f (yk+1, ξk )∥2.

Corollary 1. Consider ẽF ,k , ẽf ,k , eF ,k , and ef ,k given by Deinition 2. Let Assumption 2 hold. Then, the

following statements hold almost surely for all k ≥ 0:

(a) E[w̃F ,k ] = E[w̃f ,k ] = E[wF ,k ] = E[wf ,k ] = 0,

(b-i) E[∥w̃F ,k ∥2] ≤ ν2F ,

(b-ii) E[∥w̃f ,k ∥2] ≤ ν2
f
,

(b-iii) E[∥wF ,k ∥2] ≤ ν2F ,

(b-iv) E[∥wf ,k ∥2] ≤ ν2
f
.

(c) E[ẽF ,k ] = E[ẽf ,k ] = E[eF ,k ] = E[ef ,k ] = 0,

(d-i) E[∥ẽF ,k ∥2 ] ≤ (N − 1)(ν2F +C2
F ),

(d-ii) E[∥ẽf ,k ∥2] ≤ (N − 1)(ν2
f
+C2

f
),

(d-iii) E[∥eF ,k ∥2] ≤ (N − 1)(ν2F +C2
F ),

(d-iv) E[∥ef ,k ∥2] ≤ (N − 1)(ν2
f
+C2

f
).
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Proof. The relations (a-c) follow from taking expectations on both sides of the results in parts (a-c) of Lemma 1

and invoking the law of total expectation. We can show (d-i) as follows: (i) taking expectations with respect to ξ̃k on

both sides of (d-i) in Lemma 1; (ii) applying Remark 4; (iii) lastly, taking expectations with respect to Fk−1 on both

sides of the resulting inequality in (ii). This will complete the proof of (d-i) in Corollary 1. Similarly, we can show

(d-ii), (d-iii), and (d-iv) in Corollary 1. □

In the following lemma, we show that the update rules (7) and (8) in Algorithm 1 can be written compactly in

terms of the full subgradient ∇̃f and map F following the terms introduced in Deinition 2.

Lemma 2 (Compact representation of the scheme). Consider Algorithm 1. The update rules (7) and (8) can

be compactly written as

yk+1 = PX

(
xk − N −1γk

(
∇̃f (xk ) + w̃f ,k + ẽf ,k + ρkF (xk ) + ρkw̃F ,k + ρk ẽF ,k

))
xk+1 = PX

(
xk − N −1γk

(
∇̃f (yk+1) +wf ,k + ef ,k + ρkF (yk+1) + ρkwF ,k + ρkeF ,k

))
.

Proof. Note that in view of X =
∏N

i=1Xi , using the deinition of the Euclidean projection operator, we have that

PX (•) =
(
PX1

(•), . . . ,PXN
(•)

)
, then update rule (7) can be written as

yk+1 = PX

(
xk − γk (Ui ∇̃i f (xk , ξ̃k ) + ρkFi (xk , ξ̃k ))

)
, i = ĩk .

The result follows using Deinition 2. Similarly, one can obtain the compact form of the update rule (8). □

In our analysis, we use the following properties of projection map.

Lemma 3 (Properties of projection mapping [3]). Let X ⊆ Rn be a nonempty closed convex set.

(a) ∥PX (u) − PX (v)∥ ≤ ∥u −v ∥ for all u,v ∈ Rn .
(b) (PX (u) − u)T (x − PX (u)) ≥ 0 for all u ∈ Rn and x ∈ X .

We will adopt the following error function to measure the quality of solution generated by Algorithm 1 in

terms of infeasibility.

Definition 3 (The dual gap function [29]). LetX ⊆ Rn be a nonempty, closed, and convex set and F : X → Rn
be a vector-valued mapping. Then, for any x ∈ X , the dual gap function Gap∗ : X → R ∪ {+∞} is deined as

Gap∗(x) ≜ supy∈X F (y)T (x − y).

Remark 6. Notably when X , ∅, the dual gap function is nonnegative over X . Also, when F is continuous and

monotone and X is closed and convex, Gap∗(x∗) = 0 if and only if x∗ ∈ SOL(X , F ) (cf. [22]).

Lemma 4 (Bounds on the harmonic series [26]). Let 0 ≤ α < 1 be a given scalar. Then, for any integer

K ≥ 2
1

1−α , we have K 1−α

2(1−α ) ≤
∑K−1

k=0
1

(k+1)α ≤ K 1−α

1−α .

4 PERFORMANCE ANALYSIS

In this section, we develop a rate and complexity analysis for Algorithm 1. We begin with showing that ȳk
generated by Algorithm 1 is a well-deined weighted average.

Lemma 5 (Weighted averaging). Let {ȳk } be generated by Algorithm 1. Let us deine the weights λk,K ≜
(γk ρk )r∑K−1
j=0 (γj ρ j )r

for k ∈ {0, . . . ,K − 1} and K ≥ 1. Then, for any K ≥ 1, we have ȳK =
∑K−1

k=0 λk,Kyk+1. Also, when X is

a convex set, we have ȳK ∈ X .

ACM Trans. Model. Comput. Simul.
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Proof. We employ induction to show ȳK =
∑K−1

k=0 λk,Kyk+1 for any K ≥ 1. For K = 1 we have
∑0

k=0 λk,1yk+1 =

λ0,1y1 = y1, where we used λ0,1 = 1. Also, from the equations (9)ś(10) and the initialization Γ0 = 0, we have

ȳ1 :=
Γ0ȳ0 + (γ0ρ0)ry1

Γ1
=

0 + (γ0ρ0)ry1
Γ0 + γ

r
0

= y1.

The preceding two relations imply that the hypothesis statement holds for K = 1. Next, suppose the relation holds for

some K ≥ 1. From the hypothesis, equations (9)ś(10), and that ΓK =
∑K−1

k=0 γ
r
k
for all K ≥ 1, we have

ȳK+1 =
ΓKȳK + (γKρK )ryK+1

ΓK+1
=

(∑K−1
k=0 (γkρk )r

) ∑K−1
k=0 λk,Kyk+1 + (γKρK )ryK+1

ΓK+1

=

∑K
k=0(γkρk )ryk+1∑K

j=0(γjρ j )r
=

K∑
k=0

(
(γk ρk )r∑K
j=0(γj ρ j )r

)
yk+1 =

K∑
k=0

λk,K+1yk+1,

implying that the induction hypothesis holds for K + 1. Thus, we conclude that the averaging formula holds for

all K ≥ 1. Note that since
∑K−1

k=0 λk,K = 1, under the convexity of the set X , we have ȳK ∈ X . This completes the

proof. □

Next, we prove a one-step lemma to obtain an upper bound for F (y)T (yk+1−y)+ρ−1k (f (yk+1)− f (y)) in terms of

consecutive iterates and error terms. this result will later help us obtain upper bounds for both the suboptimality

of the objective function and the dual gap function in Proposition 1. The proof of the following lemma can be

found in the extended version of the paper [19].

Lemma 6 (An error bound). Consider Algorithm 1 for solving problem (6). Let Assumptions 1 and 2 hold. Let

the auxiliary stochastic sequence {uk } be deined recursively as

uk+1 ≜ PX

(
uk + N

−1γk (wf ,k + ef ,k + ρkwF ,k + ρkeF ,k )
)
, (11)

where u0 := x0. Then for any arbitrary y ∈ X and k ≥ 0 we have

(γkρk )r F (y)T (yk+1 − y) + (γkρk )r ρ−1k (f (yk+1) − f (y))
≤ 0.5N (γkρk )r−1

(
∥xk − y∥2 − ∥xk+1 − y∥2 + ∥uk − y∥2 − ∥uk+1 − y∥2

)
+ 2N −1(γkρk )r+1ρ−2k

(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+ γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1). (12)

In the following result, we show that one of the error terms that appear in the inequality (12) has a zero mean.

This result will help us with obtaining the convergence rates for Algorithm 1.

Lemma 7. Consider the auxiliary sequence deined by (11). Let Assumptions 1 and 2 hold. Then for any k ≥ 0

we have E
[ (
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1)
]
= 0.

Proof. Consider {uk } deined by (11). From this deinition and Algorithm 1 we observe thatuk is Fk−1-measurable.

Also, note that yk+1 is Fk−1 ∪ {ξ̃k , ĩk }-measurable. We can write

E

[ (
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) | Fk−1 ∪ {ξ̃k , ĩk }
]

= E

[ (
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)
| Fk−1 ∪ {ξ̃k , ĩk }

]T
(uk − yk+1). (13)
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Note that from Lemma 1 (a) we have

E[wf ,k + ρkwF ,k | Fk−1 ∪ {ξ̃k , ĩk }] = 0. (14)

We also have from Lemma 1 (c) that E[ef ,k + ρkeF ,k | Fk−1 ∪ {ξ̃k , ĩk , ξk }] = 0. Taking conditional expectations with

respect to ξk on both sides of the preceding equation, we obtain E[ef ,k + ρkeF ,k | Fk−1 ∪ {ξ̃k , ĩk }] = 0. Combining

the preceding relation with (13) and (14), we have that

E

[ (
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) | Fk−1 ∪ {ξ̃k , ĩk }
]
= 0.

Taking conditional expectations with respect to Fk−1 ∪ {ξ̃k , ĩk } on the both sides, we obtain the result. □

In the following, we employ the results of Lemmas 6 and 7 to obtain upper bounds on the suboptimality of the

objective function and the dual gap function associated with the stochastic VI constraint in problem (6). This will

prepare us to analyze the convergence speed of Algorithm 1 later in Theorem 1.

Proposition 1 (Error bounds). Consider Algorithm 1 for solving problem (6). Let Assumptions 1 and 2 hold.

Suppose {γkρk } is nonincreasing, {ρk } is nondecreasing, and 0 ≤ r < 1 is a scalar. The following results hold for

all K ≥ 2

E[f (ȳK )] − f ∗ ≤
4ND2

X (γK−1ρK−1)r−1ρK−1 + 2N −1 ∑K−1
k=0 (γkρk )1+r ρk

(
θF + θf ρ

−2
k

)
∑K−1

k=0 (γkρk )r
, (15)

E[Gap∗(ȳK )] ≤
4ND2

X (γK−1ρK−1)r−1 + 2N −1 ∑K−1
k=0 (γkρk )r

(
θFγkρk + θf γkρ

−1
k
+ 2NDf ρ

−1
k

)
∑K−1

k=0 (γkρk )r
, (16)

where θF ≜ (7N − 1)C2
F + 7Nν2F and θf ≜ (7N − 1)C2

f
+ 7Nν2

f
.

Proof. First we show the relation (15). Consider the inequality (12). Let y := x∗ where x∗ ∈ X is an optimal

solution to the problem (6). This implies that x∗ ∈ SOL(X ,E[F (•, ξ )]) or equivalently, F (x∗)T (yk+1 − x∗) ≥ 0. We

obtain

(γkρk )r ρ−1k (f (yk+1) − f ∗) ≤ 0.5N (γkρk )r−1
(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + ∥uk − x∗∥2 − ∥uk+1 − x∗∥2

)
+ 2N −1(γkρk )r+1ρ−2k

(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+ γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1). (17)

Multiplying the both sides by ρk and then, adding and subtracting the term

0.5N (γk−1ρk−1)r−1ρk−1
(
∥xk − x∗∥2 + ∥uk − x∗∥2

)
,
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we have for all k ≥ 1

(γkρk )r (f (yk+1) − f ∗) ≤ 0.5N (γk−1ρk−1)r−1ρk−1
(
∥xk − x∗∥2 + ∥uk − x∗∥2

)
− 0.5N (γkρk )r−1ρk

(
∥xk+1 − x∗∥2 + ∥uk+1 − x∗∥2

)
+ 0.5N

(
(γkρk )r−1ρk − (γk−1ρk−1)r−1ρk−1

) (
∥xk − x∗∥2 + ∥uk − x∗∥2

)
+ 2N −1(γkρk )r+1ρ−1k

(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1(γkρk )r+1ρk
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+ (γkρk )r
(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1). (18)

Note that because r < 1 and that {γkρk } is nonincreasing and {ρk } is nondecreasing, we have

γ r−1k ρk − γ r−1k−1ρk−1 ≥ 0.

Thus, in view of Remark 3 we have

0.5N
(
(γkρk )r−1ρk − (γk−1ρk−1)r−1ρk−1

) (
∥xk − x∗∥2 + ∥uk − x∗∥2

)
≤ 4ND2

X

(
(γkρk )r−1ρk − (γk−1ρk−1)r−1ρk−1

)
.

Substituting the preceding bound in (19) and then, summing the resulting inequality for k = 1, . . . ,K − 1 we obtain

K−1∑
k=1

(γkρk )r (f (yk+1) − f ∗) ≤ 0.5N (γ0ρ0)r−1ρ0
(
∥x1 − x∗∥2 + ∥u1 − x∗∥2

)
+ 4ND2

X

(
(γK−1ρK−1)r−1ρK−1 − (γ0ρ0)r−1ρ0

)
+ 2N −1

K−1∑
k=1

(γkρk )r+1ρ−1k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1
K−1∑
k=1

(γkρk )r+1ρk
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=1

(γkρk )r
(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1). (19)

From (17) for k = 0 we have

(γ0ρ0)r (f (y1) − f ∗) ≤ 0.5N (γ0ρ0)r−1ρ0
(
∥x0 − x∗∥2 − ∥x1 − x∗∥2 + ∥u0 − x∗∥2 − ∥u1 − x∗∥2

)
+ 2N −1(γ0ρ0)1+r ρ−10

(
6C2

f + 3∥w̃f ,0∥2 + 3∥ẽf ,0∥2 + 4∥wf ,0∥2 + 4∥ef ,0∥2
)

+ 2N −1(γ0ρ0)1+r ρ0
(
6C2

F + 3∥w̃F ,0∥2 + 3∥ẽF ,0∥2 + 4∥wF ,0∥2 + 4∥eF ,0∥2
)

+ (γ0ρ0)r
(
wf ,0 + ef ,0 + ρkwF ,0 + ρkeF ,0

)T (u0 − y1). (20)
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Summing the preceding two relations we obtain

K−1∑
k=0

(γkρk )r (f (yk+1) − f ∗) ≤ 0.5N (γ0ρ0)r−1ρ0
(
∥x0 − x∗∥2 + ∥u0 − x∗∥2

)
+ 4ND2

X

(
(γK−1ρK−1)r−1ρK−1 − (γ0ρ0)r−1ρ0

)
+ 2N −1

K−1∑
k=0

(γkρk )r+1ρ−1k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1
K−1∑
k=0

(γkρk )r+1ρk
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=0

(γkρk )r
(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1). (21)

Note that from the convexity of f and Lemma 5, we have∑K−1
k=0 (γkρk )r f (yk+1)∑K−1

k=0 (γkρk )r
=

K−1∑
k=0

(
(γkρk )r∑K−1
j=0 (γjρ j )r

)
f (yk+1) =

K−1∑
k=0

λk,K f (yk+1) ≥ f

(
K−1∑
k=0

λk,Kyk+1

)
= f (ȳK ).

Dividing the both sides of (21) by
∑K−1

k=0 (γkρk )r , using the preceding relation, and ∥x0 − x∗∥2 + ∥u0 − x∗∥2 ≤ 8D2
X ,

we obtain

f (ȳK ) − f ∗ ≤
(
K−1∑
k=0

(γkρk )r
)−1 (

4ND2
X (γ0ρ0)r−1ρ0 + 4ND2

X

(
(γK−1ρK−1)r−1ρK−1 − (γ0ρ0)r−1ρ0

)

+2N −1
K−1∑
k=0

(γkρk )r+1ρ−1k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+2N −1
K−1∑
k=0

(γkρk )r+1ρk
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=0

(γkρk )r
(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1)
)
. (22)

Taking expectations on the both sides and applying Corollary 1 and Lemma 7, we obtain

E[f (ȳK )] − f ∗ ≤
(
K−1∑
k=0

(γkρk )r
)−1 (

4ND2
X (γK−1ρK−1)r−1ρK−1

+2N −1
K−1∑
k=0

(γkρk )r+1ρ−1k
(
6C2

f + 7ν
2
f + 7(N − 1)(ν2f +C

2
f )
)

+2N −1
K−1∑
k=0

(γkρk )r+1ρk
(
6C2

F + 7ν
2
F + 7(N − 1)(ν2F +C2

F )
))
.

This implies that the inequality (15) holds for all K ≥ 2. Next we show the inequality (16). Consider the inequality

(12) again for an arbitrary y ∈ X . In view of Remark 3 we have f (yk+1) − f (y) ≤ 2Df . Rearranging the terms in (12)
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we obtain

(γkρk )r F (y)T (yk+1 − y) ≤ 0.5N (γkρk )r−1
(
∥xk − y∥2 − ∥xk+1 − y∥2 + ∥uk − y∥2 − ∥uk+1 − y∥2

)
+ 2N −1(γkρk )r+1ρ−2k

(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+ γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2(γkρk )r ρ−1k Df . (23)

Adding and subtracting (γkρk )r−1
(
∥xk − y∥2 + ∥uk − y∥2

)
, for all k ≥ 1 we have

(γkρk )r F (y)T (yk+1 − y) ≤ 0.5N (γk−1ρk−1)r−1
(
∥xk − y∥2 + ∥uk − y∥2

)
− 0.5N (γkρk )r−1

(
∥xk+1 − y∥2 + ∥uk+1 − y∥2

)
+ 0.5N

(
(γkρk )r−1 − (γk−1ρk−1)r−1

) (
∥xk − y∥2 + ∥uk − y∥2

)
+ 2N −1(γkρk )r+1ρ−2k

(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+ γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2(γkρk )r ρ−1k Df . (24)

Note that because r < 1 and that {γkρk } is nonincreasing, we have (γkρk )r−1 − (γk−1ρk−1)r−1 ≥ 0. Thus, in view of

Remark 3 we have

0.5N
(
(γkρk )r−1 − (γk−1ρk−1)r−1

) (
∥xk − x∗∥2 + ∥uk − x∗∥2

)
≤ 4ND2

X

(
(γkρk )r−1 − (γk−1ρk−1)r−1

)
.

Substituting the preceding bound in (24) and then, summing the resulting inequality for k = 1, . . . ,K − 1 we obtain

K−1∑
k=1

(γkρk )r F (y)T (yk+1 − y) ≤ 0.5N (γ0ρ0)r−1
(
∥x1 − y∥2 + ∥u1 − y∥2

)
+ 4ND2

X

(
(γK−1ρK−1)r−1 − (γ0ρ0)r−1

)
+ 2N −1

K−1∑
k=1

(γkρk )r+1ρ−2k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1
K−1∑
k=1

(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=1

γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2Df

K−1∑
k=1

(γkρk )r ρ−1k . (25)
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14 • Jalilzadeh, Yousefian, and Ebrahimi

Consider (23) for k = 0. Summing that relation with (25) we have

F (y)T
(
K−1∑
k=0

(γkρk )ryk+1 − y

)
≤ 0.5N (γ0ρ0)r−1

(
∥x0 − y∥2 + ∥u0 − y∥2

)
+ 4ND2

X

(
(γK−1ρK−1)r−1 − (γ0ρ0)r−1

)
+ 2N −1

K−1∑
k=0

(γkρk )r+1ρ−2k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+ 2N −1
K−1∑
k=0

(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=0

γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2Df

K−1∑
k=0

(γkρk )r ρ−1k . (26)

Dividing the both side of (26) by
∑K−1

k=0 (γkρk )r , invoking Lemma 5, and ∥x0 − y∥2 + ∥u0 − y∥2 ≤ 8D2
X , we obtain

F (y)T (ȳK − y) ≤
(
K−1∑
k=0

(γkρk )r
)−1 (

4ND2
X (γK−1ρK−1)r−1

+2N −1
K−1∑
k=0

(γkρk )r+1ρ−2k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+2N −1
K−1∑
k=0

(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=0

γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2Df

K−1∑
k=0

(γkρk )r ρ−1k

)
. (27)

Taking the supremum on the both sides of (27) with respect to y over the set X and invoking Deinition 3, we have

Gap∗(ȳK ) ≤
(
K−1∑
k=0

(γkρk )r
)−1 (

4ND2
X (γK−1ρK−1)r−1

+2N −1
K−1∑
k=0

(γkρk )r+1ρ−2k
(
6C2

f + 3∥w̃f ,k ∥2 + 3∥ẽf ,k ∥2 + 4∥wf ,k ∥2 + 4∥ef ,k ∥2
)

+2N −1
K−1∑
k=0

(γkρk )r+1
(
6C2

F + 3∥w̃F ,k ∥2 + 3∥ẽF ,k ∥2 + 4∥wF ,k ∥2 + 4∥eF ,k ∥2
)

+

K−1∑
k=0

γ rk ρ
r−1
k

(
wf ,k + ef ,k + ρkwF ,k + ρkeF ,k

)T (uk − yk+1) + 2Df

K−1∑
k=0

(γkρk )r ρ−1k

)
.
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Taking expectations on the both sides and applying Corollary 1 and Lemma 7, we obtain

E[Gap∗(ȳK )] ≤
(
K−1∑
k=0

(γkρk )r
)−1 (

4ND2
X (γK−1ρK−1)r−1

+2N −1
K−1∑
k=0

(γkρk )r+1ρ−2k
(
6C2

f + 7ν
2
f + 7(N − 1)(ν2f +C

2
f )
)

+2N −1
K−1∑
k=0

(γkρk )r+1
(
6C2

F + 7ν
2
F + 7(N − 1)(ν2F +C2

F )
)
+ 2Df

K−1∑
k=0

(γkρk )r ρ−1k

)
.

Hence, we obtain the infeasibility bound given by (16). □

The main result of this section is presented in the following theorem where we obtain convergence rates for

solving problem (6). In particular, we specify update rules for stepsize γk and penalty parameter ρk to guarantee

this performance for Algorithm 1.

Theorem 1 (Rate statements and iteration complexity guarantees). Consider Algorithm 1 applied to

problem (6). Suppose r ∈ [0, 1) is an arbitrary scalar. Let Assumptions 1 and 2 hold. Suppose, for any k ≥ 0, the

stepsize and the penalty sequence are given by

γk ≜
γ0

4
√
(k + 1)3

and ρk ≜ ρ0
4
√
k + 1.

Then, for all K ≥ 2
2

1−r the following statements hold.

(i) The convergence rate in terms of the suboptimality is given as

E[f (ȳK )] − f ∗ ≤
©­­­«
D2
X

γ0ρ0
+

γ0ρ0

(
(7−N −1)C2

F
+7ν 2

F
+

(7−N −1)C2
f
+7ν 2

f

ρ2
0

)

(1.5−r )N

ª®®®¬
4ρ0(2 − r )N

4
√
K

.

(ii) The convergence rate in terms of the infeasibility is given as

E[Gap∗(ȳK )] ≤
©­­­«

D2
X

γ0ρ0
4√
K
+

γ0ρ0

(
(7−N −1)C2

F
+7ν 2

F
+

(7−N −1)C2
f
+7ν 2

f

ρ2
0

)

(1−r )N 4√
K

+
Df N

−1

ρ0(0.75−0.5r )

ª®®®¬
4(2 − r )N

4
√
K

.

(iii) Given ϵ > 0, let Kϵ denote a deterministic integer to achieve E[f (ȳKϵ )] − f ∗ ≤ ϵ and E[Gap∗(ȳKϵ )] ≤ ϵ .

Then the total iteration complexity and also, the total sample complexity of Algorithm 1 are the same and are

O(N 4ϵ−4) where N denotes the number of blocks (In particular, in the Nash game, N denotes the number of

players).

Proof. (i) Substituting the update rules of γk and ρk in (15), we obtain

E[f (ȳK )] − f ∗ ≤
4ND2

X (γK−1ρK−1)r−1ρK−1 + 2N −1 ∑K−1
k=0 (γkρk )1+r ρk

(
θF + θf ρ

−2
k

)
∑K−1

k=0 (γkρk )r

≤
4ND2

X ρ0(γ0ρ0)r−1K0.75−0.5r
+ 2N −1ρ0

(
θF + θf ρ

−2
0

)
(γ0ρ0)1+r

∑K−1
k=0 (k + 1)−(0.25+0.5r )

(γ0ρ0)r
∑K−1

k=0 (k + 1)−0.5r
.
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16 • Jalilzadeh, Yousefian, and Ebrahimi

Because 0 ≤ r < 1, note that both the terms 0.25 + 0.5r and 0.5r are nonnegative and smaller than 1. This implies

that the conditions of Lemma 4 are met. Employing the bounds provided by Lemma 4, from the preceding inequality

we have

E[f (ȳK )] − f ∗ ≤
4ND2

X ρ0(γ0ρ0)r−1K0.75−0.5r
+ 2N −1ρ0

(
θF + θf ρ

−2
0

)
(γ0ρ0)1+r (0.75 − 0.5r )−1K0.75−0.5r

0.5(1 − 0.5r )−1(γ0ρ0)rK1−0.5r

=

(2 − r )
(
4ND2

X ρ0(γ0ρ0)−1 + 2N −1ρ0
(
θF + θf ρ

−2
0

)
(γ0ρ0)(0.75 − 0.5r )−1

)
K0.25

.

Substituting θf and θF by their values and then, rearranging the terms we obtain the desired rate statement in (i).

(ii) Next we derive the non-asymptotic rate statement in terms of the infeasibility. Substituting the update rules of γk
and ρk in (16), and noting that γk and ρ−1

k
are nonincreasing, we obtain

E[Gap∗(ȳK )] ≤
4ND2

X (γK−1ρK−1)r−1 + 2N −1 ∑K−1
k=0 (γkρk )r

(
θFγkρk + θf γkρ

−1
k
+ 2NDf ρ

−1
k

)
∑K−1

k=0 (γkρk )r

≤
4ND2

X (γK−1ρK−1)r−1 + 2N −1(θF + θf ρ−20 )∑K−1
k=0 (γkρk )r+1 + 4Df

∑K−1
k=0 (γkρk )r ρ−1k∑K−1

k=0 (γkρk )r

≤
4ND2

X (γ0ρ0K−0.5)r−1 + 2N −1 (θF + θf ρ−20 )
(γ0ρ0)1+r

∑K−1
k=0 (k + 1)−0.5(1+r )

(γ0ρ0)r
∑K−1

k=0 (k + 1)−0.5r

+

4Df (γ0ρ0)r ρ−10
∑K−1

k=0 (k + 1)−0.5r−0.25

(γ0ρ0)r
∑K−1

k=0 (k + 1)−0.5r
.

Employing the bounds provided by Lemma 4, from the preceding inequality we have

E[Gap∗(ȳK )] ≤
4ND2

X (γ0ρ0)−1K−0.5(r−1)
+ 2N −1 (θF + θf ρ−20 )

(γ0ρ0)(1 − 0.5(1 + r ))−1K1−0.5(1+r )

0.5(1 − 0.5r )−1K1−0.5r

+

4Df ρ
−1
0 (1 − 0.5r − 0.25)−1K1−0.5r−0.25

0.5(1 − 0.5r )−1K1−0.5r

≤ (2 − r )
4ND2

X (γ0ρ0)−1 + 4N −1 (θF + θf ρ−20 )
(γ0ρ0)(1 − r )−1

K0.5

+ (2 − r )
4Df ρ

−1
0 (0.75 − 0.5r )−1

K0.25
.

The rate statement in (ii) can be obtained by substituting θf and θF by their values and then, rearranging the terms.

(iii) The result of part (iii) holds directly from the rate statements in parts (i) and (ii). □

5 APPROXIMATING THE PRICE OF STABILITY

Our goal in this section lies in devising a stochastic scheme for approximating the price of stability, deined by

(2), in monotone stochastic Nash games. The proposed scheme includes three main steps described as follows:

(i) Employing Algorithm 1 for approximating a solution to the optimization problem (6).

(ii) Employing a stochastic approximation method for approximating a solution to the nonsmooth stochastic

optimization problem minx ∈X E[f (x , ξ )]. This can be done through a host of well-known methods including the

stochastic subgradient [32, 39] and its accelerated smoothed variants [18]. Another avenue for solving this class

of problems is stochastic extra-subgradient methods [15, 22, 31, 41, 43].
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(iii) Lastly, given the two approximate optimal solutions in (i) and (ii), we estimate the objective function value

E[f (x , ξ )] at each solution. The PoS is then approximated by dividing the sample average approximation of

optimal objective value of problem (6) by that of minx ∈X E[f (x , ξ )].
An example of this scheme is presented by Algorithm 2. Here, vectorsyk,1 and xk,1 are generated by Algorithm 1,

whileyk,2 and xk,2 are generated by a standard stochastic extra-subgradient method for solving minx ∈X E[f (x , ξ )].
We provide the following remark to make clariications about this scheme.

Remark 7. As mentioned earlier, we do have several options in employing a method for solving the canonical

nonsmooth stochastic optimization problem minx ∈X E[f (x , ξ )]. Here, we use the stochastic extra-subgradient
method that is known to achieve the convergence rate of the order 1√

K
when employing a suitable weighted

averaging scheme speciied by (35) (cf. [43]). We also note that Algorithm 2 can be compactly presented by the

two extra-subgradient schemes, separately. However, we note that there are diferent groups of random samples

generated in Algorithm 2 and the analysis of the scheme relies on what assumptions we make on these samples,

presented in the following.

Assumption 3. Let the following statements hold.

(i) The random samples {ξk,1}K−1
k=0

, {ξ̃k,1}K−1
k=0

, {ξk,2}K−1
k=0

, {ξ̃k,2}K−1
k=0

, and {ζt }M−1
t=0 are i.i.d. associated with the

probability space (Ω,F ,P). Also, {ĩk,1}K−1
k=0

, {ĩk,1}K−1
k=0

, {ik,2}K−1
k=0

, and {ĩk,2}K−1
k=0

are i.i.d. uniformly distributed

within the range {1, . . . ,N }. Additionally, all the aforementioned random variables are independent from each

other.

(ii) f (•, ξ ) is an unbiased estimator of the deterministic function f (•).

To approximate the PoS, we need upper and lower bounds for suboptimality of problem (6). We established

the upper bound in Theorem 1. Now we obtain the lower bound considering the following weak sharpness

assumption.

Assumption 4 (Weak Sharpness [8]). The variational inequality problem VI(X,F) satisies the weak sharpness

property implying that there exists an α > 0 such that (x − x∗)T F (x∗) ≥ αdist(x ,X ∗) for any x ∈ X ∗, where X ∗

denotes the solution set of VI(X , F ).

Corollary 2. Under the premises of Theorem 1 and considering Assumption 4, we have for all K ≥ 2

−O(N )
4
√
K

≤ E[f (ȳK ) − f ∗] ≤ O(N )
4
√
K
.

Proof. From Assumption 4, we know that there exists α > 0 such that E[dist(ȳK ,X ∗)] ≤ 1
α
E[Gap∗(ȳK )]. Moreover,

since X ∗ is a compact set, there exists ŷ∗ ∈ X ∗ such that dist(ȳK ,X ∗) = miny∈X ∗ ∥y − ȳk ∥ = ∥ŷ∗ − ȳK ∥. Therefore,
using the result of Theorem 1, we have

E[∥ŷ∗ − ȳK ∥] ≤
1

α
E[Gap∗(ȳK )] ≤

O(N )
4
√
K
. (28)

Moreover, using convexity of f and Cauchy-Schwartz inequality, we conclude that

E[f (ȳk )] − f ∗ ≥ E[f (ȳk )] − f (ŷ∗) ≥ E[∇f (ŷ∗)T (ȳK − ŷ∗)] ≥ −∥∇f (ŷ∗)∥E[∥ȳK − ŷ∗∥] ≥ −O(N )
4
√
K
,

where in the irst inequality we used the fact that f ∗ ≤ f (ŷ∗) and the last inequality follows from (28) and the fact

that the gradient is bounded. □

The main result in this section is presented in the following
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Lemma 8 (Error bounds in approximating the PoS). Consider Algorithm 2. Let Assumptions 1, 2, 3, and 4

hold. Suppose, r1, r2 ∈ [0, 1) be ixed scalars and for any k ≥ 0, let us deine

γk,1 ≜
γ0,1

4
√
(k + 1)3

, ρk ≜ ρ0
4
√
k + 1, γk,2 ≜

γ0,2√
k + 1

.

Then the following holds for all K ≥ 1.

−O
(
1
4
√
K

)
≤ E[ f̂ (ȳK,1)]
E[ f̂ (ȳK,2)]

− PoS ≤ O
(
1
4
√
K

)
. (29)
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Algorithm 2 Approximating PoS using randomized stochastic extra-gradient schemes

1: initialization: Set random initial points x0,1,x0,2,y0,1,y0,2 ∈ X , initial stepsizes γ0,1,γ0,2 > 0, scalar 0 ≤
r1, r2 < 1, ȳ0,1 = ȳ0,2 := y0, Γ0,1 = Γ0,2 := 0, S0,1 = S0,2 := 0.

2: for k = 0, 1, . . . ,K − 1 do

3: Generate ik,1, ĩk,1, ik,2, and ĩk,2 uniformly from {1, . . . ,N }.
4: Generate ξk,1, ξ̃k,1, ξk,2, and ξ̃k,2 as realizations of the random vector ξ .

5: Update the variables yk,1, xk,1, yk,2, and xk,2 as

y
(i)
k+1,1

:=




PXi

(
x
(i)
k,1

− γk,1(∇̃i f (xk,1, ξ̃k,1) + ρkFi (xk,1, ξ̃k,1))
)

if i = ĩk,1,

x
(i)
k,1

if i , ĩk,1,

(30)

x
(i)
k+1,1

:=




PXi

(
x
(i)
k,1

− γk,1(∇̃i f (yk+1,1, ξk,1) + ρkFi (yk+1,1, ξk,1))
)

if i = ik,1,

x
(i)
k,1

if i , ik,1,

(31)

y
(i)
k+1,2

:=




PXi

(
x
(i)
k,2

− γk,2∇̃i f (xk,2, ξ̃k,2)
)

if i = ĩk,2,

x
(i)
k,2

if i , ĩk,2,

(32)

x
(i)
k+1,2

:=




PXi

(
x
(i)
k,2

− γk,2∇̃i f (yk+1,2, ξk,2)
)

if i = ik,2,

x
(i)
k,2

if i , ik,2.

(33)

6: Update Γk,1, Γk,2, ȳk,1, and ȳk,2 using the following recursions.

Γk+1,1 := Γk,1 + (γk,1ρk )r1 , ȳk+1,1 :=
Γk,1ȳk,1 + (γk,1ρk )r1yk+,1

Γk+1,1
, (34)

Γk+1,2 := Γk,2 + γ
r2
k,2
, ȳk+1,2 :=

Γk,2ȳk,2 + γ
r2
k,2

yk+1,2

Γk+1,2
. (35)

7: end for

8: Generate the batch of samples {ζt } as i.i.d realizations of ξ , for t = 0, . . . ,M − 1

9: Evaluate sample average approximations f̂M (ȳK,1) := 1
M

∑M−1
t=0 f

(
ȳK,1, ζt

)
and f̂M (ȳK,2) :=

1
M

∑M−1
t=0 f

(
ȳK,2, ζt

)
10: Return

f̂M (ȳK,1)
f̂M (ȳK,2)

.

Proof. We utilize the following notation in the proof.

Fk,1 ≜ ∪k
t=0{ξ̃t,1, ĩt,1, ξt,1, it,1} ∪ {x0,1,y0,1}, for all k ∈ {0, . . . ,K − 1},

Fk,2 ≜ ∪k
t=0{ξ̃t,2, ĩt,2, ξt,2, it,2} ∪ {x0,2,y0,2}, for all k ∈ {0, . . . ,K − 1}.
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Recall the deinitions f̂M (ȳK,1) := 1
M

∑M−1
t=0 f

(
ȳK,1, ζt

)
and f̂M (ȳK,2) := 1

M

∑M−1
t=0 f

(
ȳK,2, ζt

)
. Then, we may write

E

[
f̂ M (ȳK,1)

]
= E

[
E

[
f̂ M (ȳK,1) | FK−1,1

] ]
= E

[
E

[
1
M

M−1∑
t=0

f
(
ȳK,1, ζt

)
| FK−1,1

] ]
=E[f (ȳK,1)].

From the preceding relation and Theorem 1 we have

−O(N )
4
√
K

≤ E
[
f̂M (ȳK,1)

]
− f ∗ ≤ O(N )

4
√
K
,

where f ∗ denotes the optimal objective value of problem (6). Let us deine f ∗Opt ≜ minx ∈X E[f (x , ξ )]. Similarly,

E

[
f̂ M (ȳK,2)

]
= E

[
E

[
f̂ M (ȳK,2) | FK−1,2

] ]
= E

[
E

[
1
M

M−1∑
t=0

f
(
ȳK,2, ξt

)
| FK−1,2

] ]
= E[f (ȳK,2)].

and we also have that

0 ≤ E
[
f̂M (ȳK,2)

]
− f ∗Opt ≤

O(N )
√
K
.

We show the result holds when f ∗, f ∗Opt ≥ 0 and one can verify that the result also holds for other cases. From the

deinition of PoS given by (2) and the two preceding inequalities, we may write

E[ f̂ (ȳK,1)]
E[ f̂ (ȳK,2)]

≤
f ∗ + O(N )

4√
K

f ∗
Opt

=

f ∗

f ∗
Opt

+

O(N )
4
√
K
= PoS +

O(N )
4
√
K
.

We can also write

E[ f̂ (ȳK,1)]
E[ f̂ (ȳK,2)]

≥
f ∗− O(N )

4√
K

f ∗
Opt
+

O(N )√
K

=
©­«
1− O(N )

4√
K

1 +
O(N )√
K

ª®¬
× PoS =⇒ E[ f̂ (ȳK,1)]

E[ f̂ (ȳK,2)]
− PoS ≥ −O (N )

4
√
K
.

Thus, in view of the two preceding inequalities, the result holds.

□

Remark 8. We note that in Algorithm 2, in using the extra-gradientmethod employed for solvingminx ∈X E[f (x , ξ )],
we do not use any penalization. However, in solving minx ∈SOL(X ,E[F (•,ξ )]) E[f (x , ξ )], we employ Algorithm 1 where

we utilize iterative penalization. Intuitively speaking, problem minx ∈X E[f (x , ξ )] can be viewed as a special case

of minx ∈SOL(X ,E[F (•,ξ )]) E[f (x , ξ )] where the mapping F (x) is zero for all x . As such, we suppress the penalization

in solving minx ∈X E[f (x , ξ )]. This allows us to use larger stepsizes in solving minx ∈X E[f (x , ξ )] and obtain faster

convergence for the optimality metric.

Moreover, in Algorithm 2, in solving minx ∈X E[f (x , ξ )], we employ the averaging weights
(γk,2)r∑K−1
j=0 (γj,2)r

. However,

in solving minx ∈SOL(X ,E[F (•,ξ )]) E[f (x , ξ )], we use the averaging weights
(γk,1ρk )r∑K−1
j=0 (γj,1ρ j )r

. We note that in view of the

choices of the stepsizes and penalty parameter in Lemma 8, the averaging weights of the two schemes are indeed

almost identical. This is because in Lemma 8, assuming that γ0,1ρ0 = γ0,2, we have γk,1ρk = γk,2 for all k .
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6 NUMERICAL EXPERIMENTS

In this section we present the performance of the proposed schemes in estimating the price of stability for a

stochastic Nash Cournot competition over a network. Cournot game is one of the most popular and amongst the

irst economic models for formulating the competition among multiple irms (see [12, 21] for the applications of

Cournot models in imperfectly competitive power markets and also, rate control in communication networks).

The Cournot model is described as follows. Consider a collection of N irms who compete over a network with J

nodes to sell a product. The strategy of irm i ∈ {1, . . . ,N } is characterized by the decision variables yi j and si j ,

denoting the generation and sales of irm i at the node j, respectively. Compactly, the decision variables of the

ith irm is denoted by x (i) ≜ (yi , si ) ∈ R2J where we assume that yi ≜
(
yi1, . . . ,yi J

)
and si ≜

(
si1, . . . , si J

)
. The

goal of the ith irm lies in minimizing the expected value of a net cost function fi
(
x (i),x (−i), ξ

)
over the network

over the strategy set Xi . This optimization problem for the irm i is deined as

minimize E

[
fi

(
x (i),x (−i), ξ

)]
≜ E

[
J∑
j=1

ci j (yi j ) −
J∑
j=1

si jpj
(
s̄j , ξ

) ]

Subject to. x (i) ∈ Xi ≜

{
(yi , si ) | yi j ≤ Bi j ,

J∑
j=1

yi j =

J∑
j=1

si j , yi j , si j ≥ 0, for all j = 1, . . . , J

}
.

Here, s̄j ≜
∑d

i=1 si j denotes the aggregate sales from all the irms at node j, pj : R × Ω → R denotes the price

function characterized in terms of the aggregate sales at the node j and a random variable ξ , and ci j : R→ R
denotes the production cost function of irm i at node j . The price functions are given aspj

(
s̄j , ξ

)
≜ α j (ξ )−βj

(
s̄j
)σ
,

where α j (ξ ) is a random positive variable, βj is a positive scalar, and σ ≥ 1. We assume that cost functions are

linear and the transportation costs are zero. The constraint yi j ≤ Bi j states that the generation is capacitated

where Bi j is a positive scalar for all i and j . Similar to [26], in deining a global objective function for the price of

stability, we consider the Marshallian aggregate surplus function deined as

E[f (x , ξ )] ≜
N∑
i=1

E

[
fi

(
x (i),x (−i), ξ

)]
.

It has been shown [23] that when σ ≥ 1, f is convex and also, when either σ = 1 or 1 < σ ≤ 3 and N ≤ 3σ−1
σ−1 ,

the mapping associated with the Cournot game, i.e., F (x) ≜
(
∇x (1)E[f1(x , ξ )], . . . ,∇x (N )E[fN (x , ξ )]

)
is merely

monotone.

Experiments and set-up.We compare the performance of Algorithm 1 with that of the two existing methods,

namely aRB-IRG in [26] and the sequential regularization (SR) scheme (cf. [12, 26]). Note that both the SR

scheme and aRB-IRG can only use deterministic gradients. To apply these two methods, we use a sample average

approximation scheme by assuming that the deterministic gradient is approximated using a batch size of 1000

random samples. In Algorithm 1, however, we can use stochastic gradients (using a single sample ξ ). In both

Algorithm 1 and aRB-IRG, we employ a randomized block-coordinate scheme with N number of blocks, where N

is the number of irms. We consider four diferent settings in our simulation results, where they difer in terms of

the choices of the initial stepsize, the initial regularization parameter used in aRB-IRG, and the initial penalty

parameter. For each setting, we implement the three methods on two diferent Cournot games, one with 4 players

over a network with 5 nodes, and another one with 10 players over a network with 2 nodes. We assume that

α j (ξ ) is uniformly distributed for all the agents. To compare the simulation results, we generate 15 independent

sample-paths for any of the schemes that are stochastic and/or randomized.
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Table 1. The four setings for the algorithm parameters

Algorithm Parameter(s) Setting 1 Setting 2 Setting 3 Setting 4

SR scheme γ0 0.1 0.1 1 1

aRB-IRG (γ0,η0) (0.1,0.1) (0.1,1) (1,0.1) (1,1)

aR-IP-SeG (γ0, ρ0) (0.01,10) (0.1,1) (0.1,10) (1,1)

aR-IP-SeG (r=0)

aR-IP-SeG (r=0.5)

aRB-IRG (r=0)

aRB-IRG (r=0.5)

SR scheme

Fig. 2. The figure legend used in the numerical

experiments in Figures 3ś4

Results and insights. The simulation results are presented in

Figures 3-4, and 5. Note that the legend for Figures 3-4 is presented

in Figure 2. Several observations can be made: (i) As it can be seen

in Figures 3-4, Algorithm 1 outperforms the other two methods

in almost all the scenarios. We note that a smaller gap function

value implies a smaller infeasibility for the solution iterate. How-

ever, because the solution iterate may be infeasible during the

implementation of aRB-IRG and aR-IP-SeG , a smaller objective

value may not necessarily imply a better solution. Instead, when

comparing the objective function metric in the igures, it is im-

portant to observe how fast the objective value of each method

reaches to a stable value. (ii) Although both Algorithm 1 and aRB-IRG are equipped with the same convergence

speeds, Algorithm 1 enjoys a better performance with respect to the run-time. This is because it uses stochastic

gradients that are cheaper to compute in contrast with the sample average gradients used in aRB-IRG. (iii) We do

observe that as the size of the problem increases in terms of the number of players and the size of the network,

the performance of all the schemes is downgraded. However, Algorithm 1 seems to stay robust across most

settings and often outperforms the other two methods. (vi) In estimating the PoS in Figure 5, the methods seem

to converge to a PoS smaller than one. This is because in this numerical experiment, we have considered the

minimization of the negative of the proit function. As such, the optimal objective values of the minimization

problems become negative. Consequently, the PoS is theoretically less than or equal to one. This is indeed aligned

with the indings in Figure 5. Supplementary numerical experiments can be found in the extended version of the

paper [19].
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Fig. 3. Simulation results for a stochastic Nash Cournot game with 4 players over a network with 5 nodes, comparing

Algorithm (1) with other existing methods for solving problem (6).

Setting (1) (2) (3) (4)

sa
m
p
le
av
e.
g
ap

0 100 200 300 400 500

Time (s)

10
3

10
4

10
5

0 100 200 300 400 500

Time (s)

10
3

10
4

10
5

0 100 200 300 400 500

Time (s)

10
2

10
3

10
4

10
5

0 100 200 300 400 500

Time (s)

10
2

10
3

10
4

10
5

sa
m
p
le
av
e.
o
b
je
ct
iv
e

0 100 200 300 400 500

Time (s)

-104

-103

0 100 200 300 400 500

Time (s)

-104

-103

0 100 200 300 400 500

Time (s)

-104

-103

0 100 200 300 400 500

Time (s)

-104

-103

Fig. 4. Simulation results for a stochastic Nash Cournot game with 10 players over a network with 2 nodes, comparing

Algorithm (1) with other existing methods for solving problem (6).
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Fig. 5. Performance of Algorithm 2 in estimating PoS. 90% confidence intervals become tighter as the scheme proceeds.
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