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Abstract

Software in autonomous systems like autonomous cars, robots or drones
is often implemented on resource-constrained embedded systems with
heterogeneous architectures. At the heart of such software are multiple
feedback control loops, whose dynamics not only depend on the con-
trol strategy being used, but also on the timing behavior the control
software experiences. But performing timing analysis for safety critical
control software tasks, particularly on heterogeneous computing plat-
forms, is challenging. Consequently, a number of recent papers have
addressed the problem of stability analysis of feedback control loops in
the presence of timing uncertainties (cf., deadline misses). In this paper,
we address a different class of safety properties, viz., whether the sys-
tem trajectory with timing uncertainties deviates too much from the
nominal trajectory. Verifying such quantitative safety properties involves
performing a reachability analysis that is computationally intractable,
or is too conservative. To alleviate these problems we propose to pro-
vide statistical guarantees over the behavior of control systems with
timing uncertainties. More specifically, we present a Bayesian hypoth-
esis testing method that estimates deviations from a nominal or ideal
behavior. We show that our analysis can provide, with high confidence,
tighter estimates of the deviation from nominal behavior than using
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known reachability analysis methods. We also illustrate the scalability of
our techniques by obtaining bounds in cases where reachability analysis
fails, thereby establishing the practicality of our proposed method.

Keywords: Control, reachability, real-time systems, safety, weakly-hard
systems, statistical hypothesis testing

1 Introduction

Providing verifiable assurances for autonomous systems is a challenge that
has attracted considerable scientific interest [1–3]. Traditionally, this involved
designing suitable feedback control loops and formally verifying their cor-
rectness. An emerging challenge in providing such assurances for current
generation autonomous systems is providing timing guarantees of the increas-
ingly complex on-board hardware platforms utilizing machine learning (ML)
components. Presently, these consist of multiple multicore processors and hard-
ware accelerators like GPUs and FPGAs. As a result, the timing behavior of
control software [4] running on them can be highly variable because of complex
interference patterns between heterogeneous components. Analyzing the tim-
ing behavior of such software consists of two main steps: (i) determining the
worst-case execution time (WCET) of the code [5], and (ii) using schedulabil-
ity analysis to validate the timing constraints (or deadlines) assuming which
the feedback controllers have been designed.

Unfortunately, there is now widespread consensus that on modern hard-
ware platforms, safe WCET estimates cannot be guaranteed without excessive
pessimism [6, 7]. This situation is further aggravated by ML components for
sensor (camera, radar, lidar) processing that incur content-dependent pro-
cessing times. Hence, unless very pessimistic WCET bounds are acceptable—
which makes designs highly over-provisioned and impractical—a certain non-
determinism in the timing behavior of software is unavoidable. Further, even
with pessimistic WCET bounds, modern autonomous systems are required
to run several software processes concurrently, thereby their timing behaviors
interfering with each other. Conventional approaches requiring strict adher-
ence to deadlines have become increasingly impractical or require the adoption
of costly high-performance implementation platforms.

In this paper we propose techniques that accept the inevitable timing uncer-
tainties that control software in modern autonomous systems will face, but
nevertheless provide the necessary safety guarantees. This is done using statis-
tical techniques to overcome the scalability challenges associated with the large
state space over which the verification needs to be performed. This raises the
question: “What performance guarantees can be provided for feedback control
loops subjected to uncertain timing behaviors?” There are various incarnations
of this question and the one most widely studied, particularly within networked
control systems, asks how to ensure stability in the presence of uncertainties
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Fig. 1: Deviation in the path of an F1Tenth car due to timing uncertainty.

in network behavior such as delays and dropped packets [8–14]. Instead of a
qualitative property like stability, in this paper we ask whether quanti-
tative properties, such as safety specification over a bounded time
horizon, hold in the presence of timing uncertainties.

F1Tenth Example

As an example, consider Fig. 1. It shows the trajectory of a lane-following con-
troller for an F1Tenth [15] model car. The car’s steering angle and velocity are
computed by a feedback controller, designed for the car to follow a predeter-
mined path. Running the controller as designed, with no timing uncertainty,
results in the nominal trajectory shown in black. Around this trajectory, there
is a safety envelope shown in light blue, representing a safe space for the car
to occupy without hitting any obstacles. Due to timing uncertainties in the
implementation platform, the software task that computes the control inputs
can miss the deadline imposed by the scheduler, resulting in deviation from
the nominal trajectory. 100 such trajectories where the control task missed its
deadline are shown in the figure—the green trajectories are safe, remaining
within the safety envelope for the entire time horizon. However, the trajectory
shown in red deviates too far from the nominal trajectory, briefly leaving the
safety envelope near x = 4, potentially resulting in a collision with an obsta-
cle. The distance of any trajectory when subjected to timing uncertainties
(deadline misses), from the nominal trajectory (resulting under ideal timing
behavior) is used to quantify “safety” in this paper, as illustrated in this exam-
ple. The goal here is to suitably characterize timing uncertainties and efficiently
check whether a given class of timing uncertainties satisfy such a specified
safety property.
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1.1 Contributions and Related Work

Given an ideal system behavior (when the control task always meets its dead-
line), and a pattern of deadline hits and misses, we want to estimate the
maximum possible deviation from the ideal behavior in the presence
of the allowed patterns of deadline misses over a time horizon of length
H. This involves reachability analysis of the states visited by the trajectories
of the closed-loop system in the time interval [0, H]. But this is not a scal-
able problem and our contribution is a statistical hypothesis testing (SHT)
framework to address this scalability issue (see Fig. 3). In particular, we use a
Bayesian hypothesis testing approach [16, 17] to address this problem.

In our setup, timing behaviors of interest are specified as patterns of hits
(the deadline is met) and misses (deadline is not met) and are characterized as
a regular language over the alphabet {hit,miss}. We further assume a uniform
distribution over these strings of length H (the time horizon of interest). This
enables us to implement an efficient sampling method based on the Recursive
RGA algorithm [18]. The Recursive RGA algorithm offers an efficient solution
for generating a random accepting run of a given deterministic finite automaton
(DFA) capturing the deadline hit/miss patterns. When provided with a DFA,
the Recursive RGA algorithm enables the generation of a random word that
belongs to the language represented by the DFA. In this paper, we represent the
deadline hit/miss patterns using a DFA defined on the alphabet ⟨0, 1⟩, where 0
signifies a deadline miss and 1 represents a deadline hit. Therefore, by utilizing
the Recursive RGA algorithm, we can generate a random accepting run of
this DFA, which corresponds to a potential observed deadline hit/miss pattern
within the system. Considering that the patterns considered in this paper can
be represented using a DFA, the Recursive RGA algorithm emerged as the most
efficient known algorithm to the best of our knowledge for generating random
strings (as per uniform distribution) from a given regular language within a
polynomial time complexity. Note that our method is also applicable to other
types of languages and distributions as well, provided the runs of the system
can be efficiently sampled. In the current setup, we are given a set of initial
states of the system, a mathematical model of its (discrete time) dynamics,
and a regular language L of strings of length H over the alphabet {hit,miss}.
Our goal is to estimate an upper bound dub on the deviation of the trajectory
induced by any string in L from the nominal trajectory induced by the string
consisting of only hits (the ideal timing behavior).

Proposed SHT framework

Our statistical hypothesis testing framework formulates two hypotheses,
namely null hypothesis H0 and alternative hypothesis H1, to test if a given
dub is an upper bound for the maximum deviation. The null hypothesis H0

will assert that with at most probability c, a randomly chosen trajectory will
have a deviation bounded by dub . The alternative hypothesis H1 will assert
that with at least probability c, a randomly chosen run will have a deviation
that is bounded by dub . This is illustrated in Fig. 3. We then use a Bayesian



Springer Nature 2021 LATEX template

Statistical Verification of Controllers under Timing Uncertainties 5

Evolution of states through time

Fig. 2: Evolution of states through time from an initial set of states.
The figure depicts all the possible sets of states that are reachable when the
system starts from a given initial set of states. The set of initial states is given
in green, blue represents the set of intermediate states, and purple represents
the set of states reached at time t.

hypothesis test to decide between these two hypotheses [16]. An important
consequence of our test is, when the samples we have drawn do not support
the alternative hypothesis, they will contain a counterexample with a devia-
tion that exceeds the current value of dub . We leverage this counterexample
to generate new hypotheses, for the next iteration, based on a new and larger
dub . In this sense, our method is driven by a counterexample guided refinement
strategy [19] to eventually accept the alternative hypothesis (see Fig. 3). In our
statistical hypothesis framework, in addition to the probabilistic guarantee c,
we can also bound the so called type I and type II error rates. The type I error
rate is defined as the probability of inferring the alternative hypothesis when
in fact the null hypothesis holds. Similarly, the type II error rate is defined
as the probability of inferring the null hypothesis when in fact the alternate
hypothesis holds. We choose the relevant parameters such that the type I error
is kept significantly low (as desired), while type II error [16] is not relevant in
our setting.

Handling Initial Set of States and Environmental Disturbances

When a system starts its evolution form a single initial state, the resulting
trajectory is a sequence of states (or points) in time, as was the case in the
F1Tenth example. In our previous work [20], the estimation of deviation is
computed when the system starts from a given initial state. However, one
might want to conduct the analysis for a set of states: either because the initial
state is unknown or because the user would like to do a similar analysis for
a large collection of initial states. Moreover, for all practical purposes, it is
impossible to locate the state from where the evolution of the system (such as
a robot) starts its execution from. In such cases, one must consider an initial
set of states to perform an analysis, as a single initial state is often useless in
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practice. We call the collection of all trajectories starting from the (possibly
infinite) initial set as pipes.

We consider the example given in Fig. 2 that demonstrates the evolution of
the system from initial set of states (marked in green). The set of states reached
at time t is given in purple, and intermediate set of states is given in blue. The
black lines in the figure demonstrates two random trajectories of the system
starting from two random states from the initial set of states. To account for
an initial set of states rather than individual states, the analysis conducted
in [20] has been expanded to encompass pipes (as depicted in Fig. 2) derived
from trajectories. This adjustment is necessary because when initiating from
an initial set of states (as opposed to a single state), the system’s behavior
concerning a sequence of deadline hits and misses is represented by a pipe
(infinite sets of trajectories), rather than a trajectory.

This introduces the following two additional research challenges. First, the
selection of an appropriate representation for the reachable set becomes cru-
cial. In this regard, we have examined two most widely used representations
for reachable sets, Zonotopes and V-polytopes. Zonotopes represent a set by
utilizing its center and a set of generator vectors that define the extent of the
set from the center. On the other hand, V-polytopes explicitly represent a set
by its vertices. Each of these representations offers distinct trade-offs, which
will be further explored in Section 5. Second, the computation of distances
between pipes, rather than just trajectories, poses a challenge. While certain
representations excel at computing set distances, the computation of system
evolution becomes challenging (and vice versa). Consequently, a representation
must be chosen by carefully considering various factors, as elaborated upon in
Section 5. In this work, it is assumed that the initial set of states, that repre-
sents the uncertainty around the actual initial set, is pre-computed and given
as an input to this method. In practice, the associated uncertainty around an
initial state may be estimated based on the error tolerance of the sensors used
for measurements, or based on other characteristics of the system. In general,
to conduct a conservative yet safe analysis, it is advisable to consider a higher
degree of uncertainty regarding the initial state.

In this paper, we extend our previous approach [20] for computing an upper
bound from a specific initial state to computing such a bound for an initial set.
This generalized analysis requires two main improvements. First, one has to
choose an appropriate representation for the reachable set. Second, one has to
compute, not just distance between trajectories, but rather compute distances
between two (infinite) sets of trajectories. Certain representations can be useful
to compute the distance between sets, while computing evolution of the system
being hard (and vice versa). Thus, a representation must be chosen trading-off
various factors [21, 22]. Handling pipes, for computing the maximum
deviation, is one of the main contributions of this work (Section 5).
For the clarity of presentation, we use trajectory to refer to pipes in this paper
hereon.
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A system might also encounter environmental disturbances in its behavior
at each time step in addition to uncertainty in its initial state. That is, the
system may encounter uncertainty due to environmental disturbances at every
time step resulting in a new set of possible system states. Although feedback
controllers are frequently used to manage these uncertainties, for computing
tight estimates of deviation from nominal trajectory, one has to account for
such uncertainties. In this work, we further discuss how one can adapt
our proposed method to compute deviations under the presence of
such uncertainties in the behavior of the system (Section 6). We note
that, in practice, environmental disturbances cannot be measured precisely.
As a result, the disturbances can only be represented as a set of states. Conse-
quently, even if the behavior of the system originates from a single initial state,
to account for the environmental disturbances, the behavior of the system has
to be represented as pipes. Since our previous method is unable to handle such
pipes, it is also unable to handle such environmental disturbances.

Related work

The problem of implementing control software on embedded systems has
been actively pursued in recent times [23–26], especially in domains like
automotive [27, 28]. Here, exploiting the robustness of control algorithms to
adaptively allocate resources, e.g., by switching between time-triggered and
event-triggered communication, has been studied in the past [29, 30]. Simi-
larly, shielding control software from timing interference of other concurrently
running tasks have also been studied [4, 31]. Our work in this paper has been
particularly influenced by a recent work by Maggio et al. [32] (and a number
of preceding ones on the related problem [33–35]) that studied how deadline
misses may be handled on an implementation platform and what impact it has
on control performance; specifically, stability. The strategies studied by Mag-
gio et al. include combinations of applying either a zero or the previous control
input to the plant in the case of a deadline miss, and either killing the control
task that missed its deadline or letting it complete its execution beyond the
deadline. We instead study the impact these policies have on the maximum
deviation that a trajectory of the closed-loop system can incur over a finite
time horizon relative to the nominal trajectory (with no deadline misses). As
outlined earlier in this paper, work in this domain stems from the difficulty in
timing analysis of control software by Ju et al. [36], which is attributed to both
– the challenges in WCET analysis and the modeling of the code structure by
Chakraborty et al. [37].

A sampling based statistical method is also used by Bozhko et al. [38] to
estimate the worst case (first) deadline miss probability of tasks scheduled
under a static priority scheme in a uniprocessor setting. Since the problem
they tackle is quite different from ours, we shall just compare here the two
statistical methods. Loosely speaking, in Bozhko et al., for a given task, the
required confidence level δ and the allowed probability to fail ϵ are first fixed.
This determines s, the number of runs of the system to be sampled. Depending
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Fig. 3: Proposed statistical hypothesis testing approach.

on the number of samples that are “successes” (i.e., the run encounters a first
deadline miss of the task) a probability interval ℓ ≤ ρ ≤ r is computed such
that |l − r| ≤ δ and P (ℓ ≤ ρ ≤ r) ≥ 1 − ϵ, where ρ is the probability of
the task taking place. This is an efficient and simple method that scales well.
However, in this method, both the number of successes and failures play a
crucial role in determining the statistical strength of the test. Hence, it is not
clear how this method can be efficiently ported to our setting, primarily due
to the following reasons: (i) The deviation bound must be iteratively explored
and confidence intervals have to be estimated at each iteration, until the user
required confidence is achieved. (ii) This method allows for failure—in our
context, failure implies a safety violation.

The related domain of statistical model checking [39] often uses sequential
hypothesis testing methods such as SPRT (sequential probability ratio test).
We have instead chosen a Bayesian hypothesis testing approach that requires
a fixed number of samples, and which can be done efficiently in our setting. A
thorough survey of various statistical model checking methods can be found
in Legay et al. [40].

Modeling the impact of network uncertainties in the form of time-varying
or stochastic delays on control performance has also been studied in [41–43].
Here again, the focus is on stability. Finally, a number of recent papers
have addressed various aspects of the control/architecture co-design prob-
lem [13, 28, 31, 44–48] in domains such as automotive software design [25, 49].
However, there has been comparatively less work on the use of statistical
techniques for the verification of control systems [17], although they perform
better than approximation techniques, as we show in this paper.
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Salient features of the proposed method

We conclude this section, by noting that the number of samples needed by
our procedure to test a given value of dub depends only on the strength of
the guarantee requested by the user. In particular, the number of samples
required does not depend on factors such as the length of time horizon H,
or the choice of the scheduling policy, even though these factors influence
the underlying distribution of trajectories. Furthermore, while we characterize
timing uncertainty using a language of deadline hit/miss patterns, our scheme
can be extended to other fine grained types of timing uncertainty such as task
completion times. It is worth pointing out that verifying quantitative safety
properties for control systems is harder than verifying stability, which is a
qualitative safety property. Specifically, techniques for stability analysis such
as the use of Lyapunov functions and results from stability analysis of switched
systems [11] are not designed to provide qualitative guarantees.

Organization of this paper

The remainder of this paper is organized as follows. Section 2 explains our
system model, followed by the definition of the problem and a discussion of
deterministic approaches to the solve the problem in Section 3. Our hypoth-
esis testing based framework in presented in Section 4. Further, we have also
provided a detailed discussion of the proposed framework in Appendix A. This
discussion delves into the usage and impact of various parameters that are used
in the proposed framework. Given our prior work (a preliminary version of this
paper appeared in [20]), Sections 5 and 6 are the new technical contributions of
this paper over [20], in addition to providing a more complete treatment of this
problem. Before describing our experimental results in Section 8, we illustrate
our approach on an example in Section 7, where we also provide a rationale
for choosing a Bayesian hypothesis testing approach over other methods. The
experimental results in Section 8 have also been be redone with the modifica-
tions proposed in Section 5. That is, as opposed to [20] which used a single
initial state, the results in all the case studies are obtained using an initial set
of states. We finally conclude by outlining some directions for future work.

2 System Modeling

We study the state feedback control of discrete time-invariant linear dynamical
systems of the form:

x[t+ 1] = Ax[t] +Bu[t], (1)

where A ∈ Rn×n, and B ∈ Rn×p. The control input u is computed by a periodic
real-time task running on a processor, and is assumed to be of the form:

u[t] = Kx[t− 1], (2)

where K ∈ Rp×n. Here, Eq. (1) represents the plant—the system whose evo-
lution needs to be controlled. The controller, given in Eq. (2), issues control
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inputs to the plant to control the evolution of the system as desired by the
user. Internally, the plant receives the control inputs at some discrete time
steps, and controls the evolution of the system based on that input—this part
of the system is often termed as the actuator. The plant (Eq. (1)) and the
controller (Eq. (2)) can alternately be represented using an augmented state

space [50] as z[t] =
[
x[t]T ua[t− 1]T

]T
, giving the following model:

z[t+ 1] =

[
A B
Kx Ku

]
z[t] (3)

Here, we denote the two blocks of the feedback gain matrix K providing
feedback from each of the vectors x and u as Kx ∈ Rp×n and Ku ∈ Rp×p,
respectively. This augmented form permits standard controller design tech-
niques such as linear-quadratic regulator (LQR) [51]. Further, it allows the
plant and controller to be represented as a single dynamics matrix.

Although this paper proposes a method to calculate the maximum devia-
tion caused by timing uncertainties in linear systems, the same approach can
be adjusted to nonlinear systems as follows. When dealing with nonlinear sys-
tems, it is common to approximate them with linear models while accepting a
certain level of error. In such cases, the error introduced by the linearization
process can also affect the computed deviation, depending on various factors.
The degree of error amplification relies on the guarantees provided by the
linearized model. For instance, if the linearized model ensures that the trajec-
tories of the linear model always stay within a δ-pipe of the actual model (i.e.,
the linear model’s trajectories do not deviate by more than δ compared to the
corresponding trajectories of the actual model), it can be guaranteed that the
deviation bound calculated using our method with the linear model is at most
δ away from the actual deviation bound. In other words, if our method com-
putes a deviation bound of d using the linear model, then the deviation bound
of the actual model is d+ δ, maintaining the same probabilistic guarantees.

In order to model the system behavior under a sequence of deadline hits and
misses, we use standard techniques, similar to those by Maggio et al. In this
model, the logical execution time (LET) paradigm is followed, i.e., a sample
of the system state at step t−1 is used to compute the control input at time t.
A software job is released when x[t− 1] is read, and has its deadline as when
x[t] is to be read. If the job completes on time, the control input is computed.
If the job misses its deadline, several different actions can be taken—described
below—both for generating the missing control input and for handling the task
that has missed its deadline [32].

We specify the behavior of the scheduler as an automaton that maps the
allowed patterns of hits and misses to the accompanying plant dynamics and
control inputs.

Definition 1 A transducer automaton T is a tuple ⟨L,A, T, µ, ℓint⟩, defined as
follows:
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ℓ0 ℓ1 ℓ2 ℓ3

hit/A1

miss/A2 miss/A3 miss/A4

hit/A5

hit/A6

hit/A7

Fig. 4: Transducer automaton capturing 3 maximum consecutive misses.

• L = {ℓ1, ℓ2, . . . , ℓm}: Set of automaton states.

• A: Set of scheduler actions. A = {hit,miss}
• T : The transition function, where T : L×A → L. Let T =

{
T (ℓi, a) = ℓj

∣∣ℓi, ℓj ∈
L, a ∈ A

}
denote the set of all transitions of the automaton. Note that the

transitions within the automaton are deterministic. Starting from any state ℓi in
the automaton, when presented with an action a ∈ {hit,miss}, the automaton
transitions to a unique state ℓj that represents how the system handles the
occurrence of a deadline hit or miss.

• µ: Associates a dynamics matrix with a transition. Formally, µ : T → Rn×n,
where n is the dimension of the system under consideration.

• ℓint ∈ L: Initial state of the automaton.

We sometimes refer to transducer automata as Deterministic Finite
Automata (DFA). An example of a DFA, capturing all possible behaviors with
at most 3 consecutive deadline misses, is shown in Fig. 4. The labels are of
the form ai/Ai, where ai ∈ A and Ai is the dynamics matrix associated to the
label using the function µ.

Several policies for handling deadline misses, both in terms of the control
input to apply and how to treat the job that has missed its deadline have been
proposed by Maggio et al. Many control input strategies can be devised, but
any such strategy must be simple enough to be implemented on an actuator.
The two we consider here are Zero, where a control input of 0 is applied, and
Hold , where the current control input is used again until a new one can be
computed. As for the handling of jobs that have missed their deadlines, there
are again multiple ways to handle them. Here, we consider the Kill strategy,
where the job is killed as soon as its deadline is passed, and the Skip-Next strat-
egy, where a job is allowed to run to completion past its deadline, but no new
job instance may be released until this happens. By combining a strategy for
control input and real-time job scheduling, we arrive at a single deadline miss
strategy. The resulting combination of policies, named Zero&Kill , Hold&Kill ,
Zero&Skip-Next , and Hold&Skip-Next in [32], will result in different closed
loop dynamics under deadline misses. However the nominal behaviors will be
identical. We note that the policies Zero&Kill , Hold&Kill , Zero&Skip-Next ,
and Hold&Skip-Next only differ in the ways of handling a deadline miss. Con-
versely, in the event of a deadline hit, the computed controller input is applied
in all the policies. Given that the nominal behavior reflects the absence of any
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deadline misses, the nominal trajectories for all policies remain unchanged, as
they are computed by simply applying the computed controller input at each
time step.

Let the plant states x[t] at time t be subsets of the metric space (Rn, dis),
where dis is a metric on Rn. We do not impose any assumption on dis (but
use the Euclidean distance in this paper). We note that this metric applies
only to the plant state, not the augmented state vector used by a transducer
automaton. Given T , a possible behavior of the system is defined as a run
consisting of an alternating sequence of locations and actions:

τ = {ℓ1, a1, ℓ2, . . . , aH−1, ℓH} (4)

where ℓ1 = ℓint, ai ∈ A, and H is the time bound. Let the set of all possible
runs be τ̄ .

Next, the evolution of a run τ = {ℓ1, a1, ℓ2, . . . , aH−1, ℓH}, with an initial
set x[0] ⊂ Rn is denoted as evol(τ), given by

evol(τ) =
{
x[0], x[1] = A1x[0], x[2] = A2x[1], . . . , x[H] = AHx[H − 1]

}
. (5)

Note that since the evolution starts from an initial set of states (x[0] ⊂ Rn),
the states reached at every time step t (x[t]) is also a set.

Here, At = µ(at) and x[t] are the plant states reached at time step t. Given
evolution of a run evol(τ), let

evol(τ)[t] = x[t], for 1 ≤ t ≤ H.

Note that we must consider distance between sets, not points, because we
are now working with the sequence of a set of states (trajectories)—such a
concept of distance is Hausdorff. It is important to note that the representa-
tion of the sets has a significant impact on the computational complexity of
computing the Hausdorff distance—from polytime to NP.

We now define the distance between two sets S,R ⊂ Rn using the standard
Hausdorff distance, which we denote as

∆(S,R) = max
{
sup
s∈S

inf
r∈R

dis(s, r), sup
r∈R

inf
s∈S

dis(s, r)
}
.

Given two runs τ1, τ2 ∈ τ̄ , we define deviation between the two runs as the
maximum Hausdorff distance between the evolution of the two runs. Formally:

Definition 2 (Deviation) The deviation between two runs τ1 and τ2 is given by:

dev(τ1, τ2) = max
1≤t≤H

{
∆
(
evol(τ1)[t], evol(τ2)[t]

)}
. (6)

Finally, as mentioned in the introduction, we assume a probability distri-
bution D over the set of runs τ̄ . Accordingly, by a random run we shall mean a
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run drawn from τ̄ according to D. In the present setting, D is the uniform dis-
tribution. However, our analysis method is applicable to any distribution D,
provided one can effectively draw samples from D.

3 The Problem Statement and a Deterministic
Approach

The analysis problem we wish to solve is as follows.

Problem 1. Given a transducer automaton T , an initial set of plant states
x[0] ⊂ Rn, and a nominal run τnom ∈ τ̄ , compute the maximum deviation
dmax , where:

dmax = max
{
dev(τ, τnom)

∣∣ τ ∈ τ̄
}
. (7)

Assuming a time bound of H, where at each step a deadline can either
be met or missed, computing the exact maximum deviation dmax will require
computing the deviation of 2H trajectories from the given nominal trajectory.
This becomes intractable for realistic values of H, so more efficient methods
must be used to instead approximate the value of dmax .

To this end, there are many reachability algorithms for linear dynamical
systems that can be used to safely overapproximate the maximum devi-
ation. We propose one such approach here, which we call RS (i.e., reachable
set), as a baseline against which we will compare our statistical hypothesis
testing approach in our experiments in Section 8.

The RS method begins by fixing a small number of time steps m. Given
an axis-aligned n-dimensional interval x[0] as an initial set, the algorithm pro-
ceeds iteratively, computing the reachable sets for each successive span of m
sampling periods. For the first iteration, all trajectories of length m starting
from the corners of the initial set x[0] are computed. We store the minimum
bounding box of all such trajectories at each time step, yielding our first m
over-approximated reachable sets. At the end of each iteration, we group the
runs by their final locations in the automaton, and compute a bounding box
for each location.

Using these boxes and their corresponding locations as initial conditions,
we compute the over-approximated reachable sets for the following m time
steps. This procedure is iterated as many times as required to span the time
horizon H (i.e., ⌈H/m⌉ iterations). While the runtime of the RS algorithm
is exponential in the parameter m, it is linear in the number of iterations.
Thus by running only a small number of time steps in each iteration, we
can compute a sound over-approximation of the reachable sets for large time
horizons efficiently. From these reachable sets, it is straightforward to compute
a safe upper bound dub ≥ dmax .

Unfortunately, this simple reachability-based approach often produces
bounds on the maximum deviation that are either quite pessimistic, or require
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a large amount of execution time (due to a large number of steps per itera-
tion m). Thus, in the next section, we propose the main contribution of this
work, a method to estimate the value of dmax based on statistical hypothesis
testing. As will be seen in Section 8, this method (i) typically outperforms the
RSmethod in scalability, (ii) while producing much tighter deviation estimates.

4 The Proposed Statistical Hypothesis Testing
Based Approach

In this section, we present a statistical hypothesis testing based approach to
solve Problem 1. Specifically, we propose a counterexample guided refinement
method to estimate an upper bound, dub , for dmax using statistical hypothesis
testing. Consequently, our estimate dub will be accompanied by a statistical
guarantee. We refer to dev(τ, τnom) as deviation of the run τ .

The inputs to our algorithm for estimating dub are: a DFA T that models
the behavior of scheduler, the initial set of plant states x[0], a time horizon H,
and the nominal behavior τnom . Our algorithm is composed of a network of
three modules as illustrated in Fig. 3. Before we describe each module in detail,
we provide a brief overview of the three modules.
Hypothesizer: Using the heuristics described in Section 4.1, we make an

initial estimate, dub . This initial guess is then sent to the Verifier

module.
Verifier: This module statistically verifies — using a Bayesian hypothesis

test — whether the current value of dub is a sufficiently high percentile
(say, ≥ 99th percentile) of the distribution of trajectory deviations. If
dub is accepted, it is returned as our final estimate. If not, we invoke the
Refiner module, which generates a new, higher value for dub . The details
of the Verifier module are presented in Section 4.2.

Refiner: This module generates a new guess for dub based on the sampled
trajectories seen thus far. Specifically, the next value of dub is set to be
the highest sampled deviation plus some additional slack ϵ. The refiner
sends this new value of dub back to the verifier for the next round of
hypothesis testing.

4.1 Hypothesizer: Guessing an upper-bound on deviation

As our proposed counterexample refinement-based technique requires to start
with an initial guess of the deviation, we use the following approach. To guess
an initial upper bound, we observed that a small set of randomly chosen sam-
ples can sometimes provide a reasonably good representation of the actual
distribution. Firstly, we select a predetermined number of samples, denoted
as R as specified by the user. Then, we generate R random trajectories that
satisfy the given constraint on the deadline hit/miss pattern. This involves
generating a sequence of hit/miss patterns (using the RGA algorithm) and
subsequently computing trajectories based on these patterns, from the given
initial set of states. Next, we calculate the maximum deviation between the
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nominal trajectory and the generated random trajectories (with an additional
epsilon padding). This maximum deviation serves as our initial guess, but it
need not be an accurate bound for the deviation. It simply provides a start-
ing point for our iterative counterexample refinement technique. It is worth
mentioning that we choose a small number of samples (determined by the
user) because, in some cases, a limited number of random samples can effec-
tively represent the actual distribution. Thus our initial guess consists of the
following steps, with R and ϵ being parameters supplied by the user:
1. Let S = {τ1, τ2, . . . , τR} be a set of randomly generated runs sampled

according to the given distribution over the set of strings of length H
specified by the DFA.

2. Let d′
ub = maxτ∈S

{
dev(τ, τnom)

}
.

3. Return dub = d′
ub + ϵ.

We will refer to this heuristic as SmallSample(·)[R,ϵ].

4.2 Verifier: Testing a value of dub

Here we describe our use of hypothesis testing to either validate or reject
a given estimate of dub . We first define Prob [T , x[0], τnom ,dub ] to be the
cumulative distribution function (CDF) for the deviation of a randomly cho-
sen trajectory. That is, Prob [T , x[0], τnom ,dub ] gives the probability that
a randomly drawn sample has a deviation less than dub . Our procedure
takes a user-specified parameter c ∈ (0, 1). In testing an estimate of dub ,
the Verifier must decide whether Prob [T , x[0], τnom ,dub ] ≥ c with high
probability.

In addition to specifying c, the user specifies a credibility level for the
test. A credibility level of 1 − α signifies that dub can be accepted when the
probability of a type-I error is at most α. For example, a credibility level of
1 − α = 95% signifies that we will accept a given value of dub when there
is a 95% probability that dub is greater than or equal to the c-percentile
of distribution of trajectory deviations. As a consequence, the probability of
accepting dub when it is less than the c-percentile is at most α = 5%.

To perform our test, we formulate the following null and alternative
hypotheses:

H0 : Prob [T , x[0], τnom ,dub ] < c (8)

H1 : Prob [T , x[0], τnom ,dub ] ≥ c (9)

We test our hypotheses by drawing K samples X = {τ1, τ2, . . . , τK} accord-
ing to the distribution assumed over the set of trajectories. In order to make a
conservative estimate, we will automatically accept H0 if we find any sample
with a deviation higher than dub . Hence, we only need to consider the case
where all samples in X have deviations smaller than dub . Our goal is to choose
the number of samples, K, such that

Pr [H0 | X] ≤ α.
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We compute K by explicitly calculating this posterior probability of H0.
As with all Bayesian methods, both the results and the complexity of this
calculation depend heavily on the choice of the prior probabilities of H0 and
H1 (see Appendix A). For simplicity, we assume for now that

Prob [T , x[0], τnom ,dub ] = θ ∼ Uniform(0, 1).

Hence, the prior density fθ(t) = 1 for t ∈ [0, 1] and the prior probabilities of
the hypotheses are

Pr [H0] = c and Pr [H1] = 1− c.

Note that θ ∈ Θ = [0, 1] because θ is a probability.
Given a set of samples, X, for which every sample obeys dub , we compute

the posterior probability of H0 as

Pr [H0 | X] =
Pr [X,H0]

Pr [X]
=

∫
θ∈H0

fX|θ(t) fθ(t)dt∫
θ∈Θ

fX|θ(t) fθ(t)dt

=

∫ c

0
tkdt∫ 1

0
tkdt

= ck+1 (10)

We can now use (10) to determine how large K must be in order to achieve
the desired level of credibility. Specifically,

cK+1 ≤ α =⇒ K ≥ logc α =⇒ K ≥
log 1

α

log 1
c

.

So, to test a given pair of hypotheses, we take at most this many samples.
If we encounter a counterexample while sampling, we immediately accept H0

and send the counterexample to the Refiner module. If all sampled deviations
are upper bounded by the current dub , we accept H1 and return dub as our
answer.

We call our hypothesis testing procedure Verifier1−α(H0, H1), where H0

and H1 are the null and alternative hypothesis, respectively.

4.3 The Refiner: Updating our estimate of dub

The Refiner is invoked whenever the Verifier rejects a particular value of
dub . This only happens when we have seen a counterexample that violates the
current dub . The Refiner module sets the new value of dub to be the deviation
of this most recent counterexample plus some additional padding term ϵ which
is set by the user. This new dub is then sent back to the Verifier.

The entire iterative hypothesis testing procedure with counterexample
guided refinement is listed in Algorithm 1.
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Algorithm 1 Computing upper bound on the deviation as defined in Eq. (7)

input : A transducer automaton T , initial set x[0], nominal run τnom , time
bound H ; // x[0] represents initial set of states

output: Compute an upper bound dub for dmax

/* we assume parameters R, ϵ, α and c are provided by the user. */
dub ← SmallSample(T , x[0], τnom)[R,ϵ]; // initial guess
H0 ← Prob [T , x[0], τnom ,dub ] < c; // form H0 using Eq. (8)
H1 ← Prob [T , x[0], τnom ,dub ] ≥ c; // form H1 using Eq. (9)
res ← Verifier1−α(H0, H1); // perform statistical verification
if res = True then

return dub

end
while True do

dub ← Refiner(res)ϵ; // refine using the counter example
H0 ← Prob [T , x[0], τnom ,dub ] < c; // refine H0 with new dub

H1 ← Prob [T , x[0], τnom ,dub ] ≥ c; // refine H1 with new dub

res ← Verifier1−α(H0, H1); // re-perform statistical verification
if res = True then

return dub

end

end

⟨𝒄, {𝒈𝟏, 𝒈𝟐}⟩
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Fig. 5: Reachability with zonotopes.

5 Statistical Hypothesis Testing with Sets of
Initial States

Computing maximum deviation under timing uncertainties (Problem 1), using
our proposed Statistical Hypothesis Testing Approach, requires computing sev-
eral random trajectories, and computing deviation between those trajectories
with the given nominal trajectory. Here, it is worth recalling that trajectories
are a sequence of set of states (see Fig. 2), as the evolution starts from an
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Fig. 6: Reachability with V-Polytopes.

initial set of states. That is, these runs indicate a pipe (as shown in Fig. 2)
originating from the initial set of states, rather than just a single state within
the given set. To compute the deviation between two such trajectories, we
use Hausdorff distance at every time step (as defined in Eq. (6)). Thus, the
representation of sets must be chosen based on its impact on the computa-
tional complexity while computing the trajectories and Hausdorff distance.
Some representations, such as zonotopes [52] and stars [53], can very efficiently
compute trajectories, but computing Hausdorff distance is hard. While some
representations, such as V-Polytope [22, 54], can compute Hausdorff distance
very efficiently, but computing trajectories is hard. Unfortunately, there is no
one representation that can compute both the trajectories and the distance
efficiently. Therefore, in this section, we discuss the following choices of rep-
resentation and its computational complexity vis-à-vis computing trajectories
and distances. Further note that the techniques mentioned in this section are
also incorporated in Algorithm 1. In other words, Algorithm 1 can handle
initial set of states, not just a single state.

5.1 Representing Sets using Zonotopes

A zonotope is an affine transformation of an unit (hyper-)box, represented by
its center (c) and a set of generator vectors (G). Fig. 5 shows two zonotopes
(in R2) in green and purple. A zonotope Z in Rn is define formally as follows.

Definition 3 (Zonotopes [52]) A zonotope Z is tuple ⟨c,G⟩; where c ∈ Rn is the
center, and G = {g1, g2, · · · , gm} is a set of m vectors in Rn called the generator
vectors. The set of states represented by the zonotope Z is given as

JZK = {x | x = c+

m∑
i=1

αigi; such that, for all i, − 1 ≤ αi ≤ 1}.
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Given a linear system, with dynamics matrix Â, the reachable set at time
step t can be computed as follows.

Definition 4 (Reachability using zonotopes) The reachable set at time step t, from
an initial set represented using a zonotope Z0, is given by zonotope Zt; where

Zt = Ât · Z0 = ⟨Ât · c, Ât ·G⟩ = ⟨c′, G′⟩.
This is also illustrated in Fig. 5, where Z0 and Zt are illustrated in green and purple
respectively.

Advantage. Using Definition 4, one can easily compute trajectories using
evol(·) (see Eq. (5)), where each element of the sequence is a zonotope, if x[0]
is also represented using a zonotope.

Disadvantage. Computing Hausdorff distance between two zonotopes, Z1

and Z2, requires solving an optimization problem as it relies on vertex
enumeration [22].

5.2 V-Polytopes: Representing Set using Vertices

V-polytopes are polytopes represented by their sets of vertices (formally called
extreme points). Fig. 6 shows two V-Polytopes in green and purple.

Definition 5 (V-polytopes [55]) A V-polytope V is a convex polytope represented
as ⟨v1, v2, · · · , vm⟩; where vi ∈ Rn are the set of extreme points of the polytope (or
vertices). The set of states represented by the polytope V is given as

JVK = {x | x ∈ CH(v1, v2, . . . , vm); where CH(·) is a convex hull of a set of points}.

Given a linear system, with dynamics matrix Â, the reachable set at time
step t using V-Polytopes can be computed as follows.

Definition 6 (Reachability using V-Polytopes) The reachable set at time step t,
from an initial set represented using a V-Polytope V0, is given by V-Polytope Vt;
where

Vt = Ât · V0 = ⟨Ât · v1, Ât · v2, · · · , Ât · vm⟩
This is also illustrated in Fig. 6, where V0 and Vt are illustrated in green and purple
respectively.

Hausdorff distance between two V-Polytopes, V1 and V2, can be computed
as follows.

Definition 7 (Hausdorff distance with V-Polytopes) Given two V-Polytopes, V1 =
⟨v11 , v11 , · · · , v1p⟩ and V2 = ⟨v21 , v21 , · · · , v2q ⟩, the Hausdorff distance between V1 and V2

can be computed as:

∆(V1,V2) = max

{
max

i

{
min
j

{
dis(v1i , v

2
j )
}}

,max
j

{
min
i

{
dis(v1i , v

2
j )
}}}
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Advantage. Computing Hausdorff distance between two V-Polytopes, as
given in Definition 7, is straightforward and computationally very efficient.

Disadvantage. Enumerating all potential vertices is required to represent
a polytope with its vertices, and this process takes O(2n) time, where n is
the system’s dimension. While it introduces computational bottlenecks in high
dimensional systems, this is not a significant problem in low dimensional con-
trol applications. Therefore, using Definition 6, one can compute trajectories
using evol(·), where each element of the sequence is a V-Polytope, if x[0] is
also represented using a V-Polytope.

V-Polytopes: Our choice of representation

After considering the benefits and drawbacks of zonotopes and V-Polytopes,
we chose to use V-Polytopes in our experiments. However, we wish to note
that one can adapt their implementation to use any representation (such as
zonotopes, stars, V-Polytopes) according to their application—as our method
poses no restriction on the choice of representation of sets.
1. Efficient implementation of Hausdorff distance. Since our method heavily

relies on performing random sampling of trajectories to compute its devi-
ation from the nominal trajectory, an efficient computation of Hausdorff
distance between trajectories is critical. For a typical case study, a single
iteration of our algorithm requires computing deviation of over 1K tra-
jectories, each up to a time bound of 150. Such an iteration involves 150K
calculations of the Hausdorff distance. Thus, V-Polytope is an obvious
choice in this regard.

2. Computing Random Trajectories. While zonotopes are more efficient at
computing trajectories than V-Polytopes, this is not a significant problem
for low-dimensional control applications. Moreover, given V-Polytopes’
advantage of computing Hausdorff distance, we chose to use V-Polytopes
in our experiments.

6 Handling Environmental Disturbances

So far we have only considered uncertainties in the initial set, resulting in
initial set of states. We now take a closer look at how our proposed approach
can be used for systems whose environmental disturbances produce additive
noise in the set of states reached at each time step. Such a behavior can be
modeled using the following dynamics.

x[t+ 1] = Ax[t] +Bu[t] + Cs[t],

where u[t] = Kx[t − 1], and s[t] encodes the environmental disturbances
experienced by the system at every time step.
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Given s[t], for all t, the evolution of the system, therefore, changes as

êvol(τ) =
{
x[0], x[1] = A1x[0]⊕ Cs[0], x[2] = A2x[1]⊕ Cs[1],

. . . , x[H] = AHx[H − 1]⊕ Cs[H − 1]
}
,

(11)

where τ is a random run, and ⊕ denotes Minkowski sum between two sets.
We would like point out that the only change that occurs, as a result of

environmental uncertainties, is in the computation of trajectories (i.e. êvol),
while the rest of the proposed method remains the same. Further note that the

only change in, computation of êvol , is the Minkowski sum of sets. Therefore,
next we discuss how to compute Minkowski sum when the sets are represented
as zonotopes and V-Polytopes.

Definition 8 (Minkowski sum of zonotopes) Given zonotopes, Z1 = ⟨c1, G1⟩ and
Z2 = ⟨c2, G2⟩, we can compute the Minkowski sum, Z = Z1 ⊕ Z2 as follows. Z =
⟨c,G⟩, where c = c1 + c2, and G is a list of generator vectors obtained by joining the
list of generator vectors G1 and G2.

Clearly, when the sets are represented as zonotopes, computing trajecto-
ries can be performed very easily using Definition 8. However, note that every
Minkowski sum results in adding more generator vectors in the representation.
In other words, every Minkowski sum increases the representational complex-
ity of zonotopes—which will have impact on the computation of Hausdorff
distance too.

After discussing Minkowski sum of zonotopes, we now briefly discuss
Minkowski sum of V-Polytopes. Using the algorithm proposed by Fukuda et
al. [54], one can perform Minkowski sum of V-Polytopes in polynomial time—
this further justifies our usage of V-Polytopes. In other words, zonotopes may
experience computational inefficiencies while computing Hausdorff distance,
however employing V-Polytopes does not lead to any significant computa-
tional bottleneck. One can easily incorporate these modifications in
Algorithm 1.

7 Illustration of the Proposed Approach And
Advantages of Jeffreys’s Bayes Factor

In this section, we demonstrate how the three modules described in Section 4,
namely Hypothesizer, Verifier, and Refiner, are used by Algorithm 1 to
compute an upper bound on the deviation (dub) with a probabilistic guar-
antee. This is to intuitively demonstrate our main approach on the following
illustrative example:

x[t+ 1] =

[
0.1 0.2
0.2 0.1

]
x[t] +

[
0.1
0.2

]
u[t]
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Step 1: Guess the deviation bound

Guessed deviation bound

Step 2: Statistically verify the 
guessed bound

A violating trajectory

Step 3: Refine the guessed bound

Padding with a fixed constant

Step 4: Statistically re-verify the 
guessed bound

Step 5: Return the accepted bound

The Hypothesizer module
guesses the upper bound by
randomly generating few sample
trajectories.

The Verifier module verifies
the guessed bound by generating
K random trajectories. The red
trajectory shows a violation of
the guessed bound.

The Refiner pads the
deviation bound obtained
from the counterexample with
slack 𝝐

Fig. 7: The steps performed by Algorithm 1 to compute a deviation bound
with a desired confidence. The nominal trajectory is shown in green, randomly
generated trajectories are shown in black, and dub is shown in light blue.

u[t] =
[
0.05149186 0.4189839

]
x[t]

We will compute the maximum deviation from a nominal trajectory with no
deadline misses, starting from the initial state x[0] = ⟨[10 10]T ⟩ (represented as
a V-Polytope). We assume that no more than two consecutive deadline misses
occur up to our time bound H = 5. Using the Hold&Skip-Next policy, we can
accordingly construct a transducer automaton representing this behavior of
the scheduler and dynamical system. Given these inputs, Algorithm 1 performs
the following steps to compute the maximum deviation, illustrated in Fig. 7.
Step 1: The first module invoked by Algorithm 1 is the Hypothesizer, which

guesses an upper bound dub to be the maximum deviation. To do so,



Springer Nature 2021 LATEX template

Statistical Verification of Controllers under Timing Uncertainties 23

the module considers the following two random sequences of deadline
hit/miss: 01001, 00111 (0 indicates miss, 1 indicates hit). It computes
the maximum deviation from the two random samples, dub = 0.1462.

The Verifier module, pre-tuned with α = 2.39 × 10−6 and c =
0.99, returns False, i.e., the upper bound dub = 0.1462 is not verified
to be correct with the desired probabilistic guarantees.

Step 2: Next, the guessed upper bound dub = 0.1462 is verified by invoking
the module Verifier. The Verifier module, pre-tuned with α =
2.39× 10−6 and c = 0.99, returns False, i.e., the upper bound dub =
0.1462 is not verified to be correct with the desired probabilistic
guarantees.

Step 3: Since the guessed bound dub was not verified, Algorithm 1 next
invokes the Refiner module with the counterexample. Refiner

updates the previous dub = 0.1462 to dub = 0.2262 (by padding a
fixed constant of 0.001 on top top of the deviation bound obtained
from the counterexample).

Step 4: The refined upper bound dub = 0.2262 is again sent to the Verifier
module for re-checking. This time, the Verifier module accepts the
dub = 0.2262 as a valid upper bound up-to the desired probabilistic
guarantees.

Step 5: The final dub = 0.2262 is returned as the maximum deviation (with
the desired probabilistic guarantees).

Having illustrated the steps performed by our algorithm on a simple exam-
ple, we argue in the following subsection why we chose a Bayesian hypothesis
testing approach over other methods.

7.1 Reason for Choosing Bayesian Hypothesis Testing

In theory, it is possible to any of a wide variety of statistical techniques,
such as sequential hypothesis testing, to derive a safety guarantee. However,
the Bayesian hypothesis testing approach discussed in this paper has several
advantages.
1. The number of samples required by our procedure is largely independent

of the number of possible trajectories. That is, the number of samples
we require to perform a hypothesis test does not depend on whether the
space of possible trajectories is finite, countably infinite, or uncountably
infinite (e.g. trajectories are drawn from a continuous distribution).

2. Our method imposes no restriction on the distribution of trajectories
produced by a given system. Our procedure only requires the ability to
sample trajectories according to this underlying distribution.

3. Our Bayesian hypothesis testing procedure allows us to compute the exact
number of samples required to either reject H1 or accept H1 with a spec-
ified bound on the probability of a type-I error. Other methods, such
as sequential hypothesis testing, cannot compute the number of samples
required perform a hypothesis test a priori.
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4. Our procedure immediately rejects H1 when a counterexample is found
and uses this counterexample to refine our guess for dub . This makes the
bound produced by our procedure more conservative and also prevents
us from spending too much time on hypothesis tests where H1 is unlikely
to be accepted. Sequential hypothesis testing may encounter multiple
counterexamples during a single round of random sampling.

8 Experimental Evaluation

We extended the tool StatDev1 [20], to implement handling initial set of states
(as proposed in Section 5). Our tool is available both in Python2 and Juila3.
For dis(·) we use the 2-norm. As mentioned in the introduction, to generate
uniform random samples for a given transducer automaton, we implemented
the Recursive RGA algorithm [18, 56]. We demonstrate the applicability of
our method given in Algorithm 1, extended to handle initial set of states as
per Section 5, on four standard examples: an RC network [57], an electric
steering application [32], an unstable second-order system [32] and a F1Tenth
car model [15]. For these examples we investigate the following questions.
Q1: What impact do the different scheduling policies have on on the computed

deviations?
Q2: What effect does the probabilistic guarantee c have on the computed

deviation?
Q3: How do our statistically computed deviations compare to the results

obtained using the RS method? Recall that RS refers to the deterministic
reachable set based method described in Section 3.

The following parameters were used in our study: R = 50, ϵ = 10−3,
an initial state of ⟨[10 10]T , [12 10]T , [12 12]T , [10 12]T ⟩ (represented as a V-
Polytope) and time bound H = 150. For Fig. 9, we use a single initial state
[10 10]T , with rest of the parameters same. Since Algorithm 1 is stochastic,
we execute it over several trials (50 in this case) and report the mean and the
standard deviation (SD) of the obtained dub values. For instance, 5 (0.3) means
that the mean value of dub = 5 with SD 0.3, and the reported computation
time is the average computation time taken.

The DFAs we consider enforce constraints of the form “at most k consec-
utive misses.” But any other form of constraints, as long as they are regular,
could also be used. We denote these DFAs as {Tk} with k ranging over {1, 2, 3}.
For most of the experiments, the DFA T3 was used.

The main results are summarized in Table 1; our statistical method always
computes tighter bounds than RS. For unstable systems and and F1tenth, RS
seems to have an exponential increase in computation time, whereas our sta-
tistical method scales much better (note that RS fails to compute a bound
within an hour).

1sites.google.com/view/statdev
2https://github.com/bineet-coderep/StatJitteryScheduler
3https://github.com/Ratfink/ControlTimingSafety.jl

sites.google.com/view/statdev
https://github.com/bineet-coderep/StatJitteryScheduler
https://github.com/Ratfink/ControlTimingSafety.jl
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8.1 Benchmarks

8.1.1 RC network

The RC network is given by the following state space equations.

x[t+ 1] =

[
0.5495 0.07240
0.01448 0.9332

]
x[t] +

[
0.3781
0.05234

]
u[t] (12)

Assuming nominal timing behavior of the control software, the feedback
controller computed using LQR is

u[t] =
[
0.09772 0.2504 0.07805

] [x[t− 1]
u[t− 1]

]
. (13)

Using the matrices from Eqs. (12) and (13), we construct a transducer
automaton for different deadline miss strategies. We used T3 to specify the
scheduler.

8.1.2 Electric steering

The electric steering example is given by the following state space equations.

x[t+ 1] =

[
0.996 0.075
−0.052 0.996

]
x[t] +

[
0.100 0.003
−0.003 0.083

]
u[t]. (14)

Optimal feedback controller for this system under nominal timing behavior
computed using LQR is:

u[t] =

[
0.9067 0.07384 0 0
0.01041 0.9685 0 0

] [
x[t− 1]
u[t− 1]

]
. (15)

As before, using the matrices from Eqs. (14) and (15), we construct a
transducer automaton for different deadline miss strategies. We used T3 to
specify the scheduler.

8.1.3 Unstable second-order system

The unstable second-order system example is given by the following state space
equations.

x[t+ 1] =

[
1.1053 0
−0.0209 0.99

]
x[t] +

[
0.0526 0.0105
0.0393 0.0994

]
u[t] (16)

The control input u[t] is computed as

u[t] =

[
4.7393 −0.2430
−0.2277 0.8620

]
x[t− 1]. (17)
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Using the matrices from Eqs. (16) and (17), we construct a transducer
automaton T1 to specify the scheduler.

8.1.4 F1Tenth

The model of an F1Tenth car [15] was linearized and the following state space
equations were obtained.

x[t+ 1] =

[
1 0.13
0 1

]
x[t] +

[
0.02559
0.3937

]
u[t] (18)

The control input u[t] is computed as

u[t] =
[
0.2935 0.4403

]
x[t− 1]. (19)

Using the matrices from Eqs. (18) and (19), we construct a transducer
automaton T3 to specify the scheduler.

8.2 Results

The main results addressing (Q1) and (Q3) are summarized in Table 1. For the
RC network, electric steering and F1Tenth, T3 (i.e., the constraint “at most
3 consecutive misses”) was used with c = 0.99 (and α = 2.39 × 10−6). Since
the third system is an unstable open loop system, missing too many deadlines
would cause the deviation bound to increase drastically; therefore, we only
consider T1 (i.e., the constraint “at most 1 deadline miss consecutively”).

To address (Q2), we fixed R = 10 and using T3 for RC network, electric
steering, F1tenth, and T1 for the unstable second order system, we varied c
(the probabilistic guarantee) from 0.9 to 0.9999 (with α ≤ 2.41× 10−6 across
the interval, maintaining a roughly constant value). We used the Hold&Skip-
Next strategy for these experiments. The resulting values of dub are shown by
boxplots and mean values in Fig. 8. Below we discuss the results in detail for
all the examples.

8.2.1 RC network

We now discuss the results obtained for the RC network example.
Q1: Considering at most 3 consecutive deadline misses allowed, we computed

the maximum deviation dub to be 2.278 (0) for all the scheduling poli-
cies. The details are given in Table 1. The system behavior is shown in
Figs. 9a and 10a, using the Hold&Skip-Next policy, and c = 0.99 (with
α = 2.39× 10−6). Fig. 9a shows the system behavior with a single initial
state, whereas Fig. 10a shows the system behavior with an initial set of
states. Thus, we see trajectories as a series of points in Fig. 9a, and a series
of polytopes in Fig. 10a. We plot Fig. 9a primarily to illustrate the role of
safety envelopes, and how trajectories might violate it. The trajectories
of the system from a single initial state will have safety envelopes plotted
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Table 1: Results Comparing Our Proposed Statistical Method to the RS

Method on Four Examples

Example Statistic Hold&Kill Zero&Kill Hold&Skip-Next Zero&Skip-Next

RC
network

dub (Alg. 1) 2.277 (0) 2.277 (0) 2.277 (0) 2.277 (0)
dub (RS) 2.277 2.277 2.277 2.277
Time Taken (Alg. 1) 1.745 s 1.774 s 1.878 s 1.831 s
Time Taken (RS) 0.918 s 1.040 s 0.943 s 1.012 s

Electric
Steering

dub (Alg. 1) 4.568 (0) 9.297 (0.28) 4.573 (0.027) 9.168 (0.28)
dub (RS) 4.795 10.226 8.882 10.625
Time Taken (Alg. 1) 1.74 s 2.90 s 1.79 s 2.90 s
Time Taken (RS) 1.569 s 47.43 s 178.0 s 182.8 s

Unstable
second-
order

dub (Alg. 1) 3.959 (0) 14.969 (1.17) 4.632 (0) 12.767 (1.06)
dub (RS) 4.269 — 5.162 —
Time Taken (Alg. 1) 1.50 s 2.46 s 1.99 s 2.97 s
Time Taken (RS) 1.068 s timed out (> 1 h) 3.837 s timed out (> 1 h)

F1Tenth

dub (Alg. 1) 10.42 (0) 19.08 (0.83) 18.53 (1.34) 18.90 (0.74)
dub (RS) 10.425 — — —
Time Taken (Alg. 1) 1.81 s 2.87 s 3.07 s 2.76 s
Time Taken (RS) 171.1 s timed out (> 1 h) timed out (> 1 h) timed out (> 1 h)

as a circles of radius dub (cyan) from the nominal behavior (black), as
show in all the subplots of Fig. 9. However, this is not the case when the
trajectories are resulting from an initial set of states. Thus, we indicate
the violating trajectory—one that deviates more the dub from the nom-
inal trajectory—in red, with the maximum and minimum violating time
steps marked with arrows. The red trajectory shows safety violation (i.e.
deviates more than dub from the nominal trajectory) by increasing the
consecutive deadline from 3 to 4. The red arrow shows the point at which
the system violates the safety. That is, at this point, the trajectory devi-
ates more than dub from the nominal trajectory. Note that we did not
find any safety violation with a single initial state (Fig. 9a).

Q2: Considering at most 3 consecutive deadline misses allowed and R = 10,
we gradually varied c from 0.9 to 0.9999. We observe that the mean dub

does not change with any further increase in c from c = 0.9. This is shown
in Fig. 8a.

Q3: The results show (see Table 1) that the stochastic method returns similar
bounds as the RS method. However, the computation time is higher but
not significantly high, i.e, under 2 s.

8.2.2 Electric steering

We now discuss the results obtained for the electric steering example.
Q1: Similar to our previous example, considering at most 3 consecutive dead-

line misses allowed, we computed the maximum deviation dub , with the
scheduling policies (detailed results in Table 1). The system behavior is
shown in Figs. 9b and 10b, using the Hold&Skip-Next policy, and c = 0.99
(with α = 2.39×10−6). Further, the figures also show a possible safety vio-
lation that might occur when the number of consecutive deadline misses
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(a) RC network (b) Electric steering

(c) Unstable second-order (d) F1Tenth

Fig. 8: Violin and box plots of computed dub values over varying probabilistic
guarantee c on the computed bound. All boxes in Fig. 8a are single values.

just increases by 1, i.e., considering at most 4 consecutive deadline misses.
The red trajectories in Figs. 9b and 10b show a safety violation that might
occur if the consecutive deadline misses increases by 1. The red dotted
line in Fig. 9b shows the safety violation (with the existing safety enve-
lope) that might occur if the consecutive deadline misses increases by 1.
The safety envelope highlighted in red shows the violating envelope. The
behavior would have been safe if the trajectory (in red) was within the
highlighted safety envelope (red), whereas it actually stretches outside to
the point marked in ‘×’ (red). In Fig. 10b, we indicate the maximum and
minimum violating time steps marked with arrows (red).

Q2: Considering at most 3 consecutive deadline misses allowed and R = 10,
we gradually varied c from 0.9 to 0.9999. The result is given in Fig. 8b.
We observe that the mean dub increases with increase in c, as expected.
However, higher outlier deviation values are sometimes returned, unlike
in the previous example. Also, note that with low values of c, we witness
a wide range, which narrows as c increases.

Q3: As given in Table 1, we compute tighter values of dub . The computa-
tion time for the stochastic method is lower for all strategies, except for
Hold&Kill where it is slightly higher (≈ 0.2 s).
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(b) Electric steering
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(c) Unstable second-order
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(d) F1Tenth

Fig. 9: System behavior with a single initial state [20]. Safety envelopes
at a distance of dub from the nominal trajectory, with random trajectories
with one extra consecutive deadline miss.

8.2.3 Unstable second-order system

We now discuss the results obtained for the unstable second-order system
example.
Q1: Unlike our previous examples, Since the third system is an unstable open

loop system, missing too many deadlines would cause the deviation bound
to increase drastically; therefore, we only consider T1 (i.e. the constraint
“at most 1 deadline miss consecutively”). We computed the maximum
deviation dub with the scheduling policies (see Table 1). The system
behavior is shown in Figs. 9c and 10c, using the Hold&Skip-Next policy,
along with a violating trajectory when the constraint changes to T2.
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(a) RC network
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(b) Electric steering
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(c) Unstable second-order

x0

15 10 5 0 5 10 15

x 1

20
15

10
5
0

5
10

time

0
20
40
60
80
100
120
140

Nominal Trajectory
Random Trajectories
Violating Trajectory

(d) F1Tenth

Fig. 10: System behavior with random trajectories (green) that are within
dub distance from the nominal trajectory (black), and one violating trajectory
(red) with one extra consecutive deadline miss—this trajectory deviates more
than dub from the nominal trajectory.

Q2: Considering at most 1 consecutive deadline miss allowed and R = 10, we
gradually varied c from 0.9 to 0.9999. The result is given in Fig. 8c. We
observe that the mean dub increases with increase in c, as expected. Also,
note that with low values of c, we witness a wide range, which narrows
(to zero) as c increases—dub seems to stabilizing at c = 0.995.

Q3: As given in Table 1, we compute tighter values of dub in less computation
time for all the scheduling policies. Moreover, the RS method times out
(> 1 h) for Zero&Kill and Zero&Skip-Next policies.
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8.2.4 F1Tenth

We now discuss the results obtained for the F1tenth example.
Q1: Similar to the first two examples, we computed the maximum deviation

dub with the scheduling policies, considering at most 3 consecutive dead-
line misses. The safety envelope is shown in Figs. 9d and 10d, using the
Hold&Skip-Next policy, and c = 0.99. Further, the figures also show a pos-
sible safety violation that might occur when the number of consecutive
deadline misses increases by 1 (at most 4 consecutive deadline misses).

Q2: Unlike other examples, where the width of the distribution decreases
sharply, in the F1Tenth example the decrease is not as drastic. This is
shown in Fig. 8d. However, following the method of [32], we computed an
upper-bound on the joint spectral radius and found the system with at
most three deadline consecutive misses is stable. This suggests that even
though the overall behavior of the system is stable, the system possibly
behaves erratically prior to obtaining stability—that is, the variance of the
deviation obtained for various behaviors (w.r.t. deadline hits and misses)
is very high. To put it differently, the deviation obtained from two different
sequences of deadline hits and misses can be very different.

Q3: The RS method, except for Hold&Kill was not able to compute a reason-
able bound on the deviation. Whereas our proposed method computed
reasonable bound, for all policies, under 3.5 s.

8.3 General Observations

In this subsection, we draw general observations from our experiments that
might help the users to tune this method according to their application. In
other words, the following observations are drawn to provide a rule of thumb
to choose the parameters and gather insights:
1. Revisit (Q1).
2. Revisit (Q2): The parameter c (confidence on the deviation).
3. Revisit (Q3): When to use a traditional method (RS) over our statistical

method.
4. How to choose the parameter R.

Revisit (Q1). We observe (from Table 1) that there is no one scheduling
policy that performs consistently well (in terms of smaller deviation bounds)
across all the benchmarks. This suggests that the choice of scheduling policy
should be made according to the given application.
Revisit (Q2): Choice of c. A good strategy is to use a high value of c,
so that the standard deviation is low and further increases in c will have
minimal effect. We note, however, that the unstable second-order and the
F1Tenth example with at most 3 consecutive deadline misses fail to achieve a
low standard deviation even with c = 0.99.
Revisit (Q3): Choice of method to be used. For small dimensional sta-
ble systems, like the RC network, traditional methods might work well.
However, for unstable systems they are likely to perform poorly due to coarse
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over-approximations. Note that our statistical method was able to computer
tighter bounds, compared to the RS method, for all the examples. Next, we
discuss why the RS method timed out in most cases. By segmenting the time
horizon into manageable chunks, the RS technique computes the reachable set
by computing all possible trajectories for each segment. It is possible to com-
pute all possible trajectories when each of these parts is small enough. By
dividing the time horizon into smaller chunks, we were able to get useful devi-
ation bounds for some of the benchmarks, but not for the majority of them.
As a result, we had to increase the number of segments by which we break the
time horizon, which made it impossible to compute every possible trajectory
in that segment and caused a timeout.
Choice of R. As our method is stochastic, for smaller values of R (and highly
chaotic systems), the initial dub guess can vary greatly (for different trials).
And when such an initial guess is being verified with a low probability c, the
chances of the initial guess being accepted is very high. Therefore the SD for
low values of c is also high, and the obtained bound dub is not guaranteed to
be monotonic.

Comments on Fig. 8 and Fig. 10

Further, we make general comments on Fig. 8 and Fig. 10 as follows.

Varying the value of c (Fig. 8). We observe that for lower values of c, the
mean values of dub are lower but the distributions are wider, however, as c
increases the mean values of dub increase whereas the width of the distribution
decreases sharply, except for F1Tenth where the decrease is not as drastic as
other examples. For F1Tenth, the computed joint spectral radius showed the
system with at most three deadline consecutive misses to be stable, suggesting
the system behavior is possibly erratic prior to obtaining stability. At lower
values of c, the distribution is wider, therefore the variance on the computed
bound is much higher at lower values of c. The computed bound is however
observed to be stabilizing with the distribution narrowing at only higher values
of c, except for the F1Tenth example. Again, the value of c at which the
computed mean bound stabilizes is application specific. For instance, in case
of electric steering the value of c at which the bound stabilizes is much higher
than the one required for unstable second-order system.
System Behavior (Fig. 10). In this figure, we show the behavior of the
system using the Hold&Skip-Next and c = 0.99. For RC network, electric steer-
ing and F1Tenth, all the trajectories satisfying the T3 constraint will be within
dub from the nominal trajectory (with a probabilistic guarantee). Similarly,
for the unstable second order system we used the constraint T1. We observe
that for the electric RC network example, the violating trajectory is closer to
the random trajectories, compared the other three examples—this might be
due to that fact that RC network behaves less erratically than the other three
examples. Further, we evaluated the robustness of the system w.r.t the com-
puted dub , by changing the constraint from T3 to T4 for RC network, electric
steering and F1Tenth, and from T1 to T2 for the unstable second order system.
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The violating trajectory is shown in red, and the arrows mark the minimum
and maximum violating time steps.
Using Fig. 8 to compute Fig. 10. Note that Fig. 8 suggests a heuristic to
choose a value for c (at which the mean stabilizes with a narrow distribution).
Once such a c is chosen, the safety envelope should be computed, as in Fig. 10,
using that value of c.

9 Concluding Remarks

We have shown that quantitative dynamical properties of closed loop con-
trol systems can be verified using statistical hypothesis testing. The results
obtained are approximate ones (just like traditional deterministic approxi-
mation methods are) but are accompanied by probabilistic guarantees. The
computational effort required depends mainly on the required confidence level
and to a certain extent on the work required to draw the samples. Also, we
have extended our approach to handle initial set of states, instead of single
states. While considering such sets, the representation is critical to the overall
complexity of the problem. In this work, we have discussed some standard rep-
resentations, and how they can used adapted for our work. Further, we have
also discussed how our method can be adapted to handle behavioral uncertain-
ties of the system. Here, for the sake of being able to compare our method with
prior studies, we have restricted ourselves to simple deadline hit-miss patterns
as well as low dimensional linear systems. In the future, we plan to consider
richer languages as well as high dimensional and non-linear systems.

We also plan to study deviations from properties specified using temporal
logics like BLTL (Bounded Linear Time Logic) [40]. This will help capture
a richer set of quantitative properties that autonomous systems are often
required to satisfy—e.g., the system must avoid certain regions but must
also visit some other locations with a specified frequency. In such settings
too we expect our Bayesian hypothesis testing based method to play a useful
role. The counter example guided statistical hypothesis testing can also be
applied to black-box systems, where obtaining a precise model is challenging.
Finally, this efficient method for safety verification, as proposed in this paper,
may also be used for schedule synthesis [58] where control tasks might miss
deadlines, but nevertheless satisfy system-level safety properties. It is also
worth noting that while the focus of this paper is on timing uncertainties, the
underlying principle of focussing in the system-level property and not focusing
on “secondary” properties like timing behavior is applicable more generally.
For example, when messages are not fully encrypted or authenticated for
security [59, 60], it might be shown that a safety property of the form studied
in this paper cannot be violated even if the system is under attack. Similar
results may also be established in the case of ensuring system reliability [61]
under resource constraints.
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[50] Åström, K.J., Wittenmark, B.: Computer-Controlled Systems (3rd Ed.).
Prentice-Hall, Inc., USA (1997)

[51] Hespanha, J.P.: Linear Systems Theory: Second Edition. Princeton
University Press, USA (2018)

[52] Girard, A.: Reachability of uncertain linear systems using zonotopes.
In: Proceedings of the 8th International Conference on Hybrid Systems:



Springer Nature 2021 LATEX template

38 Statistical Verification of Controllers under Timing Uncertainties

Computation and Control (HSCC) (2005)

[53] Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verifi-
cation of linear systems. In: Chaudhuri, S., Farzan, A. (eds.) Computer
Aided Verification (CAV) (2016)

[54] Fukuda, K.: From the zonotope construction to the minkowski addition
of convex polytopes. Journal of Symbolic Computation 38(4), 1261–1272
(2004). Symbolic Computation in Algebra and Geometry
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Appendix

A Case Study: The Impact of Prior Selection

The methodology presented in Section 4 assumes a uniform prior distribution.
Specifically, we assumed

Prob [T , x[0], τnom ,dub ] = θ ∼ Uniform(0, 1).

However, the number of samples required to conclude that θ ≥ 0.99 with
sufficiently high probability depends heavily on the choice of prior. Our choice
of a uniform prior feels safe in that it does not assume any prior knowledge of
the underlying system. A variety of more nuanced procedures exist for selecting
so-called objective priors [62] that avoid some of the pitfalls of using a uniform
prior. Plugging these priors into our procedure is straightforward, and a full
discussion of objective priors is beyond the scope of this paper.

To illustrate the effect of prior knowledge on our testing procedure, we now
consider how the choice of prior impacts the number of samples required by
our hypothesis testing procedure. Recall that our hypothesis testing procedure
boiled down to estimating the value of θ given that each sampled trajectory
would independently obey dub with probability θ. Specifically, we take K sam-
ples and then try to estimate θ given that Binomial(K, θ) = K. It is well known
that the beta distribution is a conjugate prior of binomial likelihood functions
— any beta prior distribution and a binomial likelihood function will induce
a beta posterior distribution on θ [63]. Hence, to examine the impact of the
choice of prior, we consider two alternate beta distributions as priors.

We compare these choices of prior to the uniform prior used in the paper.
For this comparison, we again assume that the user-defined parameter c = 0.99.
That is, we would like to say whether a given dub is at least a 99th percentile of
the distribution of trajectory deviations. We consider beta prior distributions
with modes at θ = 0.25, and θ = 0.99 respectively. 4 These priors reflect two
common cases. First, the prior with a peak at θ = 0.99 reflects the case where
one strongly believes that θ is close to 0.99, but is also agnostic as to whether
the true value of θ is above or below 0.99. Second, the prior with a peak a
θ = 0.25 reflects the case where one chooses a prior conservatively to ensure
the safety of the system. These priors are shown in Figure 11.

Based on each of these priors, we can compute the posterior distribution
induced by sampling K trajectories which all obey a given value of dub . Figure
12 shows the probability of a type-I error, α, as a function of the number of
samples, K. We see that the choice of prior significantly impacts the number
of samples required by our hypothesis testing procedure. First, we can see
that using a prior with a peak at θ = 0.25 has the intended effect. Meeting a
given level of α when using this prior requires roughly twice as many samples
as were required when using a uniform prior. Surprisingly, the prior with a

4Note that Uniform(0, 1)
d
= Beta(1, 1), so the uniform prior also induces a beta posterior

distribution on θ.
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Fig. 11: A variety of prior distributions that can be plugged into our hypothe-
sis testing procedure. We use beta prior distributions because they emit simple
posterior distributions when used with a binomial likelihood function. We con-
sider the uniform prior used in Section 4 as well as a prior with a mode of
θ = 0.25 and a prior with a mode of θ = 0.99.

peak at θ = 0.99 does not have the opposite effect. Given a strong prior belief
that θ is close to 0.99, we might expect to require fewer samples than when
using a uniform prior. Figure 12 shows that, although α is slightly lower for
small values of K, we actually require more samples when using the prior with
a peak at .99 than were required when using a uniform prior. The issue is
that this prior assigns significant probability density to values slightly above
and slightly below 0.99. A large number of samples is then required to decide
whether θ is actually above 0.99 or just slightly below 0.99. Hence, while the
uniform prior is in some sense non-informative, both of the alternate priors
shown here are more conservative in the number of samples they require before
allowing us to accept a given value of dub .
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Fig. 12: Type-I error, α, as a function of the sample size K under a variety of
beta prior distributions. Using a prior with a mode of 0.25 has the expected
effect of requiring more samples than are required when using a uniform prior.
Surprisingly, using a prior with a mode of 0.99 also requires more samples than
are required when using a uniform prior.
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