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Climate warming is altering life cycles of ectotherms by advancing phenology
and decreasing generation times. Theoretical models provide powerful tools
to investigate these effects of climate warming on consumer-resource popu-
lation dynamics. Yet, existing theory primarily considers organisms with
simplified life histories in constant temperature environments, making it dif-
ficult to predict how warming will affect organisms with complex life cycles
in seasonal environments. We develop a size-structured consumer-resource
model with seasonal temperature dependence, parameterized for a freshwater
insect consuming zooplankton. We simulate how climate warming in a
seasonal environment could alter a key life-history trait of the consumer,
number of generations per year, mediating responses of consumer—resource
population sizes and consumer persistence. We find that, with warming,
consumer population sizes increase through multiple mechanisms. First,
warming decreases generation times by increasing rates of resource ingestion
and growth and/or lengthening the growing season. Second, these life-history
changes shorten the juvenile stage, increasing the number of emerging
adults and population-level reproduction. Unstructured models with similar
assumptions found that warming destabilized consumer—resource dynamics.
By contrast, our size-structured model predicts stability and consumer persist-
ence. Our study suggests that, in seasonal environments experiencing climate
warming, life-history changes that lead to shorter generation times could
delay population extinctions.

1. Introduction

An outstanding question of climate change research is how rising temperature
will alter ecological communities through its effects on consumer—resource
interactions. Over large temperature ranges, ectotherm biological rates, includ-
ing feeding, show left-skewed unimodal responses to temperature [1,2]. Within
the rising portion of the unimodal response, biological rates increase exponen-
tially with temperature because of increasing metabolism [3-5]. Theoretical
models provide powerful tools to investigate these potential effects of climate
warming because they allow us to simulate population dynamics and changes
in community structure. Yet, most theoretical models cannot simulate realistic
community outcomes because they primarily consider interacting organisms
with simplified life histories, living in constant temperature environments [6].
This contrasts with the reality that temperate species experience pronounced
seasonal changes in temperature, and most ectotherms have structured popu-
lations with complex life cycles [7,8]. To improve our understanding of
climate change effects on ecological communities, theory must therefore
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incorporate interactions among organisms with complex life
cycles in seasonally fluctuating environments.

Theory about the effect of climate warming on communities
has often focused on unstructured populations, where all indi-
viduals are assumed to be identical. Yet the predictions of
unstructured models vary with different assumptions about
consumer—resource thermal performance [6]. Many unstruc-
tured models predict that consumer biomass will decrease
with warming as consumers experience lower energetic effi-
ciency—the balance between growth from feeding and losses
from metabolism [9]—and become more susceptible to star-
vation extinction. As a result of this decreased efficiency, these
unstructured models predict that communities will become
more stable with warming, decreasing their propensity for
rapid, large-amplitude population cycles [10-13]. However,
the same models with different assumptions about consu-
mer-resource interactions predict that consumer biomass will
increase with warming and destabilize communities [6,10].
These predictions depend, in part, on whether consumer
feeding and metabolism change exponentially or unimodally
with temperature, whether consumer metabolism or feeding
increases more steeply with temperature, and whether resource
carrying capacity varies with temperature [6].

Structured population models have revealed additional
mechanisms by which temperature can affect population
dynamics and communities [14]. Stage-structured models
have shown that warming can alter population stage-
structure [15] and decrease predator persistence, regardless
of the assumed temperature scaling of feeding and metabolism
or resource carrying capacity [14]. Stage-structured popula-
tion models developed for insects yielded insights into
how seasonal variation in temperature can alter life histories
of organisms with complex life cycles, including how
higher mean temperatures and longer growing seasons
can lead to shorter generation times [16,17]. Simple, easily
interpretable models that incorporate complex life histories
are needed to accurately reflect community response to
warming. Scranton & Amarasekare [18] developed a simple
model of stage-structured insect populations with overlapp-
ing generations in seasonal environments. Yet many
populations have synchronized reproduction where juveniles
and adults live in distinct habitats, which is not accounted
for by existing theory

Climate warming has altered life cycles of ectotherms by
advancing phenology and decreasing generation times
[19,20]. In general, studies show that higher environmental
temperatures often result in faster rates of ectotherm
metabolism, feeding and growth [3,4,21,22], which increase
maturation rate into the adult stage [23-25]. Shorter generation
times could influence population dynamics by decreasing the
length of time juveniles are susceptible to mortality, thereby
increasing their survival to the adult stage [26-29]. If shorter
generation times contribute to higher survivorship, then
these benefits of warming may offset the negative effects of
increasing mortality and result in larger consumer population
sizes [17,30]. Accounting for temperature effects on life cycles
in consumer-resource models could modify the frequent
prediction that rising temperatures increase consumer extinc-
tion risks owing to higher metabolism and mortality [6] and
reveal new mechanisms by which warming alters population
dynamics and communities.

Diverse ectotherms experience seasonally fluctuating
temperatures that structure their life history, including

annual timing of feeding and growth, transitions among
life stages, and adult emergence and reproduction [31-35].
Moreover, climate warming can interact with seasonality to
alter phenology and population dynamics [7,20,36]. For
example, many insects in temperate environments have syn-
chronized life cycles maintained by a period of winter
diapause, triggered by photoperiod and temperature [20].
Increases in temperature have enabled insects to become
active earlier in the season and produce more generations
per year [23-25,37]. Yet, seasonal photoperiodic cues still
induce winter diapause in many species, placing upper
limits on changes in their phenology and generation times
with warming [20]. The effects of warming in seasonal
environments also depend on the organisms’ thermal per-
formance: warming can impact consumer population sizes
by increasing summer temperatures above the thermal opti-
mum for activity and growth and therefore cause mortality
due to thermal stress [7,8,20,38,39]. The effects of warming
may be most pronounced for organisms at high latitudes
where warming is greater and seasonal fluctuations are more
extreme [40].

Theoretical models have examined the effects of seasonality
on populations to understand the evolution of thermal traits
[41,42] and species coexistence [43,44]. In addition, life-cycle
models have demonstrated the consequences of seasonality
on life histories and phenology for ectotherms [45-47]. How-
ever, there are gaps in our understanding of how climate
warming affects consumer—resource population dynamics for
organisms with complex life cycles living in seasonal environ-
ments. We bridge this knowledge gap by developing a
size-structured consumer—resource model for ectotherms with
seasonal temperature variation. We use the framework of
physiologically structured population models (PSPMs; [48]),
in which population dynamics depend on metabolism, feeding,
growth in size, and transitions among life stages of the consu-
mer, in response to resource levels and seasonally fluctuating
environmental temperature. We develop and parameterize
our model for a freshwater insect, the damselfly Enallagma
annexum, feeding on zooplankton, using field surveys that
characterize its life history and experiments to quantify its feed-
ing and growth rates. We use our model to simulate how
climate warming in a seasonal environment could alter a key
life-history trait of the consumer, the number of generations
per year, and how changes in this trait mediate responses of
consumer—resource population sizes and consumer persistence
to increasing environmental temperature.

2. Methods

(a) Life history of Enallagma annexum

Damselflies have complex life cycles, spending most of their
life in an aquatic juvenile stage and emerging to a short-lived,
terrestrial adult stage for reproduction. Many species of damsel-
flies have generation times that vary within and across latitudes
because environmental temperatures directly influence growth
rates [49]. For species of Enallagma, the number of generations
per year increases from less than one to two from the northern
to the southern limit of their range [49]. We investigated the
life history and population dynamics of E. annexum in south-
western Michigan, USA, where these damselflies have 11
juvenile stages requiring 10-11 months for development from
egg to adult, and one generation per year with synchronized
emergence to the adult stage that is maintained by a period
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Figure 1. Idealized depiction of consumer—resource population dynamics in
Michigan ponds, where damselflies have one generation per year. (a) Zoo-
plankton biomass varies seasonally and peaks in mid-July. (b) Damselfly
body size is at its minimum after juvenile damselflies hatch in early
summer. Juvenile damselflies grow (black lines) over the course of the
year and overwinter in diapause. They resume growth the following spring
and emerge to the adult stage. Adult damselflies spend approximately 30
days outside of ponds foraging and reproducing (orange bar depicts adult
size and duration outside of ponds). (c) Juvenile damselfly abundance
(blue lines) is high after they hatch in early summer and declines owing
to mortality throughout the year. In spring of the following year, damselflies
emerge to the adult stage (orange bar depicts adult abundance and duration
spent outside of the pond) and reproduce. Juvenile abundance is high in
ponds after juvenile damselflies hatch.

of winter diapause as juveniles (figure 1, electronic supple-
mentary material, figure S1) [50]. Adults live one to four weeks
[51], during which they feed on terrestrial insects and breed,
depositing their eggs in aquatic plants (figure 1; electronic
supplementary material, figure S1) [52]. See electronic supple-
mentary materials for detailed methodology and results of
surveys of population dynamics of E. annexum and zooplankton
prey in ponds.

(b) Size-structured consumer—resource population
model (Standard Model)

We developed a size-structured consumer-resource population
model, hereafter, the ‘Standard Model’ (figure 2). We based our
model on the biomass-based model of [53], which we modified
to incorporate the complex life history of a damselfly (figure 1;
electronic supplementary material, figure S1). In addition, we
incorporated features from other stage- or size-structured
models as described and referenced below. Using a system of
periodically forced ordinary differential equations, we model
changes throughout the growing season in zooplankton
(resource) biomass (Z), juvenile damselfly (consumer) body
size (S) and damselfly abundance (C) (figure 2). We define the
growing season [54,55] as the period when pond temperature
exceeds 10°C (electronic supplementary material, figure S1),
since below 10°C damselfly and zooplankton activity levels are
low [56,57]. We track emergence from the damselfly juvenile to
adult stage during the growing season as discrete events
within this continuous-time system. We project within-season
dynamics to inter-annual dynamics by modeling abundance
and biomass at the beginning of each growing season as a func-
tion of the abundance and biomass at the end of the previous
years’ growing season (a stroboscopic map).

We assume the resource (zooplankton) Z grows logistically in
the absence of the consumer (damselflies), with maximum
growth rate  and carrying capacity K (figure 2); we add a
small immigration term i to account for refugia and to prevent
unrealistically large population cycles. Juvenile damselflies
increase their body size S by ingesting zooplankton following a
saturating type-II functional response [56], minus loss in
growth potential owing to maintenance 4. Rates of resource con-
sumption and maintenance increase linearly with juvenile body
size. Changes in the abundance of juvenile damselflies C are con-
trolled by density-independent background mortality d and
density-dependent interference mortality @, because cannibalism
is an important source of mortality in damselflies [50]. The abun-
dance of adult damselflies C, is zero when juveniles are present.
Together, these assumptions result in the following equations for
within-pond dynamics:

dz . Z Z

E: Z+7(T)Z(1 *E) *a(T)mCS, (21)
ds Z

a = eca(T)mS — M(T)S, (22)
dc )

5= —dnC—aC 23)
and C, =0. (2.4)

Here, a and & are the consumer attack rate and handling time
on the resource, and e, is the conversion efficiency of the resource
into growth in juvenile body size. Assuming that the temperature
remains below the optimum, the rates 7, 4, h, 4 and d are mod-
elled as functions of temperature T (Kelvin) using the
Arrhenius equation [3,56]

Y = YOeEa/k(l/Tgfl/T). (25)

Here, Y is the biological rate, Yy is the biological rate at the
reference temperature T, =288.15 K, E, is the activation energy
(eV) describing the strength of the temperature response and k
is Boltzmann's constant (8.617 x 107> V). Parameter values are
given in electronic supplementary material, table S1.

Our assumptions match observations that rates of resource
ingestion and maintenance increase with damselfly body size,
and ingestion is converted into growth in size, as in other
PSPMs. Juveniles do not reproduce but use energy for growth
and development to the adult stage, and adults reproduce but do
not grow [48]. Our assumptions differ from most PSPMs in that
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Figure 2. Conceptual diagram of the size-structured consumer—resource model. Top panel: within a growing season, juvenile damselflies grow when their ingestion
of zooplankton exceeds metabolism, which reduces zooplankton hiomass. Juvenile damselfly abundance is reduced through background and interference mortality
and starvation when metabolism exceeds ingestion. Damselflies emerge to the adult stage when their body size is equal to S,. and temperature exceeds 20°C,
which is represented by a discrete event within otherwise continuous dynamics. In a second discrete event, reproduction by adult damselflies produces the following
cohort of damselflies. State variables are shown in ovals, biological events affecting state variables are enclosed in rectangles, and biological rates affecting each
event are in parentheses. Arrows depict connections between state variables via biological rates described in parentheses. Temperature-dependent parameters are
shown with T in parentheses. Bottom panel: biological rates vary in our model with both average temperature and seasonal changes in temperature.

we do not model energy storage or resource consumption by
adults, which are terrestrial and rely on different resources. Instead,
we assume that adult damselfly abundance is equivalent to the
total juvenile abundance in a pond prior to emergence, and the
number of new juveniles produced by adults is the number of
adults at emergence multiplied by their fecundity. These assump-
tions are reasonable because the juvenile stage comprises most of
the damselfly lifespan (figure 1; electronic supplementary material,
figure S1; [51]).

Juvenile damselflies are born at an initial body size Suin,
develop synchronously as a cohort, and emerge to the adult
stage when individual body size has reached the threshold size
Smax (figure 2). To emerge to the adult stage, the temperature in
ponds must also exceed 20°C (emergence window, [58]). If these
emergence conditions are not met, then the population remains
in the juvenile stage until the next emergence window [16].
Adult emergence is modelled using discrete events that are trig-
gered by emergence conditions. Specifically, a discrete change
occurs in the damselflies as all juveniles emerge from the pond
and spend f,=30 days in the adult stage (emergence period),

converting juvenile abundance into adult abundance. During the
emergence period, damselflies are absent from the pond, enabling
zooplankton biomass to recover. The discrete changes in the
system at the time of emergence (t,) are described by

S(t:) = Smax: (26)
CtH=0 (2.7)
and C,(t)) = C(t), (2.8)

where t, is the time just before emergence, and t; is the time just
after. While the damselflies are in the terrestrial, adult life stage,
the zooplankton recover from predation following:

dz . Z
E:H—rZ(l—E).

Adults reproduce f, days after emergence, with adult abundance
converted into new juveniles with initial size Sy, according to
the density-independent fecundity f (which incorporates adult
mortality). Thus, after t, days, the discrete changes in the system

(2.9)
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are described by

S(te + ta) = Sminr (210)
C(te + ta) = f X Ca (te) (211)
and C,(te +t,) =0. (2.12)

If juvenile size reaches Sma.x before the emergence window,
juveniles continue to ingest zooplankton, but no longer increase
in size (in which case, excess energy is wasted). In addition, at
low prey densities, maintenance may exceed resource consump-
tion and assimilation, leading to starvation mortality for
juveniles. To account for these conditions, we assume that
growth in body size equals zero either when maintenance
exceeds resource consumption and assimilation, or S =Sy, in
equation (2.2). We model starvation mortality [48] as an extra
term in equation (2.3) equal to the difference between mainten-
ance and feeding. Thus, juveniles are restricted to positive
growth in body size as described by the piecewise equations

. ea(T)Z
das_ | D emamz ~# DS Tz 7 MO and S < Sma
dt . eca(TNZ B
0, if 1+ aDWDZ < (T) or S = Spax
(2.13)
B e ea(TZ
d£ - d(T)C — aC?, i T 7 TRz > w(D),
dt 4 2 eca(T)Z
<_dm + e D ez “m) C-al i Tz =MD
(2.14)

Temperature seasonality influences the length of the growing
season, the timing and width of the emergence window, and
consumer biological rates. We vary temperature seasonally
according to a sinusoidal function,
sin 27 (t — ¢)>

(2.15)

Tt = Tav + Tamp ( 365

where T,, is average yearly temperature, T,m, is the amplitude, ¢
is the day of the year and ¢ controls the phase. Increasing T,
leads to a longer growing season (T(t)>10) and a larger
emergence window (T(t) > 20).

(c) Model parameterization

We estimated minimum and maximum damselfly body sizes Sin
and Spax and zooplankton carrying capacity K from field data
(see electronic supplementary material). We assume that K is
equivalent to the maximum zooplankton biomass in ponds
during summer. Other biological rates were determined from
the primary literature or set as needed to capture population
dynamics observed in ponds (electronic supplementary material,
table S1). We quantified parameter values of the temperature
forcing function by fitting equation (2.15) to hourly pond tempera-
ture data from field surveys (see electronic supplementary
material) using maximum likelihood estimation in R v. 3.6.1
[59]. We parameterized the temperature dependence of biological
rates a, h and x by fitting equation (2.5) to experimental data (elec-
tronic supplementary material, table S1; [56]). There is no clear
evidence that conversion efficiency e. or carrying capacity K
vary with temperature [6]. In the absence of experimental data
from our system, we assumed that zooplankton growth rate r
increases with temperature, following the predictions of the
metabolic theory of ecology [4], and that density-dependent
interference mortality is temperature-independent.

(d) Analysis

We analysed our model in four forms: the Standard Model
described above, and three Alternative Models in which we
fixed the values of parameters to disentangle the mechanisms
driving the results. In Alternative Model 1, we restricted the

consumer generation time to at least 1 year, to demonstrate “

the effects of varying average temperature T, (and therefore
varying biological rates) in the absence of life-history changes
in the consumer. In Alternative Model 2, we allowed growing
season length and the width of the emergence window to
vary with T,,, but fixed temperature-dependent biological rates
in equations (2.1)-(2.4) to T,,=13°C (reference temperature,
or current average temperature in ponds, see electronic sup-
plementary material). Rates still varied seasonally but did
not increase with T,,. In Alternative Model 3, we allowed bio-
logical rates to increase with T,, but restricted the growing
season length and the width of the emergence window to their
values at T,,=13°C. Together, Alternative Models 2 and 3
demonstrate how changing season length versus biological
rates mediates consumer life-history and population responses
to Tay-

To illustrate dynamics (figure 3), we simulated the model for
200 years to reach the long-term attractors. To generate bifur-
cation diagrams (figures 4 and 5), we varied T,, increasing
from 7.5 to 30°C by steps of 0.01°C. Using the final conditions
of the previous step as initial conditions, we simulated the
dynamics for 40 years to reach the new attractor (the small step
size ensured convergence to the new attractor). We then recorded
densities for the next 20 years, which we plot in our diagrams
(time averages of Z and C across the growing season and
unique values of C, during the year). We also generated these
bifurcation diagrams in the reverse direction (from 30 to 7.5°C)
to check for alternative attractors, which we never found (see
electronic supplementary material, figure S2). All model
simulations were run in Mathematica v. 13.2 [60].

3. Results

Our model exhibits qualitatively similar within-year
dynamics at the reference temperature T,, = 13°C (figure 3b)
to those we observed in the field (data shown in electro-
nic supplementary material, figure S1 and idealized in
figure 1). Each year, damselflies reach the emergence size
shortly after the start of the emergence window. When
adult damselflies leave the pond, the zooplankton resource
has a chance to recover from predation. When juvenile dam-
selflies hatch, they grow in size but decrease in abundance
owing to mortality. At the end of the season, they overwinter
as large juveniles and the annual cycle repeats.

The average temperature, T,,, has a complex effect on
population abundance and dynamics in the Standard
Model (figure 4). Damselflies went extinct for T, less than
7.5°C, because the emergence window was too short to
permit emergence and reproduction. Increasing T, increased
damselfly rates of prey ingestion and growth, which enabled
shorter damselfly generation times, and lengthened the
growing season and increased the width of the emergence
window. Together, these effects enabled a shift in damsel-
fly life history, from a biennial life history at low T,
(figure 3a), to an annual life history at intermediate T,
(including our reference temperature T,, =13°C; figure 3b),
to a bivoltine life history at high T,, (figure 3c). Between
these temperatures, the model produced complex dynamics,
which resulted in damselflies having irregular numbers of
generations per year (figure 4).

Simulations of the Standard Model revealed that within a
damselfly life-history strategy (for example, one generation
per year), the adult and average juvenile abundance decreased
with increasing temperature (figure 4) owing to increased
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Figure 3. Modelled within season dynamics for (a) average temperature T,, = 8°C, damselflies have one generation every other year; (b) T,, = 13°C (reference
temperature), one generation per year; and (c) T,, = 23°C, two generations per year. From top to bottom: solid lines represent temperature (red), zooplankton
biomass (cyan), damselfly body size (black), and damselfly abundance (blue/orange) during one growing season. Dashed lines on plots of zooplankton hiomass
indicate the minimum zooplankton biomass required for damselflies to avoid starvation mortality. Dashed lines on plots of damselfly body size indicate S, the
threshold size for emergence to the adult stage. Blue fill on plots of damselfly abundance gives the juvenile abundance, and orange fill gives the adult abundance.
Grey horizontal bars at the bottom of plots indicate the emergence window (temperature T > 20°C).

maintenance and mortality. However, damselfly population
sizes increased abruptly when they underwent a warming-
induced change in life history, for example, when transitioning
from one to more than one generation per year or from two to
more than two generations per year at higher temperatures.
Thus, the life-history shifts were adaptive. Across the full
temperature range of T,, from 7.5 to 30°C, and across all life--
history strategies, the damselfly population size was above the
persistence level and increased overall with warming
(figure 4). Because individual damselflies consumed more
resources at higher temperatures, we found a slight decrease
in zooplankton population biomass with warming (figure 4).
At major life-history transitions in the consumer, resource bio-
mass increased as damselflies spent more time outside of
ponds in the adult stage (e.g. damselflies transitioned from
spending one 30-day period in the adult stage every year
to alternating between one and two 30-day periods), during
which the resource population recovered (figure 4).

There are multiple pathways by which increased tempera-
tures can affect consumer dynamics and persistence
(figure 2): longer growing seasons and emergence windows
and more-rapid growth allow more generations per year,
resulting in positive effects on the consumer, but increased
maintenance and mortality have negative effects on the con-
sumer. Our Alternative Models break these pathways, letting
us disentangle their net effects (electronic supplementary
material and figure 5). Alternative Model 1 forces the consu-
mer to have at most one generation per year over the entire
temperature range, which prevents it from taking advantage
of the longer growing seasons, resulting in a steep decline in
abundance with warming, and extinction around T,, = 26°C

(figure 5a). This result demonstrates that life-history tran-
sitions are key to the consumer’s persistence under warming,.

Alternative Model 2 fixes the temperature-dependent bio-
logical rates, which alleviates the direct negative effects of
increased maintenance and mortality, but prevents juveniles
from more rapidly maturing. This leads to an overall flat
effect of warming (i.e. a small change in population size
over the full temperature range) on consumer populations
(figure 5b) and suggests that varying season length alone
can facilitate consumer persistence under climate warming.
By contrast, Alternative Model 3 fixes the season length, so
that multiple generations per year are possible only at the
highest average temperatures, resulting in substantial popu-
lation declines with warming as the consumer is forced to
maintain one generation per year over a large temperature
range (figure 5c). Results of Alternative Models 2 and 3 indi-
cate that varying season length and biological rates together
are necessary to realize the full range of life-history strategies
and overall increase in consumer population size with warm-
ing in the Standard Model (figure 4). Together, these
Alternative Models show the importance of adaptive shifts
in life history in promoting persistence of the consumer.

4. Discussion

With our size-structured consumer-resource model, we
demonstrate that although there are ranges where popu-
lations decline with warming, across the entire temperature
range warming results in a larger consumer population,
owing to increased rates of prey ingestion and growth,
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Figure 4. Bifurcation diagram demonstrating effects of average temperature
in the Standard Model. Yearly average zooplankton biomass, Z (c), juvenile
damselfly abundance, C (b), and the number of emerging adult damsel-
flies,C; (a). Annotations at the top label the damselflies’ qualitative life-
history dynamics. As temperature increases, damselflies transition from
fewer than one generation per year (less than 1 yr™', to one generation
per year (1yr~", to one or two generations per year (1-2 yr™, to two gen-
erations per year (2 yr~', to more than two generations per year (greater
than 2 yr~". Multiple population abundances and trajectories are possible
(depicted by multiple coloured lines) within the following life-history strat-
egies: ‘less than 1 yr~", 12 yr~" and ‘greater than 2 yr—". Within these
regions, the damselfly population has different numbers of cohorts in each
year of the model simulation (e.g. within the 1-2 yr™' strategy with T,
between 13 and 23°C, one cohort is produced in some years and two cohorts
are produced in other years). This results in different initial abundances and
trajectories over the year. For the life-history strategies of one (1 yr™") or
two generations per year 2 yr~' the same number of cohorts and abundances
are produced in every model simulation at a given temperature, resulting in a
single population trajectory for that strategy.

a longer growing season, and a larger emergence window,
which altogether shorten consumer generation times.
This life-history change in the consumer can offset warm-
ing-induced population declines that influence resource
population biomass. In fact, high temperatures enabled

damselflies to transition to more than one generation per
year, resulting in larger damselfly population sizes and
enhanced population persistence. As a result, the larger
damselfly population exerted stronger predation pressure,
decreasing zooplankton biomass overall across the temperature
range. Increasing the growing season length and consumer
biological rates with temperature both contributed to decreas-
ing generation times in the consumer. In simulations of our
Alternative Models, the damselfly population went extinct
at higher temperatures when they were forced to maintain
the same life-history strategy of one generation per year
(figure 5a). Therefore, accounting for life-cycle complexity
and temperature seasonality reversed the prediction of many
theoretical models that climate warming decreases consumer
persistence or destabilizes communities owing to direct effects
of temperature on biological rates.

(a) Warming induces changes in consumer life history
We found that warming decreased damselfly generation time
through two mechanisms: increasing biological rates and
season length. First, warming increased damselfly rates of
resource ingestion and growth, advancing their emergence to
the adult stage (figure 3). Second, warming lengthened the
growing season and increased the width of the emergence
window, which enabled damselflies to emerge a second time
in some years after reaching the emergence size. Restricting
changes in resource ingestion rates or seasonality delayed
life-history transitions in Alternative Models 2 and 3, in
which damselflies did not transition to two generations per
year at T,, < 30°C (figure 5b,c). If damselflies cannot ingest
more resources and grow faster by increasing their attack
and handling rates, a relatively longer season is necessary to
permit multiple emergence events per year. Alternatively, if
season length does not vary, the damselfly growth rate must
be sufficiently high to reach the emergence size twice per
year. However, allowing either biological rates or season
length to vary with temperature was sufficient to prevent
population extinction at higher temperatures (figure 5), and
previous research suggests that each mechanism contributes
to changes in life history. Experimental warming increases
growth rates and advances emergence in dragonflies and dam-
selflies [61-63], and their life histories vary latitudinally with
changes in season length, where these insects have fewer
than one generation per year at high latitudes and multiple
generations per year at low latitudes [49,58].

(b) Changes in consumer life-history and temperature
seasonality affect consumer persistence

Life-history transitions are necessary to offset warming-
induced population declines and delay extinction in our
system. Restricting damselflies to one generation or fewer
per year (Alternative Model 1) resulted in damselfly popu-
lation declines at higher temperatures owing to longer
exposure to higher rates of background and maintenance mor-
tality with a longer growing season (figure 5a). The key to
escaping increased mortality at higher temperatures is decreas-
ing the ‘the window of vulnerability’, by translating increased
rates of resource ingestion and growth into higher rates of sur-
vival to the adult stage and earlier adult emergence [26],
thereby increasing population-level reproduction. Although
our model does not explore the effects of faster maturation
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Figure 5. Bifurcation diagrams demonstrating effects of temperature in our Alternative Models. (a) Alternative Model 1, (b) Alternative Model 2, (c) Alternative
Model 3. Yearly average zooplankton biomass (Z, bottom panel), juvenile damselfly abundance (C, middle panel), and the number of emerging adult damselflies
(C,, top panel). Annotations at the top divide the diagram according to the damselflies” qualitative life-history dynamics. As temperature increases damselflies
transition from fewer than one generation per year (less than 1 yr~") to more than one generation per year (1-2 yr™"), except in (a), where damselflies go
extinct at high temperatures. Multiple trajectories shown within the “less than 1 yr~" and “1-2 yr™" strategies are as described for figure 4.

on individual reproductive rates, which could affect popu-
lation-level reproduction, these results may still apply to
ectotherms with vulnerable juvenile stages. In fact, the benefits
of faster transitions from juvenile to adult stages for offsetting
higher mortality with warming have been demonstrated for
diverse ectotherms ranging from insects to anurans to fish
[27-29,64]. However, more research is needed to assess the
generality of these results for consumers with spatially and
temporally overlapping juvenile and adult stages that may
compete for resources, using models that account for life-
cycle complexity and seasonality to simulate effects of climate
warming (however, see [18]).

(c) Effects of life-history transitions on resource biomass
and community structure

Damselflies more effectively suppressed resource biomass
with warming because their rate of resource ingestion
increased with temperature through their attack rates and
handling times, and their population size increased as they
transitioned to shorter generation times (figure 4). Therefore,
our Standard Model predicted a top-heavy community at
warmer temperatures relative to our Alternative Models
restricting changes in consumer life history (figure 5). Our
prediction of increasing consumer to resource population
size is consistent with experiments [65,66] and the unstruc-
tured population model of [10] assuming that consumer
biomass gains from ingestion increase more rapidly with

warming than losses from maintenance, and that prey carry-
ing capacity does not vary with temperature (also equivalent
to ‘scenario a’ of [6], their fig. 4). Vasseur & McCann [10] pre-
dicted that this scenario would increase consumer persistence
and destabilize community dynamics. Our model does not
predict the destabilization of community dynamics because
damselflies did not overexploit their prey. Three mechanisms
likely explain this difference. First, when damselflies emerged
from ponds as adults, the zooplankton biomass recovered
to carrying capacity as adult damselflies switched to consum-
ing terrestrial resources (figure 3). Second, interference
mortality prevented the damselfly population from becoming
too large and depleting the prey (see also [16]). Third,
our assumption of immigration of zooplankton is known
to prevent large-amplitude predator—prey cycles in unstruc-
tured population models. All of these mechanisms should
help prevent predator—prey cycles resulting from over-
exploitation of resources [67,68]. Therefore, incorporating
life-cycle complexity, temperature seasonality and other com-
ponents of biological realism predicts alternative outcomes
for consumer—resource dynamics under warming compared
with simpler, unstructured models.

(d) Model assumptions

Although our model improves ecological realism through
added complexity, it has simplifying assumptions that may
have affected the outcome of increasing temperature on
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population dynamics. Notably, we did not include tempera-
ture dependence of the resource carrying capacity or the
intraspecific competition of consumers owing to lack of infor-
mation. We modelled increases in resource ingestion rates
using the Arrhenius equation, though it is now recognized
that unimodal temperature functions are more appropriate
for describing changes in the attack rate and maximum inges-
tion rate over a large temperature range [2,6]. We used the
Arrhenius equation because it provided a better fit to our
experimental data than a unimodal function for temperatures
at or below 35°C [56], and we restricted model simulations
to T,y < 30°C. This formulation already represents an increase
of 17°C above the current average in southwestern Michigan
ponds, well beyond the projected increase of 3 to 5°C by
2100 for the high emissions scenario RCP 8.5 [69]. Therefore,
the Arrhenius equation is appropriate for modelling popu-
lation responses to warming at or beyond temperatures that
are realistic for our study system. The inclusion of a unimodal
temperature function for resource attack and handling rates
could reduce the consumer population size or cause extinction
at high temperatures [6]. Temperature dependence of the zoo-
plankton carrying capacity would be unlikely to change the
qualitative outcomes of our simulations, because damselflies
never depleted their resources enough to induce starvation
mortality, except at high temperatures (figure 3c). Simulations
in which we varied the value of the carrying capacity, K, from
just above 0 to 100 at different temperatures showed that it had
no qualitative effect on consumer-resource dynamics (see
electronic supplementary material, figure S3).

We also made simplifying assumptions about damselfly
life-history to demonstrate temperature effects on populations.
For example, we omitted the effects of photoperiod when
defining the growing season and emergence window, despite
its importance for regulating the damselfly life cycle [70,71].
We also assumed a linear increase in biological rates with
body size, although the effects of temperature can vary con-
siderably with size and life stage [7]. To update our model,
more research is needed to quantify biological rates across a
range of temperatures and damselfly body sizes. Despite
these simplifying assumptions, our Standard Model at the
reference temperature accurately reflects the dynamics of
damselfly populations in southwestern Michigan ponds
(compare with figure 3b; electronic supplementary material,
figure S1). In addition, our model captures many of the
same dynamics in the more complex damselfly population
model of [16], including stable cycles of yearly emergence
within a life-history strategy and smaller average population
sizes at lower temperatures (figures 3 and 4). That model
was not designed to simulate climate change effects on popu-
lations, and it also differs in its depiction of transitions
between life-history strategies (i.e. between one emergence
every other year and one every year) by capturing ‘cohort-
splitting’, or sub-populations that emerge in different years
[58]. Although our model cannot demonstrate the effects of
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