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Abstract

Species-abundance distributions (SADs) describe the spectrum of commonness
and rarity in a community. Beyond the universal observation that most species
are rare and only a few common, more-precise description of SAD shape is
controversial. Furthermore, the mechanisms behind SADs and how they vary
along environmental gradients remain unresolved. We lack a general, non-neutral
theory of SADs. Here, we develop a trait-based framework, focusing on a local
community coupled to the region by dispersal. The balance of immigration and
exclusion determines abundances, which vary over orders-of-magnitude. The local
trait-abundance distribution (TAD) reflects a transformation of the regional TAD.
The left-tail of the SAD depends on scaling exponents of the exclusion function and
the regional species pool. More-complex local dynamics can lead to multimodal
TADs and SADs. Connecting SADs with trait-based ecological theory provides a
way to generate more-testable hypotheses on the controls over commonness and

rarity in communities.

KEYWORDS
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SADs from natural communities. The universally ob-
served pattern is that most species in a community are

Species-abundance distributions (SADs) describe the
distribution of population densities of all the species in a
community. They are intermediate-complexity descrip-
tors of the diversity of a community: more informative
than species richness but less detailed than a list of spe-
cies and their abundances (McGill et al., 2007). Over
almost a century, ecologists have collected countless

rare, while a few are common, with abundances ranging
over orders of magnitude (McGill et al., 2007). Further
generalities about the shape of SADs remain controver-
sial (Ulrich et al., 2010), as do the mechanisms behind
them. Common species drive ecosystem functioning
(Grime, 1998; Winfree et al., 2015), but rare species can
provide adaptive capacity in changing environments
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(Norberget al., 2001; Yachi & Loreau, 1999), while facing
a higher risk of extinction (Terborgh & Winter, 1980). To
understand the mechanisms behind SADs is to under-
stand how communities are structured, which is essential
to predict how they will reorganise under anthropogenic
environmental change.

McGill et al. (2007) categorised 27 theoretical models
of SADs, including purely statistical models (log-series,
Fisher et al., 1943; log-normal, Preston, 1948), niche-
apportionment models (geometric, Motomura, 1932;
broken stick, MacArthur, 1960, Tokeshi, 1990) and
single-species models (Engen & Lande, 1996a, 1996b).
However, only mechanistic models based on multispe-
cies population dynamics can simultaneously generate
predictions about how species' abundances relate to their
traits, how community structure changes along environ-
mental gradients, and how communities will reorganise
under environmental change, so we focus on them.

Vellend (2010) identified four key processes that shape
communities: selection (niche and fitness differences),
ecological drift (demographic stochasticity), speciation
and dispersal. Hubbell's neutral theory (2001) combines
ecological drift, speciation and dispersal but lacks selec-
tion. It generates realistic SADs, but its central assump-
tion that species are identical contradicts patterns found
in nature (Harpole & Tilman, 2006). However, with
some notable exceptions (Engen & Lande, 1996a, 1996b;
Wilson et al., 2003), most purely niche-based models
fail to generate realistic SADs: it can be difficult to get
more than a few species to coexist (Edwards et al., 2018),
and when they do, they typically have comparable
abundances. It seems unlikely that purely niche-based
models can recreate the orders-of-magnitude variation
observed in species abundances without carefully tuned
parameters.

One solution to this conundrum is to incorporate pro-
cesses acting at broader spatial or temporal scales into
our explanations of local community structure. Spatial
and temporal heterogeneity provide powerful mecha-
nisms of species coexistence (Chesson, 2000; Mouquet
& Loreau, 2003). Immigration to a local community can
occur in space, from other communities in the region
(regional species pool, assumed to be fixed), or in time,
from a reservoir of resting stages (Lennon & Jones, 2011).
The addition of immigration to niche-based models triv-
ially solves the problem of the local co-occurrence of
many species (Chesson, 2000; Loreau & Mouquet, 1999;
Shmida & Ellner, 1984), but as we will show, naturally
results in order-of-magnitude variation in population
density. Empirical studies have shown that such ‘mass
effects’ can play an important role in maintaining local
diversity (Shmida & Wilson, 1985).

While simulations of particular models have shown
that combining immigration from a regional species
pool with local interactions results in realistic SADs
(Hughes, 1986; Mouquet & Loreau, 2003; Vergnon
et al., 2012; Wilson & Lundberg, 2004), these models are

not amenable to analytical treatment and hard to gen-
eralise. Therefore, a general theoretical framework that
merges regional and local, niche-based processes to ex-
plain SADs is lacking. In this paper we develop such a
framework, combining local interactions with immigra-
tion from a regional species pool to derive community
structure. This theoretical framework highlights the es-
sential elements of these previous models.

One barrier to general theories of ecological com-
munities is the ‘curse of dimensionality™ as the number
of species N goes up, the number of parameters typi-
cally goes up as N'2. For realistically sized communities,
this becomes unmanageable: there are more parameters
than empiricists can measure and too many degrees of
freedom for theoreticians to constrain their models.
One theoretical solution is to choose parameters ran-
domly (e.g., Barbier et al., 2018; May, 1972; Wilson &
Lundberg, 2004), but this allows prediction only in an
ensemble of replicate communities and is disconnected
from the biology of how species interact with each other
and their environment.

An alternative solution is to take a trait-based ap-
proach, where species are defined by the functional traits
that determine their ecological performance (Litchman
& Klausmeier, 2008; McGill et al., 2006). The closely
related theoretical frameworks of evolutionary game
theory (Brown & Vincent, 1987; McGill & Brown, 2007)
and adaptive dynamics (Geritz et al., 1998) provide el-
egant tools for formulating and analysing trait-based
models (reviewed in Klausmeier et al., 2020), but assume
closed systems. While these trait-based approaches con-
sider the interaction of a continuum of strategies and
therefore have the potential to model diverse commu-
nities, the resultant evolutionarily stable communities
(ESCs) are often species-poor unless extreme trade-offs
are assumed (Edwards et al., 2018). Therefore, we apply
the results of our general dispersal-selection theory to
trait-based models in a metacommunity setting, where
local dynamics are coupled to a regional pool of species
through dispersal. This trait-based approach generates a
broad range of testable predictions beyond the shape of
the SAD—the traits of common versus rare species and
how SADs vary along environmental gradients—which
will enhance its falsifiability (McGill et al., 2007).

GENERAL FRAMEWORK

Consider the general class of models of N species, whose
dynamics in a local community are given by

O B - (N = ) )

l change in ] _ l local ] + [dispersal]
species i processes
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where N; is the abundance of species i (notation is sum-
marised in Table Gl). The first term describes local pro-
cesses, where per capita growth rate g; depends on the
vector of all species, N = (Ny,N,, ... ,N). The second
term models dispersal at rate m; between the local com-
munity and the broader region, where the species has fixed
abundance Ng ;.

Setting Equation (1) equal to zero, we see that the equi-
librium abundance of species i is determined by the bal-
ance of immigration versus emigration-plus-exclusion

S Np, [immigration| 0a)
bomite; [emigration] + [exclusion]

with exclusion rate e; = — gi(ﬁ). Because the exclusion
rate depends on the abundance of all species, a closed-
form expressionis typically impossible, so Equation (2a)
typically must be studied numerically. However, we
can derive analytical results in the limits of large and
small dispersal to guide our understanding. When dis-
persal is large (m; — o), it swamps local processes, so
that each species simply matches its regional abun-
dance: N; = Ng;.

For simplicity, we assume that in the absence of dis-
persal (m; =0) the community goes to equilibrium,
where each species either persists (Ng; >0 and g; =0)
or goes extinct (Ny; =0 and g; <0). We call species
that persist in the absence of dispersal (true) core spe-
cies. With even small dispersal, non-core species achieve
positive abundance through mass effects. When they re-
main locally rare, we call them satellite species following
Hanski (1982) (although we do not assume they are also
regionally rare).

In the limit of small dispersal (m; =~ 0), the core species
are unaffected by dispersal, while the abundance of sat-
ellite species can be approximated by

m;Ng;

N;= (2b)

€,

where €p; = — £:(Ny)is the exclusion rate of species 7 in the

closed system. Equivalently,

log ]/\\71- =logm,;+log Ny ;—loge; (2¢)

which suggests population sizes that vary over orders of
magnitude, as in empirical SADs.

The universal observation that SADs consist of few
common species and many rare species leads us to hy-
pothesise that, using the appropriate currency for abun-
dance (Morlon et al., 2009), common species represent
core species while rare species represent satellite species
dependent on continued dispersal from elsewhere to per-
sist. Given this hypothesis, the bulk of SADs consists

of satellite species, whose abundances are determined
by the balance of immigration and exclusion given by
Equation (2), while the core species' abundances are de-
termined mainly by local processes. Taking the dispersal
rates m; and the regional abundances Ny ; as given model
parameters, the final ingredient that determines the
SAD is the distribution of exclusion rates, e;. Therefore,
we must specify how species interact, which is encoded
in the growth functions gi(ﬁ )in Equation (1).

If we had detailed information on the interactions
within a community such that we could parameterise
the growth functions gi(ﬁ), we could predict how its
SAD depends on dispersal with the regional metacom-
munity. However, these predictions would be specific to
that particular system with defined interactions, limit-
ing generality. Furthermore, such knowledge is typi-
cally lacking, particularly for species-rich communities.
Therefore, to make general predictions about SADs, we
need a reasonable way to parameterise models of diverse
communities. Due to its solid basis in functional ecol-
ogy (Litchman & Klausmeier, 2008; McGill et al., 2006;
Violle et al., 2007), we use trait-based ecological theory
(Klausmeier et al., 2020) to reduce the dimensionality of
parameter-space in the rest of this paper.

TRAIT-BASED MODELS

The fundamental assumption of trait-based models is
that a species' demographic rates in a given abiotic/biotic
environment depend only on its traits, ¥ ,. In this case,
our general model (Equation 1) becomes

dN,

L=g(Ra N X )NAm(3 ) (Ng=N) O

1

Note that the growth function g in Equation (3) is not
species-specific, but shared by all species in a guild
(Brown & Vincent, 1987). Therefore, species with
identical traits have the same per capita growth rate,
rendering them ecologically neutral at the local scale.
The growth function g encodes density-dependence
and interspecific interactions, possibly frequency-
dependent, and depends on both the traits of the focal
species, X, and the abundances and traits of the en-
tire community, N and X. The trait-based framework
of Equation (3) is quite general. In the absence of
dispersal, it has been used to model many ecological
scenarios (reviewed in Klausmeier et al., 2020). Thus,
diverse ecology can be encoded in the deceptively
simple-looking g. The dispersal rate m can also depend
on species traits or be assumed constant. The model
is completed by describing the regional species pool
through their traits X = (¥1.X,, ..., X ) and abun-
dances N g = (Ng1,Ngy, ..., Ng ). For greater ana-
lytical tractability, instead of considering a large set
of discrete species, we take a continuum limit, where
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individuals are indexed by their trait values. Analogous
to Equation (3), the general form of such a continuum
model is

an(}')
ot

=g(%,n())n(Z)+m(Z)- (ng(F)-n(z)) @

for the dynamics of the local population-density n(? ) of
individuals with trait values X, where n(- ) denotes the local
trait-abundance distribution (TAD). Note that n(f ) is the
population density per unit trait, which differs from the
N of particular species in Equation (3). E.g. with a single
trait x, the integral I;CZ n(x)dx gives the abundance of in-
dividuals with trait in the range x; < x < x,. The regional
species pool is described by the regional TAD ng(X ) and
the species-density function p(X ), which describes how
the species are distributed in trait-space (see Figure Ic).
The species-density function is essential for converting
from this continuum approach back to discrete species
that constitute SADs (described in Box 1). Finally, m(%)
is the potentially trait-dependent dispersal rate.

In the absence of dispersal (m(x) = 0), methods from
evolutionary game theory (Vincent & Brown 1987, Geritz
et al., 1998) can be used to find the evolutionarily stable
community (ESC; Edwards et al., 2018) representing the
core species. Setting Equation (4) equal to zero, the equi-
librium TAD with dispersal is formally given by

oy M) (X)

m(3)+e(X) ©)

(a) species density, s(log N) (b)

where ¢(X) = —g(X) is the exclusion rate. Note that
Equation (5) is not a closed-form solution to Equation (4),
because the exclusion rate depends implicitly on the full
TAD, a(-).

Stabilising selection

To proceed further, we need to specify the functions
g(x,n(+)), ng(x), p(x) and m(x) (our examples are sum-
marised in Table G2). For the growth function g, we
will begin with one of the simplest ecological inter-
actions: competition in a single niche, with a quad-
ratic intrinsic growth function of a scalar trait, r(x).
This is an archetype of stabilising selection (Lande &
Arnold, 1983) that is not only analytically tractable,
but also useful as an approximation to more general
situations. Defining N, = [ n(x)dx as the total abun-
dance, this results in

g(x,n(-))=r(x)—aNy (62)

r(x)=r"—y(x— x*)2 (6b)

where a is the competition coefficient that scales pop-
ulation sizes, r* is the maximal growth rate at the op-
timal trait value x* and y quantifies the strength of
stabilising selection. In the absence of dispersal (indi-
cated by zero subscripts), there is a single-species ESC

trait, x

log abundance, log N

2333333333333 33333333333>

LKL

(x) N 8o ‘@d2uepunge 0|

333333333333333333333333>

(x)d ‘Auisuap saads

trait, x

FIGURE 1 How the (a) Preston-plot SAD results from the transformation by (b) the TAD of (c) the regional species-density function (tick
marks indicate discrete species). Flat parts of the TAD concentrate species density in the SAD, whereas sloped parts diffuse it (indicated by the

width of the beams reflected off the TAD)
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BOX 1 Converting TADs to SADs
Converting the TAD n(x) to an SAD requires two steps, both of which require the species-density function,
p(x), describing the density of species along the trait axis. First, we must bin individuals from the continuous
distribution n(x) into species abundances N(x). Except where n(x) is sharply peaked relative to the spacing
between species, 6x(x) = 1 / p(x), N(x) can be well-approximated by N(x) = n(x) / p(x) (Appendix C).

Second, the log-transformed TAD, log N (x), can be used to translate the species-density function, p(x), into
a Preston plot SAD, s(log N). Mathematically, this is similar to transforming a random variable (Kobayashi

et al., 2011). In general,

s(logN) = Z —p(rﬁ]\{)) 8)

dx

where the sum is over all branches of the inverse function x(log V), because the log-TAD is typically non-invertible
(see Appendix E for the case of multiple traits). Note that flatter parts of the log-TAD result in more species with
that abundance and sloping parts result in fewer, due to the denominator (Figure 1).

In our example of a quadratic intrinsic fitness, one niche, trait-independent dispersal and uniform regional
TAD and species density (p(x) = p) (Figure 2), assuming N (x) = n(x) / p(x), we find the SAD

elog N(x*)-log N

s(log N) = pw

\/elog N(x*)-log N _ 1

where N(x*) = N ot/ (pwm) is the height of the Lorentzian TAD at its peak.

Note that the SAD s(log V) is a continuous distribution, which must be integrated to determine the number of
species within a particular abundance range (McGill et al., 2007; Preston, 1948). In particular, the vertical asymp-
tote(s) on the right side of our SADs represent core species when integrated.

(equivalently, a set of neutral species) with the optimal
trait value x = x* and total abundance N, =1"/a,
leading to a TAD consisting of a Dirac delta function,
7(X) = N 06(x — x*).

Further assuming trait-independent  dispersal
m(x)=m and a uniform regional TAD ny(x) =ng, we
find that the equilibrium TAD is

~ ~ w/rx
nx)y=N ——— 7a
tOtW2+(x—x*)2 ( )
ﬂmnR
W=—= (7b)
YN o1

This is still not a closed-form solution, because the total
abundance N, is not explicitly defined, but it shows
that the TAD takes the form of a Lorentzian function,
with characteristic width w. Lorentzians are bell-shaped
curves superficially similar to Gaussians, but are heavy-
tailed with a power-law exponent of —2 (Figure 2a).
Biirger (2000) found a Cauchy distribution in a mutation-
selection balance model analogous to this situation.
In Appendix A we show that the total abundance N,
is the solution of a cubic equation, whose explicit form is
non-insightful but is used for plotting results below. In

the limit of low dispersal, it can be well-approximated

~

as Niot ® Nioro, and in the limit of high dispersal as

~

~ m .
Ntot“’”\/; ng, with a cross-over between these re-
. \r* N .
gimes around mcz—y ’;—"”’ (Figure 2c). Note that
[ R

total abundance diverges in the high dispersal limit
(]?]mt — o0 as m— oo) in this simple example due to
our assumption of uniform regional abundance, since
N Riot = | o, ng(x)dx = oo. Therefore, the low dispersal

limit (m < m,) is more relevant here; other examples with
finite regional abundance are well-behaved in both limits.

Figure 2 shows the effect of dispersal rate m on the
equilibrium TAD 7i(x) and SAD s(log N), derived from the
TAD following Box 1. The SAD has an increasing left-tail
and a thin asymptote on the right, which represents the
single core-species (Figure 2b). As in the discrete-species
case (Equation 2a), the abundance of satellite species is
proportional to dispersal rate (Figure 2a,e). The width
of the Lorentzian w increases with dispersal, as seen in
Equation (7b) (Figure 2d). Total abundance N, is approx-
imately constant in the low dispersal regime (Figure 2c),
which implies that the density within the expanding core
must decrease with dispersal (Figure 2a). Therefore, for
species with a trait value close to the true core species,
density first increases linearly, then decreases as it enters
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FIGURE 2 Our first example (one niche, quadratic fitness function, uniform regional TAD). Equilibrium (a) TADs and (b) SADs for four
dispersal rates m. (c—e) the effect of dispersal on (c) total abundance N, (d) width of the Lorentzian TAD w and (e) abundance of 21 evenly
spaced species between x = — land x = 1. Parameters:a = 1,7* = 1,x* =0,y = 1, ngx(x) = 100, p(x) = 100 so that Ng(x) = 1.

the core community (Figure 2e). In Appendix A we show
that the core community with dispersal can be defined as
species within the characteristic width of the Lorentzian w
of the true core species (equation [A16]).

Effect of regional species pool

The assumptions of uniform regional TAD ng(x) and
species-density distribution p(x) made above facilitate

analytical calculations, but are unrealistic, so that strictly
Lorentzian TADs represent a special case. First, consider
a non-uniform regional TAD. In this case, the regional
TAD ng(x) undergoes a Lorentzian-like transformation
by the exclusion rate e(x) (Equation 5). Under the as-
sumptions of stabilising selection (Equation 6) and trait-
independent dispersal, this results in the equilibrium TAD

;l\(x) — mnR(x)

m+a]/\7tot—r*+)/(x—x*)2 ©)
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As before, this is not a closed-foArm solution dug to the
presence of the total abundance N,,. Although N, re-
mains a good approximation at low dispersal rates, unfor-
tunately, in general N, must be determined numerically.
Note that in the absence of selection (neutrality, y = 0), the
local TAD is proportional to the regional TAD if dispersal
is the same for all species.

Second, the technique given in Box 1 can be used to
derive SADs from TADs in the case of non-uniform spe-
cies density. As an example, consider a Gaussian species-
density distribution, pv)=p*/(c,v27 )exp(-+*/(20,)), Where
the density of species decreases away from the origin
(Figure 3a). Assuming uniform regional species abun-
dances Ny(x) = Np, the regional TAD is proportional to
p(X): ngp(x) = Ngp(x). In this case, the TAD has a narrow
spike at the optimal trait value (Figure 3b); it superficially
resembles that of our previous example (Figure 2a), but
decreases more sharply due to the lower regional abun-
dance away from x = 0. However, in contrast to the case
of uniform regional TAD, the resulting SAD is now uni-
modal (Figure 3c), due to the low density of species in the
tails of the species-density distribution p(x).

Other interaction models (non-quadratic r,
multiple niches)

The previous examples all assume one niche and a
quadratic intrinsic fitness function (Table G2), repre-
senting an analytically tractable model of stabilising se-
lection. However, our general trait-based framework of
Equation (4) is applicable to a much wider range of eco-
logical scenarios, including frequency-dependent inter-
actions. Here, we give two more examples to show how
the details of local interactions affect TADs and SADs.
Although no analytical results are available in general,
these TADs can be approximated as Lorentzians near a
peak (Appendix B).

First, consider one niche but a Gaussian intrinsic fit-
ness function, r(x) = r*exp( — x> / (262)). This can be ap-
plicable if the trait affects fitness only through the birth
rate, which must be non-negative, making the fitness
function bounded from below. Figure 4a shows that the
equilibrium TAD is peaked around the optimum x =0
but is also bounded from below. This can be understood
from the exclusion rate at equilibrium (Figure 4b), which
approaches a constant maximum value, no matter how
maladapted a species is. This flat range of the TAD
translates into the vertical asymptote at N = 107 on the
left side of the SAD (Figure 4c).

Finally, we relax the assumption of frequency inde-
pendence by letting the strength of competition a decline
with the difference in traits between interacting species.
That is,

g(x, n(-))=r(x)—J'a(x, x’)n(x')dx' (10a)
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FIGURE 3 Oursecond example (one niche, quadratic
fitness function, gaussian species-density function and therefore
gaussian regional TAD). (a) Species-density function, (b) local
TAD and (c) unimodal SAD. Parameters as in Figure 2 except
6,=3,p"=100,Ng =1,m=10"".
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This trait-based Lotka—Volterra competition model is
a classic model for niche differentiation (e.g. Ranjan
& Klausmeier, 2022; Scheffer & van Nes, 2006). In the
absence of dispersal, when o, < 4/r*/(2y) there is an
evolutionarily stable community (ESC) consisting of
more than one species (Ranjan & Klausmeier, 2022). In
our example, the ESC consists of three evenly spaced
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FIGURE 4 Our third example (one niche, gaussian fitness
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(c) SAD. Parameters as in Figure 2 excepto, = 1,m = 107,

core species that sit at local invasion fitness maxima
(Figure Sa).

Because the continuum model Equation (4) would
need to be discretised before solving numerically, we di-
rectly simulate Equation (3) with a discrete set of spe-
cies. With small dispersal, the TAD has three locally
Lorentzian peaks (Figure 5b), whose heights and widths
are largely determined by the non-dispersal abundance
and curvature of the fitness function (Appendix B).
Overall, the TAD is determined by equation (5), with
the exclusion rate playing the central role given our as-
sumption of uniform regional TAD and species density
(Figure 5c). Because the exclusion rate for species be-
tween the three core species is very small (on the order
of 107%), it takes only a small immigration rate to boost
these nearly neutral species to appreciable densities
(Figure 5b).

Like the TAD, the SAD is multimodal (Figure 5d): the
two rightmost peaks in the SAD correspond to the peaks
in the TAD (two of which have the same height), whereas
the third peak from the right in the SAD corresponds to
the local minima of the TAD. However, this fine detail
may be difficult to detect in empirical SADs. Figure 5e
shows a SAD fitted using kernel density estimation on
a discrete set of N =401 species, indicated by ticks on
the x-axis. The narrow peaks of the theoretical SAD
(Figure 5d) cannot be distinguished, merging into one
wide peak.

Controls on the distribution of satellite species

Because most species in local communities are rare, we
can understand the bulk of TADs and SADs by focusing
on the satellite species, greatly simplifying the analysis
(Appendix D). Of particular historical interest is the be-
haviour of the SAD's left tail, which describes the rela-
tive abundance of rare species (McGill et al., 2007 pp.
1004-5). Assuming N(x) - 0 as x - + oo, we find that
if the species-density function p(x) decays faster than a
power law, then s(log N) - 0 as N — 0, as the Gaussian
p(x)does in Figure 3c. If it decays more slowly, as a power
law, then the SAD's left tail depends on exponent of the
species-density function relative to the exponents of the
regional population-density function and the exclusion
function:

0 a,+max|B,, By, | >1
]lvin%s(logN)= o0 a,+max|B,, By, | <1 (11)
const. a,+max|f,, By, |=1

A special case: if p(x) and Ng(x) are constant, then
s(log N) — 0if the exclusion function e (x) increases faster
than exponentially and s(log N) — oo if it declines slower
than exponentially (as in Figure 2b).

DISCUSSION

What determines the shape of SADs? Our analysis
suggests that the simple answer is ‘there is no simple
answer’. Both local processes (environmental filter-
ing and species interactions) and the properties of the
regional species pool (species abundances and traits)
jointly determine the distribution of commonness and
rarity in a community. These factors span from local
to landscape and biogeographic scales, each subject
to tremendous variation and historical idiosyncrasy.
Therefore, it seems highly unlikely that there is a uni-
versal, parameter-sparse SAD applicable across all
communities. Despite the manifold variety of possible
SADs it can produce, our framework identifies key fac-
tors that shape them—rates of exclusion and dispersal,
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FIGURE 5 Our fourth example (localised competition, quadratic fitness function, uniform regional TAD). (a) the evolutionarily
stable community reached in the absence of dispersal and the corresponding invasion-fitness landscape. (b) TAD with dispersal and (c) the
corresponding fitness landscape. (d) Continuum-based SAD. (e) Discrete-species-based SAD. Parameters as in Figure 2 except: ¢, = 1,0, = 0.4.

regional population abundance and the species-density
distribution.

Empirical predictions

Our framework makes a number of empirically testable
predictions, outlined below in order of increasing specific-
ity and data requirements. The first three predictions fol-
low from the solution to the general model (Equation 2)
and require only SADs (prediction 1) and measurements
of dispersal (prediction 2) or exclusion rates (prediction 3).
Predictions from the trait-based framework (Equation 3)
require data on species traits as well as SADs (both local
and regional). Finally, predictions from system-specific

models require detailed understanding of how species
interact to parameterise a particular growth function g.
Thus, our framework can be tested at multiple levels of
generality, using observational data as well as experiments.

First, although our framework can produce a multi-
tude of SAD shapes, some general predictions exist. It
predicts that at low dispersal rates, the SAD will have
a gap between the most-abundant core species and the
rare species that make up the bulk of the community. It
also can explain multimodal SADs (Antao et al., 2017;
Dornelas & Connolly, 2008), generalising the findings of
Vergnon et al. (2012) and Rael et al. (2018). If the scaling
exponents of the exclusion function and the regional spe-
cies pool are known, it predicts the behaviour of the left-
hand tail of the SAD (rare species) (Equation 11).
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Second, it predicts that at low immigration rates, the
abundance of rare satellite species will vary linearly with
the immigration rate (Equation 2b), while the abun-
dance of common core species will be largely unaffected
(Figure 2e). The increase of rare species in a meta-
analysis of SADs is consistent with this prediction (Jones
et al., 2020). An important corollary is that satellite spe-
cies cannot persist in the absence of immigration. The
immigration rate is the product of the dispersal rate m;,
and the regional abundance Ny ;. High dispersal leads the
local community to converge with the regional metacom-
munity (Equation 2a). These predictions could be tested
by manipulating the immigration rate experimentally.
Patrick (1967) showed that increased immigration led to
SADs with more rare species of stream diatoms. Further
experimental tests in different systems are needed.

Third, it predicts that the exclusion rate (negative in-
vasion/growth rate) strongly affects species abundances.
Invasion rate is a central concept in ecological theory
and can be experimentally measured in a number of
ways (Grainger et al., 2019), providing another way to
test the general framework.

Fourth, our trait-based framework predicts that the
identity and abundance of dominant core species will be
determined by their traits and environmental conditions.
Empirical support for this prediction comes from trop-
ical forests (Umafa et al., 2015) and prairies (Harpole
& Tilman, 2006). In contrast to neutral theory, replicate
local communities with similar environmental conditions
should have the same dominant species. The most informa-
tive observational evidence would come from cases where
the local communities deviate strongly from the regional
metacommunity, since neutral theory predicts that region-
ally abundant species will also tend to be locally abundant.
Experimental manipulation of environmental conditions
or starting new communities would provide an even more
powerful test of this prediction.

More-specific models can generate more-specific hy-
potheses. Our general framework can accommodate a
wide variety of particular models through the growth
function g, leveraging the broad knowledge-base of
trait-based ecological theory (Klausmeier et al., 2020).
Predictions of how TADs and SADs change along envi-
ronmental gradients, such as nutrient and stress gradients,
can be made by varying environmental parameters. Verbal
hypotheses for how SADs should vary with pollution
(Gray, 1979) could be made more precise, and predictions
for how community-weighted trait moments vary along
environmental gradients could be made.

Population-dynamic SAD theories

Population-dynamic theoretical explanations of SADs in-
voke one (or both) of two alternative sources of variation
in species abundance: chance and fate. In chance-based ex-
planations, species have identical parameters (symmetric

models, which include non-interacting species and neutral
models as special cases) but include either environmental
(Engen & Lande, 1996a, 1996b) or demographic stochastic-
ity (Hubbell, 2001; Kendall, 1948). In fate-based explana-
tions, dynamics are deterministic, but species have different
parameters, either randomly assigned (Wilson et al., 2003;
Wilson & Lundberg, 2004; Zhou & Zhang, 2008) or deter-
mined by traits (Vergnon et al., 2012, our approach). A few
models combine both sources of variation (Haegeman &
Loreau, 2011; Hughes, 1986; Rael et al., 2018). While both
approaches can produce realistic SADs, an important dis-
tinction concerns the role of species identity. In chance-based
explanations, all species will eventually experience the entire
range of abundances in the SAD, whereas in fate-based ex-
planations, species will be consistently common or rare in a
particular environment. This could be tested with time series
of SAD dynamics. Our population-dynamic approach com-
plements McGill's (2011) top-down approach of treating
local SADs as clumped random samples of a regional SAD,
by providing an explicit mechanistic basis for clumping.

Model assumptions

Of Vellend (2010) four fundamental processes that shape
ecological communities, our approach is based on selec-
tion and dispersal. Because we focus on local community
dynamics on ecological timescales, we do not explicitly
model speciation, but it can be considered implicitly as a
determinant of the regional species pool.

Selection embodies diverse interspecific interactions
with a seemingly endless number of variations, from ab-
stract, general models like Lotka—Volterra, to those tai-
lored to particular ecosystems. Indeed, the majority of
ecological theory includes only selection, due to its inher-
ent richness. Although our examples are based on Lotka—
Volterra competition, our analytical framework (general,
Equation 1; assuming trait-based interactions, Equation 3)
can be applied to a much wider range of ecological scenar-
ios through the growth function g (see Appendix F for an
example with specialised natural enemies).

Dispersal, in particular immigration from the re-
gional metacommunity, plays a central role in shap-
ing local community structure through mass effects
(Shmida & Wilson, 1985). Consistent with our theory,
Murray et al. (1999) found that 91-95% of locally rare
plant species were abundant at another site within their
range. While some studies invoke immigration to ex-
plain rare transient species in the left-hand tail of SADs
(Magurran & Henderson, 2003), previous theory has
shown that even a small amount of immigration can
translate into large populations of weakly excluded spe-
cies (Pulliam, 1988; Gonzalez & Holt, 2002). This infla-
tionary effect can be seen in previous models of SADs
(Gravel et al., 2006; Hughes, 1986; Kendall, 1948; Loreau
& Mouquet, 1999; Scheffer & van Nes, 2006) and forms
the basis of our analytical theory (Equation 2).
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We model dispersal as the exchange of individuals be-
tween a local community and the regional metacommu-
nity (Hubbell, 2001; McGill, 2011). Species interact on the
local scale, whereas the regional scale covers the range of
dispersing individuals. As common in community ecology,
these discrete scales are not precisely defined, but depend
on the natural history of the organisms and the interests of
the investigator. By treating the regional metacommunity
as exogenous, we can gain general insights into the role of
immigration applicable across a range of spatial settings
(island-mainland, true metacommunity, continuous land-
scape). Coupling multiple local communities so that the
regional metacommunity emerges from internal system dy-
namics (Mouquet & Loreau, 2003) is an important next step.

Unlike neutral theory (Hubbell, 2001), we neglect
ecological drift (demographic stochasticity). The pri-
mary reason is to contrast fate-based explanations of
SADs with chance-based explanations. Demographic
stochasticity is most important in small populations, so
our approach is most suitable for communities with high
total abundance, but may need to consider drift of the
rarest species. Future research that integrates all three
fundamental ecological processes (selection, dispersal
and ecological drift) can build off the analytical founda-
tions of our current framework. In particular, rare sat-
ellite species that do not affect others can be modelled
as independent birth-death-immigration processes,
leading to negative-binomially distributed abundances
(Kendall, 1948), which might explain the relative vari-
ability of rare species (Henderson & Magurran, 2014).

Because we focus on the theoretical processes under-
lying SADs, we also neglect random variation in empir-
ical SADs due to the sampling process, which will be
required for rigorous comparison with empirical data
(Bulmer, 1974). We anticipate the effect of limited sam-
pling will be qualitatively similar to the unveiling of the
log-normal distribution noted by Preston (1948).

Implications

The fitness (growth) function is a central concept in
eco-evolutionary frameworks such as adaptive dynam-
ics (Geritz et al., 1998). However, the fitness function is
often used only as a means towards the end of determin-
ing the evolutionarily stable community (ESC) (Brown
& Vincent, 1987; Klausmeier et al., 2020). With immigra-
tion from the regional metacommunity, the ESC repre-
sents the bones of the community (core species), while
the fitness function helps shape the flesh (satellite spe-
cies). Rather than being ultimately discarded as in adap-
tive dynamics, the fitness function itself is a key result
providing valuable information on the distribution of
satellite species in the presence of immigration.

Our framework connects SADs with species- and
trait-based community models, setting the stage for
future theoretical extensions, including incorporating

non-equilibrium dynamics (random: Chesson, 2000, sea-
sonal: Kremer & Klausmeier, 2017) and structured pop-
ulations (discrete: Caswell, 2001, continuous: De Roos &
Persson, 2001) into SAD theory. Appendix F adds top-
down control by specialised natural enemies to our first
example. While we have focused on long-term equilib-
rium behaviour, models such as Equations 1 and 3 can
also be used to study transient dynamics (DeAngelis &
Waterhouse, 1987; Hastings, 2004). Thus, our framework
lays a general theoretical foundation for the study of
SADs, allowing them to become fully integrated into the
mainstream of theoretical ecology.
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