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ABSTRACT

With the emergence of complex autonomous systems, multiple
control tasks are increasingly being implemented on shared compu-
tational platforms. Due to the resource-constrained nature of such
platforms in domains such as automotive, scheduling all the control
tasks in a timely manner is often difficult. The usual requirement —
that all task invocations must meet their deadlines — stems from
the isolated design of a control strategy and its implementation
(including scheduling) in software. This separation of concerns,
where the control designer sets the deadlines, and the embedded
software engineer aims to meet them, eases the design and verifica-
tion process. However, it is not flexible and is overly conservative.
In this paper, we show how to capture the deadline miss patterns
under which the safety properties of the controllers will still be
satisfied. The allowed patterns of such deadline misses may be cap-
tured using what are referred to as “weakly-hard constraints” But
scheduling tasks under these weakly-hard constraints is non-trivial
since common scheduling policies like fixed-priority or earliest
deadline first do not satisfy them in general. The main contribu-
tion of this paper is to automatically synthesize schedules from the
safety properties of controllers. Using real examples, we demon-
strate the effectiveness of this strategy and illustrate that traditional
notions of schedulability, e.g., utility ratios, are not applicable when
scheduling controllers to satisfy safety properties.

1 INTRODUCTION

The core functionalities of many emerging autonomous systems,
like autonomous vehicles or robots, are implemented as a collection
of feedback control loops. Their design starts with mathematically
determining a control strategy, followed by implementing that
strategy in software [14]. The former belongs to the domain of
control theory and the latter to real-time and embedded systems.
In this process, the control engineers assume certain deadlines that
the control tasks need to satisfy for them to behave as desired,
and the embedded systems engineers schedule them to meet those
deadlines [16]. While this ensures a clean separation of concerns,
allowing the two groups of engineers to work independently, this
process is inflexible and overly conservative. It is posing a problem
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Figure 1: Outline of the proposed scheme.

as the volume of software in autonomous systems continues to grow
and multiple control tasks now need to be scheduled on shared
resources [3, 25]. Meeting all deadlines requires making pessimistic
decisions because of many reasons [7], such as the difficulty in
estimating the worst case execution times (WCET) of tasks [1].

Here, we show that instead of attempting to meet all deadlines,
if the focus is shifted to a “system-level” property like control
safety, then certain deadlines can be missed while still satisfying
this property. Which deadline hit/miss patterns are acceptable has
recently been actively studied from a control stability perspec-
tive [13, 15, 21, 22, 26, 28], which may be seen as a form of safety
property. Other more general safety properties such as the max-
imum deviation from a nominal behavior have also been stud-
ied [5, 10]. While these papers have studied the deadline hit/miss
patterns that guarantee the satisfaction of a given safety property,
it is not clear how to schedule a given set of tasks such that each task
respects its corresponding deadline hit/miss pattern. In the absence
of such a scheduling policy it is not possible to exploit the flexibility
that arises from the fact that deadline misses can be tolerated.

The main contribution of this paper is a technique for auto-
matically synthesizing such schedules from a collection of feedback
controllers and their associated safety properties. Instead of the
safety property being stability, where our proposed technique may
also be applied, we instead focus on a more general safety prop-
erty defined by the maximum deviation from a nominal behavior.
Given an initial state of the system (plant + controller) we define
the nominal behavior as the trajectory in the state space where
all the controller inputs meet their deadlines (i.e., all the feedback
control inputs are applied before the end of the sampling period). If
some of the control inputs cannot be computed (and hence applied)
within the sampling period (i.e., there is a deadline miss) then the
trajectory followed by the system will deviate from this nominal
trajectory. As long as the deviation is not more than a specified
bound, the behavior of the system is deemed to be safe. This notion
of safe behaviors is a natural one (in the concluding section we
point to more complex behavioral notions). For instance, the nom-
inal trajectory might represent the pre-determined path that an
autonomous vehicle should follow and safe behaviors will denote
the paths the vehicle can take, without hitting any obstacles.
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Our proposed schedule synthesis scheme is illustrated in Fig-
ure 1. Given a plant + controller and a desired safety property (i.e.,
the maximum allowed deviation from its nominal behavior), we
first derive the pattern of allowed deadline hits and misses. This is
captured as a weakly-hard constraint () that specifies how many
deadlines m must be met within any window of k consecutive
samples. Note that there could be multiple such weakly-hard con-
straints that satisfy the safety property of a controller. Given a set
of controllers and a set of weakly-hard constraints derived for each
controller, we develop an automata-theoretic technique to compute
a schedule for them. Such a schedule specifies which controllers
should be run in each period (and hence meet their deadlines) and
which cannot be run (i.e, they miss their deadlines). It is important
to note that such schedules may not be captured using standard
scheduling policies like earliest deadline first or fixed priority.

This work is broadly related to the topic of scheduling control
tasks [6], and in particular to a number of recent studies [5, 10, 15]
on checking whether a safety property (including control stability)
is satisfied for some given deadline hit/miss pattern. Here, we lever-
age those results and solve the inverse problem, (viz.,) synthesizing
the hit/miss patterns (or weakly-hard constraints) and further use
them for schedule synthesis. As for other related work, the authors
of [30] propose systematic methods of specifying weakly-hard con-
straints. They also carry out a detailed analysis of the dominance
relations between various constraint types and present an analy-
sis tool called WeaklyHard.jl. Scheduling related studies involving
weakly hard constraints have appeared in [8, 9, 21, 27]. In [8] the
problem of scheduling multiple data streams with (') constraints
using a priority based scheme is studied with the aim of reducing
the probability of constraint violations. The work in [9] develops
a technique for bounding the number of deadline misses in end-
to-end task chains that have task dependencies. The problem of
verifying if a (' ) constraint is being met in a uniprocessor setting
for constrained-deadline periodic systems is investigated in [27]
and an overapproximation scheme is presented. Finally, the authors
of [21] develop a Deadline-Miss-Aware-Controller (DMAC) which
estimates deadline misses based on probabilistic execution times
derived through simulations. The goal is to provide probabilistic
guarantees for the performance of the controller.

The rest of this paper is organized as follows. In Section 2, we in-
troduce the system model and weakly-hard constraints with which
we model the deadline hit/miss behaviors. In Section 3, we formally
define the two main problems of this work, namely constraint syn-
thesis and schedule synthesis. We then propose solutions to these
two problems in Sections 4 and 5, respectively. We evaluate our solu-
tions with a case study in Section 6. Finally, we provide concluding
remarks in Section 7.

2 SYSTEM MODELLING
2.1 The State-Space Model

Our system model is a discrete time-invariant linear dynamical
system with state feedback control. We assume it to be of the form:

x[t +1] = Ax[t] + Bu[t], 1)

where A € R™" and B € R™*?, The control input u is computed
by a periodic real-time task running on a processor, and is assumed
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to be of the form:
ult] = Kx[t — 1], 2)

where K € RP*™, We assume that the new control input is al-
ways applied at the deadline of the control job, and the deadline
is assumed to be one sampling period from the release time of the
job [12]. In other words, the system state at time ¢ — 1 is sampled
and used to compute the control input for time ¢, where the state
and the control input are computed according to Egs. (1) and (2).

2.2 Safe Behaviors

We consider the behavior of the plant only over a finite time
horizon H. Thus the states of the plant will be recorded at time
points 0, 1,..., H. We also assume the initial state of the system
is z[0] € R™. Then the nominal trajectory of the plant is the se-
quence of states of length H of the form z[0],z[1] ..., z[H], where
z[t] = Az[t — 1] + Bu[t — 1] and u[¢t] = Kz[t — 1], for 0 < t < H.
Intuitively, it is the trajectory that results when there are no dead-
line misses. We next wish to define the set of behaviors that can
be tolerated in terms of how far they can deviate from the nomi-
nal trajectory. To start with, we let 7H be sequences of length H
over R" of the form 7 = x[0], x[1] ..., x[H] with x[0] = z[0]. We
use 7| j] to denote the j-th member of the sequence, i.e., 7[j] = x[j].
Since H will be clear from the context we shall write 7~ instead
of 7H in what follows. Intuitively, 7~ denotes the set of all possi-
ble trajectories of length H in the state space that start from z[0].
Clearly the nominal trajectory, denoted from now on as zom, is
a member of 7. To quantify deviations from the nominal trajec-
tory, we use the Euclidean distance, denoted dis(-) to measure the
distance between two points in R™. In other words, for x,y € R",
dis(x,y) = (X1, (xf - yi)z)l/z, where x' and y’ denote the i-th
element of the vector x and y respectively. This induces a distance
between any pair of members of 7, also denoted as dis(-), given
by dis(z, ') = max{dis(z[j],7'[j]) | 0 < j < H}.

We now fix a maximum deviation d,qy > 0, a rational number
in R. This leads to the set of safe trajectories 7;5}2‘” C 7, defined

as 7;:}?;“* = {r | dis(7, Thom) < dmax}.- We shall from now on

write 75, instead of 7 J’CZ‘” since dpgx Will be clear from context.

Clearly, the nominal trajectory is a member of 7y,

2.3 Weakly-Hard Constraints

The control input u is computed by a periodic real-time task running
on a processor. Suppose x[¢] is the plant state and u[¢] is the control
input at time ¢. When x[¢ — 1] is read, a software job is released to
compute u[t], which is then applied to the physical plant at time ¢ if
the job completes within its deadline. It is also possible that the job
will miss its deadline and not compute a control input in time. In
this case, the controller must decide on the control signal to be sent
to the system. In the literature [15] two policies have been often
considered: (1) Hold, in which the previous control signal is sent
as the current input, and (2) Zero, where the control input 0 is sent.
In this paper, we focus on the Hold policy, though our methods are
compatible with Zero as well. Clearly, when deadline misses occur,
the behavior of the plant trajectory will deviate from the nominal
trajectory since the “correct” control inputs are not received.
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The work in [2] proposes succinct and systematic methods of
limiting how many deadlines can be missed by control software

jobs before it is considered to be a violation. Among them, the (')
model—which requires that at most m deadlines can be missed in
any k consecutive executions of a task—has been studied in a num-
ber of settings, including schedulability analysis, formal verification,
and runtime monitoring, with [11, 20, 29] as recent examples.
Following the notation in [2], we use constraints of the type (7 ),
which states that at least m deadlines must be met in any k consec-
utive invocations of the task. This is equivalent to the constraint

(k;’" ). If we represent the hit/miss patterns using a bit string,
where 0 represents a deadline miss and 1 a hit, then all hit/miss pat-
terns that comply with the constraint (') form a regular language
over the alphabet {0, 1} [30]. We denote this language as L, x).

Plant Behaviors under Weakly-Hard Constraints. Our goal is
to synthesize weakly-hard constraints of the form (' ) under which
the plant behavior remains safe. To make this precise, suppose
o € {0, 1} is a sequence of length H representing a pattern of hits
and misses. As before, 0 denotes a deadline miss and 1, a hit. Then
starting from z[0] we can use Eq. (1) to compute the sequence of
plant states and Eq. (2) to compute control inputs (or use the last
control input if there was a deadline miss) . We denote the resulting
plant trajectory as 7. This leads to T(;x) = {76 | 0 € L) }-
We call the plant safe under () if and only if 7, k) € Tsafe-

3 PROBLEM STATEMENT

The problems we study in this work can now be stated as follows.

PROBLEM 1 (CONSTRAINT SYNTHESIS). Given a dynamical system
with the initial state z[0] as specified above, a time horizon H, and
the allowed maximum deviation dpmax from the nominal behavior,
find a set of weakly-hard constraints of the form (') such that the
plant behavior is safe under each of these constraints.

Since H may be large, allowing all weakly-hard constraints is
not realistic. Hence, we assume that we are given a maximum
window size kmgx such that kpex < H. Thus we are required
to synthesize all constraints of the form (7' ) with m < k and
k < kmax. Suppose we are given a set of plants, each with its own
maximum allowed deviation. For convenience, we assume they
have a common time horizon H. Solving Problem 1 results in a set
of weakly-hard constraints for each plant. Then, we wish to also
solve the following scheduling problem.

PROBLEM 2 (SCHEDULE SYNTHESIS). Given a set of N controllers
{Ci}, each with a set of weakly-hard constraints, and an implemen-
tation platform where at most ] < N controllers can be scheduled in
each time slot, determine if a schedule exists where all the controllers
can be scheduled without violating their safety constraints over the
time horizon H. Furthermore, synthesize a schedule if one exists.

We propose solutions to these problems in the next two sections.
Figure 1 shows how the two problems below are connected.

4 CONSTRAINT SYNTHESIS

We are seeking to synthesize all constraints of the form (7' ) with
m < k and k < kg under which the plant is safe. This set of con-
straints can be narrowed down based on the following observations
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(see [2] for a more detailed analysis). Suppose (7 ) and (') are two

constraints with j < k. Then clearly L, jy € L), and hence
if the plant is safe under () then it will also be safe under (7).
Next, suppose (') and ([ ) are two constraints such that m < ¢.
Then L) C L(mk)- Hence, if the plant is safe under (%), then
it will also be safe under (Ii ).

Therefore, we wish to synthesize a set of constraints:

{("&) Tk e {1, kmax}}

such that for all k, if the plant is safe under ( ’Z/ ) then m’ > my.

Suppose we are trying to check if the given plant is safe under
a generic constraint (7). This entails checking if Timk) € Tsafe-
This is difficult to do directly since there will be exponentially
(in H) many strings to be checked. Hence we will follow a scheme
developed in [10] to check this in an overapproximate manner. In
other words, if we decide that the plant is safe under (7’ ), this is
guaranteed to be the case but there may be a smaller value m’ < m
such that the plant is also safe under ( mk' ). To explain this scheme,
we first define d(( 7)) = max{dis(z, tnom) | T € T(mj) }-

The work in [10] proposes several methods for computing an
upper bound d for d(("")). We use the BoundedTree algorithm
and make the following modification to suit our problem. The
weakly-hard constraints considered in [10] are in the form of (¢),
indicating that no more than ¢ deadline misses can occur consec-
utively in a trajectory of length H. This can be easily modified
to work with weakly-hard constraints of the form (7). Using
the modified BoundedTree algorithm, we approximate an upper
bound d > d ((F)-1 d < dpmay then we conclude that the plant is
safe under (7). Otherwise we conclude that it is not.

4.1 Constructing Safety Constraints List

We can now tackle the problem of estimating the set of constraints:
{7 ) ()}

such that for j in {1,2, ..., kmax}, if the plant is safe under ("}/)
then m” > m;. We propose Algorithm 1 for computing this set
of constraints. The heart of the algorithm is the overapproxima-
tion function deviationUB, using which an upper bound is com-
puted for each candidate constraint ( W;j ). A naive way of building
{0 ("), (”,i’;”;i" )} is to loop over k from 1 to kjqx and m
from 1 to k. Our observations made earlier in the section suggest
two improvements: (1) if (7}’ ) is unsafe, then (%) is unsafe for any
k' > k; (2) if (') is safe, then (’”k/) is safe for any m’ > m. In both
cases no further computation is required. We also note that m = k
implies that there are no deadline misses, i.e., (ﬁ) is the nominal
behavior. Thus we can further restrict that m < k and k > 2.

In Algorithm 1, the outer loop at Line 4 loops over k from 2
to kmax, while the inner loop at Line 5 loops over m from 1 to k.
Note that m increases monotonically for all values of k. For each
combination of m and k, the deviation upper bound d is computed
for (f') (Line 6) and compared with maximum deviation dpgy
(Line 7). If d < dmax, then (']?) is added to results and k is in-
cremented (Line 8); otherwise, m is incremented (Line 10). Some
examples are shown in Table 1 in Section 6. For now, if we focus on
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Algorithm 1: Constructing the set of safe constraints for a
given controller

1 function constraintSynthesis(C, dmax, z2[0], kmax)

input :The plant, maximum deviation dpgy, the initial
state z[0], and maximum window size kmnax
output:List of weakly-hard constraints that satisfies
safety requirement
2 result « {};
3 me1;
4 for k <« 2 to kpyax do
5 while m < k do
6 d e deviationUB(m,k,C,z[0]) ;
7 if d < dpmay then
8 result < append( result, (7)) ;
9 L break
10 mee—m+1;
1 | return result;

just the first model, namely, the RC network, ky,qx for this system
is 6. v/ denotes a safe constraint (for instance, (3)) and x an unsafe
constraint (for instance, ( g )

5 SCHEDULE SYNTHESIS

As noted earlier, a weakly-hard constraint can be associated with
a regular language over {0, 1} where the strings in this language
are hit/miss patterns that satisfy this constraint. Clearly, the set
of safety constraints we have synthesized for a plant can be rep-
resented as regular language which is the union of the regular
languages representing the constraints. In this section, we first
build an automaton-based representation A; of the weakly-hard
constraints for each controller C;. We then construct a scheduler
automaton AS to check for the existence of safe schedules and
generate one such schedule if they exist.

5.1 Controller Automaton

The automaton A, r), accepting the language L, r), will be of
the form (L, >, T, Ly, £) where:

L set of locations, L = {0, l}k;

3  input alphabet, ¥ = {0, 1};

T  transition function, T : L X > — L;

L¢  accepting locations of the automaton, Ly C L;

fy initial location of the automaton with ¢ = {1}*.

The locations of the automaton ¢ € {0, 1} are strings repre-
senting the sliding window of size k over the hit/miss patterns,
corresponding to the k consecutive invocations of the software
task. The starting location ¢y = {l}k assumes that there has been
no deadline misses at system start. Let countOnes(s) be a function
that returns the number of 1s in a string s over {0, 1}. The accepting
locations Ly are the ones satisfying the weakly-hard constraint for
that specific window, i.e,, £ € Ly if and only if countOnes(¢) > m.
The transition function T is defined in the expected way. As an
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Figure 2: The automaton modelling the weakly-hard constraint (}).

example, the automaton corresponding to the the weakly-hard
constrain of (1) is shown in Fig. 2.

For each controller C;, a single A; can be constructed by tak-
ing the union of all languages corresponding to weakly-hard safe
constraints that have been synthesized for that controller (as per
Problem 1). We assume that we have N plants and controllers. Thus
we will have a set of automata {A;}. These automata will then be
used to construct the scheduler automaton. Our construction will
ensure that a schedule exists if and only if the language accepted
by the scheduler automaton is non-empty.

5.2 Scheduler Automaton

Our goal is to schedule the jobs of each controller’s task. We as-
sume that the processor makes available H time slots one after the
another and in each slot at most J jobs can run concurrently. As
a first attempt at scheduling tasks with weakly-hard constraints,
we assume a restricted setting where all the controllers have the
same period and the deadline is its period for each controller. Thus
if the job tsk{, namely the j-th job belonging to the task tsk; is
not scheduled in the j-th slot then it suffer a deadline miss. On the
other hand, if it is scheduled then it will meet its deadline. Based
on this setting, we define the scheduler automaton as follows.

DEFINITION 1. A scheduler automaton AS for a set of N con-
trollers whose constraints are represented by the automata of the form
A; = ({43, T’,L}, t’é}, where at most ] controllers can be scheduled

in each time slot, is defined as an automaton <LS, 5. TS, LJSC, {’69):

LS set of locations, LS = I1; Li;

=S input alphabet, S c{o,1N. A sequence o € {0, 1 isinsS
if and only if countOnes(o) < J;

TS  transition function, TS(¢,0) = [1; TH(F, ob);

LJSr accepting locations of the automaton, Ljf =TI1; L};

t’g initial location of the automaton, t’OS =TII; {’é.

Specifically, the new set of locations LS is a Cartesian product of
the controller automaton locations: LS = L! x L2 x - - - x LN, and
each location ¢ € LS is a tuple of individual locations from each
controller: £ = ((1,{’2, . ..,{’N). The set of actions 35 C {0, l}N
now captures hits and misses for all controllers. Below, we use
superscripts £ to denote i-th element of ¢, and ¢’ to denote the
i-th position of o. The i-th controller is scheduled when ¢! = 1.
Since we can only schedule J jobs in each slot, an action o is valid
if and only if countOnes(o) < J. For example, N = 3, ] = 1 results
inzS = {000, 001,010, 100}. o = 010 indicates that only the sec-
ond controller is scheduled. The transition function TS returns the



Safety-aware Flexible Schedule Synthesis for Cyber-Physical Systems using Weakly-Hard Constraints

product of individual transition functions []; T%. Let o € 35 be a
valid action for the scheduler automaton AS, then the transition
function TS becomes:

T3(6,0) = (T2, 61, T2(£%, 6%), ..., TN (N, oN)).

The set of accepting locations Ly is also a Cartesian product of

the individual accepting locations. A location ¢ € L; if and only if

e L} foralli € [1, N]. Intuitively, this means that the schedule is
valid only if all the controllers operate within their safety margin;
if any of the controller automaton A; transition to a non-accepting
(unsafe) location, the scheduler automaton will also transition to a
non-accepting location. Once we have constructed the scheduler
automaton, we can check for the existence of schedules by running
emptiness check on the scheduler automaton.

6 EXPERIMENTAL RESULTS

We have implemented the constraint synthesis and scheduler syn-
thesis techniques using Julia. We used the 5 systems described in
Section 6.1 for our experiments. Given a maximum allowed devia-
tion for each system, we used our constraint synthesis technique to
compute a set of safe weakly-hard constraints for each controller.
We then checked, using our scheduler synthesis technique, if the
corresponding controllers with their synthesized constraints could
be scheduled on a shared platform. In doing so, we assumed that
only two jobs can be scheduled in any single slot (i.e., ] = 2).

6.1 Plant Models

We note that the controllers of all the five systems, described in the
rest of the section, have the same period, namely, p = 20ms

6.1.1 RC Network (RC). Our first model is a resistor-capacitor
network [4] with the following model.

0.8870 0.01871 0.09433
x[t] + ult]

t+1] =
l I [0.003743 0.9861 0.01012

6.1.2 FiTenth Car (F1). Our second model is the linearized motion
of an F1Tenth model car [18]:

x[t+1] = [(1) 0.113] [¢] [06.()32953579}”[t]

Our next three plant models are selected from [23] and represent
components in the automotive domain.

6.1.3  DC Motor (DC). Our third model is the speed control for DC
motor adapted from [17]:

0.8187

0.01776 0.0003696
X =) 0003551 ]x[] [ ] 1]

0.9608 0.03921

6.1.4 Car Suspension (CS). Our fourth model is a suspension sys-
tem adapted from [19]:

0.9988 0.01937 0.000923 0.000549 0.0113

—0.1111 0.9432 0.06715 0.04547 0.9534
X[t+1] =16 01082 0.00549 0.978  0.01165 | ¥ | 0.2441 | 1]

0.8878 0.4547 —1.82 0.3012 ~13.04
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Table 1: Synthesized constraints for the 5 controllers from Section 6.1.

Window Minimum Hits (m)

Model Size(k) 1 2 3 4 5
2 v - - - -
3 v v - - =
RC network 4 x v vV = =
5 x x v v =
6 x x x v v
2 v - = =
3 x v = - —
F1 Tenth 4 x  x vV = =
5 x x x N
6 x x x x N4
2 v - - - -
3 v v - - -
DC Motor 4 v v v = =
5 x v v v =
6 x x v VS
2 v - = = =
3 x v = - —
Car Suspension 4 x vV vV = =
5 x v v v -
6 x x vV VvV
2 v - - - -
3 v vV - - =
Cruise Control 4 v v v = =
5 v v v v =
6 x v v vV

6.1.5 Cruise Control (CC). Our final model is a cruise control sys-
tem adapted from [24]:

1.0 0.01999 0.0001996 3.298 x 1076
x[t] = |-0.001207 0.9989  0.01995 |x[t]+| 0.0004945 |u[t]
—0.1206 —0.1066  0.9942 0.0494

Each plant model was discretized with a common period of
p = 20 ms. Controllers were then designed for the discretized state-
space models with a one-period delay.

6.2 Safe Schedule Synthesis

We first synthesized the set of safe weakly-hard constraints for
each controller. Then, we checked for a schedule that respects the
constraints for all controllers. We exhibit one such schedule below.
Constraint Synthesis. For each controller, we ran the method
outlined in Section 4, with time horizon H = 100. The maximum
window size kg Was set to be 6 for all the controllers. The results
are presented in Table 1, where we also report the maximum devia-
tion dmgx used to synthesize the constraints, for each controller.
Schedule Synthesis. We next used the controllers of the five
systems and attempted to synthesize a schedule (with J = 2). The
results are presented in Table 2, showing an execution sequence of
the scheduler automaton. As shown, we have successfully found a
schedule for the five controllers, where each controller satisfies its
corresponding safety constraint. As shown in Table 2, one example
of a valid schedule is as follows: From t = 1 to t = 19, the sched-
ule is the corresponding action o[t], where the i-th controller is
scheduled at time step ¢ if o[t]’ = 1. From t = 20 to ¢t = 100, the
schedule is repeated from t = 6 to t = 19, viz., the schedule at time



ASPDAC 23, January 16-19, 2023, Tokyo, Japan

Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty

Table 2: Synthesized schedule for the five controllers outlined in Section 6.1. A 1 at the i-th position of action o[¢] indicates that the i-th

controller is scheduled at time step ¢.

Step (t) 1 2 3 4 5 6 7 8 9
Action (c[t]) | 01010 10100 01001 10010 01100 10010 01100 10001 01010

11 12 13 14 15 16 17 18 19 20

10100 01010 10001 01100 10010 01010 10100 01001 10010 01100 (same as o[6])

t € [20,100] can be analytically given as o[((t — 20) mod 14) + 6].
We note that this is not the only valid schedule for this particular
set of controllers. The accepting runs of the scheduler automaton
represent the set of all the valid schedules.

Interestingly, this case study highlights that when weakly-hard
constraints are involved, traditional expectations involving uti-
lization, scheduling policies and schedulability do not apply, even
in our simple setting. To illustrate this, assume that each con-
troller has just one weakly-hard constraint. Then, it is not the
case that the schedulability of {C;} is implied by the utilization
ratio satisfying Y.ce(c,;} U(C) < J, where U(C) is defined as %
for the controller with constraint (7). Consider five controllers
each with one weakly-hard constraint: (%) (;) (é) (E) (411) Here
2ce{c;) U(C) = % + % + % + % + % = % < 2. However, it is easy
to check this set of tasks is not schedulable. On the other hand, one
may expect that if a schedule S exists, then the earliest deadline first
(EDF) scheduler (where a deadline refers to the maximum number
of misses until the constraint is violated) will produce a valid sched-
ule. However, considering the constraints (%) (%) (i) (2), (é)
it is easy to check that scheduling under EDF will fail, but our
scheduler synthesis method produces a valid schedule.

7 CONCLUDING REMARKS

In this work, we have linked the safety properties of control sys-
tems to the schedules of their controllers implemented on a shared
platform. Specifically, we consider safe behaviors of a system to
be those in which the system deviates from its nominal behavior
(induced by its control software always delivering its results on
time) at most by a given bound. We then automatically synthesize
a schedule for the controllers of a set of such systems so their be-
haviors are guaranteed to be safe. The bridge connecting the safe
behaviors and schedules are weakly-hard constraints, which spec-
ify the pattern of deadline misses that a system can tolerate while
maintaining the safety of its behaviors. Concretely, we first syn-
thesize a set of weakly hard constraints for each controller under
which the behavior of the system is guaranteed to remain safe. We
do so in a safe, overapproximate manner guaranteeing safety of the
plant, since exactly determining the constraints is computationally
infeasible. Then given a set of weakly-hard constraints for each
controller, we synthesize a schedule for a set of controllers on a
shared platform, so long as such a schedule exists.

An important observation here is that scheduling under weakly-
hard constraints is inherently challenging and does not seem to be
amenable to analyses developed for standard scheduling policies,
like earliest deadline first. As our examples have shown, even in
the simple setting that we considered, traditional ideas based on
utility ratios and the earliest deadline first policy do not work. It
will be interesting to study this issue systematically in the future. In
addition, we have only considered a safety property of plants here.
For autonomous systems, one often additionally requires liveness
properties, such as, “the robot should visit each designated station at

least once (while avoiding obstacles) when it moves from the starting
point to the destination.” It will therefore be fruitful to extend the
our framework to such richer settings.

Acknowledgements: We thank the anonymous reviewers for their
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