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Abstract
In this paper, we consider stochastic monotone Nash games where each player’s 
strategy set is characterized by possibly a large number of explicit convex constraint 
inequalities. Notably, the functional constraints of each player may depend on the 
strategies of other players, allowing for capturing a subclass of generalized Nash 
equilibrium problems (GNEP). While there is limited work that provide guarantees 
for this class of stochastic GNEPs, even when the functional constraints of the 
players are independent of each other, the majority of the existing methods rely on 
employing projected stochastic approximation (SA) methods. However, the 
projected SA methods perform poorly when the constraint set is afflicted by the 
presence of a large number of possibly nonlinear functional inequalities. Motivated 
by the absence of performance guarantees for computing the Nash equilibrium in 
constrained stochastic monotone Nash games, we develop a single timescale 
randomized Lagrangian multiplier stochastic approximation method where in the 
primal space, we employ an SA scheme, and in the dual space, we employ a 
randomized block-coordinate scheme where only a randomly selected Lagrangian 
multiplier is updated. We show that our method achieves a convergence rate of 
O

�

log(k)
√

k

�

 for suitably defined suboptimality and infeasibility metrics in a mean 
sense.
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1  Introduction

Noncooperative game theory provides a mathematical framework to study multi-
agent decision-making problems that have emerged in a wide range of applications 
including electricity markets [1], transportation networks [2], and signal processing 
[3], among many others. While the multidisciplinary field of game theory finds 
its origin in the work by von Neumann and Morgenstern [4], the notion of a Nash 
equilibrium (NE) was introduced and its existence was provably shown by Nash [5]. 
The non-cooperative Nash game is a modeling framework where a finite collection 
of selfish agents compete with each other and seek to optimize their own individual 
objectives. Such a competition is often subject to limited resources characterized 
by functional constraints. In this work, our primary focus lies in computing an NE 
for large-scale constrained Nash game formulations afflicted by the presence of 
uncertainty in the objectives of the agents. More precisely, we consider stochastic 
monotone Nash games with a large number of (possibly nonlinear) functional 
constraints described as follows. Let N ≥ 1 denote the number of players. For all 
i = 1,… ,N , the ith player is associated with the following constrained stochastic 
optimization problem.

where xi ∈ ℝ
ni denotes the strategy of the ith player, x−i ∈ ℝ

n−ni is the collection 
of the strategies of the other players, n ≜

∑N

i=1
ni,  and hi ∶ ℝ

n ×ℝ
d
→ ℝ denotes 

the stochastic cost function associated with the ith player. The uncertainty in the 
game is characterized by the random variable � ∶ Ω → ℝ

d associated with the 
probability space (Ω,F,ℙ) . The constraint set of the ith player is expressed in 
terms of explicit convex constraint inequalities in terms of the jointly convex 
functions gi,� ∶ ℝ

n
→ ℝ , for all � = 1,… , Ji . The ith player’s strategy is a subset 

of a nonempty convex set denoted by Xi ⊆ ℝ
ni . While we will provide a detailed 

description of our assumptions in subsequent sections, it is worth emphasizing that 
throughout, we assume that all the aforementioned functions are merely convex.

Problem  (Pi(x−i) ) is a subclass of the generalized Nash equilibrium problems 
(GNEP) that have been extensively employed in the literature in formulating 
applications arising in economics and operations research, among others [6, 
7]. Recall that in GNEPs, players seek the NE by simultaneously satisfying the 
constraints. This is different from other classes of games where players make 
decisions in a specific order, e.g., in Stackelberg games.

A popular subclass of the problem (Pi(x−i) ) is the stochastic minimax problem. 
Consider the following stochastic merely-convex-merely-concave minimax 
optimization problem with possibly many functional constraints.

min
xi∈Xi

Hi(x) ≜ 𝔼[hi(xi, x−i, 𝜉)] (Pi(x−i))

where Xi ≜
{

xi ∈ Xi ⊆ ℝ
ni ∣ gi,�(xi, x−i) ≤ 0, for all � = 1,… , Ji

}
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Minimax optimization can indeed be viewed as  an instance of two-person zero-
sum games. The existence of equilibrium in such a game is established by the 
celebrated von Neumann’s minimax theorem in 1928 [8] that appears amongst 
the most fundamental results in game theory. The research on the development of 
gradient-type methods for solving minimax problems, also known as the problem 
of finding saddle points, dates back to as early as 1970s, including the work by 
Korpelevich [9] and Golshtein [10], followed by efforts on  the development  of 
gradient descent ascent as well as primal-dual methods (e.g., see [11–15] and [16, 
Chp. 1]). More recently, minimax problems have drawn increasing attention in areas 
including adversarial learning [17–19], fairness in machine learning [20, 21], and 
distributionally robust federated learning [22], to name a few.

Existing methods and research gap In addressing deterministic games, iterative 
methods for approximating an equilibrium find their origin in 1960s in the seminal 
work by Scarf [23] (see [16, Chapter 12] for a detailed review of deterministic meth-
ods). The prior algorithmic efforts in addressing stochastic Nash games, however, 
find their roots in the work by Jiang and Xu [24] in 2008, where a stochastic approx-
imation (SA) method was developed for addressing stochastic variational inequality 
(VI) problems with strongly monotone and Lipschitzian mappings. Recall that given 
a set X  and a single-valued mapping F ∶ ℝ

n
→ ℝ

n , vector x ∈ X solves VI (X,F) if 
F(x)T (y − x) ≥ 0 for all y ∈ X  . Under some mild convexity and differentiability 
assumptions, it can be shown that [16, Chapter 1] the set of equilibria of the stochas-
tic game (Pi(x−i) ), for i = 1,… ,N , is characterized by the solution set of VI (X,F) 
where X ≜

∏N

i=1
Xi and F(x) ≜

(

∇x1
�[h1(x, �)];… ;∇xN

�[hN(x, �)]
)

 . In view of this 
result, seeking a Nash equilibrium of a stochastic game is equivalent to solving the 
aforementioned stochastic VI. The convergence and rate analysis of SA schemes for 
solving VIs under weaker monotonicity and smoothness assumptions were studied 
more recently in works including [25–27]. Also, stochastic extragradient methods 
and their variance-reduced variants were studied in  [28–30].

Despite these advances, it is often assumed in the above-mentioned methods that 
the set Xi is easy-to-project on, and accordingly, the algorithmic framework in these 
works relies on projected schemes. However, in the following cases, Xi may become 
difficult to project on: (i) When the dimensionality of the solution space, i.e., n, is 
large; (ii) When the number of the constraints is large. For example, in the game set-
ting 

∑N

i=1
Ji could be large; (iii) The constraint set may be characterized by nonlinear 

constraints. In fact, we are unaware of any iterative methods with provable com-
plexity guarantees for the resolution of  stochastic variants of constrained monotone 
Nash games. Our research in this paper is precisely motivated by this shortcoming in 
the literature.

(1)

min
u∈U

max
v∈V

H(u, v) ≜ 𝔼[h(u, v, 𝜉)]

where U ≜
{

u ∈ U ∣ g1,�(u) ≤ 0, for all � = 1,… , J1
}

and U ⊆ ℝ
n1 ,

V ≜
{

v ∈ V ∣ g2,�(v) ≤ 0, for all � = 1,… , J2
}

and V ⊆ ℝ
n2 .



	 Z. Alizadeh et al.

1 3

Main contributions In Tables 1 and 2, we provide a summary of the main results 
in our work and we compare them with some of the existing methods for address-
ing monotone VIs and minimax problems. To highlight our contributions, we 
first provide a brief review of some of the existing avenues for addressing mono-
tone Nash games and VIs with explicit constraints. The duality theory for VIs and 
the notion of the dual VI has been studied by Mosco [40] in 1972 which was later 
improved in [41, 42]. Extending the duality framework devised in [43], Auslender 
and Teboulle [44] developed a Lagrangian duality scheme for solving multi-valued 
variational inequality problems with maximal monotone operators and explicit con-
vex constraint inequalities. Leveraging entropic proximal terms, interior proximal 
point methods were developed for solving constrained VIs in works including [45, 
46]. Although the aforementioned dual-based methods are endowed with asymp-
totic convergence guarantees, the convergence speed of Lagrangian dual methods 
for solving constrained VIs is not known. In particular, we are interested in inves-
tigating whether it is possible to devise suitable Lagrangian dual methods that can 
be guaranteed with convergence speeds of a similar order of magnitude to those of 
primal-dual methods developed for standard constrained optimization methods [47]. 
We show that this is indeed possible. We summarize our main contributions in the 
following. 

	 (i)	 A single timescale randomized primal-dual stochastic approximation method 
Leveraging the primal-dual framework for addressing constrained stochas-
tic optimization problems, we devise a randomized primal-dual stochastic 
approximation method for solving VIs with merely monotone and stochastic 
mappings with explicit constraint inequalities. To capture large-scale con-

Table 1   Solution methods with 
rate statements for variational 
inequality problems

Ref Problem Rate Non-
linear 
const

Proximal Extra-gradient [31] VI O(1∕�) ✗
SMP [32] SVI O(1∕�2) ✗
DS-SA [33] SVI O(log(1∕�)∕�2) ✗
RLSA (this paper) SVI O(log(1∕�)∕�2) ✓

Table 2   A subset of methods with guarantees for saddle point problems

Ref Stoch Non-bilinear Convex Nonlinear 
const

PDHG [34], Acc-SP-HPE [35] ✗ ✗ O(1∕�) ✗
Acc-HPE-type [36], SMP [32] ✗ ✓ O(1∕�) ✗
Acc- BD [37] ✓ ✗ O(1∕�) ✗
SAA [38], SADMM [39] ✓ ✓ O(1∕�2) ✗

RLSA (this paper) ✓ ✓ O(log(1∕�)∕�2) ✓
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strained stochastic Nash games, we employ a randomized block scheme for 
updating the Lagrange multipliers. Importantly, this scheme is single timescale 
and efficient to implement.

	 (ii)	 New convergence rate statements In contrast with standard optimization prob-
lems, one of the main challenges in addressing VIs lies in the lack of availabil-
ity of suitable error metrics that rely on objective function values. In particu-
lar, this challenge introduces some difficulty in the convergence rate analysis 
of monotone VIs, an issue that is exacerbated in the presence of explicit con-
straint inequalities. Motivated by earlier efforts [27, 48], leveraging the notion 
of dual gap functions, we analyze the convergence of the proposed method 
and derive convergence rates of O

�

log(k)
√

k

�

 for both suboptimality and infeasi-
bility metrics in a mean sense.

Outline of the paper The remainder of the paper is organized as follows. In 
Sect.  2, we provide the main assumptions and review some preliminary results 
that are employed in the analysis. In Sect. 3, we present the outline of the proposed 
algorithm along with some definitions. In Sect.  4 we establish convergence 
properties of the method and derive explicit performance guarantees. We present 
some concluding remarks in Sect. 5. Lastly, Sect. 6 includes the proofs for some 
of the results in the paper.

2 � Preliminaries

To address the stochastic game Pi(x−i) for i ∈ [N] , we consider the stochastic VI 
problem described as follows.

The details of our assumptions on the mapping F, functions fj , and sets Xi are 
provided as follows.

Assumption 1  (Problem properties) Consider problem (cSVI). Let the following 
holds. 

	 (i)	 Mapping F(∙) ∶ ℝ
n
→ ℝ

n is real-valued, continuous, and merely monotone on 
its domain, i.e. ⟨F(x) − F(y), x − y⟩ ≥ 0, for all x, y ∈ X.

	 (ii)	 Function fj(∙) ∶ ℝ
n
→ ℝ is real-valued, merely convex on its domain for all 

j = 1,… , J.
	 (iii)	 Set X ⊆ int

(

dom (F) ∩ (∩J
j=1

dom (fj))
)

 is nonempty, compact, and convex.
	 (iv)	 The Slater condition holds, i.e., there exists x̂ ∈ X such that fj(x̂) < 0 for all 

j = 1,… , J.

Find x ∈ X such that �[F(x, �)]T (y − x) ≥ 0, for all y ∈ X (cSVI)

where X ≜
{

x ∈ X ∣ fj(x) ≤ 0, for all j = 1,… , J
}

and X ≜
∏N

i=1
Xi.
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Remark 1  Note that problem (cSVI) captures the stochastic game Pi(x−i) . In fact, 
given the objective functions hi(∙, �) and constraint functions gi,� in Pi(x−i) , x is an 
NE if and only if x solves (cSVI) where fj(x) ≜ gi,�(x) where j ∶= � +

∑i−1

t=1
Jt for 

� ∈ [Ji].

Definition 1  (Augmented-Lagrangian function) Given x, y ∈ ℝ
n , � ∈ ℝ

J , and 𝜌 > 0 , 
we define

Similar to the traditional constrained optimization techniques, the nonlinear 
constraints in problem (cSVI) can be combined with the objective function using 
some multipliers. Using this technique we can characterize the optimality condition 
of problem (cSVI) in the following result.

Proposition 1  (Arush–Kuhn–Tucker (KKT) conditions) Consider problem (cSVI) 
and suppose Assumption  1 holds. Let f (x) ≜ (f1(x),… , fJ(x))

T and the gradient 
matrix ∇f (x) ≜ (∇f1(x),… ,∇fJ(x))

T ∈ ℝ
n×J . There exists x∗ ∈ ℝ

n and �∗ ∈ ℝ
J sat-

isfying the following KKT conditions: 

	 (i)	 0 ∈ F(x∗) + J−1∇f (x∗)T�∗ +NX(x
∗).

	 (ii)	 0 ≤ �∗ ⟂ −f (x∗) ≥ 0.
	 (iii)	 x∗ ∈ X.

Proof  Note that any solution x of (cSVI) is also a solution of the following optimiza-
tion problem:

Since the Slater condition holds, the first-order KKT condition for (2) implies that 
there exists x∗ ∈ ℝ

n and �∗ ∈ ℝ
J satisfying conditions (i)–(iii). 	�  ◻

We will utilize the following definition in the convergence and rate analysis.

Definition 2  Consider the VI (X,F) where X is a closed convex set and F is a real-
valued monotone map. The dual gap function Gap∗ ∶ X → ℝ ∪ {+∞} is defined for 
any x ∈ ℝ

n as

L�(x, y, �) ≜ F(y)T (x − y) + Φ�(x, �),

where Φ�(x, �) ≜
1

J

J
∑

j=1

��(fj(x), �
(j)) and ��(u, v) ≜

{

uv +
�

2
u2, if �u + v ≥ 0,

−
v2

2�
, otherwise.

(2)
min
y∈X

yTF(x)

s.t. fj(y) ≤ 0 ∀j.

(3)Gap∗(x) ≜ sup
y∈X

F(y)T (x − y).
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Remark 2  Note that by the definition, Gap∗(x) ≥ 0 for all x ∈ X  . Also, under some 
mild conditions, Gap∗(x) = 0 implies that x is a solution to VI (X,F) . This is for-
mally stated below.

Remark 3  Karamardian [49] showed that under continuity and pseudo-monotonicity 
of the operator F, solving (cSVI) problem is equivalent to solving Minty stochas-
tic variational inequality (MSVI) [50] problem. Such a problem requires an x∗ ∈ X 
such that

Therefore, to obtain the convergence rate, we adopt the dual gap function. 
Note that Gap∗(∙) is well-defined when X  is a compact set, that follows from 
Assumption 1 (iii).

By invoking Proposition  1 and Assumption  1, we can establish the following 
two results for problem (cSVI). These results will be employed later to demonstrate 
the boundedness of dual iterates and to obtain convergence rate results. We have 
provided the proofs of the following lemmas in the appendix.

Lemma 1  Consider problem (cSVI) under Assumption 1. Then for any primal-dual 
solution pair (x∗, �∗), the following holds

Lemma 2  Consider problem (cSVI). Let Assumption  1 hold. Assume that for any 
x ∈ X and � ∈ ℝ

J
+
 we have

where x̂ ∈ X and 𝜆̂ ∈ ℝ
J
+
 are arbitrary vectors. Then for any primal-dual solution 

pair (x∗, �∗), the following holds. 

	 (i)	 J−11T [f (x̂)]+ ≤ C(x∗, 𝜆̃) , where for all j ∈ [J] we define 

	 (ii)	 supx∈X{F(x)
T (x̂ − x)} ≤ supx∈X{C(x, 0)}.

3 � Algorithm outline

The outline of the proposed method is presented by Algorithm 1. The sequence of 
the primal iterates is denoted by {xk} and the sequence of the dual iterates is denoted 
by {�k} . This is a single timescale Lagrangian stochastic approximation scheme that 

(MSVI)(x∗ − x)TF(x) ≤ 0, for all x ∈ X.

F(x∗)T (x − x∗) + J−1f (x)T�∗ ≥ 0, for all x ∈ X.

(4)F(x)T (x̂ − x) + J−1f (x̂)T𝜆 ≤ Φ𝜌(x, 𝜆̂) + C(x, 𝜆),

𝜆̃j ≜
{

1 + 𝜆∗
j
, if fj(x̂) > 0,

0, otherwise.
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includes two main steps. At each iteration, in the dual step in equation (5), a ran-
domly selected dual variable �(j) is updated, while in the primal step in equation 
(6), the primal variables are updated. The stepsize sequence is denoted by {�k} and 
the penalty sequence is denoted by {�k} . In addition to the primal and dual vari-
ables that are updated at each iteration, both the stepsize and penalty parameter are 
updated iteratively. Our goal in this work lies in proving that Algorithm 1 can be 
employed for solving the stochastic VI problem (cSVI) where the constraint set is 
characterized by explicit functional constraints. This result will be presented in the 
next section by Theorem 1 where we provide specific update rules for both �k and 
�k such that the convergence of the proposed method can be guaranteed and non-
asymptotic convergence rates can be derived. Before we proceed with the analysis of 
the method, we provide some definitions that will be utilized.

Remark 4  Note that the Augmented Lagrangian function introduced in Definition 1 
can be viewed as a relaxed variant of the following standard Augmented Lagrangian 
function of the form

Indeed, one of the key challenges in employing the Augmented Lagrangian function 
L�(x, �) is the presence of the supremum and nondifferentiability of the dual gap 
function. Further, even when the samples F(∙, �k) are unbiased, the standard 
Augmented Lagrangian function above may be biased, due to the presence of the 
supremum which again, renders an issue in utilizing this Augmented Lagrangian 
function. To circumvent these challenges, we employ the relaxed variant of the 
Augmented Lagrangian function introduced in Definition 1. Importantly, as it will 
be shown in Theorem 1, utilizing the relaxed variant of the Augmented Lagrangian 
function allows us to derive the rate statements. This is indeed a key novelty in the 
design of the proposed method in this work.

Throughout, we let the history of the method be denoted by Fk ≜ ∪k−1
t=0

{�t, jt} for 
any k ≥ 1 , and F0 ≜ {�0, j0}.

Assumption 2  (Random samples) Let the following holds. 

(i)	 Samples �k are generated independently from the probability distribution of � 
for k ≥ 0.

(ii)	 Samples jk , for k ≥ 0 , are generated independently from a uniform probability 
distribution such that Prob (jk = j) = J−1 for all j = 1,… , J.

(iii)	 Samples �k and jk are generated independently from each other.
(iv)	 �[F(x, �k) − F(x) ∣ x] = 0 for all x ∈ X and all k ≥ 0.
(v)	 There is some 𝜈 > 0 such that �[‖F(x, �k) − F(x)‖2 ∣ x] ≤ �2 for all x ∈ X and all 

k ≥ 0.

L�(x, �) ≜ sup
y∈XL�(x, y, �) = sup

y∈X{F(y)
T (x − y)} + Φ�(x, �)

= Gap∗(x) + Φ�(x, �).
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Remark 5  In view of Assumption 1, the subdifferential set �fj(x) is nonempty for 
all x ∈ int ( dom (fj)) and all j = 1,… , J . Also, fj has bounded subgradients 
over X. Throughout, we let scalars DX and Df  be defined as DX ≜ supx∈X ‖x‖ and 
Df ≜ maxj∈[J] supx∈X |fj(x)| , respectively. Also, we let CF > 0 and Cf > 0 be scalars 
such that ‖F(x)‖ ≤ CF and ‖∇̃fj(x)‖ ≤ Cf  for all ∇̃fj(x) ∈ 𝜕fj(x) , for all x ∈ X.

Definition 3  (Stochastic errors) Let us define the following stochastic terms for 
k ≥ 0 . 

	 (i)	 wk ≜ F(xk, �k) − F(xk).

	 (ii)	 𝛿k ≜
�

𝜌kfjk (xk) + 𝜆
(jk)

k

�

+
∇̃fjk (xk) −

1

J

∑J

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk).

In the next lemma, we show that the stochastic errors defined above are unbiased 
and have bounded variance. The proof is provided in the appendix.

Lemma 3  (Properties of stochastic errors) Consider Definition 3. Let Assumption 2 
hold. Then: 

	 (i)	 �[wk ∣ Fk] = 0 and �[‖wk‖
2 ∣ Fk] ≤ �2.

	 (ii)	 �[�k ∣ Fk] = 0 and �[‖�k‖2 ∣ Fk] ≤ 2C2
f

�

�2
k
D2

f
+

‖�k‖
2

J

�

.

Remark 6  Note that we have 1

J

∑J

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk) ∈ 𝜕xΦ𝜌k

(xk, 𝜆k) . 
Throughout, we use the following definition

Algorithm 1   Randomized Lagrangian stochastic approximation method (RLSA)
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Therefore, one can conclude that

4 � Convergence and rate analysis

To obtain the main results of this paper, we use the following technical lemmas. 
All related proofs are provided in the appendix.

Lemma 4  Given an arbitrary sequences {𝜎k}k≥0 ⊂ ℝ
n and {𝜏k}k≥0 ⊂ ℝ

++ , let 
{vk}k≥0 be a sequence such that v0 ∈ ℝ

n and vk+1 = vk + �k�k . Then, for all k ≥ 0 
and x ∈ ℝ

n,

Lemma 5  Consider Algorithm  1. Let J+
k
= {j ∈ [J] ∣ �kfj(xk) + �

(j)

k
≥ 0} and 

J−
k
= [J]�J+

k
 . Then, for any �∈ ℝ

J
+
 , the following holds:

where Δk≜ −
1

J

∑

j∈J+
k

�k
2
(fj(xk))

2 −
1

J

∑

j∈J−
k

(�
(j)

k
)2

2�k
+

1

2�k
‖�k+1 − �k‖

2.

Lemma 6  Suppose Assumption 1 holds. Then, the following holds: 

(a)	 ‖Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k)‖

2 ≤ D2
f
.

(b)	 Let 𝜎̄k = Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) − ∇𝜆Φ𝜌k

(xk, 𝜆k) and {v̄k}k≥0 be a sequence such 
that v̄0 ∈ ℝ

n and v̄k+1 = vk + 𝜏k𝜎̄k for some {𝜏k}k≥0 . Then, the following holds. 

∇̃xΦ𝜌k
(xk, 𝜆k) ≜

1

J

J
∑

j=1

[

𝜌kfj(xk) + 𝜆
(j)

k

]

+
∇̃fj(xk).

‖∇̃xΦ𝜌k
(xk, 𝜆k)‖

2 ≤ 1

J

J
�

j=1

�

�

�

�

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

�

�

�

2

≤ 2𝜌k
2D2

f
C2
f
+

2C2
f

J
‖𝜆k‖

2.

�T
k
(x − vk) ≤

1

2�k
‖x − vk‖

2 −
1

2�k
‖x − vk+1‖ +

�k
2
‖�k‖

2.

− Φ𝜌k
(xk, 𝜆k) +

1

J

J
�

j=1

𝜆(j)fj(xk) +
1

2𝜌k
‖𝜆k+1 − 𝜆‖2

≤ 1

2𝜌k
‖𝜆k − 𝜆‖2 + (𝜆k − 𝜆)T (Jejk ⊙ ∇𝜆Φ𝜌k

(xk, 𝜆k) − ∇𝜆Φ𝜌k
(xk, 𝜆k)) + Δk,

(𝜆k − 𝜆)T (Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) − ∇𝜆Φ𝜌k

(xk, 𝜆k))

≤ (v̄k − 𝜆k)
T 𝜎̄k +

1

2𝜏k
‖𝜆 − v̄k‖

2 −
1

2𝜏k
‖𝜆 − v̄k+1‖

2 +
𝜏k‖𝜎̄k‖

2

2
.
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Next, using Lemmas 5 and 6 we provide a one-step analysis of our method by 
providing an upper bound on the reduction of the gap function in terms of the 
consecutive iterates.

Proposition 2  Consider Algorithm 1. Let Assumptions 1 and 2 hold. Then, for any 
x ∈ X and � ∈ ℝ

J
+
 the following inequality holds.

where J+
k
 and J−

k
 are given by Lemma 5.

Proof  Let x ∈ X and � ≥ 0 be arbitrary vectors. From (6) we have

Using monotonicity of F(∙) and Young’s inequality, one can obtain

Similarly from Remark 6 and convexity of Φ�k
(∙, �k) , then we have

We can also write

(7)

(xk − x)TF(x) + J−1f (xk)
T𝜆 − Φ𝜌k

(x, 𝜆k)

≤ 1

2𝛾k

�

‖xk − x‖2 − ‖xk+1 − x‖2
�

+
1

4𝛾k

�

‖x − vk‖
2 − ‖x − vk+1‖

2
�

+
1

2𝜌k

�

‖𝜆k − 𝜆‖2 − ‖𝜆k+1 − 𝜆‖2
�

+
1

2𝜏k

�

‖𝜆 − v̄k‖
2 − ‖𝜆 − v̄k+1‖

2
�

+ 2𝛾kC
2
F

+ 4𝛾kC
2
f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
�

+ (vk − xk)
T (wk + 𝛿k) + 2𝛾k‖wk + 𝛿k‖

2

+ (v̄k − 𝜆k)
T 𝜎̄k +

𝜏k‖𝜎̄k‖
2

2
−

1

J

�

j∈J+
k

𝜌k
2
(fj(xk))

2 −
1

J

�

j∈J−
k

(𝜆
(j)

k
)2

2𝜌k
,

(8)(xk+1 − x)T
(

xk+1 − xk + 𝛾k

(

F(xk, 𝜉k) +
[

𝜌kfjk (xk) + 𝜆
(jk)

k

]

+
∇̃fjk (xk)

))

≤ 0.

(9)

(xk+1 − x)TF(xk, �k)

= (xk+1 − xk)
TF(xk) + (xk − x)TF(xk) + (xk+1 − x)Twk

≥ −
1

8�k
‖xk+1 − xk‖

2 − 2�k‖F(xk)‖
2 + (xk − x)TF(x) + (xk+1 − x)Twk

≥ −
1

8�k
‖xk+1 − xk‖

2 − 2�kC
2
F
+ (xk − x)TF(x) + (xk+1 − x)Twk.

(10)

(xk+1 − x)T
�

𝜌kfjk (xk) + 𝜆
(jk)

k

�

+
∇̃fjk (xk)

= (xk+1 − xk)
T∇̃xΦ𝜌k

(xk, 𝜆k) + (xk − x)T∇̃xΦ𝜌k
(xk, 𝜆k) + (xk+1 − x)T𝛿k

≥ −
1

8𝛾k
‖xk+1 − xk‖

2 − 2𝛾k‖∇̃xΦ𝜌k
(xk, 𝜆k)‖

2 + Φ𝜌k
(xk, 𝜆k) − Φ𝜌k

(x, 𝜆k)

+ (xk+1 − x)T𝛿k

≥ −
1

8𝛾k
‖xk+1 − xk‖

2 − 4𝛾kC
2
f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
�

+ Φ𝜌k
(xk, 𝜆k) − Φ𝜌k

(x, 𝜆k)

+ (xk+1 − x)T𝛿k.
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Using (9), (10) and (11) in (8), we have

Now we obtain an upper bound for the term (a) in (12).

From Lemma 4 we have that 
(x − v

k
)T (w

k
+ �

k
) ≤ 1

4�
k

‖x − v
k
‖

2 −
1

4�
k

‖x − v
k+1‖

2 + �
k
‖w

k
+ �

k
‖

2 , hence the above 
inequality can be written as

Using the above inequality in (12), we get

 Using Lemmas 5 and 6, we can bound the left-hand side of (13) from below and 
one can obtain the following.

(11)(xk+1 − x)T (xk+1 − xk) =
1

2

�

‖xk+1 − x‖2 − ‖xk − x‖2 + ‖xk+1 − xk‖
2
�

.

(12)

(xk − x)TF(x) + Φ�k
(xk, �k) − Φ�k

(x, �k)

≤ 1

2�k

�

‖xk − x‖2 − ‖xk+1 − x‖2−
1

2
‖xk+1 − xk‖

2
�

+ 2�kC
2
F

+ 4�kC
2
f

�

�2
k
D2

f
+

1

J
‖�k‖

2
�

+ (x − xk+1)
T (wk + �k)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term (a)

.

(x − xk+1)
T (wk + �k)

= (x − xk)
T (wk + �k) + (xk − xk+1)

T (wk + �k)

≤ (x − vk)
T (wk + �k) + (vk − xk)

T (wk + �k) +
1

4�k
‖xk − xk+1‖

2 + �k‖wk + �k‖
2.

(x − xk+1)
T (wk + �k) ≤

1

4�k
‖x − vk‖

2 −
1

4�k
‖x − vk+1‖

2 +
1

4�k
‖xk − xk+1‖

2

+ (vk − xk)
T (wk + �k) + 2�k‖wk + �k‖

2.

(13)

(xk − x)TF(x) + Φ�k
(xk, �k) − Φ�k

(x, �k) ≤
1

2�k

�

‖xk − x‖2 − ‖xk+1 − x‖2
�

+ 2�kC
2
F
+ 4�kC

2
f

�

�2
k
D2

f
+

1

J
‖�k‖

2
�

+
1

4�k

�

‖x − vk‖
2 − ‖x − vk+1‖

2
�

+ (vk − xk)
T (wk + �k) + 2�k‖wk + �k‖

2.

(xk − x)TF(x) +
1

J

J
�

j=1

𝜆(j)fj(xk) − Φ𝜌k
(x, 𝜆k)

≤ 1

2𝛾k

�

‖xk − x‖2 − ‖xk+1 − x‖2
�

+
1

4𝛾k

�

‖x − vk‖
2 − ‖x − vk+1‖

2
�

+
1

2𝜌k

�

‖𝜆k − 𝜆‖2 − ‖𝜆k+1 − 𝜆‖2
�

+
1

2𝜏k

�

‖𝜆 − v̄k‖
2 − ‖𝜆 − v̄k+1‖

2
�

+ 2𝛾kC
2
F

+ 4𝛾kC
2
f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
�

+ (vk − xk)
T (wk + 𝛿k) + 2𝛾k‖wk + 𝛿k‖

2

+ (v̄k − 𝜆k)
T 𝜎̄k +

𝜏k‖𝜎̄k‖
2

2
+ Δk,
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where Δk is defined in Lemma 5. 	�  ◻

Now we show that the sequence of dual iterates generated by the proposed 
method is bounded.

Lemma 7  Consider Algorithm  1. Let Assumptions  1 and  2 hold. Let 
�k =

�
√

(k+1) log(k+1)
 , �k =

�
√

(k+1) log(k+1)
 , tk = 𝜏k =

1
√

(k+1) log(k+1)
 for any k ≥ 1 , where 

�� ≤ 1

120��C2
f
∕J

 . Moreover, we define �0 = � , �0 = � and t0 = 𝜏0 = 1 . Then, there 

exists B ≥ 0 such that �[‖�K‖2] ≤ B for any K ≥ 0.

Proof  From Lemma 1 we have (xk − x∗)TF(x∗) + J−1f (xk)
T�∗ ≥ 0 . Also, since 

fj(x
∗) ≤ 0 for all j ∈ J , we have Φ�(x

∗, �k) ≤ 0 . In view of these relations, from 
Proposition 2, for x ∶= x∗ and � ∶= �∗ we obtain

Multiplying both sides by tk and using the fact that tk

�k
≥ tk+1

�k+1
 , tk

�k
≥ tk+1

�k+1
 , tk ≥ tk+1 , 

�k ≥ �k+1 , 
tk

𝜏k
≥ tk+1

𝜏k+1
 , summing over k = 0,… , T  , where T ≤ K , and from 

‖�T+1‖
2 ≤ 2‖�T+1 − �∗‖2 + 2‖�∗‖2 we obtain the following relation.

Taking expectation on the both sides and using Assumption 2(iv–v), Lemma 3 and 
the fact that �[(v̄k − 𝜆k)

T 𝜎̄k] = �[Δk] = 0 , we get

0 ≤ 1

2𝛾k

�

‖xk − x∗‖2 − ‖xk+1 − x∗‖2
�

+
1

4𝛾k

�

‖x∗ − vk‖
2 − ‖x∗ − vk+1‖

2
�

+
1

2𝜌k

�

‖𝜆k − 𝜆∗‖2 − ‖𝜆k+1 − 𝜆∗‖2
�

+
1

2𝜏k

�

‖𝜆∗ − v̄k‖
2 − ‖𝜆∗ − v̄k+1‖

2
�

+ 2𝛾kC
2
F

+ 4𝛾kC
2
f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
�

+ (vk − xk)
T (wk + 𝛿k) + 2𝛾k‖wk + 𝛿k‖

2

+ (v̄k − 𝜆k)
T 𝜎̄k +

𝜏k‖𝜎̄k‖
2

2
−

1

J

�

j∈J+
k

𝜌k
2
(fj(xk))

2 −
1

J

�

j∈J−
k

(𝜆
(j)

k
)2

2𝜌k
.

tT+1

4𝜌T+1
‖𝜆T+1‖

2 ≤ t0

2𝛾0
‖x0 − x∗‖2

+
t0

4𝛾0
‖x∗ − v0‖

2 +
1

2𝜌0
‖𝜆0 − 𝜆∗‖2 +

t0

2𝜏0
‖𝜆∗ − v̄0‖

2 +
tT+1

2𝜌T+1
‖𝜆∗‖2

+

T
�

k=0

tk𝛾k

�

2C2
F
+ 4C2

f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
��

+

T
�

k=0

tk(vk − xk)
T (wk + 𝛿k)

+ 2

T
�

k=0

tk𝛾k‖wk + 𝛿k‖
2 +

T
�

k=0

tk(v̄k − 𝜆k)
T 𝜎̄k +

T
�

k=0

tk
𝜏k‖𝜎̄k‖

2

2
−

T
�

k=0

tkΔk.



	 Z. Alizadeh et al.

1 3

where we used part (a) of Lemma 6 and the definition of 𝜎̄k , i.e., �[‖𝜎̄k‖2] ≤ D2
f
 . 

Define A1 =
t0

2𝛾0
‖x0 − x∗‖2 +

t0

4𝛾0
‖x∗ − v0‖

2 +
1

2𝜌0
‖𝜆0 − 𝜆∗‖2 +

t0

2𝜏0
‖𝜆∗ − v̄0‖

2 , 

A2 = 2C2
F
+ 4C2

f
�2D2

f
 , A3 = 2�2 + 4C2

f
�2D2

f
 , then the above inequality can be writ-

ten as follows, where we used the fact that �k =
�

(k+1) log(k+1)
≤ �.

Letting T = −1 , one can easily show that �[‖�0‖
2] ≤ B . Now suppose 

�[‖�T+1‖
2] ≤ B holds for all T ∈ {−1, 0,… ,K − 2} . We show that �[‖�T+1‖2] ≤ B 

for T = K − 1 . Multiplying both sides of (14) by 4�T+1
tT+1

 and letting T = K − 1 , we get

From the fact that �k =
�

√

(k+1) log(k+1)
 , �k =

�
√

(k+1) log(k+1)
 , tk = 𝜏k =

1
√

(k+1) log(k+1)
 , one 

can show that �k
tk
= � and 

∑K−1

k=0
tk�k ≤ 3� . Therefore, we obtain

where in the last inequality we used the fact that 

B = max

�

‖�0‖
2,

4�A1+2‖�
∗
‖

2+12��A2+24��A3+12�D
2
f

1−144��C2
f
∕J

�

 and �� ≤ 1

144��C2
f
∕J

 . 	�  ◻

Now we are ready to state the convergence rates of Algorithm 1.

tT+1

4𝜌T+1
�[‖𝜆T+1‖

2] ≤ t0

2𝛾0
‖x0 − x∗‖2

+
t0

4𝛾0
‖x∗ − v0‖

2 +
1

2𝜌0
‖𝜆0 − 𝜆∗‖2 +

t0

2𝜏0
‖𝜆∗ − v̄0‖

2 +
tT+1

2𝜌T+1
‖𝜆∗‖2

+

T
�

k=0

tk𝛾k

�

2C2
F
+ 4C2

f

�

𝜌2
k
D2

f
+

1

J
�[‖𝜆k‖

2]
��

+ 2

T
�

k=0

tk𝛾k

�

2𝜈2 + 4C2
f
𝜌2
k
D2

f
+ 4C2

f
�

�

‖𝜆k‖
2

J

��

+

T
�

k=0

tk
𝜏kD

2
f

2
,

(14)

tT+1

4𝜌T+1
�[‖𝜆T+1‖

2] ≤ A1 +
tT+1

2𝜌T+1
‖𝜆∗‖2 +

T
�

k=0

tk𝛾k

�

A2 + 4C2
f

1

J
�[‖𝜆k‖

2]
�

+ 2

T
�

k=0

tk𝛾k

�

A3 +
4

J
C2
f
�[‖𝜆k‖

2]
�

+

T
�

k=0

tk
𝜏kD

2
f

2
.

�[‖𝜆K‖
2] ≤ 4𝜌K

tK
A1 + 2‖𝜆∗‖2 +

4𝜌K
tK

K−1
�

k=0

tk𝛾k

�

A2 + 4C2
f
B

1

J

�

+
8𝜌K
tK

K−1
�

k=0

tk𝛾k

�

A3 +
4

J
C2
f
B
�

+
4𝜌K
tK

K−1
�

k=0

tk
𝜏kD

2
f

2
.

�[‖�K‖
2] ≤ 4�A1 + 2‖�∗‖2 + 12��

�

A2 + 4C2
f
B

1

J

�

+ 24��
�

A3 +
4

J
C2
f
B
�

+ 12�
D2

f

2
≤ B,
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Theorem 1  (Convergence rate statements for Algorithm 1) Consider Algorithm 1. 
Let Assumptions  1 and  2 hold. Let �k =

�
√

(k+1) log(k+1)
 , �k =

�
√

(k+1) log(k+1)
 , 

tk = 𝜏k =
1

√

(k+1) log(k+1)
 for all k ≥ 1 , where �� ≤ 1

144��C2
f
∕J

 . Moreover, we define 

�0 = � , �0 = � and t0 = 𝜏0 = 1 . Let us define x̄K ≜
∑K

k=0
tkxk

∑K

k=0
tk

 for K ≥ 0 . Then, for any 

K ≥ 0 , we have

Proof  Multiplying both sides of (7) by tk , using the fact that tk
�k

≥ tk+1

�k+1
 , tk

�k
≥ tk+1

�k+1
 , 

tk ≥ tk+1 , �k ≥ �k+1 , 
tk

𝜏k
≥ tk+1

𝜏k+1
 , and summing k = 0 to K, we get

Let right-hand side of (15) denoted by C(x, �) . Dividing both sides of the above ine-
quality by 

∑K

k=0
tk and invoking the definition of x̄k , we get

where in the left-hand side we used Jensen’s inequality and the fact that Φ� is con-
cave with respect to �.

Since x̄K ∈ X , from Lemma  2(i) we have J−11T [f (x̄K)]+ ≤ C(x∗, 𝜆̃) , where 𝜆̃ is 
defined in Lemma  2. Taking expectations on both sides and using definition of 
C(x, �) in (15), Lemmas  3  7, Assumption  2(iv–v), the fact that 
�[(v̄k − 𝜆k)

T 𝜎̄k] = �[Δk] = 0 and �[‖𝜎̄k‖2] ≤ D2
f
 , we obtain

�

�

sup
x∈X

{F(x)T (x̄K − x)}

�

≤ O

�

log(K + 1)∕
√

K + 2
�

�
�

J−11T [f (x̄K)]+
�

≤ O

�

log(K + 1)∕
√

K + 2
�

.

(15)

K
�

k=0

tk

�

(xk − x)TF(x) +
1

J

J
�

j=1

𝜆(j)fj(xk) − Φ𝜌(x, 𝜆k)

�

≤ t0

2𝛾0
‖x0 − x‖2 +

t0

4𝛾0
‖v0 − x‖2 +

t0

2𝜌0
‖𝜆0 − 𝜆‖2

+

term (a)

�����������������������������������������������������������������������������

t0

2𝜏0
+

K
�

k=0

2tk𝛾kC
2
F
+

K
�

k=0

4tk𝛾kC
2
f

�

𝜌2
k
D2

f
+

1

J
‖𝜆k‖

2
�

+

K
�

k=0

tk

�

(vk − xk)
T (wk + 𝛿k) + 2𝛾k‖wk + 𝛿k‖

2 + (v̄k − 𝜆k)
T 𝜎̄k +

𝜏k‖𝜎̄k‖
2

2
+ Δk

�

�������������������������������������������������������������������������������������������������������������������������
term (b)

.

(x̄K − x)TF(x) +
1

J

J
�

j=1

𝜆(j)fj(x̄K) − Φ𝜌(x, 𝜆̄k) ≤
1

∑K

k=0
tk

C(x, 𝜆),
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Moreover, from Lemma 2(ii) we have supx∈X{F(x)T (x̄K − x)} ≤ supx∈X{C(x, 0)} . By 
taking conditional expectation and then, unconditional expectation on both sides and 
using the fact that term (a) and term (b) in the definition of C(x, �) do not depend on 
x, we obtain

From �k =
�

√

(k+1) log(k+1)
 , �k =

�
√

(k+1) log(k+1)
 , tk = 𝜏k =

1
√

(k+1) log(k+1)
 , and the facts 

that �0 = � , �0 = � , t0 = 𝜏0 = 1 , one can show that 
∑K

k=0
tk�k ≤ 3� and similarly 

∑K

k=0
tk𝜏k ≤ 3 , also 

∑K

k=0
tk ≥

1

log(K+1)
∫ K+1

1

1
√

x+1
dx =

2(
√

K+2−
√

2)

log(K+1)
 . Therefore, we 

obtain that �
�

J−11T [f (x̄K)]+
�

≤ O(log(K + 1)∕
√

(K + 2)) and similarly 
�
�

supx∈X{F(x)
T (x̄K − x)}

�

≤ O(log(K + 1)∕
√

(K + 2)) . 	 � ◻

Notably, the rate statements in Theorem 1 are in a mean sense, for both the dual 
gap function and the infeasibility metric. The latter quantifies the violation of the 
explicit functional constraints. A natural question is whether we can guarantee 
the convergence of the infeasibility metric to zero in an almost sure sense. This is 
partially addressed in the following result.

Corollary 1  Consider Theorem 1. There exists a subsequence of {x̄k} along which, 
the infeasibility metric 1T [f (x̄K)]+ converges to zero almost surely.

Proof  From Theorem  1, we have limK→∞ �
[

1
T [f (x̄K)]+

]

= 0 . Invoking Fatou’s 

lemma and noting that 1T [f (x̄K)]+ ≥ 0 , we obtain

(16)

�
�

J−11T [f (x̄K)]+
�

≤ 1
∑K

k=0
tk

�

t0

2𝛾0
‖x0 − x∗‖2 +

t0

4𝛾0
‖v0 − x∗‖2 +

t0

2𝜌0
‖𝜆0 − 𝜆̃‖2

+
t0

2𝜏0
+

K
�

k=0

2tk𝛾kC
2
F
+

K
�

k=0

4tk𝛾kC
2
f
𝜌2
k
D2

f
+

K
�

k=0

4tk𝛾kC
2
f

1

J
B

+

K
�

k=0

tk

�

2𝛾k(2𝜈
2 + 4C2

f
𝜌2
k
D2

f
+

4

J
C2
f
B) +

𝜏kD
2
f

2

��

.

(17)

�

�

sup
x∈X

{F(x)T (x̄K − x)}

�

≤ 1
∑K

k=0
tk

�

sup
x∈X

�

t0

2𝛾0
‖x0 − x‖2 +

t0

4𝛾0
‖v0 − x‖2 +

t0

2𝜌0
‖𝜆0‖

2
�

+
t0

2𝜏0

+

K
�

k=0

2tk𝛾kC
2
F
+

K
�

k=0

4tk𝛾kC
2
f
𝜌2
k
D2

f
+

K
�

k=0

4tk𝛾kC
2
f

1

J
B

+

K
�

k=0

tk

�

2𝛾k(2𝜈
2 + 4C2

f
𝜌2
k
D2

f
+

4

J
C2
f
B) +

𝜏kD
2
f

2

�

�

.
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Further, the sequence {x̄k} is bounded, due to the projection onto the compact set 
X in Algorithm  1. From the continuity of f, it follows that one of the (random) 
accumulation points of {x̄k} must be a feasible point with respect to the explicit 
functional constraints almost surely. 	�  ◻

In the next corollary, we demonstrate how we can achieve feasibility while 
maintaining the suboptimality rate within the proposed framework.

Corollary 2  Let x� be the output of Algorithm 1 such that it is �-suboptimal and �
-infeasible solution of (cSVI). Moreover, suppose a Slater point x◦ is available. 
Then x̃𝜖 ≜ 𝜅x◦ + (1 − 𝜅)x𝜖 for � =

�

−maxj{fj(x
◦)}

 is a feasible point and �-suboptimal 
solution of (cSVI).

Proof  Since x� is �-suboptimal and �-infeasible solution, we have that

Moreover, convexity of set X and the fact that x◦, x� ∈ X implies that x̃𝜖 ∈ X . Next, 
we show that x̃𝜖 is a feasible solution. Indeed,

where in the first inequality we used convexity of the function fj , in the second 
inequality we used the fact that x� is an �-feasible point and the last inequality holds 
because, from the definition of � , we have that � ≥ �

�−maxj fj(x
◦)

 . Now, we show that x̃𝜖 
is an �-suboptimal. Using the fact that x� is an �-suboptimal solution and definition 
of � , the following holds:

	�  ◻

lim inf
K→∞

1
T [f (x̄K)]+ = 0 almost surely.

�

[

sup
x∈X

{F(x)T (x� − x)}

]

≤ � and [fj(x�)]+ ≤ � ∀j ∈ {1,… , J}.

fj(x̃𝜖) ≤ 𝜅fj(x
◦) + (1 − 𝜅)fj(x𝜖) ≤ 𝜅fj(x

◦) + (1 − 𝜅)𝜖

≤ 𝜅max
j
{fj(x

◦)} + (1 − 𝜅)𝜖 ≤ 0,

�

[

sup
x∈X

{F(x)T (x̃𝜖 − x)}

]

= 𝜅�

[

sup
x∈X

{F(x)T (x◦ − x)}

]

+ (1 − 𝜅)�

[

sup
x∈X

{F(x)T (x𝜖 − x)}

]

≤ 𝜅�

[

sup
x∈X

{F(x)T (x◦ − x)}

]

+ (1 − 𝜅)𝜖

= 𝜖
�
[

supx∈X{F(x)
T (x◦ − x)}

]

minj{−fj(x
◦)}

+

(

1 −
𝜖

minj{−fj(x
◦)}

)

𝜖 ≤ O(𝜖).
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5 � Conclusion

In this paper, we consider stochastic variational inequality (VI) problems with a 
monotone mapping and a set that is characterized in terms of explicit functional 
constraints. Motivated by the absence of convergence rate statements for solving this 
class of problems, we develop a randomized Lagrangian stochastic approximation 
method where at each iteration the primal and dual variables are updated recursively. 
Our main contribution is to show that the existing convergence rates for nonlinearly 
constrained stochastic optimization problems can be extended to the stochastic VI 
regime. This is indeed promising and implies that the Lagrangian duality theory can 
be employed with provable guarantees for several important classes of problems that 
can be formulated as a stochastic VI. In particular, this work provides convergence 
speed guarantees for computing a Nash equilibrium in stochastic Nash games where 
each player may be associated with many hard-to-project constraints.

Appendix

Proof of Lemma 1

Proof  Invoking Proposition 1 and taking into account that NX(x
∗) = �IX(x

∗) , we 
have that x∗ ∈ X solves the following augmented variational inequality problem 
VI

(

X,F + J−1∇f T�∗
)

, that is parameterized by J and �∗ . This implies that

From the convexity of function fj for all j ∈ [J] and that �j ≥ 0 , we have

Summing the preceding relation over j ∈ [J] and recalling the definition of the 
mapping f(x), we obtain

Invoking Proposition  1(ii) we obtain f (x)T�∗ ≥
(

∇f (x∗)T�∗
)T
(x − x∗) . From the 

preceding relation and (18) we obtain F(x∗)T (x − x∗) + J−1f (x)T�∗ ≥ 0 for all 
x ∈ X . 	�  ◻

Proof of Lemma 2

Proof  (i) Note that x∗ is a feasible point to problem (cSVI) with respect to the 
set X  , i.e., x∗ ∈ X  . Also, note that 𝜆̂ ≥ 0 . From the definition of Φ� , we have that 
Φ𝜌(x

∗, 𝜆̂) ≤ 0 . Let x ∶= x∗ in (4). Then we have

(18)
(

F(x∗) + J−1∇f (x∗)T�∗
)T
(x − x∗) ≥ 0, for all x ∈ X.

�∗
j

(

fj(x) − fj(x
∗)
)

≥ �∗
j
∇fj(x

∗)T (x − x∗).

(f (x) − f (x∗))
T�∗ ≥

(

∇f (x∗)T�∗
)T
(x − x∗).
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Also, from Lemma 1 and that x̂ ∈ X we have

The preceding relation and that �∗ ≥ 0 imply that

Summing the preceding relation and (19) and rearranging the terms, we obtain

Let us choose �j ∶= 1 + �∗
j
 if fj(x̂) > 0 , and �j ∶= 0 otherwise for all j ∈ [J] . Then, 

we obtain the desired relation in (i).
(ii) Let � = 0 in (4) and note that Φ𝜌(x, 𝜆̂) ≤ 0 for all x ∈ X  . We have 

F(x)T (x̂ − x) ≤ C(x, 0) for all x ∈ X  . Taking supremum from the both sides, we 
obtain desired results in (ii). 	�  ◻

Proof of Lemma 3

Proof  The relations in part (i) hold as a consequence of Assumption  2. To show 
�[�k ∣ Fk] = 0 , we can write

where the last inequality is implied from the assumption that jk is uniformly drawn 
from the set [J]. Next, we derive the bound on �[‖�k‖2 ∣ Fk] . We have

(19)F(x∗)T (x̂ − x∗) + J−1f (x̂)T𝜆 ≤ C(x∗, 𝜆).

0 ≤ F(x∗)T (x̂ − x∗) + J−1f (x̂)T𝜆∗.

0 ≤ F(x∗)T (x̂ − x∗) + J−1[f (x̂)]T
+
𝜆∗.

(20)J−1f (x̂)T𝜆 − J−1[f (x̂)]T
+
𝜆∗ ≤ C(x∗, 𝜆).

�[𝛿k ∣ Fk] = �

[[

𝜌kfjk (xk) + 𝜆
(jk)

k

]

+
∇̃fjk (xk)

−
1

J

J
∑

j=1

[

𝜌kfj(xk) + 𝜆
(j)

k

]

+
∇̃fj(xk) ∣ Fk

]

=
1

J

J
∑

j=1

[

𝜌kfj(xk) + 𝜆
(j)

k

]

+
∇̃fj(xk)

−
1

J

J
∑

j=1

[

𝜌kfj(xk) + 𝜆
(j)

k

]

+
∇̃fj(xk) = 0,
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Dropping the non-negative term in the preceding relation and invoking Remark 5, 
we obtain

	�  ◻

Proof of Lemma 4

Proof  From the update rule of vk+1 , we know �k =
1

�k
(vk+1 − vk) , hence we have that

�[‖𝛿k‖
2 ∣ Fk] = �

�

�

�

�

�

�

𝜌kfjk (xk) + 𝜆
(jk)

k

�

+
∇̃fjk (xk)

�

�

�

�

2

∣ Fk

�

+

�

�

�

�

�

�

1

J

J
�

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

�

�

�

�

�

2

− 2�
��

𝜌kfjk (xk) + 𝜆
(jk)

k

�

+
∇̃fjk (xk) ∣ Fk

�T

×

�

1

J

J
�

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

=
1

J

J
�

j=1

�

�

�

�

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

�

�

�

2

−

�

�

�

�

�

�

1

J

J
�

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

�

�

�

�

�

2

.

�[‖𝛿k‖
2 ∣ Fk] ≤

1

J

J
�

j=1

�

�

�

�

�

𝜌kfj(xk) + 𝜆
(j)

k

�

+
∇̃fj(xk)

�

�

�

�

2

=
1

J

J
�

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�2

+

�

�

�

∇̃fj(xk)
�

�

�

2

≤
C2
f

J

J
�

j=1

�

𝜌kfj(xk) + 𝜆
(j)

k

�2

≤
2C2

f

J

J
�

j=1

�

𝜌2
k
D2

f
+ (𝜆

(j)

k
)2
�

= 2C2
f

�

𝜌2
k
D2

f
+

‖𝜆k‖
2

J

�

.
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where the first equality is obtained from three points equality in the Euclidean space 
and in the last inequality we used Young’s inequality. 	� ◻

Proof of Lemma 5

Proof  From the fact that 𝜆k+1 − 𝜆k = J𝜌kejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) , one can get the 

following:

Moreover, using the fact that 
1

�k
(�k − �)T (�k+1 − �k) =

1

2�k

�

‖�k+1 − �‖2 − ‖�k − �‖2 − ‖�k+1 − �k‖
2
�

 and using 
previous equality one can obtain:

Using (21), one can easily show that:

From definition of Φ�k
(xk, �k) , J+k  and J−

k
 we have:

�T
k
(x − vk) = �T

k
(x − vk+1) + �T

k
(vk+1 − vk)

=
1

2�k
‖x − vk‖

2 −
1

2�k
‖x − vk+1‖

2

−
1

2�k
‖vk+1 − vk‖

2 + �T
k
(vk+1 − vk)

≤ 1

2�k
‖x − vk‖

2 −
1

2�k
‖x − vk+1‖

2 +
�k
2
‖�k‖

2,

1

𝜌k
(𝜆k − 𝜆)T (𝜆k+1 − 𝜆k) = (𝜆k − 𝜆)T (∇𝜆Φ𝜌k

(xk, 𝜆k))

+ (𝜆k − 𝜆)T (Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) − ∇𝜆Φ𝜌k

(xk, 𝜆k)).

(21)

1

2𝜌k
‖𝜆k+1 − 𝜆‖2 = 1

2𝜌k
‖𝜆k − 𝜆‖2 + 1

2𝜌k
‖𝜆k+1 − 𝜆k‖

2 + (𝜆k − 𝜆)T (∇𝜆Φ𝜌k
(xk, 𝜆k))

+ (𝜆k − 𝜆)T (Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) − ∇𝜆Φ𝜌k

(xk, 𝜆k)).

(22)

− Φ𝜌k
(xk, 𝜆k) +

1

J

J
�

j=1

𝜆(j)fj(xk) +
1

2𝜌k
‖𝜆k+1 − 𝜆‖2

= −Φ𝜌k
(xk, 𝜆k) +

1

J

J
�

j=1

𝜆(j)fj(xk) +
1

2𝜌k
‖𝜆k − 𝜆‖2 + 1

2𝜌k
‖𝜆k+1 − 𝜆k‖

2

+ (𝜆k − 𝜆)T (∇𝜆Φ𝜌k
(xk, 𝜆k))

+ (𝜆k − 𝜆)T (Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k) − ∇𝜆Φ𝜌k

(xk, 𝜆k)).

(23)Φ�k
(xk, �k) =

1

J

⎡

⎢

⎢

⎣

�

j∈J+
k

(
�k
2
(fj(xk))

2 + �
(j)

k
fj(xk)) −

�

j∈J−
k

(�
(j)

k
)2

2�k

⎤

⎥

⎥

⎦

.
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Using (22), (23) and the fact that ∇�Φ�(x, �) =
1

J

[

max(
−�(j)

�
, fj(x))

]J

j=1
 , the following 

holds:

Note that � ≥ 0 and by definition J−
k
 it holds that �(j)(fj(xk) +

�
(j)

k

�k
) ≤ 0 , so we 

conclude that

Hence we have the desired result by putting (25) in (24). 	�  ◻

Proof of Lemma 6

Proof  (a) From definition of ∇�Φ�k
 , using Assumption 1(ii) and the fact that �(jk)

k
≥ 0 

for all k and j, we have that ‖Jejk ⊙ ∇𝜆Φ𝜌k
(xk, 𝜆k)‖

2 =
�

�

�

�

�

max

�

−𝜆
(jk )

k

𝜌k
, fjk (xk)

�

�

�

�

�

�

2

≤ D2
f
.

(b) By definition of 𝜎̄k and v̄k and using Lemma 4, one can obtain the following.

	�  ◻

(24)

− Φ�k (xk , �k) +
1
J

J
∑

j=1
�(j)fj(xk) +

1
2�k

‖�k+1 − �‖2

= − 1
J

∑

j∈J+k

�k
2 (fj(xk))

2 + 1
J

∑

j∈J−k

[

(�(j)k )2

2�k
+ �(j)fj(xk) + (�(j)k − �(j))

(

−�(j)k
�k

)]

+ 1
2�k

‖�k − �‖2 + 1
2�k

‖�k+1 − �k‖
2

+ (�k − �)T (∇�Φ�k (xk , �k))

+ (�k − �)T (Jejk ⊙ ∇�Φ�k (xk , �k) − ∇�Φ�k (xk , �k))

= − 1
J

∑

j∈J+k

�k
2 (fj(xk))

2 − 1
J

∑

j∈J−k

(

(�(j)k )2

2�k
− �(j)

(

fj(xk) +
�(j)k
�k

))

+ 1
2�k

‖�k − �‖2

+ 1
2�k

‖�k+1 − �k‖
2 + (�k − �)T (Jejk ⊙ ∇�Φ�k (xk , �k) − ∇�Φ�k (xk , �k)).

(25)

−
1

J

∑

j∈J+
k

�k
2
(fj(xk))

2 −
1

J

∑

j∈J−
k

(

(�
(j)

k
)2

2�k
− �(j)

(

fj(xk) +
�
(j)

k

�k

))

≤ −
1

J

∑

j∈J+
k

�k
2
(fj(xk))

2 −
1

J

∑

j∈J−
k

(�
(j)

k
)2

2�k
.

(� − �k ± v̄k)T (∇�Φ�k (xk, �k) − Jejk ⊙ ∇�Φ�k (xk, �k))

= (v̄k − �k)T �̄k + (� − v̄k)T �̄k ≤ (v̄k − �k)T �̄k +
1
2�̄k

‖� − v̄k‖2

− 1
2�̄k

‖� − v̄k+1‖ +
�̄k
2
‖�̄k‖

2.
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