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ABSTRACT: Bolapolyphiles constitute a versatile class of materials branch number branch length attachment point
with a demonstrated potential to form a wide variety of complex

ordered mesophases. In particular, cubic network phases (like the Molecular
gyroid, primitive, and diamond phases) have been a target of many Features
studies for their ability to create percolating 3D nanosized channels.

In this study, molecular simulations are used to explore the phase @
behavior of bolapolyphiles containing a rigid rodlike core, associating
hydrophilic core ends and a hydrophobic side chain with a multident )
architecture, i.e., where the branching pattern can vary from bident network
(two branches) to hexadent (six branches). Upon network phase  Phases |
formation, its skeleton is made up of “nodes” populated by the core

ends and “struts” populated by the cores. It is shown that, by varying

the side chain length, branching pattern, and attachment point to the

core, one can alter the crowding around the cores and hence tune the nodal size and nodal valence (i.e., number of connecting
struts) which lead to different types of network morphologies. For example, for a fixed total side chain length, having more branches
generates a stronger crowding around the molecular core, driving them to form bundlelike domains with curvier interfaces that result
in thinner struts. Also, attaching the lateral chain closer to one core end breaks the symmetry between the environments around the
two core ends, leading to networks with bimodal nodal sizes. Importantly, since the characterization of (ordered or partially ordered)
network phases is challenging given the potential incompatibilities between the simulation box size with the structure’s space group
periodic symmetry and the effect of morphological defects, a detailed framework is presented to analyze and fully characterize the
unit cell parameters and structure factor of such systems.

1. INTRODUCTION phases with two-dimensional (2D) periodicity® to complex
cubic phases with three-dimensional (3D) periodicity.”®
Extensive experimental efforts have been made to design
new bolapolyphiles and study their self-assembling behavior.
To alter the shape anisotropy, different lengths for the -
conjugated rods have been investigated by connecting different
number of benzene rings, thiophene rings, and ethynylene
groups; ~'” glycerol groups are often used as the terminal
groups for the rigid rod. To get tunable intramolecular
amphiphilicity, a variety of lateral chain chemistries have been
examined including alkyl and semiperfluoroalkyl chains®” and
oligo(dimethylsiloxane) and carbosilane chains.'"'* To modify
the interfacial curvature between the immiscible nano-
segregated domains, linear*” and branched™® lateral chains

Liquid crystals (LCs) have attracted significant attention for
both fundamental scientific research and commercial engineer-
ing applications due to their unique combination of structural
order and individual molecular fluidity." Among LCs,
thermotropic bolapolyphiles stand out for their molecular
design versatility which can be associated with a large library of
potential building blocks and the resulting complexity and
richness of their mesophase behavior.” A typical bolapolyphilic
molecule contains at least three mutually incompatible
segments (e.g, see Figure S1), in which a rodlike rigid #-
conjugated core is often used as the molecular backbone
decorated with hydrophilic glycerol groups at both ends and
with flexible lipophilic chains attached laterally. The rodlike
rigid core can provide the necessary shape anisotropy to
promote intermolecular alignment, and the self-attractive
glycerol group can generate the driving force for nanoscale
segregation by forming hydrogen bonds." Adding a flexible Received: April 6, 2023
lateral chain as the third incompatible segment can largely

expand the mesophase morphology from simple smectic

phases with one-dimensional (1D) periodicity” to columnar
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have been studied and several attaching arrangements
explored, leading to bolapolyphiles of T-shape,” X-shape,"
and 7-shape.'” For each choice of bolapolyphile shape and
chemistry, the relative lengths of the incompatible segments
were also varied and found to flay an important role in shaping
the self-assembled structures.

The functionality of an LC material depends strongly on the
structural features and molecular packing details of its ordered
mesophase. Bicontinuous cubic phases, with their unique 3D
continuous structures and large internal interfacial areas, have
received significant interest for their promising applications as
templates and structure-directing agents to fabricate meso-
porous materials,'>'® nanofiltration membranes,'” ener
storage and conversion devices,"*™>' photonic crystals,**~
and biophotonic structures.”>*® Bicontinuous phases can be
constructed either by two identical or enantiomorphic
networks separated by a triply periodic minimal surface”” or
by a single network embedded in a continuous domain (albeit
the latter cases are sometimes referred to as cocontinuous
phases). Depending on the symmetry, three types of networks
are often observed, and six distinct phases can be constructed
based on the number of interpenetrating networks, namely, the
single and double gyroid (SG and DG), the single and double
diamond (SD and DD), and the single and double plumber’s
nightmare or primitive (SP and DP) cubic phases. Recent
studies of bolapolyphiles have already demonstrated their
ability to generate the SP,”* SD,*” DD® and DG'**°7*? phases.

By virtue of their complex and diverse chemical structures,
bolapolyphiles are able to form many intricate mesoscale
structures. However, these systems also pose significant
challenges to predictive modeling approaches which could
help unveil some of the relations between molecular design
and phase behavior. In principle, molecular dynamics (MD)
simulations can provide complementary information to
understand and predict the molecular self-assembly behavior.
However, simulations employing detailed atomistic force fields
cannot be run for the times needed to observe the spontaneous
self-assembly process of complex mesophases given the
computational budgets typically available. This limitation can
be circumvented by coarse-grained models, which simplify the
molecular descriptions to make simulation much more efficient
while still capturing the key physical interactions that drive the
self-assembly behavior.”>~** In this work, we apply a coarse-
grained (CG) model developed in our previous study””** to
further explore how variations in the design of bolapolyphiles
affect their mesophase behavior. Our CG model is generic as it
does not provide a direct mapping between each CG bead and
a specific chemistry, and it is therefore expected to primarily
provide qualitative insights into the trends of mesophase
formation without reproducing the exact phase behavior of
specific systems. In particular, we studied bolapolyphilic
molecules having different types of branched lateral chains
and different points of attachment. Our simulations demon-
strate that most of the bicontinuous cubic phases known
experimentally can be formed by suitable designs of the lateral
branched chain.

Also importantly, the structural analysis of 3D bicontinuous
ordered network phases can be challenging, as the shape,
relative dimensions, and orientation of the underlying crystal
unit cell are system dependent. The challenges are
compounded when dealing with simulated systems where
box sizes are typically small, fitting only a few unit cells, thus
creating significant finite size effects. While simulating systems

4

of different sizes were required to account for such effects,
structural defects are unavoidable and can render the structure
factor derived from the simulated configurations difficult to
interpret as it may exhibit diffraction peaks at positions which
are inconsistent with those of standard model networks. To
address this issue, in this work we also detail a methodological
framework to analyze the simulated structure factors to fully
characterize the morphological geometry of the various
network phases generated by the bolapolyphiles studied.

The rest of the paper is organized as follows. In section 2 we
present the molecular model of the systems to be investigated,
and in section 3 we describe the simulation and analysis
methods. In section 4 we present our main results, and in
section 5 we summarize our main findings and provide an
outlook of possible extensions.

2. MODEL

All interactions and properties in our simulation are reported
in terms of the usual reduced units. The fundamental
quantities required to calculate the reduced form are mj as
the characteristic mass, ¢ as the characteristic distance, and € as
the characteristic energy. The reduced quantities are written
with an asterisk:

E
) E*=_
€

2.1. Coarse-Grained Model and Force Field Parame-
ters. In our CG model, the 7-conjugated core and the terminal
glycerol groups are constructed by a linear rigid core of CG
beads with a bonded distance of 0.76. The flexible lateral chain
attached to the core is described by a bead—spring model.
Three types of CG beads are defined to discriminate different
interaction strengths between incompatible segments in the
bolapolyphiles (Figure 1a). Type GY (mnemonic for glycerol)
beads are located at the two ends of the rigid core to act as
strong self-attractive sites, akin to the glycerol group. Type PH
(mnemonic for phenyl) beads constitute the central section of
the rigid core to represent the typical polyphenyl core having a
relatively weak PH—PH interaction. Type AK (mnemonic for

(@) 279 (b) 123456

123456

® Type GY
® Type PH
( J Type AK Left (L)

Center (C)

Bident (Bi)

Tetradent (Tet)

Pentadent (Pen)

Figure 1. Topology of CG model for bolapolyphilic molecules. (a)
Reference labels for CG bead types in the force field. (b) Attaching
arrangements of the lateral chain to the rigid backbone or “core”. (c)
Representative lateral chain shapes. Bead colors are GY = red, PH =
blue, and AK = green.
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alkyl) beads form the lateral chain to mimic alkyl and
semiperfluoroalkyl chains with a moderate AK—AK interaction.

The cut-and-shifted Lennard-Jones (L]) potential is used to
describe all the nonbonded interactions, including all
intermolecular and intramolecular interactions between beads
separated by two or more bonds:

UL](rij) - UL](rcut,ij)’ T = Teuti

Ucsy = (1)
Ol rt] > rcut,ij
12 6
0 O
UL_](C;'}') = 4¢; C_ - C_
1 1 (2)
where r;; is the distance between CG sites i and j; o, €, and

Teuj are the van der Waals diameter, the well-depth parameter,
and the cutoff distance, respectively, which are all defined by
the corresponding CG site types. The LJ potentials between
beads separated by one bond and between any two beads
within the same rigid core are turned off. The LJ potential
parameters are listed in Table 1; all beads are neutral with the

Table 1. Nonbonded Potential Parameters for
Bolapolyphilic Molecule

CG bead type i CG bead type j oyl €;/€ Teuj/ O
GY GY 1.0 1.0 2.0
PH PH 1.0 1.0 26
AK AK 1.0 0.9 2.0
GY PH 1.0 1.0 26
GY AK 1.0 1.0 21/6
PH AK 1.0 1.0 21/

same mass (m* = 1) and the same van der Waals diameter.
Most nonbonded interactions have r, = 2'/°6, leading to the
purely repulsive potential known as the Weeks—Chandler—
Andersen (WCA) potential."" Only like interactions of GY and
AK beads have an attractive well with different depths to reflect
the interaction strength. Compared with the original model,*®
a larger value of 0.9¢ is chosen for AK beads to enhance phase
segregation. Note that our choice of interbead interactions
creates a sufficient driving force for the three types of beads
(GY, AK, and PH) to microsegregate from each other. In this
context, the WCA-type PH—PH interactions can be seen as
being effectively “attractive” because these beads are immersed
in a “poor solvent” medium and indeed tend to bundle
together; however, given its CG nature, our model is unable to
capture specific packing details such as the z—x stacking of
planar ring structures.

A harmonic bonding potential is used to for the bonded
interaction between two beads in the lateral chain separated by
a single bond and between the two beads connecting the rigid
core and the lateral chain (i.e, PH—AK and AK—AK pairs):

Upona = Kp(r = 1p)° (3)

where K, is the bond spring constant (=25¢5 %), r, is the
equilibrium bond distance (=1.00), and r is the separation
distance between two bonded beads.

2.2. Molecular Structure. In this study, the number of
beads in the rigid core (Nﬁgid) is fixed at six with two GY beads
at the ends and four PH beads in the middle. Based on the
chemistry, four beads in the middle of the core are available to

attach a lateral chain, but due to symmetry there are only two
distinct ways to do so. The CG beads in the core are numbered
from one end to the other, with the terminal bead closer to the
attached chain set as beadl. Then, the two types of attaching
arrangement are defined as the “left” arrangement if the lateral
chain attaches to bead2 and the “center” arrangement if the
chain attaches to bead3 (Figure 1b).

Our previous studies investigated the phase behavior of
linear (one branch) and swallowtail or bident (two branches)
lateral chains. Following those inroads, here we further
simulate a “multident” lateral chain having more branches.
The basic information on each chain shape is summarized in
Table 2, and some of them are shown in Figure lc. In

Table 2. Lateral Chain Shape of Bolapolyphilic Molecules
Explored in the Simulation®

shape abbrev Niranch Nj,(min)
bident Bi 2 3
trident Tri 3 4
tetradent Tet 4 S
pentadent Pen 5 6
hexadent Hex 6 7

“Np(min) is the minimum number of beads in the lateral chain
required to form the corresponding shape.

searching different complex mesophases, the number of beads
in the flexible lateral chain (INg,) was varied within a range.
Due to the nature of each chain shape, each branch may not
have the same length for a specific value of Np,. However, we
distribute the beads in each branch as evenly as possible; i.e.,
the difference between the longest and shortest branch is set as
one at most.

3. SIMULATION METHODS

3.1. Molecular Dynamics Protocols. Molecular dynamics
(MD) simulations were performed using LAMMPS,**** and
the results were visualized using VMD." The molecular
packing fraction is found from

Vx| @

where V,, is the volume of the simulation box, V,_ is the
molecular volume, and N is the number of molecules in the
system. V_ is estimated by assuming the rigid core has
spherocylindrical geometry and the beads in the lateral chain
have spherical geometry (with the bead diameter equal to the
van der Waals diameter); thus

76’ mod ne®

Vol = Vrigid + Vg = (3.57 + 7] + (Nﬂx?] )
where V, is the volume of the flexible lateral chain with N,
beads and Vg4 is the volume of the rigid core with its six beads
(whose partial overlap is accounted for by suitable
prefactors™*).

All our simulations were performed in the canonical
ensemble (NVT) with a fixed effective packing fraction n =
0.45, which is consistent with a typical dense fluid phase.*’
Periodic boundary conditions were applied in the simulation
box, and the velocity-Verlet algorithm with an integration step
size of At* = 0.005 was used to integrate the equations of
motion. The reduced time is calculated by the characteristic
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time, T t/\/maz/e. The Nosé—Hoover thermostat with a
damping parameter of Az = 0.5 was used to maintain the
temperature constant. The reduced temperature and pressure
are T* = kT/e and p* = po’/e, where ky is Boltzmann’s
constant. To find the ordered mesophases, a gradual quench
process was implemented where the system was initially
simulated at a relatively high temperature to reach a well-
equilibrated isotropic state. The system was then cooled in
steps of AT* = 0.2 over a period of t* = 50000 and
equilibrated at each temperature for another t* = 150000
period, whose final configuration was used as input for the next
quench step. After several quench steps, the system reached the
lowest preset temperature. Based on our observations, most of
the systems exhibited the isotropic state for T* > 1.7 and
ordered phases for T* < 1.0; therefore, the quench process was
restricted to the 0.5 < T* < 2.0 range. This quench process
was effective in exploring the mesophases associated with
different molecular designs but is not indicated to find precise
transition temperatures for the phases thus found.

Finite size effects play a significant role in the formation of
some ordered phases, and the system size (N) or the cubic
simulation box length (L,,,) at constant density needs to be
treated as an additional simulation variable. The lamella and
columnar phases which typically only possess 1D and 2D
periodicities, respectively, are largely insensitive to the
simulation box length since their morphologies can easily
rotate in space to fit inside the simulation box. On the
contrary, phases with 3D periodicity are sensitive to the box
length which should ideally be commensurate with a multiple
integer of the corresponding unit cell length. At the same
thermodynamic conditions, an inappropriate box length may
frustrate the appearance of a 3D-periodic phase and lead
instead to the appearance of metastable phases. Unfortunately,
the unit cell dimension of a potential 3D-periodic phase is not
known a priori. Thus, for a given molecular structure, multiple
simulations with different box lengths were often performed to
probe their commensurability with the unit cell length of 3D-
periodic phases and to test the stability of these phases.

3.2. Network-Skeleton Analysis. Both bicontinuous
cubic phases with periodic networks and disordered network
phases are often observed in our simulations. The network
structure can be conveniently traced by the assembly geometry
of the rigid cores. As illustrated in Figure 2a, several cores
bundle together to form a strut, and several struts merge into
one node stabilized by the strong attraction among GY beads.
Each strut can merge into two nodes at both ends, and a pair of
nodes can be connected by a strut. These observations form
the basis of a framework to characterize the network structures,
in which a node is defined as a cluster of GY beads and a strut
is defined as a bundle of cores. The key steps of this analysis
are as follows:

(i) Group GY beads into network nodes. The DBSCAN
algorithm (for density-based spatial clustering of applications
with noise)*® is applied to group all GY beads into different
nodes. For each bead, other beads are considered neighbors if
they are within a 1.5¢ distance. For a bead to be considered
part of a core, the minimum number of beads in its
neighborhood is set to four. After clustering, the total number
of nodes in the configuration (N,.) and the size of each node
(NB, 4. = number of beads contained) are collected.

(ii) Group molecular cores into network struts. A pair of
nodes are identified for each core based on the cluster

(a) (b) configuration skeletal graph

strut node

strut1

node1 node2

Figure 2. Schematic diagram of network-skeleton analysis. (a)
Definition of the node and strut in the network structure. (b)
IMustration of the skeletal graph from the corresponding simulated
configuration.

information on its GY beads. Cores associated with the same
pair of nodes are classified as one strut. After all cores are
classified, the total number of struts in the configuration
(Nype) and the size of each strut (NCg,, = number of cores
contained) are collected. The rare case where two GY beads
from the same core are clustered into the same node is
excluded from the analysis.

(iii) Determine the interconnectivity of network nodes. Any
two nodes associated with the same strut are interconnected.
For a given node, the number of its interconnected nodes is
the nodal valence (v), a key feature for different network
structures (e.g, the gyroid, diamond, and plumber’s nightmare
networks have nodal valences of v = 3, 4, and 6, respectively).

(iv) Draw the skeletal graph of the network, wherein a
straight line is drawn between the centers of mass of two
interconnected nodes (Figure 2b). Compared to the simulated
configuration, a skeletal graph provides a simpler representa-
tion of any network structure.

Overall, the network-skeleton analysis can be applied to both
ordered and disordered network structures to identify their
basic building units. Several quantitative parameters can be
calculated for comparison with different model network
structures.

3.3. Structure Factor. The unique space group symmetries
of different ordered structures can be identified by the
simulated diffraction patterns. In our CG model, beads of
different types are assumed to have the same scattering factor,
and t£17e structure factor, S(q), is calculated using a simplified
form:

2 2

Z cos(qr;) | + Z sin(q-r;)
Nbead j j (6)

where q is the scattering vector, r; is the position vectors of
bead j forming the structure, and Nj,q is the number of beads
forming the structure. The positions of either both GY and PH
beads or only GY beads were used in this calculation,
depending on the objective of the analysis (which is specified
for each system). Indeed, for bicontinuous cubic phases
formed in our simulations, S(q) can be calculated either using
GY beads only to identify the periodic symmetry of network
nodes or using both GY and PH beads to confirm the overall
network symmetry (nodes + struts). Since the AK beads in the

https://doi.org/10.1021/acs.jctc.3c00395
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flexible lateral chains just pack disorderly, filling in the
continuous domain surrounding the rigid cores, it is
convenient to exclude them from the S(q) calculation to
thus obtain diffraction patterns with better defined peaks. Due
to the periodic boundaries, the scattering vector is restricted to
integer numbers of wavelengths within the simulation box,
which in practice is generated from the reciprocal box vectors.
Only a cuboid box shape is considered henceforth, so the box
vectors in real space (L,, L, L,) and in reciprocal space (L¥,
L}, L¥) are given by

L, L. 0 0

L|=[0 L, 0 @
L| [0 o L

¥ 1/L, 0 0

L;l< =270 l/Ly 0 (8)
L* 0o o0 1/L

where L,, L, and L, are box lengths in the x-, y-, and z-axes,
and for the special case of a cubic box, L, = L, = L, = Ly,
Accordingly, the scattering vector can be constructed using
three integers (n,, n,, n,) and the reciprocal box vectors

ny n

z

— k sk % _ nx
Gy = ML LY+ LY = 2m| 2, 2
®* Ty E ©)

which assumes that the obtained structure is periodic
(continuous) across the periodic boundaries of the simulation
box. Our analysis is hence restricted to cases where the box size
was not so incompatible with the phase unit cell to frustrate
the network phase from forming.

The Miller index notation provides a systematic approach to
describe the periodic symmetries by constructing different sets
of parallel lattice planes with equal interplanar spacing, whose
normal vectors are defined by the unit cell and three specific
integers written as (hkl). The unit cell of a periodic structure is
usually described by a parallelepiped using three lattice vectors
(a, b, ¢) or six lattice parameters: the lengths of three cell edges
(a, b, ) and three angles between these edges (a, f, 7). The
lattice vectors and the lattice parameters can be interconverted
based on a suitable convention. In practice, the reciprocal
lattice vectors (a*, b*, c*) are more convenient for studying a
periodic symmetry. The relationships between the direct and
the reciprocal lattice vectors are given by

a*=Qbxc
b"'=Qcxa (10)
F=Qaxb

a=Q%* xc*
b=Q*xa" (11)
c = Q%" x b*
where Q = 27/[a-(b X ¢)] and Q* = 27/ [a*-(b* X ¢*)]. For a
given group of Miller indices (hkl), the normal vector (G)
and the interplanar spacing (d,;) of the corresponding set of

lattice planes are defined using the reciprocal lattice vectors as
follows:

pubs.acs.org/JCTC
Gy = ha™ + kb* + Ic* (12)

2r
g = Gl

Gy (13)
By convention, negative integers in (n,, 1, n,) and (hkl) are

written with an underline, as in 3 for —3. The notation {hkI}
denotes the set of all Miller indices that are equivalent to (hki)
by the symmetry of the lattice. Henceforth, the Miller indexed
vector is used to refer to Gyy. For a perfect periodic structure
(to be referred to as the “theoretical model”), its unit cell is
described by the lattice vectors, and beads in the unit cell are
represented by their fractional coordinates in terms of the
lattice vectors. The theoretical model can determine whether a
group of Miller indices gives a constructive interference with
nonzero diffraction intensity by calculating the amplitude and
phase of the corresponding diffraction wave:

Fyy = Y. f expl2ri(hu; + kv, + hw)]
j (14)

where the sum is over all the beads in the unit cell; w, v, and w
are the fractional coordinates of bead j; and f is the scattering
factor, which is treated as a constant in our study. The
diffraction intensity is given by the squared modulus, |F;yl*.
The complete list of Miller indices giving nonzero diffraction
intensity can be found analytically by finding a general solution
for Fy,. Often, an incomplete list is enough to cover the range
measured by the S(q) plot, which can be constructed
numerically by enumerating all the Miller indices up to a
certain vector magnitude of Gy Note that F; indicates that
structures with different unit cell dimensions can have the
same periodic symmetry (i.e., the same set of Miller indices) as
long as the constituent beads arrange in the same fractional
coordinates.

For the different ordered structures observed in the
simulations, their periodic symmetries can be confirmed by
assigning proper Miller indices predicted by the theoretical
model to the diffraction peaks in the calculated S(q) plot, at
which the Laue condition is satisfied:

qnx,ny,nz = thl (15)

that requires equivalence between each component of the
scattering vector and the Miller indexed vector. We develop an
indexing algorithm for the calculated S(q) plot by following
ideas similar to those used in the analysis of experimental X-ray
scattering data.”® ™" Given an ordered structure, let us assume
that a distinctive set of Miller indexed vectors, {Gy,}, giving
nonzero diffraction intensity, is predicted by the theoretical
model, and a set of scattering vectors, {qnx,ny’nz}, showing
diffraction peaks, is observed in the calculated S(q) plot. Based
on eqs 9 and 12, the correspondence between sets { Gy} and
{qmm},’nz} can be established by finding the relationship
between the reciprocal lattice vectors (a*, b*, c*) and the
reciprocal box vectors (L}, Ly, L¥). A trial-and-error algorithm
was implemented to find such a relationship that leads to the
best match between {Gj} and {g,,,,..}. The key steps of this
algorithm are as follows:

(i) Select three Miller indexed vectors (G, G,, G;) as a basis
from the set {G;} which are linearly independent and follow
the right-hand rule.

(ii) Select three scattering vectors (qy, g, q3) as a basis from
the set {qmw'nz} which are linearly independent and follow the
right-hand rule.
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Figure 3. Simulation phase diagram of bolapolyphilic molecules studied at T* = 0.7. Results for the left (a) and center (b) attaching points.
Descriptions of these phases are given in the main text and Supporting Information.

(iii) Derive the relationship between (a*, b*, c¢*) and (L%,
L}, L¥) by equating the vectors:

G=9q, G =g, G=gq, (16)

(iv) Convert the set of scattering vectors, {qnx’ny,nz}, into the
corresponding set of Miller indexed vectors, {thl}q, using the
relationship derived in step iii. Count the number of
overlapping items between {Gy} and {Gy}, as a metric to
evaluate the fitting quality.

(v) Enumerate all the possible permutations of the group of
three qualified vectors in {q,,x,n},’,,z} by repeating steps ii—iv.
Determine the best-fit relationship between (a*, b*, ¢*) and
(L¥, L}, L¥), which gives the maximum overlap in step iv.
Derive the direct lattice vectors (a, b, ¢) in terms of the box
vectors (L,, Ly, L,).

Typically, only a limited number of diffraction peaks are
observed in the S(q) plot due to defects in the simulated
structure, and the number of items in {qnx’nymz} is much fewer
than in {Gy}. For algorithmic efficiency, the choice of Miller
indexed vectors, (G, G,, Gy), is fixed in step i, and in principle,
any three-vector group meeting the criteria can be selected as a
basis. However, for algorithmic accuracy, the three-vector basis
with the strongest diffraction intensities and smallest vector
magnitudes is preferred, since these vectors are more likely to
have the corresponding scattering vectors in {q,,,,.}. In
practice, our algorithm often finds multiple best-fit relation-
ships between (a*, b*, ¢*) and (L¥, LJ, L¥), which are
equivalent in the sense of generating the same crystal lattice.
Among these best-fit relationships, the corresponding lattice
parameters with the highest symmetry (e.g, cubic lattice,
orthorhombic lattice) will be reported in our study and the
direct lattice vectors illustrated in the simulated configurations.

For the special case of cubic periodic structures, the
interpretation of the S(q) plots is more straightforward, not
needing any trial-and-error scheme, since the magnitudes of
Miller indexed vectors predicted by the theoretical model
exhibit a series of simple characteristic ratios, e.g, the double
gyroid phase with the ratios of (1/6: \/8: \/14: 1/16: 1/20:
\/ 22).>" Also, the cubic unit cell length (a = b = ¢ = Lyc) can
be rosuzghly estimated by the position of the first diffraction
peak:

2
Lyc = —*d

(17)

where g* is the modulus of the scattering vector at which the
maximum of S(q) is located and d is the first spacing ratio for a
given periodic structure (e.g., d = \/ 6 for the double gyroid
phase).

4. RESULTS

4.1. Phase Diagram. Figure 3 shows a global phase
diagram for bolapolyphilic molecules with differently shaped
lateral chains obtained at the reduced temperature of T# = 0.7
using the quenching approach described in section 3.1. For
conciseness, each molecular structure is denoted by a
combination of the lateral chain shape, the number of beads
in the lateral chain (Ny,), and the attaching arrangement. For
example, Bil3L stands for the molecular structure having a
bident lateral chain with Ny, = 13 and a “left” attaching point,
and Tri7C denotes a molecule having a trident lateral chain
with Ny, = 7 and a “center” attaching point. In Figure 3, the
black forbidden region for each chain shape is consistent with
the minimum number of beads required to construct such a
shape (Table 2). Several ordered mesophases are observed in
the simulations, including lamella (L), honeycomb column
(HCol), axial-bundled column (BCol), single primitive (SP),
single hexagonal diamond (HD) network, single cubic
diamond (CD) network, double diamond (DD) network,
and double gyroid (DG) network. Due to the large design
space covered by our simulations, it is impractical to show the
simulation result explicitly for every condition explored.
Instead, our discussion focuses on the main network phases
of interest formed at T* = 0.7 and their structural features; a
brief discussion of lamellar and columnar phases is presented
in the Supporting Information.

4.2. Primitive Network Phases. The primitive or
plumber’s nightmare network usually consists of six-way-
junction nodes with octahedral geometry, which are inter-
connected by struts. In our simulation, the single primitive
network (SP) phase was observed at some conditions (Table
3), in which the rigid cores form the network structure
embedded in the continuous domain of the lateral chains
(Figure 4a). Based on our network-skeleton analysis, this SP
phase can be described by a basic building unit, in which the v
= 6 nodes are connected by struts containing one bundle of
cores (Figure 4b) and the distance between two intercon-
nected nodes is roughly the length of the cores. In the perfect
SP model, all nodes are hexavalent, and each strut is shared by
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Table 3. Simulation Results for the SP Phase Formed at T*
= 0.7 for Specific Molecular Structures with N Molecules in
a Cubic Box of Length L “

mol struct N Lyx/6  Npode Nyirut v NBooge NCgut
Tri7C 400 18.34 30.9 85.9 5.57 25.9 4.57
Tet7C 400 18.34 34.3 94.7 5.53 234 4.13
Pen7C 400 18.34 36.9 103.4 5.61 21.7 3.75
Pen9C 400 19.22 39.7 110.9 5.58 20.1 3.53
Hex9C 400 19.22 39.8 111.0 5.58 20.1 3.52

“The structural features listed are the ensemble average of the number
of nodes (N,4), struts (Ny,,), nodal valence (v), number of GY
beads in the node (NB,,4.), and number of molecular cores in the
strut (NCye)-

two nodes so that the numbers of nodes and struts are related
by
N p—

strut

3N, (18)

However, the nodal valence distributions reflect some
defects in the simulated configurations (Figure 4c), leading
to a slight deviation from eq 18. A node with v < 6 indicates
missing struts for pairs of interconnected nodes, while a node
with v > 6 indicates the formation of extra struts that break the
nodal octahedral geometry. The node size distribution shows a
concentrated unimodal shape with a long tail for short sizes
related to structural defects, suggesting that the nodal structure
in the network is relatively uniform with no preference for the
cores to aggregate within the network structure (Figure 4d).
Also, the node size is concentrated at different values
depending on the molecular structure, especially the lateral
chain shape; a more detailed discussion is given in section
4.6.1.

Since the nodes in the SP network exhibit the simple cubic
(SC) symmetry, the structure factor is calculated using the
position vectors of GY beads. In theory, the unit cell of the

ode

simple cubic lattice contains one bead at (0, 0, 0) and the

lattice parameters are given by
(a) b’ C} a) ﬂ) }/) = (a7 a’ a} 900) 900) 900) (1‘9)

leading to simplified forms for the Miller indexed vector (Gyy):

2w
G;,,(SC th =—(h, kI
i eory) B ( ) (20)
thl(SC theory) = 2_]7:\/ hz + kz + 12

a (1)

For the simulated SP phase formed by Tri7C, the S(q) peak
positions (Figure Sa) are consistent with the characteristic
ratios of the simple cubic symmetry (1: \/2: \/3: \/4: \/5)
The theoretical model is used to assign Miller indices to these
diffraction peaks, with different indices potentially reflecting to
the same peak position. Table S2 summarizes all the theoretical
Miller indices up to the ratio of \/ S and the corresponding
diffraction peaks observed in the S(q) plot of Tri7C. The unit
cell length of this simulated SP phase is evaluated using eq 17
with d = 1, which turns out to be exactly one-third of the cubic
simulation box length, Ly, (Figure Sb).

Due to the relatively small unit cell length of the simulated
SP phase, multiple unit cells were able to fit inside the
simulation box sizes employed, with the structure able to rotate
and even deform to fit into boxes over a wide range of sizes. As
a result, these S(q) plots often show various diffraction
patterns, with their peak positions following different ratios
that deviate from the theoretical model. In such cases, the trial-
and-error algorithm was used to interpret the S(q) plots and
characterize the deformed unit cells (see Table 4). This
analysis is illustrated for the Tet7C case (Figure Sc). For the
simple cubic lattice, the basis of three Miller indexed vectors is
chosen to be (Gygp, Goror Goo1)- After looping through all the
permutations of the basis of the scattering vectors, the
following correspondence gives the optimal match between
the theoretical model and the S(q) plot:

(a)

configuration
0.8f
(c) N=400
—— Tri7C
0.6 Tet7C
—— Pen7C
2 —— Hex9C
8o
© 0.4
o
o
0.2}
0

0 1 2 3 4 5 6 7 8 9
nodal valence (v)

skeletal graph

(d) 0257 y_400
— Tri7C
0.20 Tet7C
- —— Pen7C
EO.IS —— Hex9C
Q
m©
Q
20.10
0.05
0% 5 10 15 20 25 30 35 40

node size (NBpode)

Figure 4. Network characteristics of SP phases formed at T* = 0.7. (a) Snapshots of phase for Tri7C with N = 400. (b) Basic SP building unit.
Bead colors are GY = red, PH = blue, and AK = green. For clarity, some snapshots only show the cores. Distributions of (c) nodal valence and (d)
node size generated by the network-skeleton analysis of representative molecular structures.

G
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Figure S. Structure of simulated SP phases formed at T* = 0.7 and N = 400. (a) Structure factor and (b) skeletal graph from configuration of
Tri7C. (c) Structure factor and (d) skeletal graph from configuration of Tet7C. In (b) and (d) the struts are blue, nodes are red, and the unit cell is

drawn to illustrate its relationship with the cubic box vectors.

Table 4. Lattice Parameters of the SP Phase Estimated from the Structure Factor

mol struct N Ly /0 alo b/o c/o a/deg PB/deg y/deg
Tri7C 400 18.34 6.11 6.11 6.11 920 90 90
Tet7C 400 18.34 5.80 5.80 6.11 90 90 90
Pen7C 400 18.34 5.53 5.83 5.83 84.3 90 90
Pen9C 400 19.22 5.85 5.85 5.85 84.3 84.3 84.3
Hex9C 400 19.22 5.85 5.85 5.85 84.3 84.3 84.3
G =4y, Gowo =9, 307 Gy = 9003 (22) The direct lattice vectors are obtained from (a*, b*, c*)

Hence, the relationships between the reciprocal lattice
vectors and the reciprocal box vectors are

* * *
a =3Lx+Ly

sk k %
b" = LS — 3Ly (23)

Then, proper Miller indices are assigned to the diffraction
peaks in the S(q) plot of Tet7C (Table S2). Given the cubic
shaped box used in the simulation, the associated Miller
indexed vectors and their magnitudes are calculated from (a*,
b*, c*), leading to

G,y (SP Tet7C) = 2 (3h + k, h — 3k, —3])
L, (24)
2w
G, (SP Tet7C) = ==\/10(h* + k*) + 91
hkl Lx \/ (25)

using eq 11, which are illustrated in the simulated

configuration in Figure 5d:

10a = 3L, + Ly
10b=1L, — 3Ly (26)
3c=—-L

z

Compared with the theoretical model, the S(q) plots of both
Tri7C and Tet7C show a limited number of diffraction peaks,
which is likely related to the structural fluctuations within the
finite volume occupied by the networks in the simulated
configurations (contrasting the dimensionless points in the
theoretical model) and some minor structural defects. While
the peak positions in these two S(q) plots exhibit different
series of ratios, they can be designated by the same set of
Miller indices, showing that these two simulated SP phases
share similar periodic symmetries of the simple cubic lattice
but with slightly different dimensions.

4.3. Single Diamond Network Phases. The diamond
network consists of four-way-junction nodes with tetrahedral

https://doi.org/10.1021/acs.jctc.3c00395
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00395/suppl_file/ct3c00395_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00395?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table S. Simulation Conditions and Structural Features for the Single Hexagonal and Cubic Diamond Phases Formed at T* =

0.7

phase mol struct N Ly /0

HD BillC 400 20.02
Bi13C 400 20.77

CD BillC 600 22.92
TrillC 400 20.02

Tril3C 300 18.87

TrilSC 400 21.47

Niode Nitrut v NB,ode NCirue
35.3 70.7 4.01 22.7 5.58
36.0 70.7 3.93 222 5.57
52.9 105.3 3.98 22.7 5.63
42.1 86.0 4.09 19.0 4.52
343 67.1 391 17.5 4.40
432 84.4 3.90 18.5 4.68

geometry, which are interconnected by struts. In our
simulations, two types of single diamond networks were
observed at the conditions listed in Table S: the hexagonal
diamond (HD) and the cubic diamond (CD).

Based on our network-skeleton analysis, both diamond
networks can be described by a similar building unit, in which
the v = 4 nodes are connected by struts containing one bundle
of cores, with any two interconnected nodes being roughly one
core length apart. For any pair of interconnected nodes, the
staggered and eclipsed conformations are identifiable (Figure
6a). In the HD phase, the ratio between the staggered and

o T Gk
A FE W

(b)

eclipsed

(c) configuration

Figure 6. Simulated configurations of the HD and CD phases formed
at T* = 0.7. For clarity, only the cores are shown with red GY beads
and blue PH beads. (a) Basic building units for the single diamond
network. (b) HD phase from Bil3C with N = 400. In the skeletal
graph, nodes are divided into different pairs, whose centers roughly
align in the HCP pattern with a two-layer stacking as illustrated by the
theoretical model. Struts are blue, and nodes from different layers are
colored in red and pink, respectively. (c) CD phase from Bil1C with
N = 600. In the skeletal graph, nodes are divided into different pairs,
whose centers roughly align in the FCC close-packing with a three-
layer stacking as illustrated by the theoretical model. Struts are blue,
and nodes from different layers are colored in red, pink, and yellow,
respectively.

eclipsed conformations is 3:1, while in the CD phase only the
staggered conformation occurs. The HD phase can be derived
from the hexagonal close-packing (HCP) of equal spheres by
replacing each sphere by a pair of interconnected nodes
(Figure 6b). For computation simplicity and ease of visual-
ization, a nonprimitive unit cell is adopted in our ensuing
discussion. Hence, in a cuboid unit cell of the HD network,
four pairs of nodes follow a two-layer stacking with a repeating

AB pattern. The lattice parameters, the node positions in
fractional coordinates, and strut length (Lg,,) are

26
3

(a,b,¢c,a, B, 7) = (u, J3a, a, 90°, 90°, 90°]

(27)

nodes

Lstrut =

(29)

In contrast, the CD phase can be derived from the face-
centered-cubic (FCC) close-packing of equal spheres by
replacing each sphere by a pair of interconnected nodes
(Figure 6c). Then, in a cuboid unit cell, six pairs of nodes
follow a three-layer stacking with the repeating ABC pattern.
The lattice parameters, node positions in fractional coor-
dinates, and strut length are

(a, b, ¢, a, B, 7) = (a, V3a, J6a,90° 90°,90°)  (30)
1 11 111
layer A: (0, 0, 0) (0, 0, Z], (z, 3 0) (z, PY Z)
11 1)(11 7 21 2 7
st (3,05 (305} (053] (3 %) oo
layer C: (0, l, 3] (0, l) ﬂ]; [ll é, E] (l, é, E)
3 3 31 2°6 3 261
a b ¢ b ¢ c
Lstrut = (Er gr E)‘ = ‘(0; gr E)‘ = ‘(0, 0, Z)
J6
=—2q
4 (32)

In the perfect model of the HD and CD phases, all nodes are
tetravalent, and the numbers of nodes and struts follow the
relation

N,

strut

= 2N, node

(33)

However, the nodal valence distributions reflect some
defects in the simulated configurations (Figure 7a). The
node size distributions of both phases show similar trends with
a pronounced unimodal shape and a small-size tail arising from
structural defects (Figure 7b), indicating that the conformation
of interconnected nodes has a minimal effect on the core
assembly behavior.

The structure factor of the simulated HD and CD phases is
calculated using the position vectors of GY beads to reveal the
periodic symmetry of the network nodes. Based on the
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Figure 7. Network-skeleton analysis for the single HD and CD phases formed by representative molecular structures with different system sizes at
T* = 0.7.

Table 6. Lattice Parameters of the Single HD and CD Phases Estimated from the Structure Factor

phase molecule N Ly /0 a/o b/c c/o a/deg P/ deg y/deg
HD BillC 400 20.02 10.01 14.16 14.16 920 90 90
Bil3C 400 20.77 10.38 14.69 14.69 90 90 90
CD BillC 600 22.92 12.38 12.38 13.23 920 90 81.8
TrillC 400 20.02 10.01 12.66 12.66 90 90 90
Tril3C 300 18.87 9.44 13.34 13.34 920 920 90
Tril5C 400 21.47 10.73 13.58 13.58 920 90 90
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Figure 8. Structure of the single diamond phase formed at T* = 0.7. (a) Structure factor and (b) skeletal graph of HD phase formed by Bil3C with
N =400. In (b) struts are blue and nodes are in different shades of red to show their relative positions. (c) Structure factor and (e) skeletal graph of
CD phase formed by Bil1C with N = 600. For (c), a few extra peaks inconsistent with the theoretical model are marked in red. (d) Theoretical
model of the CD network using a representation with a cubic unit cell. In (b) and (e) the unit cell is drawn to illustrate its relationship with the
cubic box vectors.

theoretical model of the HD network (eqs 27—29), the related
Miller indexed vectors and their magnitude are given by

5 )
' "4

2 2 1 2 3 2
G, ,(HD theory) = — |[h" + —k™ + =1
hkl( I'Y) B 3 3 (35)

a

Miller indices giving nonzero diffraction intensities are

(34) summarized in Table S3 up to a certain magnitude, whose
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Table 7. Simulation Conditions and Structural Features for the DD Phases Formed at T* = 0.7°

molecule N Ly /0 N, ode
Tetl3L 400 20.77 48.4
TetlSL 400 21.47 50.1
Tetl7L 330 20.74 46.2
Penl3L 350 19.87 43.5
PenlSL 350 20.53 46.3
Penl9L 320 21.11 47.4
Hex13L 300 18.87 40.7
Hex1SL 300 19.50 40.7
Hex19L 300 20.66 45.0
Hex21L 270 20.46 42.7

N,

75.7
68.9
64.7
62.5
65.9
64.4
58.4
58.0
62.0
59.4

strut

v NB,ode NCirue Lyc
3.13 16.5 5.21 10.38
2.75 16.0 5.74 10.73
2.80 143 4.94 10.37
2.87 16.1 S5.44 9.93
2.85 15.1 5.14 10.27
2.72 13.5 4.79 10.55
2.87 14.7 5.00 9.44
2.85 14.8 5.00 9.75
2.75 13.3 4.56 10.33
2.78 12.7 4.21 10.23

“The unit cell length (Lyc) for the ordered network is estimated from the structure factor.

ratios, calculated with eq 35, are rather complicated due to the
noncubic unit cell. For the simulated HD phase, deformed unit
cells were determined by the trail-and-error algorithm (Table
6), with the three Miller indexed vectors’ basis chosen to be
(Gi10) Gozoy Gopp)- Taking the Bil3C case (Figure 8a) for
illustration, the best-fit relationship is found to be

Gio=49,,,, Gox= 4,4 Gy, = 9,5 (36)
a* =2Lf
b* = L;k + L;k (37)

¢ =-L+ L)

The direct lattice vectors in this Bil3C case confirm a
deformed unit cell (Figure 8b):

2a =1,
2b=1L,+ Ly (38)
2c=-L, + Ly

Given the cubic shape of the simulation box, the related
Miller indexed vectors and their magnitudes are given by

G, (HD Bi13C) = 2Z(k — I, k + 1, 2h)
L, (39)

) 2 2 2, 2

G,u(HD Bil3C) = =—/4h" + 2(k* + I?)
L, (40)

Applying the theoretical model, most of the diffraction peaks
in the simulated S(q) plot are designated by the corresponding
Miller indices, but the ratios between them are relatively
simple compared with the theoretical ones (Table S3). The
presence of these Miller indexed peaks confirms that the
periodic symmetry embedded in the theoretical model is well-
maintained in the simulated configuration.

For the theoretical model of the CD network, a more
conventional representation with a cubic unit cell is used to
study the simulated S(q) plots rather than using eqs 30—32 for
a cuboid unit cell. In this representation, the lattice parameters,
the node positions in fractional coordinates, and the strut
length are

(a) b) C} a) ﬂ) y) = (a) a) a} 900) 900) 900) (41)

1 11
0010 DR
©.00 (33

) 2 4" 4
nodes
101) (Eli). (oll) (lii)
2772 44 4) 72 2) 447 s (42)
1 1 1 1
Lot = (—a, —b, —c) = =/3a
4747 4 4 (43)

Miller indices giving nonzero diffraction intensity are
summarized in Table S4 up to a certain magnitude. For a
general cubic unit cell, the ratios between Miller indices can be
calculated using eq 21. For the simulated CD phase, different
deformed unit cells were determined by the trail-and-error
algorithm (Table 6), in which the basis for the three Miller
indexed vectors is chosen to be (G,,;, G,;), Gy;;)- Taking the
Bil1C case (Figure 8c) for illustration, the best-fit relationship
is found to be

G = 930 G = 9,50 G, = 9,5 (44)
* * * *
2a% = 2L + 3L} + L}
£ Ak * ®

2b" =2L; — Ly —3L; (45)

k * ES *
=-Lf+ L] - L

The direct lattice vectors in the BillC case confirms a
deformed unit cell (Figure 8d,e):

12a = 4L, + SL, + L,

12b = 4L, — L, - SL, (46)

3¢=-L,+L, - L,
and given the cubic shape of the simulation box, the related
Miller indexed vectors and magnitudes are

G,,(CDBil11C)

Z(2h + 2k — 21, 3h — k + 21, h — 3k — 21)
L, (47)

Gua(CDBIlIC) = = J14(h* + K*) + 121* — 4hk
L, (48)

Applying the theoretical model, most of the diffraction peaks
in the simulated S(q) plot are designated by the corresponding
Miller indices (Table S4). A few peaks, which correspond to
the completely destructive interference with zero diffraction
intensity in the theoretical model, are detected in the S(q) plot,
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Figure 9. Network characteristics of DD phase formed at T* = 0.7. (a) Basic building unit with struts in blue and nodes in red. (b) Snapshots of
phase obtained by Tet15L with N = 400. The two interwoven networks are colored differently: One has red struts and yellow nodes, and the other
has blue struts and dark blue nodes. Distributions of (c) nodal valence and (d) node size generated by the network-skeleton analysis of

representative molecular structures and system sizes.
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Figure 10. Structure factor analysis for the DD phase from the simulated configuration formed by Tet1SL with N = 400 at T* = 0.7 using (a) both
GY and PH beads and (b) GY beads forming the v = 4 nodes (top) and GY beads forming the v = 2 nodes (bottom). Extra diffraction peaks

inconsistent with the theoretical model are marked in red.

indicating that the periodic symmetry of the CD network is
slightly modified by the structural deformation.

In summary, the HD and CD phases were found to be less
sensitive to finite size effects, since they can compress and
stretch their unit cells along different directions to fit into the
simulation box. However, a well-designed and well-sized
simulation box may be required to obtain less defective
configurations that fully reproduce the theoretical model. We
note that the HD and CD phases were occasionally seen as
competing phases at the same thermodynamic condition due
to their structural similarity, as seen in the simulations of
Bil1C with different system sizes.

4.4. Double Diamond Network Phases. The double
diamond (DD) network contains two interwoven cubic
diamond networks, which are identical but have a translational
offset. Assuming that the first network is constructed following
the theoretical model of the cubic diamond network from eqs
41—43, the second network can be generated by translating a
replica of the first network along any one of the lattice vectors
(a, b, and ¢) by one-half of the unit cell length, 0.5a = 0.5b =

0.5c. In our simulations, the DD phase was observed at the
conditions listed in Table 7. Our network-skeleton analysis
shows that this phase can be described by its basic building
unit, in which the v = 4 nodes are connected by struts
containing two bundles of cores in succession (Figure 9a), with
the distance between two interconnected nodes being roughly
2 times the core length. Since a node is defined as a cluster of
2 is identified

4. This was
accounted for by reclassifying struts so that they only contain
one bundle of cores. In the perfect model of this DD phase

GY beads, an extra “specious” node with v =
between two interconnected nodes with v =

(Figure 9b), all nodes are divided into two groups based on the
nodal valence, and each strut is shared by two nodes from each
of these two groups. Since each v = 4 node is interconnected to
four v = 2 nodes, and each v = 2 node is interconnected to two
v = 4 nodes, it follows then that

N

node

= Nnode(v = 4) + Nnode(v = 2) = 3Nnode(v = 4)
(49)
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Table 8. Simulation Conditions and Structural Features for the DG Phases Formed at T* = 0.7

molecule N Ly /0 Noode
Bil7L 400 22.12 42.8
Bi21C 300 21.19 34.5
Bi25C 330 22.89 39.2
Tril3L 300 18.87 30.7
Tril7L 300 20.10 33.0
Tri21L 280 20.71 33.5
Tril7C 250 1891 29.9
Tri21C 250 19.94 318
Tri25C 250 20.87 33.2
Tetl7L 250 1891 30.2
Tetl7C 200 17.56 26.8
Tet21C 180 17.87 26.3
Tet25C 170 18.35 26.5
Penl9L 200 18.05 27.6
Pen19C 150 16.40 222
Pen23C 150 17.22 24.0
Hex21C 100 14.69 16.1
Hex23C 100 15.04 16.3

Nitrut v NB,ode NCirue Lyc
72.9 3.40 18.7 5.28 22.1
52.7 3.05 17.4 5.56 21.2
60.4 3.08 16.9 5.28 22.9
S1.S 3.35 19.5 5.52 189
52.6 3.18 18.2 5.39 20.1
50.8 3.03 16.7 5.27 20.7
48.9 3.27 16.7 5.00 18.9
49.6 3.15 15.9 4.90 19.9
50.2 3.02 15.0 4.88 209
48.2 3.20 16.6 4.94 189
45.5 3.40 15.0 4.31 17.6
41.3 3.13 13.7 4.24 17.9
39.9 3.01 12.8 4.10 18.4
42.5 3.08 14.4 4.47 18.1
339 3.06 13.6 4.26 16.4
374 3.12 12.5 3.85 17.2
24.0 2.99 124 4.09 14.7
24.3 2.98 12.3 3.93 15.0

Figure 11. Snapshots of the DG phases formed at T* = 0.7. (a) Basic building units. (b) Interconnecting arrangements between building units. (c)
Example of local node structure with less ordered backbone packing. (d) DG1 phase obtained by Tri2SC with N = 250. (e) DG2 phase obtained by
Hex23C with N = 100. In most snapshots, struts are blue and nodes are red. In (d) and (e), two interwoven networks are colored differently; one

has red struts and yellow nodes, and the other blue struts and dark blue nodes.

4
lvstrut = 4Nnode(v = 4) = gNnode (50)

In the simulated configurations, the nodal valence
distribution confirms two major types of nodes predicted by
the perfect model along with some minor defects (Figure 9c¢).
Since the node with larger valence is anticipated to contain
more GY beads, the node size distribution displays a bimodal
shape with uneven weights (Figure 9d), reflecting the two
primary types of nodes and their relative abundances predicted
by eq 49.

The structure factor of the simulated DD phases is
calculated using the position vectors of both GY beads and

PH beads, since nodes and struts together make up the
principal periodic features of the DD network. The peak
positions in the S(q) pattern (Figure 10a) are consistent with
the characteristic ratios of(\/Z: \/3: \/4: \/6: \/8: \/9).51 In
addition, the nodes alone exhibit different periodic features
(Figure 10b). Indeed, the characteristic ratios from the
structure factor calculated using the GY beads forming the v
= 4 nodes follow the body-centered-cubic (BCC) symmetry,
(\/2: \/4: \/6: \/8: \/10), while those using the GY beads
forming the specious v = 2 nodes roughly follow the face-
centered-cubic (FCC) symmetry, (\/3: \/4: \/8: \/11: \/12).
For these three types of cubic periodic symmetry (DD, BCC,
and FCC), their unit cell lengths are evaluated using eq 17
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Figure 12. Structure analysis for DG phases formed at T* = 0.7. Distributions of (a) nodal valence and (b) node size generated by the network-
skeleton analysis of representative molecular structures with different system sizes. (c) Structure factors from configurations formed by Bil7L,

Tri25C, and Hex23C.

with d = \/2, \/2, and \/3, respectively, and all of them are
equal to half of the cubic simulation box length, Lyc(DD) =
Lyc(BCC) = Lyc(FCC) = Ly,/2. The theoretical models are
used to assign proper Miller indices to the diffraction peaks
observed in these three S(q) plots (Table S5). Some small
mismatches observed in the S(q) plots could be related to
variations in the actual volume occupied by the simulated
networks (contrasting the dimensionless points in the
theoretical model) and some minor structural defects. Note
that the BCC symmetry shows the same series of ratios as the
simple cubic symmetry in section 4.2 (1: \/2: \/3: \/4: \/5),
but they can be distinguished based on a more detailed analysis
of the Miller indices and other metrics.

For the DD phases formed by different molecular structures,
our simulation boxes appear to usually accommodate eight unit
cells, leading to different cell lengths (Table 7). Furthermore,
for the perfect model of the simulated DD phase, one unit cell
contains two v = 4 nodes and four v = 2 nodes, and the total
number of nodes and struts in the eight-unit-cell configuration
should be around N, 4. = 48 and N, = 64. Results in Table 7
show varying deviations from the perfect model, a likely
indicator of the extent of structural defects.

4.5. Double Gyroid Network Phases. The double gyroid
(DG) network contains two interwoven gyroid networks with
opposite chiralities, and each network consists of three-way-
junction nodes with triagonal planar geometry, which are
interconnected by a set of struts. In our simulation, the DG
network was observed over a wide range of simulation
conditions and for different lateral chain shapes and attaching
points; some representative conditions are listed in Table 8.
These simulated configurations exhibit many variations, as
revealed by our network-skeleton analysis, which points to two
types of basic building units (Figure 11a): a regular v = 3 node

and a triangle nodal complex whose edges are formed by three
bundles of cores and its vertices are formed by three v = 3
nodes. In addition, the composition of these two building units
fluctuates among configurations, and different interconnecting
arrangements between building units are identified (Figure
11b), some of which even lead to the formation of v = 4 nodes.
Due to the flexibility and variability of these building units, the
packing of cores in the DG network is often less ordered,
giving rise to broad distributions of nodal valences and sizes
(Figure 12a,b). The unexpected values of nodal valence (v > 3)
are related to the complex interconnecting arrangements
mentioned above, to structural defects, and to more
complicated moieties only identified in some DG networks
with less ordered core packing (Figure 11c).

Among all simulated configurations, two DG phases with
well-ordered core packing are selected for illustration. The
DGl phase formed by Tri2SC (Figure 11d) consists of both
nodal building units with a one-to-one ratio: Each triangle
complex is interconnected to three regular v = 3 nodes by
struts containing one bundle of cores, and each regular v = 3
node is interconnected to three triangle complexes by struts
also containing one bundle of cores. In the perfect model of
DGJ1, all nodes have a valence of 3, and the numbers of nodes
and struts follow the relation

3N

node

Z\Tstrut - 2 (51)

Accordingly, the nodal valence distribution is concentrated
around v = 3, and the node size distribution roughly exhibits a
bimodal shape with unequal weights (Figure 12a,b), reflecting
the populations of the larger-sized regular nodes and the
smaller-sized nodes corresponding to the vertices of the
triangle complexes. The DG2 phase formed by Hex23C
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(Figure 11e) only contains the regular v = 3 nodes, which are
interconnected by struts containing one bundle of cores, with
the number of nodes and struts in the perfect model also
following eq S1. The distributions of nodal valences and sizes
for DG2 display a concentrated unimodal shape (Figure
12a,b), indicating a homogeneous core packing within the
networks.

The structure factor of the simulated DG phases is
calculated using the position vectors of both GY and PH
beads, since nodes and struts together make up the principal
periodic features of the DG network. In the theoretical model,
the DG network can be represented by a cubic unit cell with 16
nodes (eight nodes per single network). The lattice parameters
and the node positions in fractional coordinates are listed
below, and the complete network is constructed by connecting
any two nodes from the same network at a strut-length (Ly..)
distance:

(a, b, ¢, a, B, v) = (a, a, a, 90°, 90°, 90°) (52)

11 1 1 11
(01 O) O) (_I ] 0] (0,' z) _) (_I ] _)
4’ 4 4" 4) \4" 2" 4

(Eil) (lli) (203) (lli)
44" 2) 2727 2) 47 4) (24" 4
nodes (53)

(120 (340 (Lod) (214
2" 4 42 27 4) 444
Lol)(pbd) (123 (012
472 4 2) \4" 4" 4 2’ 4

1 1 1 1
Ly = || —a, =b, 0| = |[—4, 0, —¢
strut ‘(4 ) 4 ) ) ’(4 gl 4 )

-1z
4

Miller indices giving nonzero diffraction intensity are
summarized in Table S6, and ratios between them can be
calculated using eq 21. The peak positions in the simulation
S(q) plots (Figure 12c) are in good agreement with the
characteristic ratios of (\/6: \/8: \/14: 16: \/20: \/22),51
with some small shifts. Theoretical models were used to assign
proper Miller indices to diffraction peaks observed in these
S(q) plots (Table S6). The cubic unit cell length of different
simulated configurations evaluated using eq 17 with d = /6
indicate that only a single unit cell was present in the
simulation boxes employed, leading to a wide range of cell
lengths (Table 8).

4.6. Discussion of Molecular and Phase Structures.
Given the wide range of molecular structures and self-
assembled morphologies explored in our simulations, in this
section, we try to identify general trends in the roles of specific
molecular features in phase behavior, which may form the basis
for rational molecular design strategies.

4.6.1. Lateral Chain Shape. In our model, the incompat-
ibility between the rigid cores and the lateral chains drives
them to form separate domains whose interface is influenced
by the lateral chain shape. The more branched the lateral
chain, the stronger the crowding of AK beads around the rigid
cores, which generates a stronger curvature of the interface
formed by the core domains. Overall, when the number of
branches is increased (going top down in the phase diagram of
Figure 3), the assembled structure is observed to change from
the lamellar and honeycomb columnar phases with relatively

network 1

network 2

(54)

flat interfaces to the network and axial-bundled columnar
phases with highly curved interfaces. This effect can be
quantified by analyzing special metrics for the packing of lateral
beads around a molecular core, as shown in Figure S6a. In
addition, the network strut formed by molecules with more
branches contains fewer cores due to the stronger crowding
around them. As a result, when forming the same ordered
network phase with different molecules (as illustrated by SP
and DD in Figures 4d, 9d, and S6b), both the strut thickness
and the node diameter decrease as the lateral chain shape
changes from “Tri” to “Hex”, because the node size is mainly
determined by the strut thickness for a given nodal valence.

For molecules having the same lateral chain shape (Nynch)
but different branch lengths (INy,), longer branches generate a
stronger crowding of AK beads around the core and a decrease
of the strut and node sizes when forming the same ordered
network phase. A quantification of this effect is shown in
Figure S7a. By extending the branch length in the lateral chain,
not only is the distance between neighboring bundles of
molecular cores increased, but their relative orientations can
also be altered depending on the molecular cross-sectional
shape,”*® which leads to the formation of different nodal
structures. However, these interrelations are nontrivial, and we
can only provide some heuristics based on the simulation
results. For a wide range of Ny, values, increasing the branch
length often leads to a decrease of nodal valence in the
resulting network phases. A typical example is the trident chain
with the center attachment, where a transition is observed from
SP (v=6) to CD (v=4) to DG (v = 3) along Ny, in the phase
diagram (Figure 3). Even for the disordered network phases,
the average nodal valence is observed to decrease as N,
increases (Figure S7c).

The lateral chain AK bead distributions depicted in Figures
S6 and S7 show that the AK beads in a given molecule flare out
about the core axis forming a conical density “cloud” that
reflects how such chains fill the space around the network’s
skeleton, with larger flaring correlating with higher interfacial
curvature. Similar analyses of side chain shape distributions are
relevant to other systems where chains are connected to
interfaces and frameworks. For instance, the features of such
distributions for single-stranded DNA overhansgs protruding
out of the arms of a DNA origami hinge’® can reveal
correlations with the shape and stability of the hinge.

4.6.2. Lateral Chain Attachment. The strong self-attraction
between GY beads in our model is the major driving force for
molecular self-assembly, and these beads can be either beadl
or bead6 based on the relative position to the lateral chain
(Figure 1). For the same lateral chain shape, the two types of
the attaching arrangements (left and center) can generate
different forms of steric hindrance for the clustering of GY
beads to alter their assembly behavior. In the left attachment,
the lateral chain is much closer to beadl than to bead6, leading
to a higher density of nearby AK beads and thus relatively
strong crowding around beadl, while in the center attachment
the lateral chain is roughly attached at the middle of the core
and the resulting AK bead populations and crowding around
beadl and bead6 are comparable. These qualitative effects can
be quantified by analyzing variations in the local density of AK
beads as shown in Figure S8a.

Since GY beads tend to cluster into nodes in the network
structure, the crowding around them plays an important role in
nodal formation. The ordered network phases are associated
with preferential types and sizes of nodal structures, while the
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disordered networks are often able to accommodate a broader
and diverse collection of nodal structures and sizes. We hence
examine first disordered networks next, as they are more
suitable to capture the average trends in assembly behavior and
their relation to the lateral chain attachment. For the same
lateral chain shape, the nodal partitioning of beadl and bead6
(Figure S8b) shows that, for the left attachment, the more
crowded beadl is prone to reside in small nodes, while the less
crowded bead6 forms larger nodes because it can associate
with more similar beads; these tendencies result in the
relatively broad and flat nodal size distributions shown in
Figure S8c. For the center attachment, beadl and bead6 form
similarly sized nodes due to their comparable crowding
environments, often leading to a narrower, unimodal
distribution (Figure S8c).

The node-formation behavior in disordered networks noted
above provides the basis for understanding the effect of lateral
chain attachment point on the formation of ordered network
phases. In our simulations, the SP, HD, and CD network
phases are only formed by molecules with the center
attachment. Based on our analysis, nodes in these networks
exhibit very similar structures with roughly uniform size
(Figures 4d and 7b), which is more compatible with the center
attachment as reflected by the node-formation behavior of
beadl and bead6 in Figure 13. In contrast, the DD network

---- beadl
—— bead6
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Figure 13. Probability distributions for beadl and bead6 (terminal
beads of the molecular core) residing in nodes of different sizes of
selected ordered network phases: SP, CD, and DD. Curves for beadl
and bead6 are marked by dashed and full lines, respectively, and
different molecular systems given different colors.

phase is only formed by molecules with the left attachment in
which the symmetry between the crowding around the core
ends is “broken”. Indeed, the bimodal distribution of the node
size in the DD network (Figure 9d) turns out to be more
compatible with the left attachment, since most of the beadl
sites prefer to form the small v = 2 nodes and most of the
beadé sites tend to form the big v = 4 nodes (Figure 13). As
for the DG network phases, they are formed by molecules with
both left and center attachments largely due to the multiple
building units and structural flexibility allowed by this
structure, thus limiting the role of any specific node-formation
behavior.

4.6.3. Molecular Topology—Morphology Relations. Figure
14 summarizes some of the key correlations observed between
molecular topology and network morphologies having distinct
nodal valences. These correlations are largely related to how
the lateral chain design affects their extent of crowding around
the molecular core. For a fixed total length of the lateral chain,
the chain shape with more branches can generate a stronger
crowding around the molecular core, driving cores to form
bundlelike domains with curvier interfaces and thus thinner
struts with smaller bundle sizes in the network. For the same
lateral chain shape, different branch lengths can fill the space
between adjacent molecular-core domains in ways that alter
their relative orientations, with longer branches often leading
to a decrease of the nodal valence and hence the formation of
different network phases. For identical lateral chains, the center
attachment, which is nearly center-symmetric about the
molecular core, favors network phases with the uniform
nodal structure, while the asymmetric left attachment can
generate different degrees of crowding at two core ends,
facilitating the formation of networks compatible with
bidisperse nodal structures.

5. CONCLUSIONS AND OUTLOOK

In this work we studied the phase behavior of bolapolyphiles
using molecular dynamics simulations with a simple coarse-
grained model developed in our previous computation
work.>>** At a constant packing fraction of 5 = 0.45, different
phases are observed depending on the shape, length, and
attaching point of the lateral chain, the temperature, and the
simulation box length. Among the phases unveiled, our focus
centered on several ordered network phases related to the
primitive, diamond, and gyroid network phases due to their
nontrivial and potentially useful 3D periodic structures. The
packing characteristics of these network phases were elucidated
by our network-skeleton analysis, and their corresponding
periodic symmetries were verified and fully characterized by a
detailed structure factor analysis.

Our results allowed us to outline specific trends for the
formation of network phases with different nodal valences
when the lateral chain length is increased for fixed branching
shape and when the number of branches is increased for a fixed
number of beads in the lateral chain. Variations in the
crowding effect of the lateral chains around the molecular core
were examined in some representative molecular structures
forming the ordered networks to unveil molecular topology—
phase morphology correlations that can serve as the basis for
molecular design strategies. In particular, breaking the
symmetry between the environments around the two ends of
the molecular core by a less symmetric lateral chain attachment
point can lead to more complex network phases with bimodal
nodal sizes.

Our results illustrate how a simple chemistry-agnostic
coarse-grained model can be an effective and useful modeling
platform. Our simulated network phases (e.g, SP, CD, DD,
and DG) were able to capture the key structural arrangement
observed in the experiment, where rodlike mesogen cores are
bundled together along their long axes to form the net-
work.”?* 7 Differences between simulated and experimental
phases are mainly related to packing details, such as the
average number of rods per bundle. Despite their limitations,
our CG model results can provide guidance to future
investigations given that most of the specific bolapolyphile
designs explored here (for Ny,n > 2) are yet to be studied
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Figure 14. Overview of main molecular topology—morphology trends observed in the multident bolapolyphiles studied.

experimentally. Nevertheless, complementary work is needed
to develop chemistry-specific coarse-grained models which can
be directly mapped into fully atomistic models to thus describe
and predict specific material properties which can be
instrumental to determining their suitability for potential
applications.>

Our findings add to the body of work demonstrating that
bolapolyphiles provide a versatile platform to realize a rich
variety of ever more complex microstructures. Compared to
diblock copolymers, the small size of bolapolyphiles imparts to
them the advantage of a much faster self-assembly kinetics and
defect annealing. Compared to other more flexible, linear
oligomeric amphiphiles, the tendency for the alignment and
bundling of the bolapolyphile rigid cores allows them to form
intricate structures where such cores form rigid pillars, walls, or
skeletons which in some cases resemble those realized by
metal—organic frameworks. Indeed, there exist numerous types
of honeycomb and network phases which have yet to be
realized in other materials’ platforms.'~'**%~*

While the main goal of this work was to unveil key molecular
design features and conditions that are conducive to the
formation of different ordered mesophases, going forward,
more advanced free-energy-based methods should be used to
more quantitatively pinpoint phase transition boundaries.
Indeed, while long annealing protocols and repeated runs for
different system sizes were performed to ensure the
reproducibility of our results, this does not preclude the
possibility that some of the phases obtained may have been
metastable at the simulated conditions. Furthermore, advanced
path sampling techniques could be used to unveil the free-
energy barriers and kinetic mechanisms of the disorder-to-
order phase transitions which are highly nontrivial for the
network phases of interest.*”>"
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