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Abstract—Over the past two decades, the volume of electronics
and software in cars have grown tremendously. But this growth
has also resulted in hardware and software architectures that
are proving to be a bottleneck for further innovation and
efficient design flows, especially when implementing compute-
intensive functions necessary for modern autonomous features.
For example, centralized architectures that are driven by the use
of more powerful processors result in higher sensor-to-actuator
delays. Similarly, timing uncertainties increase as signal-based in-
vehicle communication is being replaced by more dynamic service-
oriented communication architectures. Finally, the increasing vol-
ume of software running on powerful multicore ECUs is making
timing analysis, including WCET estimation, to be very complex.
As a result, timing estimates, when safe, are very pessimistic, which
makes efficient implementations to be difficult. In this position
paper, we outline some of these emerging challenges and discuss
potential solutions.

Index Terms—Software-defined vehicles, autonomous vehicles

I. INTRODUCTION

There has been a tremendous growth in the volume of
software in modern cars, and most emerging autonomous fea-
tures are now software-based, resulting in the term “software-
defined vehicles” (SDVs). This has necessitated techniques
for scheduling [1]-[3] and management of such software,
especially to ensure their real-time behavior. At the same time,
the need for certifying the functional and timing correctness of
such software has led to work on testing [4], [5] and formal
verification of automotive control software [6]-[9]. For this,
control-theoretic techniques and reachability analysis have been
used for safety verification [10]-[14]. But both verification
and efficient implementations of automotive control software
has been complicated by evolving “zone-based” automotive
architectures that result in large delays between sensing and ac-
tuation. Service-oriented in-vehicle communication, in contrast
to classical signal based ones have also resulted in higher timing
uncertainties. Therefore, ensuring timing safety results in overly
pessimistic timing estimates and inefficient implementations.
Alternatively, the controllers need to be redesigned to mitigate
the impact of large delays and timing uncertainties. Several
studies have addressed this problem [15], [16], including how to
synthesize delay-tolerant controllers [17], [18] and how to co-
synthesize controllers and their underlying task schedules [19]-
[22]. This is also related to providing timing isolation to
critical control software [23], [24] and the scheduling of mixed-
criticality tasks [25].

In spite of such a large volume of work in this domain,
there are still a number of open challenges. We discuss some of
them in this paper along with potential directions for addressing

them. We first discuss some of the timing analysis challenges
associated with service-oriented in-vehicle communication in
SDVs. This is followed by a description of the role of digital
twins in early validation and design of SVDs. Finally, we
discuss how to formally verify and synthesize efficient con-
trol software in SDV architectures in the presence of timing
uncertainties.

II. SERVICE-ORIENTED COMMUNICATION IN SDVS

Traditionally, exchange of data between electronic con-
trol units (ECUs) in the automotive has been established
using signal-based communication. This involves statically-
configured systems during the system design phase, using spe-
cific protocols such as CAN and LIN. With the automotive in-
dustry moving towards SDVs, service-oriented communication
(SOC) or service-oriented architecture (SOA) is being adopted
into automotive electrical architectures [26]. SOC manages
and distributes the communication between ECUs dynamically,
using the Ethernet protocol, thus allowing more flexibility and
scalability. However, it also requires more complex software.
In this section we briefly discuss the need and also the impact
of service oriented communication on SDVs.

Service-oriented communication is established between com-
municating entities using a “publish-subscribe” mechanism,
where the communicating systems discover each other over
the network and then proceed to communicate, thus providing
dynamism and flexibility. For example, the various sensors in
the vehicle (e.g., wheel speed sensor) can “publish” data and
a “client,” e.g., the powertrain control module or the advanced
driver assistance system (ADAS) module, that is interested in
consuming this data can subscribe to the wheel speed sensor
service and start receiving the relevant data.

A. Advantages of Service-oriented Communication

The reason behind adopting SOC in the automotive do-
main is to increase the update and upgrade capabilities of
software, even post sale of vehicles, which is the mission
of SDVs. Further, it also provides scalability since signal-
based communication can become increasingly complex as the
number of ECUs in a vehicle increases. SOC also allows easy
integration of new ECUs and updates to the communication
protocol, making it more scalable. Additionally, signal-based
communication requires a direct connection between the ECUs,
which can make it inflexible in terms of adding new features
or changing the communication protocol. SOC, on the other
hand allows a more flexible communication structure, as the
communicating entities are loosely coupled.



B. Middleware

One of the main advancements for SDV is the move towards
IP (Internet Protocol) based communication, and as such it
enables the use of higher-layer protocols such as middleware
like SOME/IP (Scalable service-Oriented MiddlewarE over IP)
[27] and DDS (Data Distribution Service) [28]. Therefore,
a comparison of the available protocols is important from a
functional and performance perspective [29]. While SOME/IP
was developed specifically for automotive needs, DDS was
developed by OMG (Object Management Group) for real-time
applications such as defense and aerospace. Both SOME/IP and
DDS are broker-less publish-subscribe protocols with service
discovery and serialization mechanisms, and are integrated
with Adaptive AUTOSAR specifications (SOME/IP is available
with AUTOSAR Classic too). However, they have some key
differences: DDS provides quality of services (QoS), whereas
SOME/IP does not have QoS in its specifications. However,
SOME/IP is more readily available and is more integrated with
AUTOSAR vendor solutions than DDS, owing to its relevance
in automotive use cases.

C. Challenges in Service-oriented Communication

While SOC can have many benefits for SDV architectures,
there are also a number of challenges that must be addressed
in order to effectively implement SOC in an SDV context.
One of the major challenges is ensuring that the services being
exchanged between different software systems are well-defined
and self-contained. This requires a significant amount of design
and planning to ensure that the services are structured at the
right level of granularity such that they are modular and they
meet the needs of the overall system. From an automotive
perspective, where real-time constraints are important due to
safety-critical functions, another challenge is to ensure that
real-time guarantees (hard or soft) are met. Timing analysis
for signal-based communication over CAN/CAN-FD has been
studied and developed for decades [30], [31]. However, there is
little work on timing predictability for SOC [32]. Additionally,
since service-oriented communication needs additional soft-
ware layers (such as a middleware: SOME/IP or DDS) they also
have an impact on the resource consumption of the hardware,
which is typically constrained for memory and compute power.
While no significant difference has been reported in terms of
performance in using the SOME/IP versus DDS, it depends on
the implementation to a large extent.

Thus, moving to SOC for enabling SDVs has several advan-
tages. However, there are also challenges in designing SOC-
based architectures, which may be resolved with real-time
analysis and techniques discussed later in this paper.

III. “SHIFT-LEFT” DEVELOPMENT OF SDVSs

The automotive industry is in a flux as it embraces a dis-
ruption from multiple dimensions that include battery powered
vehicles and higher levels of autonomy. In all of these cases,
and particularly for autonomous vehicles, one trend is clear: the
car of the future will be defined by software. This market for
SDVs is a hyper-competitive one with high pressures to mitigate

the increasingly shorter software development cycles. This is
aggressively driving the so called “shift-left”” methodology that
enables software development, characterization, and verifica-
tion way before silicon hardware is available. However, such
software development and validation can be meaningful only
if the complete system-of systems (including the environment,
software, compute and the actuation) can be virtually modeled
throughout the design life-cycle with appropriate levels of ab-
straction and fidelity [33], [34]. In this section, we discuss how
integrated Digital Twin Platforms can model simple component
systems to “system-of-systems” and be applied to SDVs.
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Fig. 1. Overview of Digital Twin platform for SDV, highlighting the Siemens
PAVE360 solution as a case study.

A. Digital Twin Platforms for SDV

At the highest level, a Digital Twin (DT) platform for a SDV
comprises of digital twins for sensing (DT-SENSE), compute
(DT-COMPUTE) and actuation (DT-ACTUATE), representing
the three key components of any vehicle (see Figure 1). Apart
from these, an interconnect (DT-BACKPLANE) is needed to
connect all the digital twins together in a synchronized fashion.
Depending on the level of abstraction, each of these digital
twins may be represented at different levels of fidelity, offering
trade-offs between simulation speed and accuracy. Taking DT-
COMPUTE as an example, we have the following options for
abstraction at different points in the methodology timeline (also
illustrated inside the DT-COMPUTE box in Figure 1).

1. DT-XPLORE: At the very initial stage of a new system
design, typically, there is no production software or hardware
available. However, system architects have initial hypotheses
regarding few key properties of the system. These may in-
clude the number of software components, periodicity of the
components, nature of the workload of the respective compo-
nents (e.g., compute bound vs. I/O bound) and so on. System
architects also have knowledge about the expected hardware
— regarding core types, number of cores, and their clock
frequencies. Based on this limited input, DT-XPLORE auto-
generates a digital twin that can (i) generate abstract software
that mimics the workload, as well as (i) a virtual hardware



platform that simulates the instruction sets. DT-XPLORE is
designed in a way that allows architects to rapidly change
the system properties (whether it is hardware or software) and
quickly iterate on them.

2. DT-VIRTUAL: With progression of the design cycle,
further decisions on hardware and silicon are made and further
information on peripheral and CPU sub-systems are known.
This allows engineers to create virtual platforms, typically
based on SystemC/TLM?2.0 [35], and models of the ECUs. In
addition, the nature of software needed for the next-generation
product is better known and foundation software components
become available. Since complete ECU virtual models, and a
software baseline that is in path to production is used, higher
fidelity metrics are available for characterization of hardware
and software compared to what is possible in DT-XPLORE.

3. DT-HYBRID: The next environment in this methodology
timeline progression is DT-HYBRID. The core idea of the
hybrid platform is to evaluate the system with both speed and
fidelity. The hybrid platform allow users to run large amounts of
software (SW) quickly to a point of interest on virtual models,
and then run software they are most interested in accurately on
hardware in RTL. When running accurately, hybrid platforms
support RTL in simulation, emulation, or FPGA environments.
This offers users the flexibility to strike the right balance
between fidelity, speed, and compilation time in a seamless
manner.

As outlined earlier, the emerging trend for SDV is a cen-
tralized compute architecture with zonal ECUs. Each ECU in
such a distributed system may be represented by any of the
above abstractions like DT-XPLORE, DT-VIRTUAL, or DT-
HYBRID. But an interconnect DT-BACKPLANE is required
to enable synchronous communication between them, as illus-
trated in Figure 1. Traditionally, each digital twin described
above comes with its own IDE, with debug and visualization
tools. For the system architect, interacting with heterogeneous
tooling at different points of the methodology timeline quickly
becomes onerous.

B. A Seamless Front-End for all Digital Twins

We envision a unified front-end that offers seamless tool ex-
perience across multiple digital twins for development and anal-
ysis. Such a front-end should deliver capabilities to develop,
debug, and profile heterogeneous software environments across
the breadth of DT-COMPUTE models, and the interactions
between them. The same IDE should allow for profiling, visual-
ization, and analysis of various software metrics. For example,
activity on single/multi-core CPUs, processes/threads, memory,
networking, file system, I/O, and other OS and application
specific data. In addition, profiling of hardware performance
counters can provide deeper insights into hardware activity.

C. Case Studies

The methodology and tooling discussed above is enabled by
the Siemens PAVE360 solution [36], [37]. Figure 1 overlays it
on the architecture discussed in the subsections III-A and III-B.
Due to space restrictions, we do not discuss further details of
the individual tools, but we provide below three examples, to

CPU Freq (MHz) | Avg CPU Util (%)
Cortex A53x1 100 100
Cortex A53x1 1000 70
Cortex A53x2 100 43
TABLE T

EXAMPLE 1: CPU CONFIGURATIONS EXPLORED USING DT-XPLORE .

illustrate how Digital Twin technologies are applied to solve
industrial problems using the PAVE360 solution.
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Fig. 2. Example highlighting DT-XPLORE for ECU consolidation.

Our first example (Figure 2) shows the application of
the DT-XPLORE technology using PAVE360. As discussed
earlier, the SDV trend towards zonal architectures is leading to
ECU consolidation. In this example, system architects explore
consolidating a Steering ECU and a Wheel ECU, along with ac-
commodating future growth for software defined features. With
limited data on software and hardware, DT-XPLORE technol-
ogy allows users to define the hardware and software attributes
for heir envisioned zonal ECU design using a standards based
description in XML. Based on this specification from the user,
the DT-XPLORE tool generates an abstract virtual model
of hardware, and a synthetic software workload. The artifacts
produced are representative of attributes defined by the user for
the zonal ECU design. Post model generation, the tool executes
the software workload on the hardware model, and generates
relevant metrics of interest. The PAVE360 front-end IDE allows
for visualization and analysis of such generated metrics. Results
from execution of the said synthetic software workload for the
zonal ECU on three different virtual hardware configurations
are presented in Table I. The design objective of less than 50%
average CPU utilization for the zonal ECU was achieved with
a Cortex A53x2 core CPU clocked at 100 MHz.

Our next example (Figure 3) showcases the application
of DT-VIRTUAL and DT-HYBRID to analyze containerized
software applications running on top of the SOAFEE compliant
software stack [38]. SOAFEE is an open software architecture
for SDV that is being actively developed by an industry led
consortium. Earlier in this paper, we discussed the significance
of SOAs in SDVs. SOAFEE is pursuing its enablement by
blending best practices from cloud-native with requirements of
safety, security, and real-time requirements from the automotive
domain. The automotive ecosystem is faced with the challenge
of designing IPs, SoCs, and ECUs, to accommodate SOAFEE-
like architectures. We integrated a reference implementation
of SOAFEE based on Sokol Flex OS from Siemens into DT-
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Fig. 3. Example to illustrate DT-VIRTUALand DT-HYBRID.

CPU Latency (secs) | Avg CPU Util (%)
Cortex A78x2 5.3 100
Cortex A78x8 3.7 16

TABLE II
CPU WORKLOADS EXPLORED USING DT-VIRTUAL AND DT-HYBRID.

VIRTUAL and DT-HYBRID. We deployed containers that run
the open-source armnn TFLite benchmark as workload. The
workload runs with CPUAcc back-end that takes advantage of
floating-point extensions, and feature a multi-threaded software
implementation. Once again, the same PAVE360 front-end was
used for visualization and analysis of metrics. The metrics
from executing the containerized workload on two different
hardware configurations are tabulated in Table II. We observe
that due to thread-level parallelism in the workload there is
improved performance in latency and average CPU utilization,
when moving from Cortex A78x2 to a Cortex A78x8 hardware
configuration.
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Fig. 4. Example to illustrate significance of DT-BACKPLANE.

The final example, illustrated in Figure 4, highlights the
significance of the DT-BACKPLANE. The system being mod-
eled here includes an ADAS ECU and an instrument cluster
ECU, where both are ingesting external world data via camera
and other vehicle virtual sensors. The DT-BACKPLANE syn-
chronizes the virtual models of the two ECUs and models
the communication between them. It also serves as the com-
munication medium from the environment modeled by Carla
[39], into the modeled ECU-DTs. As in our other examples,
the PAVE360 front-end serves as the unified IDE for metric
visualization and analysis. In an experimental run that involved

analysis of software implementing PID controllers for control
of steering and throttle control systems, a 300% jitter was
observed in the Worst Case Execution Time (WCET) of the PID
controller software routine. Further analysis using the PAVE360
front-end indicated other software applications running on the
ADAS ECU that were bogging down CPU resources and
inadvertently introducing the unacceptable jitter into the real-
time PID control loop implemented by the ADAS software
application. This condition was mitigated using appropriate
thread-to-core affinity mechanisms to remove CPU contention.
The details of this mitigation are being skipped for the lack of
space.

These case studies show that Digital Twins are being suc-
cessfully applied to “shift-left” the development of SDVs. As
industrial adoption of this methodology grows, we expect to
see applications of Digital Twin platforms to numerous other
use cases throughout the design cycle in innovative ways.

IV. TOOLS FOR ASSURED (AND EFFICIENT) AUTONOMY

While verification and certification are well-known chal-
lenges in the design of autonomous vehicles, in this section we
focus on those that arise specifically in the context of SDVs.
The algorithmic core of most autonomous features consist of
feedback control loops. There is a large body of literature on
designing and verifying such controllers. But their software
implementation, especially on modern automotive architectures,
pose a number of unresolved challenges. The previous two sec-
tions discussed some aspects of such emerging automotive elec-
trical and electronic (E/E) architectures, viz., the move towards
centralized compute architectures with zonal ECUs, and the
use of service-oriented architectures. The former necessitates
distributed implementations of automotive controllers, where
sampled plant states from different sensors need to be commu-
nicated to a central compute unit and control signals computed
by this unit are transmitted to multiple actuators. The use of
service-oriented, in contrast to signal-based, communication
adds considerable timing uncertainties in the communication
of both sampled and actuation signals.

Further, fundamental timing analysis problems such as es-
timating the worse case execution time (WCET) of software
tasks, especially for software and processor architectures found
in modern vehicles, have still not been solved. In fact, solving
the WCET analysis appears to involve challenges that will
likely never be fully resolved [40], especially as modern
processor architectures continue to become more complex and
support features that optimize the average rather that the worse-
case execution time.

The traditional workflow for implementing automotive con-
trollers consist of first designing a control strategy, followed by
implementing it as a software task, that is scheduled to meet the
deadline determined during the controller design phase. This
ensures a separation of concerns that enables control theorists
and embedded systems engineers to communicate only via
deadlines that need to be met. This flow is widely practiced in
the automotive domain. However, meeting all deadlines, that is
assumed in this design flow, is becoming exceedingly difficult
for the reasons outlined above.



For WCET estimates and system-level timing analysis results
for service-oriented architectures to be safe, a significant degree
of overestimation gets introduced. Obtaining safe and tight
WCET and timing estimates is a losing proposition, particularly
for future automotive E/E architectures and software imple-
menting machine learning based complex autonomous features.
Therefore, meeting all task deadlines with overestimated timing
values and providing verifiable guarantees will lead to overly
pessimistic and infeasible implementations.

A. An Efficient and Verifiable Design Flow
In order to address the above challenge of obtaining an ef-

control task, is the safety property satisfied? and (ii) Given a
set of control tasks, how to implement and schedule them to
meet their specified safety properties?

The answer to (i) involves a reachability analysis, which is
hard for hybrid systems. But we have developed a number of
approximate reachability analysis techniques [10] using which
we can compute safe over-approximations of the reachable set
for a closed-loop system. We have shown that for a number
of sample problems from the automotive domain, we can
answer (i) effectively in a scalable manner. The answer to (ii),
i.e., the synthesis problem is more complex.

Figure 6 provides
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ficient and verifiable implementation of automotive controllers
on modern zone-based architectures, we need to deviate from

the traditional workflow outlined above. In particular, instead
of focusing on meeting all deadlines, the focus should shift
to satisfying “system-level properties” that are of relevance.
Given the inherent robustness in most feedback controllers,
such high-level properties may be satisfied even in the presence
of certain deadline misses. In what follows, we provide an
example of what such a system-level property might be, and
how to synthesize an efficient and verifiable implementation
satisfying this property. We finally outline the necessary tools
to support this new design flow.

The system-level property we outline here is a safety property
that may be defined as follows. Given a plant and a controller
that has been designed for it, assuming “ideal” timing behavior,
let 7., be a trajectory in the state space of the closed-loop
system (plant + controller) when the control task meets all
deadlines. This is referred to as the ideal or nominal behavior.
Any other trajectory 7 is referred to as “safe” if it is at most
a specified d*¥¢ distance away from 7,,,,, under a suitably
defined distance metric.

Figure 5 [10] il-
lustrates this safety
property, where the
solid black line shows -
the nominal behavior
Tnom, I-€., the evolu-
tion of the system in
the state space under
ideal timing behavior.
The light blue enve-
lope or spiral around this nominal trajectory is a “safety
margin” that encompasses all trajectories that are at most
d*e distance away from T7,,,,. All the “green trajectories”
(i.e., the trajectories 7) are therefore safe and represent system
evolutions under certain non-ideal timing behavior or deadline
misses, whereas the “red” trajectories” are unsafe, i.e., they
represent deadline misses that are not acceptable.

The intuition here is that certain deadline miss patterns will
result in a different but acceptable state space trajectory, as long
as its deviation is not much from the ideal one. These allowed
deadline misses — a deviation from the requirement that all
deadlines must be met — allows a more flexible and efficient
implementation. Given this definition of safety, there are two
relevant questions: (i) For a given deadline miss pattern for a

Fig. 5. System-level safety i)roperty [10].
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first step is to deter-

mine a common sampling period p by suitably increasing or
reducing each period Pj, Ps,.... This results in a new task
set @ that is then scheduled in a time-triggered manner on
an ECU where time is partitioned into slots of the chosen
period size p. Such a schedule @ only allows a subset of
tasks from the set 77,75, ... to be executed in each slot. The
ones not scheduled miss their deadlines. In the example shown
in Figure 6, the schedule for the task 737 is 110110..., that
of 75 is 010101..., 75 is 101101..., and finally that of T}y
is 001001 ..., where a 1 denotes the deadline being met and
a 0 a deadline miss. Here, each slot is only large enough to
execute at most two of the four tasks. Although there are several
deadline misses, the schedule is derived in a manner that the
safety property outlined above (see Figure 5) is satisfied for all
the four control tasks. If all the deadlines were to be met, then
the full task set (77 to T;) would not have been implementable
on a single resource and more ECUs would be necessary.

In order to synthesize the above schedule, for each control
task T; we first identify a set of valid deadline miss patterns
using the solution to problem (i). We then combine such miss
patterns of multiple tasks, using automata-theoretic techniques,
to obtain a schedule for the full set of tasks. Such an “imple-
mentation” (or schedule) is both efficient, as well as guaranteed
to satisfy the safety property outlined above. But there could be
many other notions of such system-level properties and how the
synthesis problem (ii) can be solved for such properties remains
an open problem.

V. CONCLUDING REMARKS

In this position paper we have outlined some emerging
challenges and potential solutions for implementing
autonomous features in SDVs. In particular, we discussed
how real-time guarantees are difficult to provide in service-
oriented automotive in-vehicle communication architectures.
Following this, we discussed the role of digital twin platforms
to enable shorter innovation and software development
cycles in the automotive domain. Finally, we outlined how
timing uncertainties associated with emerging automotive E/E



architectures and service-oriented communication makes it
difficult to obtain efficient and verifiable implementations of
automotive controllers that form the core of many autonomous
features. Here, we also discussed some potential verification
and synthesis strategies that should be extended to real-life
automotive architectures.
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