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Abstract

In this paper, we consider stochastic monotone Nash games where each player’s
strategy set is characterized by possibly a large number of explicit convex constraint
inequalities. Notably, the functional constraints of each player may depend on the
strategies of other players, allowing for capturing a subclass of generalized Nash
equilibrium problems (GNEP). While there is limited work that provide guarantees
for this class of stochastic GNEPs, even when the functional constraints of the
players are independent of each other, the majority of the existing methods rely on
employing projected stochastic approximation (SA) methods. However, the
projected SA methods perform poorly when the constraint set is afflicted by the
presence of a large number of possibly nonlinear functional inequalities. Motivated
by the absence of performance guarantees for computing the Nash equilibrium in
constrained stochastic monotone Nash games, we develop a single timescale
randomized Lagrangian multiplier stochastic approximation method where in the
primal space, we employ an SA scheme, and in the dual space, we employ a
randomized block-coordinate scheme where only a randomly selected Lagrangian

multiplier is updated. We show that our method achieves a convergence rate of
O log(k)
vk

sense.

) for suitably defined suboptimality and infeasibility metrics in a mean
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1 Introduction

Noncooperative game theory provides a mathematical framework to study multi-
agent decision-making problems that have emerged in a wide range of applications
including electricity markets [1], transportation networks [2], and signal processing
[3], among many others. While the multidisciplinary field of game theory finds
its origin in the work by von Neumann and Morgenstern [4], the notion of a Nash
equilibrium (NE) was introduced and its existence was provably shown by Nash [5].
The non-cooperative Nash game is a modeling framework where a finite collection
of selfish agents compete with each other and seek to optimize their own individual
objectives. Such a competition is often subject to limited resources characterized
by functional constraints. In this work, our primary focus lies in computing an NE
for large-scale constrained Nash game formulations afflicted by the presence of
uncertainty in the objectives of the agents. More precisely, we consider stochastic
monotone Nash games with a large number of (possibly nonlinear) functional
constraints described as follows. Let N > 1 denote the number of players. For all
i=1,...,N, the ith player is associated with the following constrained stochastic
optimization problem.
min  H;(x) £ E[h;(x;,x_;, &)] P;(x_))

XEX;

where X, £ {x, € X; CR" | g, ,(x,x_) <0, forallZ =1,....J;}

where x; € R" denotes the strategy of the ith player, x_; € R"™" is the collection
of the strategies of the other players, n £ Zf\i (1 and iy @ R"XRY — R denotes
the stochastic cost function associated with the ith player. The uncertainty in the
game is characterized by the random variable & : Q — R? associated with the
probability space (€2, F,P). The constraint set of the ith player is expressed in
terms of explicit convex constraint inequalities in terms of the jointly convex
functions g;, : R" - R, for all # =1, ..., J;. The ith player’s strategy is a subset
of a nonempty convex set denoted by X; € R". While we will provide a detailed
description of our assumptions in subsequent sections, it is worth emphasizing that
throughout, we assume that all the aforementioned functions are merely convex.

Problem (P;(x_;)) is a subclass of the generalized Nash equilibrium problems
(GNEP) that have been extensively employed in the literature in formulating
applications arising in economics and operations research, among others [6,
7]. Recall that in GNEPs, players seek the NE by simultaneously satisfying the
constraints. This is different from other classes of games where players make
decisions in a specific order, e.g., in Stackelberg games.

A popular subclass of the problem (P;(x_,)) is the stochastic minimax problem.
Consider the following stochastic merely-convex-merely-concave minimax
optimization problem with possibly many functional constraints.
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minmax H(u,v) £ E[h(u,v, )]

ueld vey

where U2 {ueU|g ,w) <0, forall#=1,...,J;} and UCR™,

VE{veV]|g,w<0, forall£=1,...,J,} and VCR™.
()
Minimax optimization can indeed be viewed as an instance of two-person zero-
sum games. The existence of equilibrium in such a game is established by the
celebrated von Neumann’s minimax theorem in 1928 [8] that appears amongst
the most fundamental results in game theory. The research on the development of
gradient-type methods for solving minimax problems, also known as the problem
of finding saddle points, dates back to as early as 1970s, including the work by
Korpelevich [9] and Golshtein [10], followed by efforts on the development of
gradient descent ascent as well as primal-dual methods (e.g., see [11-15] and [16,
Chp. 1]). More recently, minimax problems have drawn increasing attention in areas
including adversarial learning [17-19], fairness in machine learning [20, 21], and

distributionally robust federated learning [22], to name a few.

Existing methods and research gap In addressing deterministic games, iterative
methods for approximating an equilibrium find their origin in 1960s in the seminal
work by Scarf [23] (see [16, Chapter 12] for a detailed review of deterministic meth-
ods). The prior algorithmic efforts in addressing stochastic Nash games, however,
find their roots in the work by Jiang and Xu [24] in 2008, where a stochastic approx-
imation (SA) method was developed for addressing stochastic variational inequality
(VD) problems with strongly monotone and Lipschitzian mappings. Recall that given
a set X’ and a single-valued mapping F : R" — R”, vector x € X solves VI (X, F) if
F(x)T(y —x) >0 for all y € X. Under some mild convexity and differentiability
assumptions, it can be shown that [16, Chapter 1] the set of equilibria of the stochas-
tic game (P,(x_;)), fori =1, ..., N, is characterized by the solution set of VI (X, F)
where X 2 [TY, X, and F(x) & (Vxl Elhy (5, )]; ..V, Elhy(x, g)]). In view of this

result, seeking a Nash equilibrium of a stochastic game is equivalent to solving the
aforementioned stochastic VI. The convergence and rate analysis of SA schemes for
solving VIs under weaker monotonicity and smoothness assumptions were studied
more recently in works including [25-27]. Also, stochastic extragradient methods
and their variance-reduced variants were studied in [28-30].

Despite these advances, it is often assumed in the above-mentioned methods that
the set & is easy-to-project on, and accordingly, the algorithmic framework in these
works relies on projected schemes. However, in the following cases, X; may become
difficult to project on: (i) When the dimensionality of the solution space, i.e., n, is
large; (i) When the number of the constraints is large. For example, in the game set-
ting Zfil J; could be large; (iii) The constraint set may be characterized by nonlinear
constraints. In fact, we are unaware of any iterative methods with provable com-
plexity guarantees for the resolution of stochastic variants of constrained monotone
Nash games. Our research in this paper is precisely motivated by this shortcoming in
the literature.
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Table 1 Solution methods with

RN Ref Problem Rate Non-

rate statements for variational li
. . inear
inequality problems const

Proximal Extra-gradient [31] VI O(1/e) X

SMP [32] SVI O(1/€e*) x

DS-SA [33] SVI O(log(1/e)/€*) X

RLSA (this paper) SVI O(log(1/e)/€?) v

Table 2 A subset of methods with guarantees for saddle point problems

Ref Stoch Non-bilinear Convex Nonlinear
const

PDHG [34], Acc-SP-HPE [35] X x O(1/e) x
Acc-HPE-type [36], SMP [32] X v O(1/e) x
Acc- BD [37] v x O1/e) x
SAA [38], SADMM [39] v v O(1/€?) X
RLSA (this paper) v v O(log(1/e€)/€?) v

Main contributions In Tables 1 and 2, we provide a summary of the main results
in our work and we compare them with some of the existing methods for address-
ing monotone VIs and minimax problems. To highlight our contributions, we
first provide a brief review of some of the existing avenues for addressing mono-
tone Nash games and VIs with explicit constraints. The duality theory for VIs and
the notion of the dual VI has been studied by Mosco [40] in 1972 which was later
improved in [41, 42]. Extending the duality framework devised in [43], Auslender
and Teboulle [44] developed a Lagrangian duality scheme for solving multi-valued
variational inequality problems with maximal monotone operators and explicit con-
vex constraint inequalities. Leveraging entropic proximal terms, interior proximal
point methods were developed for solving constrained VIs in works including [45,
46]. Although the aforementioned dual-based methods are endowed with asymp-
totic convergence guarantees, the convergence speed of Lagrangian dual methods
for solving constrained VIs is not known. In particular, we are interested in inves-
tigating whether it is possible to devise suitable Lagrangian dual methods that can
be guaranteed with convergence speeds of a similar order of magnitude to those of
primal-dual methods developed for standard constrained optimization methods [47].
We show that this is indeed possible. We summarize our main contributions in the
following.

(i) A single timescale randomized primal-dual stochastic approximation method
Leveraging the primal-dual framework for addressing constrained stochas-
tic optimization problems, we devise a randomized primal-dual stochastic
approximation method for solving VIs with merely monotone and stochastic
mappings with explicit constraint inequalities. To capture large-scale con-
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strained stochastic Nash games, we employ a randomized block scheme for
updating the Lagrange multipliers. Importantly, this scheme is single timescale
and efficient to implement.

(ii)) New convergence rate statements In contrast with standard optimization prob-
lems, one of the main challenges in addressing VIs lies in the lack of availabil-
ity of suitable error metrics that rely on objective function values. In particu-
lar, this challenge introduces some difficulty in the convergence rate analysis
of monotone VIs, an issue that is exacerbated in the presence of explicit con-
straint inequalities. Motivated by earlier efforts [27, 48], leveraging the notion
of dual gap functions, we analyze the convergence of the proposed method

and derive convergence rates of O( %) for both suboptimality and infeasi-

bility metrics in a mean sense.

Outline of the paper The remainder of the paper is organized as follows. In
Sect. 2, we provide the main assumptions and review some preliminary results
that are employed in the analysis. In Sect. 3, we present the outline of the proposed
algorithm along with some definitions. In Sect. 4 we establish convergence
properties of the method and derive explicit performance guarantees. We present
some concluding remarks in Sect. 5. Lastly, Sect. 6 includes the proofs for some
of the results in the paper.

2 Preliminaries

To address the stochastic game P;(x_;) for i € [N], we consider the stochastic VI
problem described as follows.

Findx € X suchthat E[F(x,&)]"(y—x)>0, forall ye X (eSVI)
where X2 {xeX|f(x) <0, forallj=1,...,J} and X2J] X,

i=1"!

The details of our assumptions on the mapping F, functions f;, and sets X; are
provided as follows.

Assumption 1 (Problem properties) Consider problem (c¢SVI). Let the following
holds.

(i) Mapping F(e) : R" — R"is real-valued, continuous, and merely monotone on
its domain, i.e. (F(x) — F(y),x —y) > 0, for all x,y € X.
(i) Function f;(e) : R" — R is real-valued, merely convex on its domain for all
j=1,...,J.
(iii) Set X C int ( dom (F)n (n{:] dom (]3))) is nonempty, compact, and convex.
(iv) The Slater condition holds, i.e., there exists X € X such that f/-(fc) < 0 for all
j=1,...,J.

@ Springer



Z. Alizadeh et al.

Remark 1 Note that problem (cSVI) captures the stochastic game P;(x_;). In fact,
given the objective functions A,(s, £) and constraint functions g; , in P;(x_;), x is an
NE if and only if x solves (cSVI) where f(x) E 8;,(x) where j :=7¢ + Z;;i J, for
£ el

Definition 1 (Augmented-Lagrangian function) Given x,y € R", 1 € R/, and p > 0,
we define

L,x,y,4) 2 FG) (x = y) + @,(x, 4),
J uv + 242 if pu+v>0
al (x), A S I -
where  ®,(x, 1) £ Z‘ ¢,(f(0),4?) and ¢, (u,v) { -z, otherwise.
Similar to the traditional constrained optimization techniques, the nonlinear
constraints in problem (¢SVI) can be combined with the objective function using
some multipliers. Using this technique we can characterize the optimality condition
of problem (¢SVI) in the following result.

Proposition 1 (Arush—Kuhn—Tucker (KKT) conditions) Consider problem (¢SVI)
and suppose Assumption 1 holds. Let f(x) £ (f,(x),....f;(x))T and the gradient
matrix Vf(x) £ (V). ..., V)T € R™ . There exists x* € R" and 1* € R’ sat-
isfying the following KKT conditions:

() 0€F() +JIVFH)T A + Ny (x).
(i) 0<A* L —f(x*)>0.
(i) x* €X.

Proof Note that any solution x of (¢SVI) is also a solution of the following optimiza-
tion problem:

min y' F(x)

yeX

s.t. f;(» <0 Vj

Since the Slater condition holds, the first-order KKT condition for (2) implies that
there exists x* € R" and A* € R’ satisfying conditions (i)—(iii). O

@)

We will utilize the following definition in the convergence and rate analysis.

Definition 2 Consider the VI (X, F) where X is a closed convex set and F is a real-
valued monotone map. The dual gap function Gap* : X - R U {400} is defined for
any x € R" as

Gap*(x) £ sup F(y)" (x — y).
ap*(x) ilelg M =) (3)
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Remark 2 Note that by the definition, Gap*(x) > O for all x € X. Also, under some
mild conditions, Gap*(x) = 0 implies that x is a solution to VI (X, F). This is for-
mally stated below.

Remark 3 Karamardian [49] showed that under continuity and pseudo-monotonicity
of the operator F, solving (¢SVI) problem is equivalent to solving Minty stochas-
tic variational inequality (MSVI) [50] problem. Such a problem requires an x* € X
such that

(x* —x)TF(x) <0, forall xe X (MSVI)

Therefore, to obtain the convergence rate, we adopt the dual gap function.
Note that Gap*(s) is well-defined when X is a compact set, that follows from
Assumption 1 (iii).

By invoking Proposition 1 and Assumption 1, we can establish the following
two results for problem (¢SVI). These results will be employed later to demonstrate
the boundedness of dual iterates and to obtain convergence rate results. We have
provided the proofs of the following lemmas in the appendix.

Lemma 1 Consider problem (¢SVI) under Assumption 1. Then for any primal-dual
solution pair (x*, A*), the following holds

FOOT(x —x)+J7f(0)T4* >0, forall xe€X.

Lemma 2 Consider problem (¢SVI). Let Assumption 1 hold. Assume that for any
x€Xand e Riwehave

FO)T (=0 +J7f®TA <@, (x, 1) + Cx, 2), )

where X € X and 1 € Rf_ are arbitrary vectors. Then for any primal-dual solution
pair (x*, A*), the following holds.

@) ]_llT[f(fc)]+ < Cix*, A), where for all j € [J]we define

ja 1+Af, if f;(%) > 0,
770, otherwise.

(i) sup,c {F()T (& —x)} < sup,c{C(x,0)}.

3 Algorithm outline
The outline of the proposed method is presented by Algorithm 1. The sequence of

the primal iterates is denoted by {x; } and the sequence of the dual iterates is denoted
by {4,}. This is a single timescale Lagrangian stochastic approximation scheme that
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includes two main steps. At each iteration, in the dual step in equation (5), a ran-
domly selected dual variable A is updated, while in the primal step in equation
(6), the primal variables are updated. The stepsize sequence is denoted by {y,} and
the penalty sequence is denoted by {p,}. In addition to the primal and dual vari-
ables that are updated at each iteration, both the stepsize and penalty parameter are
updated iteratively. Our goal in this work lies in proving that Algorithm 1 can be
employed for solving the stochastic VI problem (¢SVI) where the constraint set is
characterized by explicit functional constraints. This result will be presented in the
next section by Theorem 1 where we provide specific update rules for both y, and
pr such that the convergence of the proposed method can be guaranteed and non-
asymptotic convergence rates can be derived. Before we proceed with the analysis of
the method, we provide some definitions that will be utilized.

Remark 4 Note that the Augmented Lagrangian function introduced in Definition 1
can be viewed as a relaxed variant of the following standard Augmented Lagrangian
function of the form

‘Cp(-x’ A) £ SupyEX‘Cp(x’ Y, A) = SuPyeX{F()’)T(x - }’)} + q)p(-x’ A)
= Gap"(x) + @, (x, 4).

Indeed, one of the key challenges in employing the Augmented Lagrangian function
L,(x, 4) is the presence of the supremum and nondifferentiability of the dual gap
function. Further, even when the samples F(e,&,) are unbiased, the standard
Augmented Lagrangian function above may be biased, due to the presence of the
supremum which again, renders an issue in utilizing this Augmented Lagrangian
function. To circumvent these challenges, we employ the relaxed variant of the
Augmented Lagrangian function introduced in Definition 1. Importantly, as it will
be shown in Theorem 1, utilizing the relaxed variant of the Augmented Lagrangian
function allows us to derive the rate statements. This is indeed a key novelty in the
design of the proposed method in this work.

Throughout, we let the history of the method be denoted by F £ U= {¢&,,j,} for
any k> 1, and .F() £ {fo’jo |2

Assumption 2 (Random samples) Let the following holds.

(i) Samples &, are generated independently from the probability distribution of &
fork > 0.

(i) Samples j;, for k > 0, are generated independently from a uniform probability
distribution such that Prob (j, = j) = J~'forall j=1,...,J.

(iii) Samples &, and j, are generated independently from each other.

(iv) E[F(x,&) —F(x) | x] =0forall x € X and all k > 0.

(v) There is some v > 0 such that E[||F(x, &) — F(x)||* | x] < v?forall x € X and all
k>0.
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1: input: Choose g € X, Ao := 0y, and py > 0

2: for k=0,1,2,... do

3: Generate a random variable ji uniformly drawn from {1,...,J}
Generate a random realization of £ denoted by &, and evaluate F'(xy, &)
Update the dual variable A\g for all j =1,...,J as follows.

"

ot

&) e
; pefi(@e) £ A7, i =k
/\l(f,]+)1 = [ ) ]+ (5)
)\Sj ) , otherwise
6: Evaluate Vf;, (xx) € 0fj, (x1)
7: Update the primal variable xj, as follows.
Ty =Ty {xk -k ( (wg, &) + )\k+1vfjl\ (M«))] (6)
8: end for

Algorithm 1 Randomized Lagrangian stochastic approximation method (RLSA)

Remark 5 In view of Assumption 1, the subdifferential set df;(x) is nonempty for
all x € int(dom(f)) and all j=1,....,J. Also, f; has bounded subgradients
over X. Throughout we let scalars Dy and D, be deﬁned as Dy £ sup,cy ||x|| and
Df = max;e ;) SUp,cx fj(x)|, respectively. Also, we let C > 0 and C; > 0 be scalars
such that [|[F(x)|| < Cp and ||Vf(x)|| < C; for all Vf(x) € df;(x), for all x € X.

Definition 3 (Stochastic errors) Let us define the following stochastic terms for
k>0.
Gi) & 2 [pk;;k(xk) + /1,8k)]+%;k(xk) -1y [pkfj(xk) + A?]jfj(xk).

In the next lemma, we show that the stochastic errors defined above are unbiased
and have bounded variance. The proof is provided in the appendix.

Lemma 3 (Properties of stochastic errors) Consider Definition 3. Let Assumption 2
hold. Then:

() Elwg | Fil = 0and E[|lwi|* | Fi] < V2

2
i) EL6, | 7l = 0and E[I,I | 7] <23 (203 + 1AL ).

Remark 6 Note that we have %ZJ{:] [pk]?(xk)+ A]((")Lv]j-(xk) € dxcbpk(xk,/lk).

Throughout, we use the following definition
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J
1 H ~
®, (i) 2Ly [pk];(xk) + A,@LVJ;(xk).
Jj=1
Therefore, one can conclude that

J ) _ 2
19,0, 017 < 5 3 [0+ 27 T

< 2Pk2D2C2 + —f||/1k||2

4 Convergence and rate analysis

To obtain the main results of this paper, we use the following technical lemmas.
All related proofs are provided in the appendix.

Lemma 4 Given an arbitrary sequences {o}};5o C R" and {7;};50 C R**, let
{Vi }iso De a sequence such that vy € R" and v = v; + 1,.0,. Then, for all k >0
and x € R",

T 1 2 1 Tk 2
oc,x—v) < —l|lx—v - —|x—=v + —llo.||”.
(=) € Sl = vl = -l = vl + Sl

Lemma 5 Consider Algorithm 1. Let J;r ={j € V1| pfi(x) + ﬂ,(f) >0} and
= [J]\J]:r. Then, for any A€ Ri, the following holds:

J
1 ) 1 2
=@, (0 4) + 5 sz APf x50 + o A1 = All

1

< —||/1k — AP+ (A = D Ue, @V, @, (x5, 4) = V@, (x5, 4)) + Ay,
Pr

(/1(/))2

k 1 _ 2
2 T g e = Al

where A2 — ; % - 2 (f(0)* — 1 ZJEJ

Lemma 6 Suppose Assumption 1 holds. Then, the following holds:

@ e, ©V,®@, (x, )| < Dj%.

(b) Let 65 =Je; ©V,;®, (x, &) — V, @, (x;, 4) and {V, };50 be a sequence such
that vy € R" and V| = v; + 7,6 for some {7, } ;5. Then, the following holds.
(A4 = X)T(Jejk OV,;®, (x, 4) =V, @, (x;, 4))

A

- _ 1 - 1 -
S(Vk_)”k)To'k'Fg“ﬂ_vkllz_glli_vkq-lllz‘i' 2
k k
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Next, using Lemmas 5 and 6 we provide a one-step analysis of our method by
providing an upper bound on the reduction of the gap function in terms of the
consecutive iterates.

Proposition 2 Consider Algorithm 1. Let Assumptions 1 and 2 hold. Then, for any
xe€Xand € Ri the following inequality holds.

O =0 F) + 7 f0) A= @, (x, &)
< 5y (Il =l = Mgy =) + 5= (e = will? =l = v )
t 55 (14 = 217 = Ay = A1%) + 5= (114 = 5> = 114 = 5 I7) + 20
+ 41, C2 (A0 + LA ) + (v = 50 vy + 8 + 2w, + 8,1
1 Ay

= T~ A _1 2 Pr 2_ 1
T+ = A) o+ -5 > (i)™ = 5
jelt JEI;

20’

)

where J]:r and J;_ are given by Lemma 5.
Proof Let x € X and 4 > 0 be arbitrary vectors. From (6) we have
(s — x)T(ka —x+r(Fen 80 + [pkfik(xk) + A,(jk>]+%§k(xk))> <0. (8

Using monotonicity of F(+) and Young’s inequality, one can obtain

(xk+1 - x)TF(xk, ék)
= Xy — xk)TF(xk) + (x, — x)TF(xk) + (Xpyy — x)ka

sl = 5P = 27 GNP + (= 0T F@) + (g =0T @)

\%

> —817k||xk+1 - )ckll2 — 2ka% + (x, — 0T F(x) + Xy — x)ka.
Similarly from Remark 6 and convexity of @ M (e, A¢), then we have

Gar =0 [pufy 0+ A2| 95, 050
+
= Xy — xk)Tvxcb,,k (s Ag) + (x — x)Tvxcbpk(xk, )+ (o — 078,
v(xk, /lk)llz + q)pk(xk’ /lk) - q)pk(X, /1]()

1 2 =
> _S_ykllxk*'l —xk|| - 27’1<||qu)pA

+ (0 — 06,
| 2 YT 2
> —8—yk||xk+1 — %17 = 4n Gy </’kDf + 514l > T @, e A) = @, (x, A)

+ (g — x)Ték.
(10)

We can also write
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it =0 @ =50 = 5 (I =2l = g =21 + I = 7). (11
Using (9), (10) and (11) in (8), we have
(=) F(x) + D, (xp, A) — @, (x, A)

1 2 21 2 2
< 5 (I = 1P = s = 21P=3 1 = %l +21,C

12
+4ykc;(pibj%+ LA + (= x) O + 5. @
N —— y
Now we obtain an upper bound for the term (a) in (12).
(= x5 1) Wy + 8)

=(x- xk)T(wk +6,) + (x, — xk+l)T(wk +6;)

S =v) W +8) + v —x) (we + 8 + % e = Xt 12 + 7ellwye + 8,117
From Lemma 4 we have that

(= v W +8) < -l = el = 3=l = v P + 7illwe + 8% hence  the  above

inequality can be written as

1

4y
T 2

+ (Vg =57 Wi + 6) + 27, llwy + 6¢1°

1 1
@ =X ) W+ 8) < Il = vll? = —llx = vt 17 + =l = 2 112
k+1 k k 47/k k 47’k k+1 k k+1
Using the above inequality in (12), we get
(5 = )T F () + B, (i ) = @y, (5, 4) < 3= (I = I = i =11
+27,C3 + 4, C2 (207 + HIAIR ) + 2 (Il = vl = b = vy 1) (13)
+ (e = x) Wi + 8) + 2y llwy + 811

Using Lemmas 5 and 6, we can bound the left-hand side of (13) from below and
one can obtain the following.

J
(g = 0TF(x) + % D A0 = @, (x. &)
j=1

! 2 2 1 2 b
< g (Il =1 =l = x12) + 7= (Il = vl = llx = v 1)
1 2 2 1 _ o 5
t 55 (1 = 2% = Ay = A1%) + 5= (14 = 5> = 114 = 5 °) +20.CF
1
+ 4ch?(”@? + ;“ﬂkllz) + e = 1) W+ 80 + 27wy + 81

=15 112
+ (0 — A6, + HIL 4 A
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where A is defined in Lemma 5. O

Now we show that the sequence of dual iterates generated by the proposed
method is bounded.

Lemma 7 Consider Algorithm 1. Let Assumptions 1 and 2 hold. Let

pp=—t— = ——— 1, =T, = ———— for any k > 1, where
VD log(k+1) VD log(k+1) VD log(k+1) =

py < W. Moreover, we define py=p, vy =y and ty =7, = 1. Then, there

exists B > 0 such that E[|| Ax||*] < B for any K > 0.

Proof From Lemma 1 we have (x, —x*)TF(x*) +J~'f(x,)TA* > 0. Also, since
f;(x*) <0 for all j€J, we have ®,(x*, ;) < 0. In view of these relations, from
Proposition 2, for x :=x"and 4 := A* we obtain

0= 3 (e = X112 = I = X°112) + 7= (I = vell? = I = vy 1)

+ 2—(|Mk = BN = i = A1)+ 5 (127 =5l = 14 = 5 ) + 2.C

+ 4}/kC2<p2D2 7 |Mk||2> + (0 = )" w + 6) + 2w + G117
2
+(‘_)k - )'k)T5k —T"”O-‘” _1 Z Pi (f( k)) _1 (Zp)

jGJJr JGJ,:

Multiplying both sides by #, and using the fact that p‘ > ;k:l, ﬁ > Zi‘l b 2 Lo
Pi = Prsis ;—kz ;ﬂ, summing over k=0,...,7, where T <K, and from
k k+1

N Az1 I < 20| A7y — A*||> + 2]| 4%||? we obtain the following relation.

T4 1 2« f X — x*|I?
g P S 2y =

+ ’—°||x* =gl 3 g = AP+ A2 1A = Tl + 47
Ty PT+1
T
k=0

T T
2 - T= AR
k=0 k=0 k=0 k=0

Taking expectation on the both sides and using Assumption 2(iv—v), Lemma 3 and
the fact that E[(v, — 4,)76,] = E[A,] = 0, we get
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1o [E A 21 < fo 2
L gy 7] < 2l — 2]

I * 2 1 #1112 [ x =12 741 #1912
+ ZxF = + — |4, — 4 + XA = + LA
B e A I

+ Z (263 +4C2 (3D} + ENIAIPY) )
k=0

T T
2 2 212 2 [ 1A #@D;
+22tkyk<2v +4Cfkaf+4Cf[E[ ; ]>+Ztk7f,
k=0 k=0

where we used part (a) of Lemma 6 and the definition of &, i.e., E[||5,]|*] < D2
Define Ay = & [lg —2"I> + {2l = v P+ 31y = 417 + 22 114" = 71,
A, = 2C2 + 4C2 2D2 Ay =2V + 4C2 202 then the above inequahty can be writ-

ten as follows, Where we used the fact that pk m <p.

L[| g, ) S Ay + 325 ||z*||2+Zrkyk(A2+4cz‘[Enuku 1)

7,D?
+ 22 w4y + 2CEIAIT) + Zrk%.
k=0 k=0

Letting 7=—1, one can easily show that E[||4,]|*] <B. Now suppose
E[|| Az, |I*] < B holds for all T € {—1,0,...,K —2}. We show that E[||1,,]’] < B

for T = K — 1. Multiplying both sides of (14) by @ and letting T = K — 1, we get
T+1

(14)

K-1
4 * 4,
ElIAIP) < 204, 4200417 + 25 Y 1, (4, + 4cf23;)
k=0

K-1
8 4
ey tkyk<A3 Cf23> 405 Z (L

k=0 k=0

— ’ — 4 — = — 1
From the fact that p, = T sty Y= T oater D)’ L=7 = N one

can show that’:—: = pand ZkK:_OI t.7x < 3y. Therefore, we obtain
ELLAxlIP] < 4pA, +2112° I+ 1207 (4, + 4C7BY )

D?
+ 24py<A3 + ‘;‘C}B) +1202 <B,

where in the last inequality we used the fact that
B = max ”/1 ”2 4pA1+2||A*||2+12pyA2+24pyA3+12pr2.
- oft > 1=144pyC2/J

WP S Ty H

Now we are ready to state the convergence rates of Algorithm 1.
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Theorem 1 (Convergence rate statements for Algorithm 1) Consider Algorithm 1.
; _ i _ 4
Let Assumptions 1 and 2 hold. Let p, = VD 105D’ Yk VD 0 D)’

_ 1 1
= = — > < —-
L =7 T oaterD for all k> 1, where py < T Moreover, we define
K
Po=p, Yo =7y and ty = 7, = 1. Let us define X; 2 %for K > 0. Then, for any

K > 0, we have

E [sup{F(x)T()"cK - x)}] < O(log(K +1)/VK+ 2)

xeX

E[-1 Gl < (’)<10g(K +1)/VK+ 2).

Proof Multiplying both sides of (7) by 7, using the fact that;—k > Z—‘ ;—k > ;k—'
k k+1 k k+1
By 2 Bt P 2 Prats ii > —;k“, and summing k = 0 to K, we get
k k+1

K

J
> tk<(xk — 0 F(x) + % Y A0fx) - @, (x, Ak))
j=1

k=0

o e o2 fo gy, 2 o o — a2
< g = X1+ vy = I + 5211y = A1

term (a)
r % N\
K K
fy 2 2 2972, 1 2
it ]; 2,7, C2 + kZO 417, C (kaf + A )

K
7116, 112
2 (0 = 5T O+ 80+ 27lhw + 6,1 + (5 = AT+ H2E 14, ),
k=0

. J/

~
term (b)

15)
Let right-hand side of (15) denoted by C(x, 4). Dividing both sides of the above ine-
quality by ZkK=0 t, and invoking the definition of X, we get

J
_ 1 N = 1
&k — x)TF(x) + 7 E AU)];(xK) - CDp(x, Ap) < . C(x, A),
J=1 k=0 ‘k

where in the left-hand side we used Jensen’s inequality and the fact that @, is con-
cave with respect to A.

Since Xx € X, from Lemma 2(i) we have J"IT[f()"cK)]Jr < C(x*, 1), where 1 is
defined in Lemma 2. Taking expectations on both sides and using definition of
Cx,A) in (15), Lemmas 3 7, Assumption 2(iv—v), the fact that
E[(v, — 4)76,] = E[A,] = 0 and E[]|5,]|*] < D?, we obtain
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AT v 1 . -
E-1 o)) < o [2’—0||x0 =212+ 2 flvg = X% 4 2212 — A2
Zk:o tk Yo Yo Po
K K K
1
+ 22+ Y 2, Cr+ ) Ay Cl oD} + ) 4y, CFiB
k=0 k=0 k=0
K 2
2 2 212 4 2 Ty
+ kZS tk<2yk(2v +4C} 0D} + 3CB) + = )]

(16)
Moreover, from Lemma 2(ii) we have sup, {F(x)" (Xy — x)} < sup,c{C(x,0)}. By
taking conditional expectation and then, unconditional expectation on both sides and
using the fact that term (a) and term (b) in the definition of C(x, A) do not depend on
X, we obtain

E [sup{F(x)T()"cK — x)}]
xeX

1 { / 2, 2, 1 2 f
< sup § == |lxg — x|I” + = lvyg — x||” + 2|4 }+—?
— LEE vy =P £ v = xIP o+ 2 1P |+ 2
k=0 'k
K K K 17)
1
+ 247, Ch + Y 4 Cl oD} + Y 447, Cr LB
=0 =0 =0

K
2 2 272 , 4,2 ab;
+k§tk<2yk(2v +4C}piD? + 3CIB) + ;)].

From p; = and the facts

P Y = 1
[ = —2r ¢ -
Vo logta ¥ T Jaanioghen kT T Jaan gt )’
that py = p, ¥9 =7, ty = Tp = 1, one can show that Zf:o 47, < 3y and similarly

K . - K 1 K+1 1 _ 2(VK+2-12)
YiohTi <3, also Y > oot /i dx = . Therefore, we

K+1) Vot log(K+1)
obtain  that E[J7'17[f(xy)],] < OClog(K + 1)/y/(K+2)) and  similarly
E [sup,er{ F)T (X —0)}] < Olog(K + 1)/V/(K +2)). O

Notably, the rate statements in Theorem 1 are in a mean sense, for both the dual
gap function and the infeasibility metric. The latter quantifies the violation of the
explicit functional constraints. A natural question is whether we can guarantee
the convergence of the infeasibility metric to zero in an almost sure sense. This is
partially addressed in the following result.

Corollary 1 Consider Theorem 1. There exists a subsequence of {X,} along which,
the infeasibility metric lT[f()'cK)] + converges to zero almost surely.

Proof From Theorem 1, we have lim,_ E[17[f(x,)],] =0. Invoking Fatou’s

lemma and noting that IT[f()‘cK)] + = 0, we obtain
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lim inf 1"[f&)], =0  almost surely.

Further, the sequence {X,} is bounded, due to the projection onto the compact set
X in Algorithm 1. From the continuity of f, it follows that one of the (random)
accumulation points of {X,} must be a feasible point with respect to the explicit
functional constraints almost surely. a

In the next corollary, we demonstrate how we can achieve feasibility while
maintaining the suboptimality rate within the proposed framework.

Corollary 2 Let x, be the output of Algorithm 1 such that it is e-suboptimal and e
—mfeastble solution of (¢SVI). Moreover suppose a Slater point x° is available.
Then %, = kx° + (1 — k)x, for k = is a feasible point and e-suboptimal

solution of (¢SVI).

— max; {f( °)}

Proof Since x, is e-suboptimal and e-infeasible solution, we have that

E[sup{F®)'(x, —0)}| <e and [fi(x)], <e Vi€ ({l,....J}.
xeX

Moreover, convexity of set X and the fact that x°, x, € X implies that X, € X. Next,
we show that X, is a feasible solution. Indeed,

[&) < kfi(x°) + (1 — k)fi(x,) < kfi(x°) + (1 — K)e
< kmax{f;(x*)} + (1 — ke <0,
J

where in the first inequality we used convexity of the function f;, in the second
inequality we used the fact that x, is an e-feasible point and the last 1nequa11ty holds

because, from the definition of k, we have that k« > —————. Now, we show that X,
€—max; f x°)"

is an e-suboptimal. Using the fact that x, is an e-suboptimal solution and definition
of k, the following holds:

E [SHP{F(X)T(%S - X)}]

xeX

=«kE [sup{F(x)T(x° — x)}] +( -x)E [sup{F(x)T(xe - x)}]
xeX xeX

<«kE [sup{F(x)T(x° — x)}] + (1 —K)e
xeX

E [supxe)({F()c)T(xo - x)}] < c
=€ +11-

min; {—f;(x°)} min; {—f;(x°)}

>€ < O(e).
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5 Conclusion

In this paper, we consider stochastic variational inequality (VI) problems with a
monotone mapping and a set that is characterized in terms of explicit functional
constraints. Motivated by the absence of convergence rate statements for solving this
class of problems, we develop a randomized Lagrangian stochastic approximation
method where at each iteration the primal and dual variables are updated recursively.
Our main contribution is to show that the existing convergence rates for nonlinearly
constrained stochastic optimization problems can be extended to the stochastic VI
regime. This is indeed promising and implies that the Lagrangian duality theory can
be employed with provable guarantees for several important classes of problems that
can be formulated as a stochastic VI. In particular, this work provides convergence
speed guarantees for computing a Nash equilibrium in stochastic Nash games where
each player may be associated with many hard-to-project constraints.

Appendix
Proof of Lemma 1

Proof Invoking Proposition 1 and taking into account that Ny(x*) = 0Zy(x*), we
have that x* € X solves the following augmented variational inequality problem
VI (X, F 4+ J7'VfT 3*), that is parameterized by J and A*. This implies that

(FO*) + 7' VFa)T %) (r—x*) 2 0, forall xeX. (18)
From the convexity of function f, for all j € [J] and that /1]» > 0, we have
A (f0) = f,() 2 A VEE) (= x).

Summing the preceding relation over j € [J] and recalling the definition of the
mapping f(x), we obtain

(F) = FNT A 2 (VAT A%) (= x%).
Invoking Proposition 1(ii) we obtain f(x)7A* > (Vf(x*)T/l*)T(x—x*). From the

preceding relation and (18) we obtain F(x*)"(x — x*) +J~!f(x)TA* > 0 for all
x e X. O

Proof of Lemma 2
Proof (i) Note that x* is a feasible point to problem (¢SVI) with respect to the

set X, i.e., x* € X. Also, note that 1 > 0. From the definition of <1)p, we have that
®,(x*,4) <0.Let x :=x"in (4). Then we have
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FOH)T@ = x)+J7 @74 < C*, D). (19)
Also, from Lemma 1 and that x € X we have
0 < FO) & —x") + T @7 A%
The preceding relation and that A* > 0 imply that
0 < F(x")'@ —x) + I [f@)1L A%
Summing the preceding relation and (19) and rearranging the terms, we obtain
JY®TA =IO < 6, A). (20)

Let us choose /lj =1+ /1;k if j;(fc) > 0, and /1j := 0 otherwise for all j € [J]. Then,
we obtain the desired relation in ).

(ii)) Let A=0 in (4) and note that d)p(x, 2) <0 for all xe X. We have
F(x)T(& —x) < C(x,0) for all x € X. Taking supremum from the both sides, we
obtain desired results in (ii). O

Proof of Lemma 3

Proof The relations in part (i) hold as a consequence of Assumption 2. To show
E[6; | F¢] = 0, we can write

E[5, | ] = ﬂEHpk]}k(xk) + xg”]j&(xk)

J
_5 Z [pk,;(xk) + gg)LvJ;(xk) | fk]

J=1

) [pk;;(xk) + A,(j)]jj;(xk)

j=1
J
—1 3 [0+ 2] o =o.
j=1

where the last inequality is implied from the assumption that j, is uniformly drawn
from the set [J]. Next, we derive the bound on E[||5, | | F,]. We have
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2

| fk]

2

Ell5 1 | 7l = E [H (028,04 2] 97,0

J
L Z [pk;;(xk) + ,159] V)
Jj=

~ 28| [+ 4] W01 7]

J
2 pk}j(xk)+/1 ] Vf(xk))

«(13

[pk];-(xk) + ,12)] j];(xk)

2

J
X [0 + 4] Spe
j=1

Dropping the non-negative term in the preceding relation and invoking Remark 5,
we obtain

|+ 47| |

ELISI | Fol < }i
=1 EJ} [0 + A“] HVﬂxk)H
=1

J

2 J 2 J .
< z (o +47) <23 (07 +a92)
j=1

J=1

22 2 4 Wl
=26 (nD; + = )

Proof of Lemma 4

Proof From the update rule of v, , we know o}, = Ti(vk +1 — Vi), hence we have that
k
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T T T
6, (x—=v) =0, (x—vp) + 0, (Vi — Vi)
21 2

= —|lx=v = =—]x—v
3ol = 5= v

1 2, T
- 2T||Vk+1 = Vill” 4 03 Vs — i)
k

1 2 1 2, %k 2
S—|lx=—wll-—=—I|lx—v + = |lo:ll5,
2Tkll Al 2Tkll i1l > llol

where the first equality is obtained from three points equality in the Euclidean space
and in the last inequality we used Young’s inequality. a

Proof of Lemma 5

Proof From the fact that Ay, — 4, =Jpe;, OV, ®@, (x;,4), one can get the
following:

(A = DT gy = ) = (B = D (V,@,, (3 4)
+ (A = D' (Je;, OV, @, (x5, ) = V, @, (3, A1)
Moreover, using the fact that
(= A Gy = 2 = 5= (141 = AP = 14 = A7 = llAgs1 = 4[I?) and using
previous equality one can obtain:
1
3 ke = AP = -l = AP + 5Ny = AP+ Gy = DTV, @, (0 40)

+ (A — D' (Je;, OV,@, (x5, 4) =V, @, (0, 4p).
2D
Using (21), one can easily show that:

J

1 j 1

= @00 A0+ 5 2 AN+ gl — AP
J=

J
1 .
==, (v A + 5 21 AL ) + 3l = AP+ -l = AP (22)
J:
+ (& = DV, @, (4, 4))
+ (4 — D' Ue, OV,®, (0. 4) — V, @, (x5, 4)).
From definition of ®, (x;, ), Jif and J_ we have:

()2
(4
2p;

@, (0 4) = | D () + AV x)) —

= =

(23)
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; J

Using (22), (23) and the fact that V,® (x, 1) = é[max(%(),];(x))] . the following
j:

holds:

—®, (. A) + - 2/10>];(xk)+—||/1k+1 A2
j 1

)
=2 e+t 2 [“ 2 0f ) + (A0 — M( >]

jEJJr
2
+ m”’lk AT+ E“'{kJrl - /11(||
+ (4 = A)T(v@pk (s A)) (24)
+ (= D' Uej, © V@, (. 4) = V3@, (e A)

‘ ae 40
== L 46007~ 3 (;7 — 29 <j_/(xk) ¥ ﬁ))

jeJ;r =
1 2
+ 5, 14— 4l
1 2
+ o 1Ak = All™ + (A = N'(e;, © V@, (5, ) = V@, O 4g)).

. 0
Note that 4 >0 and by definition J it holds that /l(’>(fj(xk)+ %) <0, so we
k

conclude that

—52%(;;-<xk>>2—52<(;: /1(’><f( x) + 2 >>

jert JeJ;
1 (/1 0% 25)
<=7 2 50 - o
jeJ;' JEJ[
Hence we have the desired result by putting (25) in (24). O

Proof of Lemma 6

Proof (a) From definition of V ,® o using Assumption 1(ii) and the fact that ﬂgk) >0

2
max ( f (xk))

for all k and j, we have that ||Je; © V,®, (x;, A)I* = < D%.
(b) By definition of 6, and v, and using Lemma 4, one can obtain the following.

(A=A =9 (V, @, (x5, 4) — Je; OV, @, (x;, 4))

= — A6+ (A=9)'6, < (5, — 1) "6, + gnx -7 ?
k

1 _ T 2
— =14 =Tl + =115 II%
3 14~ Bl + o
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