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Abstract

Gradient-type iterative methods for solving Hermitian eigenvalue problems can
be accelerated by using preconditioning and deflation techniques. A precondi-
tioned steepest descent iteration with implicit deflation (PSD-id) is one of such
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ear convergence of the PSD-id under strong assumptions on the initial guess.
The present paper utilizes an alternative convergence analysis of the PSD by
Neymeyr under much weaker assumptions. We embed Neymeyr’s approach into
the analysis of the PSD-id using a restricted formulation of the PSD-id. More

Funding information

Deutsche Forschungsgemeinschaft,
Grant/Award Number: 463329614;
National Science Foundation,
Grant/Award Number: DMS-1913364

importantly, we extend the new convergence analysis of the PSD-id to a prac-
tically preferred block version of the PSD-id, or BPSD-id, and show the cluster
robustness of the BPSD-id. Numerical examples are provided to validate the
theoretical estimates.
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1 | INTRODUCTION

Determining the smallest eigenvalues and the associated eigenfunctions of a self-adjoint elliptic partial differential
operator is a common task in many application areas. The computational costs are usually high due to large dimensions
of discretized problems. By considering an equivalent minimization problem for the Rayleigh quotient, one can develop
suitable eigensolvers based on gradient iterations. The performance can be significantly improved by preconditioning
techniques for better descent directions,! and by a blockwise implementation for computing clustered eigenvalues.??
A further acceleration is enabled by modifying the preconditioners with certain shifts after deflation. These methodolog-
ical improvements are particularly necessary for ill-conditioned eigenvalue problems arising from applications, such as
the partition-of-unity finite element method for solving the Kohn-Sham equation in electronic structure calculations,
where the target eigenvalues are not well separated from the rest of the spectrum; see Reference 4 and references therein.
In this article, we consider the generalized Hermitian definite matrix eigenvalue problem
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where H, S € C"™" are Hermitian, and S is positive definite. The eigenvalues of (H, S) are all real. We denote them by
M, ..., An and arrange them as 4; < --- < 4,. We aim at computing the first m eigenvalues together with the associated
eigenvectors. Typically, m < n.

When m = 1, the task can be restated as minimizing the Rayleigh quotient

p T\ (0} > R, p(2) = ZZ—’;ZZ @)

where the superscript * denotes conjugate transpose. The preconditioned steepest descent iteration (PSD)

26D = 7O _ (OO, 3)

is applicable to the minimization problem of (2). Therein K € C™" is a Hermitian preconditioner, and the residual r©) =
Hz?) — p(z©)Sz?) is collinear with the gradient vector Vp(z\*)) of the Rayleigh quotient p(z?). The descent direction
—Kr') generalizes —Vp(z\”)), and is expected to enable an acceleration. An optimal stepsize ®*) can be determined by
the Rayleigh-Ritz procedure applied on the subspace span{z“’, Kr*)}.

The choice of K significantly affects the convergence rate of the PSD. Setting K equal to the n X n identity matrix
I leads to a slow and mesh-dependent convergence for discretized operator eigenvalue problems.> A shift-and-invert
preconditioner K = (H — ¢S)~! with ¢ < 4, is much more efficient. According to the analyses of gradient eigensolvers in
References 6 and 7, one can derive the single-step convergence factor

= /11 — 0 /1,, - /12
T\ =)\ -4 )’
for approximate eigenvectors (with respect to tangent values of error angles) and additionally x?/(2 — «)? for approxi-
mate eigenvalues in the final phase (with respect to relative positions between 4; and 4,). These convergence factors are
bounded away from 1 when 4; < 4, and can be improved by empirically increasing o.

In practice, the shift-and-invert preconditioner K is often implemented approximately, for example, by iteratively
solving linear systems of the form

Hp=r with H=H-oS. 4)

Thus it is more important to analyze a preconditioner K ~ H ! The analysis from Reference 8 begins with a convergence
argument for (4) with respect to the error propagation matrix I — KH. By using a quality parameter £ defined in the
condition

Il -KH|g <e<1, (5)
the eigenvalue convergence factor k2 /(2 — «)? for the special case K = H ! (where € = 0) is generalized as
(k +e(2=x))*/((2 — k) + eK). (6)

As we can see, the convergence rate of the PSD can be deteriorated by € ~ 1 or k & 1. One can reduce ¢ by using a proper
linear system solver. However, reducing « is difficult if 4; and A, are tightly clustered. In this case, the PSD needs to
be modified, for example, by a blockwise implementation or certain subspace extensions. The resulting iterations also
provide approximations of further eigenvalues.

For m > 1, computing the m smallest eigenvalues of the matrix pair (H, S) corresponds to the trace minimization of
Z*HZ among all S-orthonormal matrices Z € C"™™; compare Reference 9. A typical approach is the block version of the
PSD, BPSD in short. Therein each iterate Z¢) is an S-orthonormal Ritz basis matrix, and ©) = (Z©)*HZ® is a diagonal
matrix whose diagonal consists of the Ritz values in span{Z“’}. The next iterate Z*+V is determined by applying the
Rayleigh-Ritz procedure to the trial subspace

span{Z®,KR?} with R? =HZ® - 57909,
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The columns of Z“+V are S-orthonormal Ritz vectors associated with the m smallest Ritz values in span{Z¥), KR¥)}.
The convergence behavior of the BPSD with respect to individual Ritz values has been analyzed in Reference 10. The
convergence factor for the ith Ritz value in the final phase is given by (6) with the generalized parameter

= < Ai—o ) <ﬂn—ﬂi+1>.
Aiy1— 0 An = Ai
An alternative convergence factor presented in Reference 11 concerns the non-optimized version Z¢+V = Z() — KR of
the BPSD, and depends on the ratio (4; — 6)/(An+1 — o) instead of (4; — 6)/(Ai41 — o). This reflects the cluster robustness
of the BPSD for 4; <« 4,41 Which can be ensured by enlarging the block size m.

Deflation is required for block iterative eigensolvers if the number of target eigenvalues exceeds the block size. In
the (B)PSD, once the residual of an approximate eigenvector is sufficiently small, one can store it in a basis matrix U
consisting of accepted S-orthonormal approximate eigenvectors. The further iterates are S-orthogonalized against U so
that they converge toward eigenvectors associated with the next eigenvalues. Such an orthogonalization is called implicit
deflation; see Section 6.2.3 in Reference 12.

Recently, a combination of the PSD with implicit deflation (PSD-id) has been investigated in Reference 4. A remarkable
feature of the PSD-id is that the preconditioner is variable depending on the current approximate eigenvalue, somewhat
similarly to the Jacobi-Davidson method or an inexact Rayleigh quotient iteration.'® This accelerates the convergence in
the final phase in comparison to a fixed preconditioner.

The convergence behavior of the PSD-id is analyzed in Reference 4 based on the pioneering work of Samokish on
the PSD.! In particular, Theorem 3.2 in Reference 4 extends a non-asymptotic reformulation of the classical estimate
(10) in Reference 1 presented by Ovtchinnikov; see Theorem 2.1 in Reference 14. Precisely, a convergence rate bound
for approximating an interior eigenvalue 4; (> 4;_;) with the PSD-id and a variable preconditioner K is derived by using
the matrix M = Q*(H — 4;S)Q, where Q is an S-orthogonal projector onto the invariant subspace associated with the

eigenvalues 4;, ... , 4,. The resulting estimate contains an essential parameter
f—a
q= ,
f+a

where a and g are the smallest positive and largest eigenvalues of the matrix product KM. A corresponding asymptotic esti-
mate then uses g? as the convergence factor. It is possible to reduce g by modifying K with proper shifts for a superlinear
convergence.

A drawback of Theorem 3.2 in Reference 4 is its technical assumption on parameters associated with K and M. The
assumption is rather restricted as the current approximate eigenvalue has to be sufficiently close to 4;. More significantly,
it would be extremely difficult, if possible, to generalize the analysis to a block version of the PSD-id, or BPSD-id, which
is the algorithm used in practice.

In this article, we first recast the PSD-id as the PSD applied to a restricted eigenvalue problem, and then utilize the
approaches proposed in Reference 8 to provide a convergence analysis of the PSD-id. More importantly, we are able
to present a convergence analysis of the BPSD-id by extending the convergence analysis of the BPSD in Reference 10.
The resulting sharp single-step estimates of the PSD-id and the BPSD-id are presented in Theorems 2 and 3. Further
estimates in Sections 3.3 and 4 deal with larger shifts and clustered eigenvalues. Numerical examples are provided to
verify the sharpness of convergence estimates. These theoretical results and numerical experiments advance our in-depth
understanding of the convergence behaviors of the PSD-id and the BPSD-id.

For ease of references, we restate the estimates of the PSD and the BPSD in References 8 and 10 for a standard Hermi-
tian eigenvalue problem with notation that are compatible with a restricted formulation of the PSD-id and the BPSD-id
in Section 2.

Theorem 1 (References 8,10). Consider a Hermitian positive definite matrix A € C™@ together with its
eigenvalues () < - - - < {4 and a Hermitian positive definite preconditioner T € C%¢ satisfying

Il - TA|l4 <e<1. 7

Ifn = (x*Ax)/(x*x) for a nonzero vector x € C¢ is located in an eigenvalue interval (&, Ljt1), then it holds for the
smallest Ritz value n’ of A in span {x, T(Ax — nx)} that
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n Cj’s<x+s( K)) n—=24 with K:C,(Cd C,+1)‘ @®)
Gv1— 1 2C-x)+tex ) Gii—n Gi+1(a — &)
The equality in (8) is attainable in the limit case n — {; in an invariant subspace associated with the eigenvalues
&» G+ and &y
Consider further a c-dimensional subspace X C C4 and orthonormal Ritz vectors xi, ... ,X. associated with
the Ritzvaluesn, < -- - < 5. of A induced by X. Denote by n; < - - - < 1, the c smallest Ritz values of A induced by
span {X, T(AX — XD)} with X =[xy, ... ,X.] and D = diag(n,, ... ,n.). Foreacht € {1, ... ,c}, if 5, is located in
an eigenvalue interval (j, {j11), then it holds that
7” —_ é’ 27— 2 —C. . -
; j, < <K+€( K)> ne — ¢ with x = Gi(Ca Cj+1). ©)
Giv1 — R-Kx)+ex) fiy1—n Gir1(€a— &)

The equality in (9) is attainable in the limit case n; — {; in an invariant subspace associated with the eigenvalues
&, Gj+1 and &y.

The remaining part of this article is organized as follows. In Section 2, we introduce the algorithmic structure of
the (B)PSD-id, and present a restricted formulation as the starting point of our analysis. In Section 3, the estimates of
the (B)PSD in Theorem 1 are applied to certain representations of the (B)PSD-id in an invariant subspace in order to
derive sharp single-step estimates. Multi-step estimates are presented in Section 4 for the cluster robustness of the
BPSD-id. The theoretical convergence estimates of the BPSD-id are demonstrated by numerical experiments in Section 5.

2 | PSD-ID AND BPSD-ID ALGORITHMS AND RESTRICTED
FORMULATIONS

2.1 | PSD-id and BPSD-id algorithms

In this section, we reformulate the original algorithm of the PSD-id from Reference 4 in Algorithm 1. Therein we drop the
step indices of the iterates since they are not needed in the derivation of our new estimates. A few remarks of Algorithm 1
are in order.

« Line 1: The S-orthogonalization against the i — 1 accepted approximate eigenvectors is made once at initialization and
then satisfied automatically in the following while-loop.

« Line 2: The stopping criterion uses the norm || - ||s-1. It implies that there exists an eigenvalue A of (H, S) which fulfills
|4 = p@)| < lIrlls—/11zlls,

compare Theorem 15.9.1 in Reference 15.

« Line 3: The preconditioner K is constructed to be effectively positive definite for ensuring the convergence; see
Definition 1. In practice, p = Kr can be implemented by approximate solution of the linear system (H — oS)p = r. The
shift & will be discussed in the convergence analysis and the numerical experiments. In principle we set o slightly
smaller than the ith smallest eigenvalue 4;, or equal to the current approximate eigenvalue p(z) if it is close to 4;.

Algorithm 2 describes the BPSD-id. Therein the usage of a suitable block size k can overcome the possible convergence
stagnation of the PSD-id for clustered eigenvalues; see Section 4. A few remarks of Algorithm 2 are in order.

« Line 4: The block residual R actually consists of the residuals of individual Ritz vectors. The first k columns of R are
considered in the stopping criterion.

« There are two implementations with different choices of the block size for computing the smallest eigenvalues of (H, S)
and the associated eigenvectors, beginning with a random initial guess W € C™™ where m is larger than the number
of target eigenvalues. A straightforward implementation with a fixed block size k < m has the form

BPSD-id (W(:,1:i—1),W(:,i:i—1+k)k),
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Algorithm 1. z = PSD-id(U,z2)

Input: S-orthonormal matrix U € C™(~D whose columns are accepted approximate eigenvectors associated with the
i — 1 smallest eigenvalues; initial guess z € C".
Output: approximate eigenvector z associated with the ith smallest eigenvalue.
1: S-orthogonalize z against U: z=2z— UU*Sz; z=2/lIzlls; r=Hz— p(z)Sz;
2: while ||7||s-: not sufficiently small do
3 compute a preconditioned residual p = Kr;
4 update z by an S-normalized Ritz vector associated with the ith smallest Ritz value in the subspace span{U,z,p};
5. r=Hz - p()Sz;
6: end while

that is, each outer step only treats k columns of W. The leading index i of these columns is initially 1 and will be updated
together with W(:,1 : i — 1) by using already converged columns. An alternative implementation uses the block size
k = m — i + 1 depending on the current index i. Thus W is entirely modified as early as in the first outer step. The latter
columns of W can provide more accurate initial data for the inner loop in the next outer step.

Algorithm 2. Z = BPSD-id(U, Z, k)

Input: S-orthonormal matrix U € C™(-D whose columns are accepted approximate eigenvectors associated with the
i — 1 smallest eigenvalues; initial guess Z € C™*, k is the block size.

Output: matrix Z € C"™*(k < k) consisting of approximate eigenvectors associated with the ith to the (i—1+k)th smallest
eigenvalues.

: S-orthogonalize Z against U;

: update Z by S-orthonormal Ritz vectors in span{Z};

. R=HZ - SZ(Z*HZ);

: while ||R(:,1: k)||s- not sufficiently small do

compute a block preconditioned residual P = KR;

update Z by S-orthonormal Ritz vectors associated with the ith to the (i—1+k)th smallest Ritz values in the

subspace span{U, Z, P};

7. R=HZ - SZ(Z*HZ),

8: end while

9 Z=27(:,1:k),

T R

2.2 | Restricted formulations of the PSD-id and the BPSD-id

As in Reference 4, we assume by ignoring sufficiently small numerical errors that the columns u,, ..., u;—; of the matrix
U in the PSD-id (Algorithm 1) and the BPSD-id (Algorithm 2) are exact S-orthonormal eigenvectors associated with the
i — 1 smallest eigenvalues 4; < --- < 4;_; of (H, S), and the iterate z or Z after the first S-orthogonalization against U has
full rank.

As the starting point of our new convergence analysis, we represent the PSD-id by the PSD applied to a restricted eigen-
value problem. Let us first extend U by V = [u;, ... , u,] as an S-orthonormal basis of C" where u;, ... , u, are eigenvectors
associated with the remaining eigenvalues 4; < - - - < A,, that is,

HV =SVA with A =diag(4;, ... ,4,) and span{V} =span{U}™s. (10)
For the PSD-id, an arbitrary Z € span{V'} \ {0} can be represented by

z=Ve with ¢=V"Sz (11)
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By using the identity (10), a relation between the Rayleigh quotient p(-) of (H, S) defined in (2) and the restricted Rayleigh
quotient of A:

w*Aw

piCHIN{0} > R, pw) = ——, (12)
wrw
is given by
C*V*HVE 10) *V*SVAE _ E'AC
) — Vo) = = = = 5(0). 13
p@) = p(VE) = — = = =00 13)

Consequently, the target eigenvalue of the PSD-id (Algorithm 1) can be interpreted by

min ?2) = min Z)= min p(0).
zeCn\ {0}, U*SZ=0p( ) Zespan{V}\{O}p( ) eec'lfiﬂ\m}p( )

It implies that the PSD-id for computing the ith smallest eigenvalue of (H, S) is equivalent to the PSD for computing the
smallest eigenvalue of A. The following lemma presents such relationship in detail.

Lemma 1. Denote by z and 7’ two successive iterates of the PSD-id.

(i) Ifz belongs to span{V'} \ {0}, then also 7.
(ii) Letc=V*Szandc = V*SZ be the coefficient vectors of z and ' with respect to the representation (11). Then ¢’ is
a minimizer of j(-) in span{c, K¥} with K = V*SKSV and ¥ = Ac — j(c)c.

Proof. (i) Ifzbelongstospan{V'} \ {0}, then the dimension of the trial subspace span{U, z, p} is at least i. This
verifies the existence of the ith smallest Ritz value in span{ U, z, p} and the existence of the next iterate z’ which
is an associated Ritz vector. Moreover, the columns of U are eigenvectors associated with the i — 1 smallest
eigenvalues and automatically Ritz vectors associated with the i — 1 smallest Ritz values in span{U, z, p}. Thus
7' is S-orthogonal to span{U} and belongs to span{V'} \ {0}.

(ii) By using the representation z = V¢ and the projector Q = VV*S onto span{V'}, we get

span{U,z,p} = span{U} @ span{Vc, Qp},
and

Qp = (VV*S)Kr = VV*SK (Hz - p(2)S2) ‘= VV*SK (HVe — j(c)SVe)

D VvSK (SVAc — 5(e)SVe) = VV*SKSV (Ac — j(c)c) = VRF.
Therefore

span{U,z,p} = span{U} @ span{Vc, VK7} = span{U} @ V - span{c, K¥}.

Recall that the columns of U are Ritz vectors associated with the i — 1 smallest Ritz values in span{U, z, p},
the ith smallest Ritz value is just the smallest Ritz value in V - span{c, K¥}. The associated Ritz vector Z’ is thus
a minimizer of p(-) therein. The relation (13) ensures that minimizing p(-) in the subspace V - span{c, K7} is
equivalent to minimizing 5(-) in the “coefficient subspace” span{c, K7}. Consequently, the coefficient vector
¢’ of 7’ is a minimizer of 5(-) in span{c, K¥}. n

Lemma 1 indicates that ¢’ is a Ritz vector associated with the smallest Ritz value of A in span{c, K¥}. Thus c and ¢/
can be regarded as two successive iterates of a PSD iteration for minimizing 5(-) with K as preconditioner. Consequently,
we can analyze the PSD-id in terms of the PSD iteration with successive iterates c and ¢’.

Now let us represent the BPSD-id by the BPSD applied to a restricted eigenvalue problem. For an arbitrary matrix
Z € C™ having full rank and satisfying span{Z} C span{V'}, one can define C = V*SZ so that Z = V. Based on the
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relations
707 = 'V HVE 'R G VrSVAC = CAC and  Z°SZ = VSV T = C°C, (14)

the Ritz values of (H, S) in span{Z} coincide with those of A in span{C}. The respective Ritz vectors can be converted by
multiplications with V or V*S analogously to (11).

Lemma 2. Denote by Z and Z' two successive iterates of the BPSD-id.

(i) If Z has full rank and all its k columns belong to span{V'}, then also Z'.

(i) Define the coefficient matrices C = V*SZ and C' = V*SZ'. Then the columns of C are orthonormal Ritz vectors of
A in span{C}, that is, ® = C*AC is a diagonal matrix whose diagonal entries are the corresponding Ritz values.
Furthermore, the columns of C' are orthonormal Ritz vectors associated with the k smallest Ritz values of A in
span{C,KR} for K = V*SKSV and R = AC — C@.

Proof. (i) The dimension of span{U, Z, P} is at least i — 1 + k so that Z’ is constructed by S-orthonormal
Ritz vectors associated with the ith to the (i—1 +l~c)th smallest Ritz values of (H,S) in span{U, Z, P},
and has full rank. These Ritz vectors (columns of Z’) are S-orthogonal to those associated with
the i—1 smallest eigenvalues and thus belong to the S-orthogonal complement of span{U}, that is,
span{V}.

(ii) The statement for C is simply based on (14) applied to Z and C together with the fact that the
columns of Z are S-orthonormal Ritz vectors of (H, S) in span{Z}. In order to verify the statement for C’, the
relation

span{U, Z, P} = span{U} & span{Z, QP}

with the projector Q = VV*S onto span{V'} indicates that the columns of Z’ are S-orthonormal Ritz vectors
associated with the k smallest Ritz values of (H, S) in span{Z, QP}. Moreover, by using ® = C*AC = Z*HZ, it
holds that

QP = (VV*S)KR = VV*SK (HZ — SZ®) = VV*SK (HVC — SVCO®)
= VV*SK (SVAC — SVCO®) = VV*SKSV (AC — C®) = VKR,

so that span{Z, QP} = V - span{C, KR}. Applying (14) to span{Z, QP} and span{C, KR} completes the verifi-
cation. [

By Lemma 2, we can analyze the convergence behavior of the BPSD-id in terms of the BPSD iteration with successive
iterates C and C’.

3 | SHARP SINGLE-STEP ESTIMATES

In this section, we first analyze the convergence behavior of the PSD-id and the BPSD-id. Section 3.1 presents an alter-
native convergence analysis of the PSD-id (Algorithm 1) in comparison to Reference 4. The estimate (8) of the PSD with
weaker assumptions is applied to the restricted formulation of the PSD-id introduced in Lemma 1. This results in a sharp
single-step estimate of the PSD-id. In Section 3.2, the convergence of the BPSD-id (Algorithm 2) is investigated by using
the estimate (9) together with Lemma 2. In Section 3.3, we discuss an extension of the main results under the notion of
so-called larger shifts.

In preparation for the main analysis in this section, we characterize the preconditioner K for the PSD-id and the
BPSD-id with respect to its restricted form K arising from Lemmas 1 and 2.

Definition 1 (Definition 2.1 in Reference 4). A preconditioner K is called effectively positive definite, if K =
V*SKSV € C—i+Dx(n=i+D) jg nositive definite, where V is defined in (10). K is called an effective form of K.
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A typical example of effectively positive definite preconditioners is the shift-invert preconditioner K = (H — 65)~!
where the shift ¢ is smaller than A;, and not an eigenvalue of (H, S). In this case, the corresponding effective form K is
actually a diagonal matrix since by (10),

K =V*SKSV = V*S(H — 6S)"'SV = V*SV(A — oD = (A— oD}, (15)

where I = I,,_i;1. K is positive definite since (4; — 6)! > 0 for each j > i due to o < 4.

3.1 | Sharp single-step estimate of the PSD-id

We first provide a simple proof on the monotonicity of the approximate eigenvalues, which has been proven in a
cumbersome way; see Proposition 2.2 in Reference 4.

Lemma 3. Denote by z and 7’ two successive iterates of the PSD-id (Algorithm 1) where z € span{V'} \ {0}. Let
the preconditioner K be effectively positive definite. If z is not an eigenvector, then p(z') < p(2).

Proof. We use the coefficient vectors c and ¢’ defined in Lemma 1. Since ¢’ is a minimizer of 5(-) in span{c, K7},
we get g(c’) < p(c). Therein the equality does not hold, since otherwise ¢ would also be a minimizer of 5(-) and
thus a Ritz vector in span{c, K7}. Then the residual # = Ac — j(c)c would be orthogonal to span{c, K7} so that
7 K7 = 0. Subsequently, the positive definiteness of the restricted form K of K leads to 7 = 0 and

0= SVF =SV (Ac— pe)e) = HVe — pe)SVe © Hz — p(2)Sz,
that is, z would be an eigenvector. Thus (c’) < 5(c) holds and implies p(z') < p(z) by (13). [

The following lemma provides a quantitative measure on the quality of an effectively positive definite preconditioner.

Lemma 4. Consider an effectively positive definite preconditioner K, its restricted form K = V*SKSVand the
diagonal matrix A, = A — vI, where A is from (10), I = I,_;;1, and v is a parameter such that v < ;. Denote by
a and f the smallest and largest eigenvalues of KA. Then f > a > 0, and

”T —wRkA,|| <e<1, (16)

A

v

wherew =2/(f +a)and e = (f — a)/(f + a).

Proof. The matrices K and A, are evidently Hermitian positive definite so that their square root matrices are
available. By using Ai/ ?, the matrix KA, is similar to K = Ai/ 212'/\1/ ? which is Hermitian positive definite. This

shows the positiveness of all eigenvalues of KA, and K. Moreover, the norm HT — wKA, |T —wk ”2 is

N
actually the maximum of |1 — wA| among all eigenvalues A of K. Then the quality condition (16) is verified by

20 a2 o 2=f

<1—w/1<ﬁ_a
f+a P+a f+a

0<a<ip = < < ra
a

The diagonal matrix A, in Lemma 4 is motivated by the special case K = (H — ¢S)~! with a shift ¢ < ;. Therein the
restricted form K coincides with (A — ¢I)~! as shown in (15). Then K can be viewed as an optimal preconditioner by
setting v = ¢ for which KA, = T holds so that « = § = 1 = , and & = 0. Consequently, a natural choice of vis v = ¢ if we
construct K by approximating (H — ¢S)~. However, for evaluating an arbitrary effectively positive definite preconditioner
K, the parameter v is not necessarily related to a shift from a certain algorithm.

The quantity w is determined by a and f and serves to scale the restricted form K so that (16) is compatible with the
quality condition (7) from Theorem 1 where T corresponds to wK.

The following lemma interprets the coefficient vectors from Lemma 1 as iterates of a PSD iteration for a shifted matrix.
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Lemma 5. With the diagonal matrix A, from Lemma 4 and the corresponding Rayleigh quotient

Pt OO} - R, () = an
ww

the coefficient vector ¢’ of Z' for the PSD-id (Algorithm 1) is a minimizer of 5, () in span{c, K¥,}, where K =
V*SKSV and ¥, = A,c — p,(c)c.

Proof. For an arbitrary ¢ € C*~*1\ {0}, it holds that

oo NG EAE- VT
PO =—7= =

¢ C [

Thus minimizing g, (-) is equivalent to minimizing j(-). Moreover, the relation
Fo=Avc—p,(0c=(A=vI)c—(fc)—v)c=Ac—p(o)c =T,

implies span{c, K7,} = span{c, K7} so that the statement for ¢’ from Lemma 1 is directly reformulated in terms
of p,(-) and #,. m

By Lemmas 4 and 5, the following theorem shows that by a reverse transformation, the PSD estimate (8) in Theorem 1
leads to a sharp single-step estimate of the PSD-id based on relations of Rayleigh quotients in (13).

Theorem 2. Denote by z and ' two successive iterates of the PSD-id (Algorithm 1) where z € span{V'} \ {0}.
Let the preconditioner K be effectively positive definite with the quality parameter ¢ defined in (16) forany v < A;.
If p(z) € (4, Ajy1) for certainj > i, then

P A <K +e(- x)>2 p@ =4 (18)

A —p@)  \NQ=-K)+ex ) A —pQ2)

= < /1j—V ) (ﬂn—/lj_;_l)
Aj+1 -V /1,1 - /lj ’
The equality in (18) is attainable in the limit case p(z) — 4; in an invariant subspace associated with the
eigenvalues Aj, Ajy1 and Ay

with

Proof. We use coefficient vectors c and ¢’ introduced in Lemma 1. According to Lemma 5, ¢’ is a minimizer
of 5,(-) in span{c, K¥,} concerning the matrix A,.
By applying Theorem 1 to
A - AV7 X — C9 T d CUK, ’1 - ﬁv(c)3 ’1/ - ﬁv(cl)s

and substituting the eigenvalues, the estimate (8) is specified as

pu(c) = (4 =) - <;< +e2- K)>2 B,(€) = (4 —v)
A1 —v)=p,(¢) " \QC-x)+ex ) (41 —v)—p,(0)

with

K_(ﬂj—V)((ﬁn—V)—(ﬂjH—V))_</lj—v></1n—/1j+1>
Q1 =) (A=W =4 =) \Asm—v/\ =4 )
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Therein the terms g, (c) and j,(c’) coincide with p(z) — v and p(z’) — v due to the relation

5.©) = 5@ —vE p@ - v.

Thus (18) is shown. Furthermore, the sharpness statement in Theorem 1 is specified for the limit case
p,(¢c) = 4; — v and the matrix A,. The corresponding invariant subspace is associated with the eigenvalues
Aj =V, 4jz1 —v and 4, —v. Denoting this subspace by C, then Z = VC is an invariant subspace of (H, S)
associated with the eigenvalues 4;, 4,1 and 4, due to (10), and the limit case j,(c) — 4; — v is converted
into p(z) = 4;. n

Remark 1. The assumption p(z) € (4j, 4j+1) in Theorem 2 does not cover the case that p(z) is equal to 4; or
Aj+1. Applying Lemma 3 to for example, p(z) = 4; provides the following supplement: if z is an eigenvector,
then the iteration is simply terminated; otherwise Lemma 3 ensures that p(z) is smaller in the next step and
can match the assumption p(z) € (4;, 4j41) for a smaller index j so that Theorem 2 is applicable. In summary,
p(z) either converges to an eigenvalue 4; with j > i or reaches the interval (4;, ;1) in the final phase. In the
latter (and usual) case, two possible phenomena can be interpreted by the ratio (4; — v)/(4;4+1 — v) from the
convergence bound: the convergence rate is deteriorated for 4; ~ A;;;; for well-separated A; and A1, a fast
convergence can be obtained by (proper approximations of) the shift-invert preconditioner K = (H — ¢.5)™*
with ¢ ~ A; since k — 0 for v = ¢ — 4;. In Section 5 in Reference 4, it is shown that an efficient shift ¢ can
be chosen from the interval (4;_1, 4;), for example, by initially setting o slightly larger than the computed
Ai-1 and then enlarging it with a weighted mean of 4;_; and the current approximation of 4;. The sharp-
ness statement in Theorem 2 can be illustrated similarly to Figure 4.5 in Reference 10. One can notice that
the numerical maxima of the single-step convergence rate of the PSD-id form a monotonically decreasing
function g(#) against 6 = p(z) € (4}, 4j41) for various j, and the limit limg_, bt g(0) coincides with the conver-
gence factor in (18). Moreover, g(6) for arbitrary 8 € (4;, 441) can be calculated based on certain lengthy
implicit representations; compare Page 3204 in Reference 8. Determining an explicit form of g(@) is still
challenging.

Remark 2. In comparison to Theorem 3.2 in Reference 4, the current approximate eigenvalue p(z) in
Theorem 2 is located in an arbitrary eigenvalue interval so that the statement is much more flexible. Moreover,
the bound in (18) has a simpler form where only one technical term is used, namely the quality parameter &
of preconditioning. With a dynamic shift ¢ approximating 4; from below, the parameter x in Theorem 2 with
v = ¢ can be close to zero in the final phase and indicates a superlinear convergence. The limit case k — 0
corresponds to an optimal shift-invert preconditioner which allows a one-step convergence in the sense that
computing the preconditioned residual p = Kr by solving the linear system (H — ¢S)p = r for ¢ ~ 4;, that is,
for almost singular H — ¢S, already gives a good approximate eigenvector associated with 4;. The convergence
factor in (18)is close to €2 for k — 0and thus mainly depends on the solution quality of the linear system. How-
ever, this approach is usually not optimal with respect to the total computational time. In addition, Theorem
4.1 in Reference 4 can be improved by Theorem 2 with the convergence factor x2/(2 — x)? arising from the
special case € = 0, thatis, K = (H — 6S)™L.

3.2 | Sharp single-step estimate of the BPSD-id

Let us now analyze the evolution of Ritz values of the BPSD-id within two successive subspace iterates. We first interpret
the coefficient matrices of the BPSD-id from Lemma 2 as iterates of a BPSD iteration for the shifted matrix A, introduced
in Lemma 4.

Lemma 6. Denote by Z and Z' two successive iterates of the BPSD-id (Algorithm 2) where Z has full rank
and all its k columns belong to span{V'}. With the diagonal matrix A, from Lemma 4, the columns of the
coefficient matrix C = V*SZ are orthonormal Ritz vectors of A, in span{C}. Moreover, by using the cor-
responding Ritz value matrix ©, = C*A,C, the columns of the coefficient matrix C' = V*SZ' are orthonor-
mal Ritz vectors associated with the k smallest Ritz values of A, in span{C,KR,} for K = V*SKSV and
R, =A,C-CO,.
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Proof. The statements are verified by using Lemma 2 and the transformations
©, =C*A,C=C"(A—VI)C=0 -V,
and the fact that
R, =(A=VI)C-C(®—-vI;) =AC-CO =R,
implies that

span{C,KR,} = span{C,KR}.

The following lemma shows a strict reduction of Ritz values concerning the coefficient subspaces span{C} and
span{C’}.

Lemma 7. Let the preconditioner K of the BPSD-id be effectively positive definite. Following Lemma 6, denote
byp,<---<gpand ¢ <--- < (p;} the Ritz values of A, in span{C} and span{C’}, respectively. If span{C}
contains no eigenvectors of A, then @; < ¢; holds foreach t € {1, ... Jk).

Proof. Let us apply Lemma 4 to K, and define the auxiliary matrix
C=C-wkKR,.

Then C has full rank since otherwise there would exist a g € CF\ {0} satisfying 0 = Cg = Cg — K(A,C —
CO,)g, that is,

AS'CO.g = (T — oRA)AT'CO,g - Co).

Moreover, the condition v < 4; from Lemma 4 ensures that A;'C®, has full rank so that A;'CO,g # 0.
Applying (16) implies

IATICOLIIA, < IIT = @KA A IIAT'COE — Cglla, < [IAT'COE — Cglla,, 19)

where [|A;'CO,g — Cg|l, = 0is excluded due to the first inequality and A;'C®,g # 0. However, the orthog-
onality

(C9)*A(A;'CO,g — Cg) =g*C*CO,g —g"C*A,Cg =0,
leads to
IATICO.EIE = IICglE + 1A COg — Cgll%. > (1A COg — CaIl2 .

which contradicts (19). Thus C has full rank.

Consequently, there are k Ritz values in span{C}. We denote them by ¢, < - - - < @1 Then ¢} < @, holds for
eacht e {1, ... .k} dueto span{C} C span{C,KR,} and the Courant-Fischer principles. For proving @, < @1,
it remains to be shown

@ < @1 (20)
For this purpose, we use a submatrix E; of I; such that the columns of CE; are Ritz vectors associated with the

Ritz values ¢, < --- < @;. Then ¢ is the largest Ritz value in span{CE,}. Correspondingly, we consider the
largest Ritz value @, in span{CE,}. The relation span{CE,} C span{C} ensures @, < ;. In addition, we use a
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Ritz vector ¢ = CE,g associated with @, and the auxiliary vector
¢c=CO,Eg=CE®,;g with 0, =diag(gs, ... o).
Then by using the definitions of C and R,, we have
Al -T=A]'COEZ - (C— wK(A,C - CO,))Eg = (I - wkA)A, ' c— CEY),
so that

~ (16) — ~
AT e =Clla, < €llAVe—~ CEZla,-

Therein ||A;'c — CE@]| s, further fulfills
IAV e = CEglIa, <INV e — @7 clla, »
for ¢ = p,(c) with (17) since the orthogonality
(CE®)*A,(A'c— CER) = g*E;"C*C@VEtg - g*E;‘C*AVCE[g =0,

forg =g - ¢ '0,,8 leads to

~ _ R 5 1/2
IA7Ye - CElla, < (11A7"e - CEIR, + ICEZI3 )
= 17" = CE(@ '@, = AT e = g7 lcll.

If span{C} contains no eigenvectors of A,, then the difference A;'c — ¢~'cis nonzero since otherwise c would
be an eigenvector of A,. Consequently, it holds that

1AV e —EHf\V <|IAV e - (P_ICHiV-
By the definition of the norm || - || , we have

TAC—CcC—C'c< @ 2c* A — 297 ' c*c = —p~ I c*c.
Multiplying both sides by ¢! yields
PN < TN (CTHT ) — @ i e =TT |IC— @7 c|l; <T'C,
so that 5,(¢) = (¢*A,¢)/(¢*C) < @. Thus the inequality (20) is verified by

(’ﬁt S a[ = ﬁv(e) < Q= ﬁv(c) = ﬁ\/(CEI®VJ§) S (JE
| |

Lemma 7 can easily be adapted to successive iterates of the BPSD-id. Therein the relation (14) applied to C, Z
and C’, Z' (introduced in Lemma 6) shows that ¢; + v and ¢} + v are Ritz values of (H, S) in span{Z} and span{Z'},
respectively. Therefore a strict reduction of Ritz values occurs if span{Z} contains no eigenvectors of (H,S). This
actually generalizes Lemma 3 to the BPSD-id where the proof is however not a direct generalization of that of
Lemma 3.

The following theorem includes sharp single-step estimates on the convergence of the BPSD-id.

Theorem 3. Denote by Z and Z' two successive iterates of the BPSD-id (Algorithm 2) where Z has full rank
and all its k columns belong to span{V'}. Let the preconditioner K be effectively positive definite with the quality
parameter ¢ defined in (16). Consider the Ritzvalues 6; < --- <0 and 0, <--- < 0}1{ inspan{Z} and span{Z'},
respectively.
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If6; € (A, Ajp1) fort € {1, ... ,I~c} and certainj > i—1+t, then

0" — A; _ 209, - A
P — A <<K+£(2 K)) e — A 1)

/1j+1 - 6; - (2 - K) + €K /1j+1 - 0[

o= < Aj—v ) <ﬂ.n—/1j+1>
),j+1 -V /ln - /lj ’
Theequality in (21) is attainable in the limit case 8; — J; in an invariant subspace associated with the eigenvalues
ﬂj, /1j+1 and /1,,.

with

Proof. We use the coefficient matrices C and C’ of Z and Z’ introduced in Lemma 2. Following the relation
(14), Lemmas 6 and 7, we apply Theorem 1 to

A-A, X->C T-wK, m->¢=0-v, 3 ->¢,=0 —v.

This results in

O —v)—(4-v) < <K+£(2—K)>2 (0 =v) = (4 —V)

A=) =0, =v) " \Q-K0)+ex ) (A1 —Vv) = (0 —V)
with
(4 =) ((An = V) = (A1 = V) A=V \ [ An— A
T ) (== G- (/lm—v) < An— 4 >
and further yields the estimate (21) including the sharpness statement. (]

Similarly to Remark 1, we can additionally discuss the case §; = 4; based on Lemma 7. This yields
0 —v=gp,<@p;=6—v => 0/<6.

so that the limit of the Ritz value 6; is either 4;_1,; or some A; withj > i—1+1.
We note that the convergence factor in (21) is only meaningful for well-separated eigenvalues and cannot predict the
so-called cluster robustness of block iterations. Section 4 serves to fill this theoretical gap.

3.3 | Larger shifts

The estimates in Theorems 2 and 3 are concerned with effectively positive definite preconditioners such as shift-invert
preconditioners of the form K = (H — 65)~! as well as their approximations. Setting ¢ < A; easily ensures the effectively
positive definiteness of K; see (15). However, the practical implementation of the PSD-id in Section 5 in Reference 4 uses
the shift o = p(z) after p(z) is sufficiently close to 4;, that is, o is larger than A;. Nevertheless, the convergence analysis
therein is still based on some estimates which actually treat the case that o is slightly smaller than A;. Thus the resulting
bounds can only be applied in an asymptotic way. This section presents a direct analysis together with an extension to the
BPSD-id.

We begin with the condition 4; < 6 < (4; + 4;41)/2 in the PSD-id and the exact shift-invert preconditioner K =
(H-o0S)™

Theorem 4. Let 7 be the current iterate of the PSD-id (Algorithm 1), and 7' the next iterate. Assume that
the columns uy, ... ,u;_; of U are S-orthonormal eigenvectors associated with the i — 1 smallest eigenvalues
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M £ L Ay, define V = [u, ... ,uy] such that [U,V] = [uy, ... ,U,] is an S-orthonormal eigenbasis associ-
ated with A, < - - - < Ay, and consider the case K = (H — 6S)™! for a shift 6 € (A, (A + 4ix1)/2).
If p(z) # o and p(2) € (A, A1), then

"N _ ). 2 _ 2
p(@) = A < < K ) p(2) — A (22)
Ais1 —p@) ~ \2—=k/ Aip1 —p2)

with

o= < Ai—o > <ﬂn—ﬂi+1>

Aiy1— o =4 )
Proof. The condition p(z) # o excludes a stagnation caused by
p=H=-p@9 ' (Hz-p@)S2) =z = span{U,z,p} =span{U,z}.

For proving (22), we use a restricted formulation of the considered iteration with respect toz = Veand 7’ = V¢,
namely,

¢ =RR (span{c, (A —oD)7'c}), (23)

where the Rayleigh-Ritz procedure RR(-) extracts an orthonormal Ritz vector of A associated with the smallest
Ritz value; compare Lemma 1. Evidently, (23) is an acceleration of

T=(A-oD)lc+ fe,

for arbitrary § € R. By using the auxiliary matrix A = —A together with its eigenvalues a; > - - - > a,_i41 and
the corresponding Rayleigh quotient a(-), we get

a4 = —Aisgj,  a(©) = —pe) = —p(R) > —Aip1 = a2, a(C) = —p(0),
and C=f(A)e with f(n)=(-n—-0)"1+48.
Subsequently, we choose f = —% ((Ais1 — 0)™' + (4n — 0)7!) so that
[fla)] > [f(a2)| = [f(ap| VjE(2, ... ,.n—i+1},
holds (by elementary comparison). Then ¢ = f(A)c can be analyzed as the power method for a matrix function;

see Section 1.1 in Reference 16. In particular, the estimate (1.9) in Reference 16 is applicable due to a(c) > a»,
and implies

a — a(©) < <lf(052)|>2 ay — a(c)

a@-ay ~ \lfa)l) al0)-a’

which is equivalent to

PO -4 _ <ui+1 —oy '+ /3)2 pe) =
Aipp—p0© ~ \ hi—o)1+p Aix1 — plo)’

This leads to (22) by inserting # and using 5(¢) > 5(c') = p(z'), p(c) = p(z). n

Theorem 4 relaxes the condition ¢ < ;. A reasonable interval for selecting the shift is (4;_1, (4; + 4i4+1)/2) where the
lower bound can be determined by the previous outer step and the upper bound can be detected by the Rayleigh quotient
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and the residual; compare Section 5.2 in Reference 17. The excluded case p(z) = ¢ in Theorem 4 can be treated by solving
the restricted linear system

QH=-0S)Qp=r, pespan{U,z}'s eZ)
with the S-orthogonal projector Q onto span{ U, z}*s. Then the subspace span{U, z, p} can be shown to contain the vector
(H — 6S5)"1Sz as in Section 4 in Reference 13 so that the restricted formulation (23) is applicable. Therefore the estimate

(22) with j = i additionally holds for p(z) = 6. Moreover, the special g used for deriving (22) is determined by minimizing
If(a2)]/1f (a1)] among f € R. Thus setting f = 0 yields a less accurate estimate than (22), namely,

, 3
p(Z)— A << p(2) — A; > . (25)

A1 = p(@) — \ A1 — p(2)

In this sense, (22) indicates a “supercubic” convergence.

For the PSD-id with inexact shift-invert preconditioners which are not effectively positive definite, an alternative of the
quality parameter ¢ from (16) is required so that (22) or (25) can be generalized as an estimate like (18). In particular, for
generalizing (25), an appropriate parameter can be constructed with respect to the restricted linear system (24). Therein
the restriction of H — ¢S to span{ U, z}*s is positive definite; compare Lemma 3.1 in Reference 13 or the following simpler
verification: for an arbitrary w € span{U, z}*s with ||w||s = 1, the matrix W = [U, z, w] fulfills W*SW = I,;; so that the
Ritz values of (H, S) in span{ W} are eigenvalues of W*HW. The trace of W*HW reads

T=p(u) + -+ pUi-1) + p@) + p(W) = A1 + - - - + i1 + p(2) + p(W).
Moreover, the Courant-Fischer principles ensure that 7 is at least A4; + - - - + 4;41. Thus

PD+pW) 2 Ai+Ainn > pW) 2 A+ Ay —o
> WH-cSW=pW)—0c > 4+ A1 — 20 > 0.

Correspondingly, the restricted formulation of PSD-id within span{V'} includes the restriction of A — o1 to span{c}*
which is also positive definite. Then the accuracy of the approximate solution p of (24) or its coefficient vector V*Sp
can be interpreted by a vector norm induced by the restriction of H — ¢S or A — ¢I; compare Theorem 3.2 in Refer-
ence 13. A sufficiently accurate p is characterized by a quality parameter € € [0,1) so that the estimate (25) can be
generalized as

P& = A <p(z) — 4+ & (i = p()) )2 @)~ A 26)
Aiv1 = p@) T \ A1 — pR) +€(p(@) — A) ) Ai1 — p(2)
Now we turn to the BPSD-id and analyze its convergence for the exact shift-inverse preconditioning.
Theorem 5. Let Z be the current iterate of the BPSD-id (Algorithm 2), and Z' the next iterate. Assume that the
columns uy, ... ,u;_, of U are S-orthonormal eigenvectors associated with the i — 1 smallest eigenvalues 1; <
<o < Ay, define V = [u, ... ,uy] such that [U,V] = [uy, ... ,u,] is an S-orthonormal eigenbasis associated
with A, < - -+ < Ay, and consider the case K = (H — ¢S)~! for certain o € (A;, (A + Aiz1)/2). Denoteby 6, < -+ - <
Orandf <--- < 9}1( the Ritz values in span{Z} and span{Z'}, respectively.
If 0, # o and 0, € (A, Aiy1), then
0" — A 2.9, — 4
1 l, < < K ) 0, — A (27)
Aiy1 — 0 2—k/ Aiy1— 61

1

with

K=< Ai—o ><ln—ﬂi+1>
Aiy1—o0 In—Ai )’
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If 0, € (Aj, Ajp) fort € {2, ... ,k}andj=i—1+1, then

(28)

0 — 4 << K )2 0: — 4
A1 — 6, ~ \2 Ajy1 — 0

K_( /11'—0' ></1n_/1j+1)
Aj+1—6 ﬂ.n—/lj '

Proof. By applying the PSD-id to a Ritz vector z; in span{Z} associated with 6;, the next iterate z; is
contained in span{Z’}. Then the estimate (22) for z =z; and 7’ = z| leads to (27) due to p(z;) > 6, and
p(z1) = 01. N

The derivation of (28) for t = k is analogous to the proof of Theorem 4 by using the generalization (2.22) of
(1.9) in Reference 16 concerning the block form of an abstract power method. Moreover, fort € {2, ..., k-1 1,
we can adapt this derivation to the BPSD-id applied to the subset Z; = span{zi, ... ,z;} of span{Z} spanned
by Ritz vectors associated with 6y, ... ,8;. This yields an intermediate estimate for the largest (tth smallest)
Ritz value 0, in the next iterate Z; of Z;. Subsequently, (28) is proved by considering that Z] is a subset of
span{Z'} so that §; > 0/. "

— K

with

For the BPSD-id with inexact shift-invert preconditioners, we particularly consider that the current 6; fulfills 6; <
(A; + Ai+1)/2 and is used as the next shift o. Then the estimates (25) and (26) can be adapted to 6;. It is also remarkable
that by using the positive definiteness of the restriction of H — ¢S, Theorem 3 can be modified for discussing the deviation
between the Ritz values in the subspace iterates and the Ritz values in the larger subspace span{U, Z(:,1)}s. The latter
ones get closer to the eigenvalues 4,1, ... , 4, for the decreasing 6, toward 4;. Then the corresponding estimates turn into
those in Theorem 3 with the index update i « i + 1.

4 | MULTI-STEP ESTIMATES ON THE CLUSTER ROBUSTNESS

A well-known feature of block eigensolvers is the cluster robustness, that is, fast convergence toward clustered eigenval-
ues can be guaranteed by sufficiently large block sizes. A classical estimate of the subspace iteration has been presented
by Parlett in Section 14.4 in Reference 15. Therein the block inverse iteration (also called inverse subspace iteration)
span{X“*V} = span{A~1X@} for a real symmetric positive definite matrix A with eigenvalues a; < - - - < @, is investi-
gated. The convergence is measured by the angle between an eigenvector and the current subspace. The resulting bound
contains the term (a;/ am1)F for k steps with the block size m. A Ritz value estimate with the same ratio /41 can be
derived based on the analysis of the block form of an abstract power method, see Section 2.2 in Reference 16.

These two estimates can be modified for the subspace iteration implemented with implicit deflation and the
exact shift-invert preconditioner K = (H — ¢S)~! for ¢ < 4;. Therein the current Ritz basis matrix Z € Crek is updated
by S-orthonormal Ritz vectors associated with the ith to the (i — 1+ k)th smallest Ritz values in the subspace
span{U, (H — ¢S)~1SZ}. By using a transformation with the representation Z = VC and the S-orthogonal projector Q =
VV*S, we have

QUH — 6S)'SZ = VV*S(H — 68)7'SVC ‘= VV*S (V(A - o)) C = V(A - oT)"'C.
Consequently, we have
span{U, (H — 6S)™1SZ} = span{U} @ V - span{(A — c)~1C}.
Thus the restricted iteration within span{V'} reads

span{C’} = span{(A — 6])"!C}, (29)
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that is, the block inverse iteration for the diagonal matrix (A — ¢I)~!. Then applying the analysis from References 15
and 16 gives the ratio (Ai_14: — 0) /(4,5 — 0).

Furthermore, the restricted form of the BPSD-id (Algorithm 2) has the trial subspace span{C,(A —¢I)~'C}
which is a superset of span{C’} from (29). Thus Ritz value estimates for (29) lead to indirect estimates for
BPSD-id.

A more accurate estimate of this kind for BPSD-id can be shown by using another auxiliary iteration whose restricted
form reads

span{C’} = span{(A — 6])"'C + pC}. (30)

The accuracy can benefit from the choice of g € R.
The following theorem predicts the cluster robustness of the BPSD-id.

Theorem 6. Consider the BPSD-id (Algorithm 2) with K = (H — 6S)™ and ¢ < J;. Denote by Gf) <0< H;f)

the Ritz values in the £th subspace span{Z©)}. Then

@)
0, —

Aie 20 ). —
i1+t < < K > Aic14t o-T (1)
An—eﬁf) 2—-k Ap—o

= </1i—1+t—5> < An = Ay >
Ak —o© An = Aic14e ’

and a constant = > 0 depending on the initial subspace span{Z©}.

with

Proof. Following Lemma 6, we observe the accompanying iteration
span{C“*V} = RR, p; (span{C,A;'C}) (32)

with the coefficient matrix C = V*SZ®) where the Rayleigh-Ritz procedure RR, ,(-) extracts orthonor-
mal Ritz vectors of A, = diag(4; — o, ... , 4, — 6) associated with the k smallest Ritz values, that is, 9;“1) -
o, ... ,05“1) — o are Ritz values of A, in span{ C“+D}, and coincide with the k smallest Ritz values of A, in
span{C®, A;1C}.

In addition, o < 4; ensures that A, is positive definite. By using its square root matrix Acl,/ * we define
E© = AY?C® and A = A}! so that

span{E®, AE¥)} = span{AY2C, A;/2CO} = AY*span{C?, A;2CO}.
Then the iteration (32) is equivalent to
span{E“*V} = RR | (span{E"”,AE"}), (33)

where the Rayleigh-Ritz procedure RR,; (-) extracts A-orthonormal Ritz vectors of A associated
with the k largest Ritz values. For explaining this equivalence, we can denote by C a basis
matrix of span{C®,A;'C} consisting of orthonormal Ritz vectors of A,. Then C*C is an identity
matrix, and C*A,C is a diagonal matrix containing Ritz values of A,. The corresponding E = A},/ ’c
fulfills

E*E=C*A,C, E*AE=C*C,

so that its columns are A-orthonormal Ritz vectors of A in span{E} = A},/ 2span{ C}. Moreover, the concerned
Ritz values of A are reciprocals of those of A,.
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We further denote by a; > - - - > @41 the eigenvalues of A, and by y/ff) >0 > q/g) the Ritz values in the
£th subspace from (33). Then

-1
_ 4 ’
w=Cian-0 w0 =(0"-0)

so that the estimate (31) is equivalent to

&)

oy — 2t
(If’t) - < ( - ) ’ (34)
Wt — Op—it+1 2-x

with

O — On—itl

At — Op—i+1

Finally, we derive (34) via the simplified version
span{E“*V} = span{AE") + pE©},

of (33). Therein span{E®} can be represented by f(A)span{E®} with f(n) = # + . This corresponds to the
block form of an abstract power method so that its convergence behavior can be analyzed as in Section 2.2 in
Reference 16. By using f§ = —% (or41 + ap—iy1), we get

[fla)| > - > |f(a)] = [f(a)| VjE{t+1,...,n—i+1}.

Then the estimate (2.20) in Reference 16 implies (34) where the constant 7 is given by the tangent square of
the angle between span{E©} and the invariant subspace of A associated with the k largest eigenvalues. This
angle depends on span{Z®©} since E© = AY?V*SZ0. "

Theorem 6 predicts the cluster robustness of the BPSD-id since it indicates that the convergence rate increases with
the Ritz value index ¢ and the parameter x can be bounded away from 1 for a sufficiently large block size k.

It is desirable to extend Theorem 6 to effectively positive definite preconditioners where
(k + 2 —k)* /(2 —-xK)+ ex)¥ is a suitable convergence factor with the quality parameter ¢ defined in (16). Toward
this aim, the analysis of the cluster robustness of a preconditioned subspace iteration in Reference 11 can be adapted to
the restricted formulation of the BPSD-id and yields an estimate of the form

0)
0 — A A U\ 0 = il
t—l(gt < <e +(1-¢) i_lj't V> k o (35)
Ak — 0, itk —V /1i+12_9,~c

for an arbitrary v < 4;. Therein the quality parameter ¢ is related to v and certain auxiliary vectors, but close to that from
an error propagation formulation such as (16).

A recent approach in Reference 18 for analyzing the cluster robustness of the BPSD is also compatible with the
restricted formulation of the BPSD-id. The resulting estimate reads

0)
fo) = Ai-14t < (K +e(2—x) >2f 0.7 = Aim14e 36)

‘ — 0
hag =0 T NETOFE) -0

with

.= </1i—1+t - V) < An = Atk )
Aige =V An — Aic14e

In the case ¢ = 0 and v = o, the convergence factor in (36) coincides with that in (31).
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An alternative of the multi-step estimates (35) and (36) follows from the single-step estimate (21) in Theorem 3 for
Jj=1i—-1+t,namely,

9§f) — Aic14 < (K +e(2—k) >2f QEO) — Aic14 37)

Aive — 6[(5) 2—-x)+ex Aivt — 0;0)

with

= (ii—lﬁ — V> < An = Aigt >
Ayt — v An = Aic14e
The estimate (37) cannot predict the cluster robustness, but can provide better bounds for the first steps in comparison
to (35) and (36).

5 | NUMERICAL EXPERIMENTS

In this section, we illustrate main convergence estimates of the PSD-id and the BPSD-id presented in the pre-
vious sections by several numerical examples. Example 1 with non-clustered targets eigenvalues demonstrates
single-step estimates for the BPSD-id in Section 3.2. In Example 2, we implement the BPSD-id for a large-scale
eigenvalue problem and compare three effectively positive definite preconditioners. In Example 3, we revisit
Example 5.2 in Reference 4 where the eigenvalue problem is derived by the partition-of-unity finite element
for a self-consistent pseudopotential density functional calculation. We refine the implementation of the PSD-id
therein (by accelerating inner steps) and interpret a cubic convergence for dynamic larger shifts by estimates in
Section 3.3. Example 4 with clustered targets eigenvalues demonstrates multi-step estimates for the BPSD-id in
Section 4.

Example 1. We consider the Laplacian eigenvalue problem —Au = Au on the rectangle [0, 1.5] X [0, 1] with
two slits {0.5} X [0.45,0.55] and {1} X [0.45,0.55]; see Figure 1. The boundary condition on the rectangle
boundary and the slits is simply u = 0. By using the five-point star discretization with the mesh size h =
45/3600, we get the eigenvalue problem (1) of order n = 9383 and S = I. The seven smallest eigenvalues of
(H, S) are well separated:

M~ 27.07834, A, ~ 38.24327, A3 = 45.24858,
Ag = 49.32646, s = 58.36810, g~ 78.91626, A; =~ 89.70648.
We compute the six smallest eigenvalues by the BPSD-id (Algorithm 2) with {k, kY ={1,2},{2,3},{3,4}.
Recall that k is the number of wanted eigenvalues in each run and k is the block size. For instance, if

{k,k} = {2,3}, then the BPSD-id with block size 3 computes 2 eigenvalues in each of three successive runs.
We first consider fixed shifts and use incomplete matrix factorizations for generating the preconditioner

K, namely,

FIGURE 1 Laplacian eigenvalue problem in Example 1. The two slits on the domain clearly influence the shapes of eigenfunctions

associated with the three smallest operator eigenvalues.
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ichol (H-sigma*S, struct (‘type’, ‘ict’, ‘*droptol’,3e-5))

with the shift o = 20 for the first run (i.e., for i = 1) and

ilu(H-sigma*S, struct (‘type’, ‘crout’, ‘milu’, ‘row’, ‘droptol’,3e-5))

with the shift ¢ = A;_; for further runs.

Figure 2 depicts the convergence of the residual norm ||R(:,1 : k)||s-1. We run 1000 random initial sub-
spaces and show the slowest convergence. We observe that the residual norm decreases monotonically for

different choices of {k, k}.

The convergence of the BPSD-id in terms of the Ritz value error 6, — A, for t € {1, ... ,6} is depicted
in Figure 3, where the indices of Ritz values are permutated to match the target eigenvalues. We observe
that Theorem 3 provides sharp error bounds in dotted curves. For evaluating these bounds, we determine
the quality parameter & by using Lemma 4 with v = ¢ and the fact that the nonzero eigenvalues of KA, =
(V*SKSV)V*(H — ¢S)V coincide with those of K(SVV*)(H — ¢S)VV*S. Then the extremal eigenvalues of KA,
can be obtained by eigs applied to a subroutine for matrix-vector multiplications where (VV*S)x is com-
puted by x — U (U*(Sx)), and (SVV*)y by y — S (U(U*y)). Once ¢ is determined, we calculate the right-hand
side of the bound (21) in Theorem 3 with v = ¢ and precomputed eigenvalues. Thereafter the (absolute) error
bound of the corresponding Ritz value is obtained by solving an elementary equation. The values of ¢ con-
cerning the construction of the preconditioner K by ichol (¢ =20) or ilu (¢ = A;—1) with droptol €
{2e-5,3e-5,6e-5} are listed in Table 1. For each o, the value of € increases with droptol. The case
€ ~ 1 occurs for droptol > 1e-4. Then the convergence factor in (21) is also close to 1 and reflects a slow
convergence. Lemma 4 thus enables controlling the preconditioning quality in the BPSD-id and extends the
approach for the PSD mentioned in (5) or its equivalent form (1.6) in Reference 8. The application also covers
preconditioners generated by multigrid techniques and approximately solving linear systems.

We note that the sharpness statement for the estimate (21) cannot easily be observed for random iterates
as shown in Figure 3. The attainability of the associated equality within certain low-dimensional invariant

subspaces can however be illustrated similarly to Figure 4.5 in Reference 10.

Let us consider refining the preconditioner K by a dynamic shift . With the index i of the smallest target
eigenvalue in the current run, we estimate the ratio n = (6; — 4;)/(4i41 — 6;) roughly by (8;01q4 — 0:)/(0i+1 — 05)
as suggested for the PSD-id in Section 5 in Reference 4. If # and the residual norm ||R(:,1 : k)||s-1 are both
smaller than the threshold 0.1, we update o by ¢ < (¢ + 60;)/2 and refine the preconditioner K by

ilu(H-sigma*S, struct (‘type’, ‘crout’, ‘milu’, ‘row’, ‘droptol’,max (eta,le-12))).
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FIGURE 2 Convergence of the BPSD-id (Algorithm 2) in terms of the residual norm ||[R(:,1 : k)||s-: for computing the six smallest

eigenvalues in Example 1. The pair {k, kY is {1,2} (left), {2, 3} (center) and {3,4} (right).
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FIGURE 3 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 6, — 4, for computing the six smallest
eigenvalues in Example 1 with fixed shifts. The error bounds in dotted curves are determined by Theorem 3.
TABLE 1 Quality parameter ¢ of the preconditioner K in Example 1.
droptol c =20 oc=MA o= c=13 o= o =15
2e-5 0.2391 0.1386 0.1848 0.0830 0.1672 0.0618
3e-5 0.3106 0.2384 0.3293 0.1567 0.1918 0.1224
6e-5 0.4605 0.5432 0.9126 0.3808 0.2890 0.3147
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FIGURE 4 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 0, — 4, for computing the six smallest
eigenvalues in Example 1 with dynamic shifts.

We mark the first refinement by “+.” As shown in Figure 4, this modification leads to an acceleration. The
improvement is evident for the {k, ky = {1,2} (left subfigure). Furthermore, Theorem 3 produces proper
bounds in dotted curves which are built similarly as in Figure 3 but with a dynamic shift ¢ in various steps.
Therein the quality parameter ¢ can be reduced to 1e-9.

Example 2. For discussing the performance of the BPSD-id in large-scale problems, let us consider a
matrix pair arising from an adaptive finite element discretization of the Laplacian eigenvalue problem on
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FIGURE 5 Laplacian eigenvalue problem in Example 2. The first row displays the domain, the initial grid and an adaptively refined

grid. The second row illustrates approximate eigenfunctions associated with the three smallest operator eigenvalues. The corresponding
residuals are used for the grid refinement.

10!

-3t
5 1° 5 5
=] =] =)
() () 5
() () (]
L =] =
S S S
Z 107 Z &

10-11 L

5 10 15 20 25 5 10 15 20 5 10 15 20
Iteration index Iteration index Iteration index

FIGURE 6 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 6, — 4, for computing the six smallest
eigenvalues in Example 2. Left: Using ichol for generating the preconditioner with a constant shift. Center: Modifying the preconditioner
by MINRES with the tolerance 0.1. Right: Modifying the preconditioner by MINRES with the tolerance 0.01.

a wrench-shaped domain with homogeneous Dirichlet boundary conditions; see Figure 5. The boundary is
defined by

{20 cos(t) + 10 cos(2t), 5sin(t) + sin(5t); t € [0,27)} .

Similarly to Appendix in Reference 11, matrix eigenvalue problems are generated successively by an adap-
tive finite element discretization. The refinement is controlled by residuals of approximate eigenfunctions
associated with the three smallest operator eigenvalues.

We consider the matrix pair (H, S) from the 29th grid of the discretization with n = 1,618,797 degrees
of freedom. The seven smallest eigenvalues of (H,S) are well separated and located in the interval
(0.1418824,0.4562653). Similarly to Example 1, we compute the six smallest eigenvalues 4y, ... , 46 by 3
successive runs of the BPSD-id (Algorithm 2) with {k, ky = {2,4}.

Figure 6 illustrates the convergence of the BPSD-id in terms of the Ritz value error 8; — A, fort € {1, ... ,6}.
Therein we compare three effectively positive definite preconditioners.

In the left subfigure, the preconditioner KX is generated by the incomplete matrix factorization

ichol (H-sigma*S, struct (‘type’, ‘ict’, *droptol’,1le-6))
with the shift 6 = 0.1 < 4;. We use this K for each run, since generating K by i11u with ¢ = 4;_; is too costly.

Consequently, more outer steps are required in the second and third runs (curves for 03, 6, and 6s, 6¢) than in
the first run (curves for 01, 8,).
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In the central subfigure, we modify K for the second and third runs where approximations of (H — ¢S)~!
for o = A;_; are constructed by MINRES with the above i chol factorization and the tolerance 0.1. This clearly
reduces the number of required outer steps. However, the computational time for these two runs reads 176 s,
longer than 105 s measured in the left subfigure.

The same modification with the tolerance 0.01, as illustrated in the right subfigure, does not lead to a fur-
ther significant reduction of step numbers, but increases the computational time to 208 s. The values of the
corresponding quality parameter are given in Table 2 (columns o = 4, and ¢ = A4). In addition, modifica-
tions with dynamic shifts are also less efficient with respect to the total computational time. Thus a simply
applicable preconditioner with fixed shifts is occasionally more appropriate.

Example 3. To verify the sharpness of the estimates with larger shifts discussed in Section 3.3, we use
the matrix pencil (H,S) of order n = 5336 derived from partition-of-unity finite element method for
quantum-mechanical materials calculation; see Example 5.2 in Reference 4. The matrix H is given by a
rank-I modification of an n X n sparse matrix H with [ = 26. Both H and S are ill-conditioned and their
condition numbers are O(10'°). Furthermore, H and S share a common near-nullspace span{V} of dimen-
sion 1000 such that ||[HV|| = ||SV|| = ©(10~*). This is considered as an extremely ill-conditioned eigenvalue
problem.

For the BPSD-id, the explicit form of H is dense so that constructing K by incomplete matrix factorizations
is not efficient. Thus MINRES with preconditioner chol (S) is used for computing the preconditioned resid-
ual Kr with K ~ (H — ¢S)~!. The stopping criterion of MINRES uses the residual norm y = ||r||»/(||Hz||, +
[|p(z)Sz]|2) instead of ||7||s-1. The initial ¢ is —1, which is smaller than the smallest eigenvalue 4; ~ —0.8888.
The tolerance of MINRES is 0.1 for ¢ = —1. If w and an estimated value of (p(z) — 4;) / (Aiz1 — p(3)) are
sufficiently small, then o is set equal to p(z).

We begin with the PSD-id (Algorithm 1) implemented as a weakened form of the BPSD-id where r =
R(:,1) is used for constructing the trial subspace. This corresponds to an acceleration of the PSD-id so that
Theorem 4 is still applicable and the estimate (22) indicates a cubic convergence for larger shifts from the
interval (4, (4; + 4i+1)/2).

We note that the inner steps (MINRES) in the above implementation can significantly be accelerated by
using H + 38 instead of S in chol (S). In other words, H + 3S gives a better approximation of H — ¢S in
comparison to S. In addition, a substantial acceleration of the outer steps in the third and fourth runs is
enabled by using 4;_; as the initial ¢. This improvement can be observed by comparing the reduction of the
residual norm y in Figure 7 (left) with that in Figure 5.2 in Reference 4.

Furthermore, Figure 7 (center) depicts the reduction of y for fixed shifts, that is, 6 = —1 for the first run
and ¢ = A;_; for further runs. The tolerance of MINRES is constantly 0.1. In comparison to the version with
dynamic shifts, only the second run is considerably slowed down with respect to the outer steps. The total
computational time is however only slightly increased. In Figure 7 (right), a hybrid version is implemented
where dynamic shifts are used if the iteration index for the first possible switch is larger than 6. Then dynamic
shifts are enabled in the second run, and the total computational time is reduced in comparison to the previous
two versions.

Since our estimates are formulated for Ritz value errors, we observe in Figure 8 the error 6; — 4,
for the three versions mentioned above. Therein 6; denotes the approximate eigenvalue in the tth run.
The convergence rate can be made cubic by using dynamic shifts as predicted by Theorem 4. For fixed
shifts, the linear convergence predicted by Theorem 2 can be observed for t € {1, 3,4}. The error for ¢ =
2 indicates various convergence rates so that Theorem 2 would give overestimation for several iteration
steps. This phenomenon however reflects the fact that the implemented PSD-id uses an augmented trial
subspace.

TABLE 2 Quality parameter of the MINRES preconditioner in Example 2.

MINRES tol c=MN c=1 c=1 o= o =15
0.01 0.2756 0.5157 0.7036 0.4972 0.7269
0.1 0.4947 0.6813 0.8707 0.7470 0.9265
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FIGURE 7 Convergence of a weakened form of BPSD-id using only one residual vector and an relative residual norm for computing
the four smallest eigenvalues in Example 3. The preconditioner is constructed by MINRES with certain shifts. Left: Enabling dynamic shifts.
The first dynamic step is marked by “+.” Center: Using fixed shifts only. Right: Enabling dynamic shifts when the convergence in the first
steps is slow.
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FIGURE 8 Convergence of a weakened form of BPSD-id in terms of the Ritz value error 6, — 4, in addition to Figure 7.

When implementing the standard BPSD-id with shifts from (4;, (4; + 4i+1)/2) in Example 3, a cubic con-
vergence can occur for the smallest Ritz value in each run. Further Ritz values only converge linearly. This
difference matches the two estimates from Theorem 5.

Example 4. By using a block size which is larger than the cluster size, the BPSD-id can efficiently compute
clustered eigenvalues. This fact has been analyzed in Theorem 6 for exact shift-invert preconditioning. The
estimate (31) corresponds to a special form of (36) concerning effectively positive definite preconditioners.
The estimate (36) can be derived by adapting the analysis from Reference 18 to the restricted formulation of
the BPSD-id analogously to Section 3.2. In this example, we compare (36) with its counterparts (35) and (37)
which are based on Reference 11 and the single-step estimate (21), respectively.

We modify the eigenvalue problem in Example 1 by setting larger slits {0.5} x [0.1,0.9] and {1} x [0.1,0.9]
on the rectangle [0, 1.5] X [0, 1]; see Figure 9. The mesh size h = 1/80 leads to n = 9271. The modified domain
can be regarded as three small rectangles connected by narrow gates. For a sufficiently small gate width,
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FIGURE 9 Laplacian eigenvalue problem in Example 4. The eigenfunctions associated with the fourth to sixth smallest operator
eigenvalues are displayed.
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FIGURE 10 Convergence of the BPSD-id (Algorithm 2) in terms of the Ritz value error 6, — 4, for t € {4, 5,6} in Example 4 with
clustered eigenvalues. The three bounds are based on the multi-step estimates (37), (35), and (36).

the eigenvalue problem is almost split into three partial problems of the same size. Thus the eigenvalues are
roughly copies of those from partial problems. As a result, there are two tight clusters among the seven smallest
eigenvalues:

A1, A2, A3 € (49.24886,49.32647), A4, As, Ag € (78.61283,78.91626), A7 ~ 127.5209.

Let us examine a run of the BPSD-id with i = 4 and k = 3, which means that the eigenvalues A4, As, g are
to be computed. The preconditioner K is generated by

ilu(H-sigma*S, struct (‘type’, ‘crout’, ‘milu’, ‘row’, ‘droptol’,3e-5))

for 6 = A3. We denote by Bound;, Bound, and Bound; the bounds for the Ritz value error 8, — 4, (with simpli-
fied indices) which are determined on the basis of (37), (35), and (36), respectively. We compare these bounds
with the error 6, — A; in Figure 10 with subfigures for ¢ € {4, 5,6} by evaluating their numerical maxima
concerning 1000 random initial subspaces.

We note that Bound, and Bound; are nearly invariant for ¢ due to the eigenvalue cluster { A4, 45, A6 }. More-
over, Bound; is evidently more accurate than Bound,. For ¢ € {4, 5}, the clustered eigenvalues make Bound,
nearly constant. For t = 6, the moderate gap between 44 and A leads to a meaningful Bound; which actually
coincides with Bounds.
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6 | CONCLUSION

The limitation of the approach presented in Reference 4 for analyzing the convergence behavior of the PSD-id method
is overcome by embedding concise bounds from References 8 and 10 concerning the PSD and BPSD methods. The new
estimates are more flexible with weaker assumptions, natural description of preconditioning and extension to block iter-
ations. Therein the preconditioners are assumed to be effectively positive definite and particularly include approximative
shift-invert preconditioners where the shift is smaller than the target eigenvalue. In addition, the case of larger shifts is
discussed based on the analysis of an abstract power method from Reference 16 and the analysis of an inexact Rayleigh
quotient iteration from Reference 13. Furthermore, the cluster robustness of the BPSD-id is analyzed for exact shift-invert
preconditioning analogously to an abstract block iteration from Reference 16. A more general analysis for effectively
positive definite preconditioners is enabled by recent progress for the BPSD from Reference 18. Topics for further study
include “implicit deflation” versions of the LOBPCG and various Davidson methods as well as practical settings of shifts
and block sizes.
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