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Abstract— There has been a plethora of work towards im-
proving robot perception and navigation, yet their application in
hazardous environments, like during a fire or an earthquake, is
still at a nascent stage. We hypothesize two key challenges here:
first, it is difficult to replicate such scenarios in the real world,
which is necessary for training and testing purposes. Second,
current systems are not fully able to take advantage of the rich
multi-modal data available in such hazardous environments.
To address the first challenge, we propose to harness the
enormous amount of visual content available in the form of
movies and TV shows, and develop a dataset that can represent
hazardous environments encountered in the real world. The
data is annotated with high-level danger ratings for realistic
disaster images, and corresponding keywords are provided
that summarize the content of the scene. In response to the
second challenge, we propose a multi-modal danger estimation
pipeline for collaborative human-robot escape scenarios. Our
Bayesian framework improves danger estimation by fusing
information from robot’s camera sensor and language inputs
from the human. Furthermore, we augment the estimation
module with a risk-aware planner that helps in identifying safer
paths out of the dangerous environment. Through extensive
simulations, we exhibit the advantages of our multi-modal
perception framework that gets translated into tangible benefits
such as higher success rate in a collaborative human-robot
mission.

I. INTRODUCTION

In the past decade, there has been a surge in the application
of robotics in different avenues of our day-to-day life.
Think, for example, of self-driving cars, cleaning robots, and
robots as personal assistants. A few of these robots have
achieved remarkable success while operating in organized
environments with limited uncertainty like factories and
homes. Yet, the deployment of robots during the World Trade
Center disaster [1] and a more recent application during
the Surfside condominium collapse [2], revealed significant
untapped potential of current robotic systems, especially with
regard to human-robot collaboration in search and rescue
(SaR) missions. Often, people visiting public spaces like
shopping malls, libraries, parks, etc. are unaware of their
local map and exit points. Thus, in an emergency situation, a
survivor can entrust a robot which has local map information
to navigate out of the area. In turn, the robot can benefit from
human’s keen perception capability to ensure safety while
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Fig. 1: System Architecture. The human and the robot operating in
the same environment perceive the world through their respective
senses. Both the modalities are processed separately to extract
meaningful information about potential danger, which gets then
fused into a final estimate which is passed to the risk-aware planner.

navigating. To this end, we consider a modified version of the
guide robot problem [3], adapted in the SaR situation where a
robot helps a human in evacuating a hazardous environment.

The 2018 DARPA Subterranean challenge [4] brought into
light some of the key technical challenges that robots face
when deployed in extreme environments [5]. Such envir-
onments possess severe obstruction for current perception
systems due to low light conditions, sparse features, and
presence of smoke, fire, fog, water, etc. Prior work has
focused on extracting low-level features like occupancy grids
[6] or feature maps [7] from such complex environments.
However, planning an evacuation requires the agent to make
decisions based on high-level scene attributes like “danger”,
as pointed out in [8]. We thus propose a principled way to
assess danger in a scene and leverage the danger information
for planning a safe evacuation mission out of the hazardous
environment. Furthermore, while there are merits to having
a fully autonomous system, we believe that there is abundant
opportunity to benefit from collaboration between a robot and
the human agent, e.g. building trust. Thus, we propose a col-
laborative estimation strategy that takes advantage of human
perception, contributing towards more successful evacuation
from the environment.

There has been substantial improvement in visual percep-
tion performance in the past years, achieved by the applic-
ation of deep convolutional neural networks [9]–[12]. The
improvement comes at the cost of collecting large training
data that can aptly resemble the test environment. Ironically,
replicating hazards is tough due to local policies regarding
safety and the high cost investment needed. These limitations
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have pushed researchers to test perception systems on sim-
ulated datasets [13]–[15] or model environments [16]. How-
ever, these alternatives are yet to attain the richness of the real
world. To bridge this gap, we propose a scalable approach by
leveraging images from movies which are significantly more
photo-realistic than existing simulated datasets used in the
community and can depict wider variety of scenarios as com-
pared to the state-of-the-art model environments. Moreover,
this route avoids the privacy infringement concerns that using
actual images from disaster sites can have.

Our approach, sketched in Fig. 1, initially consists of
independent vision and language perception modules, which
estimate the danger based on images from robot’s sensor and
verbal input from the user, respectively. The estimated danger
levels are then fused together to get an improved danger
estimate. Finally, taking advantage of the danger estimate,
we propose a risk-aware planner that maximizes the chances
of survival for the human-robot team. In summary, this paper
makes the following novel contributions:

1) Development of a visuo-lingual dataset for perception
in hazardous environments, with images taken from
mass media that closely depict real world scenarios.
The dataset entails distribution of danger as well as
associated word descriptions of each scene.

2) Performance assessment of representative machine
learning models for danger estimation from images and
language-input from humans.

3) A Bayesian fusion framework that capitalizes on the
likelihood models for both sensing modalities: vision
and language, resulting in superior danger estimation.

4) Extensive testing with the collected dataset to evaluate
our risk-aware mission planner, showing that the pro-
posed approach enhances the success rate on average
by 19% points (compared to a baseline shortest path
planner).

II. RELATED WORK

A. Cooperative rescue missions

In [17], the authors provide a comprehensive outline of
the technical challenges encountered in the domain of multi-
robot SaR. They remark that in order to fully benefit from
the multi-robot team, there should be mechanisms to fuse
information from different agents, enabling superior scene
awareness. Our present work contributes along this direction
with a collaborative scene perception pipeline in a human-
robot team setup, where information is fused across the
visual and the language domain.

The idea of collaborative decision making is inspired by
humans. In an unforeseen disaster event, if a group of people
are trapped together, they naturally tend to join hands to
escape that situation. Consequently, researchers have tried
to incorporate collaboration in multi-robot teams [18] and
in human-robot teams [19]. Still, prior studies suggest that
human-robot teaming is relatively new in rescue missions be-
cause of interaction being a major bottleneck [20]. Our fusion
framework allows the robot to account for human feedback,

enabling superior danger awareness of the surrounding. This
knowledge about the environment can be further used by the
robot for planning purposes, for instance to identify safer
routes to an exit.

B. Disaster scene understanding
Safe navigation in SaR missions relies heavily upon ac-

curate scene understanding. There are several tasks aiming
at scene understanding like object recognition, semantic
segmentation, physics-based reasoning, 3D reconstruction
etc., as mentioned in [21]. While some of these tasks involve
low-level reasoning like 3D reconstruction, others need high-
level scene awareness like physics-based reasoning. In this
work, we intend to leverage a high-level attribute of the
environment, the notion of scene danger.

Often, danger is associated with the presence of fire or
smoke in the scene, thus, prompting researchers to identify
them in a scene [22], [23]. In contrast to these methods, we
propose a more holistic danger perception of the environ-
ment which is not just limited to fire and smoke. Given a
camera image from the environment, our perception module
leverages state-of-the-art classification networks [24]–[26] to
predict a danger hypothesis. Furthermore, we embark on
the opportunity to do collaborative perception for the task
at hand and add a significant human component to get an
updated danger representation of the environment. Previ-
ously, Ahmed et al. [27] introduced hybrid continuous-to-
discrete likelihoods for fusing language data from humans by
assuming a codebook consisting of a small set of words for
the user to choose from. In contrast, our model provides the
freedom to the user to choose any word from the vast English
vocabulary. Similar work has been pursued in [8] where
the authors propose an adaptable danger estimation pipeline
that relies on an a priori list of danger descriptions from
an expert. There are two key aspects that differentiates our
current work from [8]. First, our model does not necessitate
language input from the human for danger estimation and is
capable of assessing danger solely from camera data. This
is advantageous in a scenario where the human is unable
to provide feedback regarding their surrounding, e.g. due
to cognitive impairment. Second, our multi-modal Bayesian
framework allows multiple online updates based on incoming
language data from the human, which is in contrast to
[8] where the authors assume an a priori set of danger
descriptions from an expert, specific to the environment.

III. SYSTEM PIPELINE AND NOTATION

In our modified guide robot problem, we assume that the
robot is present in the vicinity of a human survivor, who can
follow the robot’s path. The robot is capable of perceiving
the environment through its camera sensor, and receives
language input from the human about their surrounding.
Furthermore, we assume that the robot has knowledge of
the metric map of the environment and its objective is to
find the best path to an exit. The overall system can be
divided into four major components as shown in Fig. 1:
visual perception, language perception, Bayesian fusion, and
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risk-aware planning. Following [8], we assume a 5-point
danger scale: 1-low, 2-moderate, 3-high, 4-very high, and
5-extreme. Let us denote an image from the environment
by I and its ground truth danger level by D. The visual
perception module distills the key features of image I and
predicts an estimate for danger yV 2 {1, · · · , 5}.

Assuming language inputs consisting of a single word
from the human, let us denote the word input by W . The
language module predicts a danger estimate yL 2 {1, · · · , 5}
based on the severity of word W . As a last step of the
perception segment, the fusion module estimates a probab-
ility mass function (PMF) over the danger space, given the
image and language input i.e. D̂ = p(D = d|yV , yL), where
d 2 {1, · · · , 5}.

We assume that the robot knows the start and goal loca-
tions. The planner capitalizes on the danger estimate from the
perception segment and plans an escape path that maximizes
the survival probability. The following sections will elaborate
each segment of our system in greater detail, starting first
with our hazardous environment dataset.

IV. HAZARDOUS ENVIRONMENT DATASET

To get authentic perceptual data that can replicate hazard-
ous environments in the real world, we pool images from
the vast collection of video clips that are easily access-
ible on various online platforms like Netflix, Xfinity, and
Amazon Prime. The images are then annotated with the
help of Amazon Mechanical Turk (AMT) workers and post-
processed to generate ground truth labels. The dataset is
provisioned under the fair use clause of copyrighted material
and is opensourced for free usage by only the research
community1.

A. Image Selection
We collect images from a wide range of movies and

TV shows as candidates for our dataset. We initially select
a set of 15 movies and 5 TV shows that embody scenes
from variety of disaster scenarios, such as fire, flooding, and
earthquakes. This is followed by capturing 75 small clips of
the relevant sections in the movie/show with a screen capture
software. Each clip (scene) is comprised of its unique set of
visual and geographic attributes, distinguishing it from the
other scenes. Images are then extracted automatically from
these scenes at 2 frames per second. At last, we perform a
manual check to get rid of images that are either redundant
or blurred, resulting in a total of 1002 images.

B. Data annotation
For annotation, we used Amazon Mechanical Turk (AMT).

For each image, an AMT user must provide a danger rating
from 1 to 5 and at most three keywords describing what
led them to choose that specific danger rating. Thus, given
an image I , we can represent the input from a AMT user
i as (⌘i,⇧i), where ⌘i denotes the danger rating and ⇧i is
the set of keywords. To ensure data annotation quality, only
AMT users with at least 1000 prior completed assignments

1Dataset available at https://github.com/vikshree/hazard dataset.git

Fig. 2: Images from our hazardous environment dataset and corres-
ponding ratings by AMT users. Best viewed in color.

(a) (b)

Fig. 3: (a) Frequent words appearing in the responses of AMT
users. (b) Distribution of mode danger rating of images across for
the whole dataset.

and 98% approval rating were considered. Each image was
examined by 15 unique AMT users, amounting to 355 unique
AMT users.

C. Data Statistics
Our data collection results in 15K danger ratings and 45K

associated keywords from the AMT users, with 3K unique
words in it. A few sample images are shown in Fig. 2. We
observe higher consensus in the danger ratings for images
with extremely low or extremely high danger, as indicated
in Fig. 2. To gain further insight into the language data,
we show the wordcloud in Fig. 3a depicting frequently used
words. We find that factors like fire, smoke, water, dark, and
collapse, play a key role in determining the danger rating.

Treating the mode of the 15 danger responses for an image
as representative of its “true” danger level, we show the count
of images in our dataset belonging to each “true” danger
category in Fig. 3b. We observe that the number of images
corresponding to different danger levels are comparable,
thus, making the dataset well-balanced which is a crucial
factor for training machine learning models.

V. VISUAL PERCEPTION

A. Task and Metrics
Given a local image I obtained from the robot’s camera

sensor, the goal of the vision module is to distill its key
aspects, and predict a danger rating for the image yV 2
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{1, 2, · · · , 5}. The model’s ability to perceive entities that
add to a person’s notion of danger like fire, smoke, darkness,
leakage, etc., is key to success in the task.

We use three metrics to capture the nuances in danger
prediction. First, it is typical to use top-1 accuracy for
classification tasks and is defined as the proportion of time
danger prediction yV matches the “true” danger of the image
(assumed to be the mode D̃ of the AMT user-based danger
ratings). Second, we use the root mean squared error of the
predicted danger from the “true” danger of the image, i.e.

RMSE =

vuut 1

n

nX

k=1

(yV,k � D̃k)2, (1)

where, n is the total number of images. In addition to
these standard metrics, we define a third one: the “off-by-
1” accuracy. Off-by-1 accuracy is the proportion of time the
danger estimate differs from D̃ at-most by 1 danger unit.

B. Performance Evaluation

1) Baselines: We evaluate the ability of state-of-the-art
(SOTA) models to estimate danger in hazardous environ-
ments. We select four candidate models: VGGNet [24], Res-
Net [25], DenseNet [28], and EfficientNet [26]. Each of these
candidates have certain fundamental traits that differentiate
them from one another. VGGNet is one of the oldest deep
neural networks for image processing. ResNet addresses the
vanishing gradients problem in deep networks by adding
identity connections between layers. DenseNet uses dense
blocks that receive features from its preceding layers and
also pass the processed features to all its subsequent layers,
leading to stronger feature propagation. EfficientNet emphas-
izes scaling-up the network in a structured manner, leading
to smaller yet effective models. The goal here is to assess
performance and identify the most suitable model for our
multi-modal danger assessment pipeline.

2) Dataset: We split our images and danger ratings data
into train, validation, and test sets such that there are no
overlapping scenes in two different sets. These sets were
created manually, ensuring that the danger distribution for
all three sets are similar. Ultimately, the train set consists
of 795 images from 56 scenes, the validation set consists of
106 images from 10 scenes, and the test set consists of 101
images from 8 scenes.

3) Training: During training, the parameters for the last
classification layer are tuned, while keeping the rest of
the network frozen. This takes advantage from the rich
knowledge of the pre-trained model, aligning well with our
experiments where we observed higher performance across
all metrics as compared to training the whole network.
Given an image I , its ground truth danger PMF, denoted by
p = [p1, p2, · · · , p5], is obtained by normalizing the corres-
ponding ratings by the 15 users and is used for training the
models. Each baseline network outputs a danger confidence
c = [c1, c2, · · · , c5]. The vision-based danger estimate is
defined as yV = argmax ci 8 i 2 {1, 2, · · · , 5}. While

TABLE I: Visual danger assessment performance of SOTA net-
works. Best performance is shown in bold. The number next to the
architecture denotes a particular version.

Model Top-1 RMSE Off-by-1
VGGNet-11 43.6 1.46 67.3
VGGNet-13 47.5 1.24 79.2
VGGNet-16 46.5 1.52 71.3
ResNet-50 39.6 1.55 68.3
ResNet-101 45.5 1.40 75.2
ResNet-152 42.6 1.59 70.3
DenseNet-121 30.7 1.78 63.4
DenseNet-169 38.6 1.73 65.3
DenseNet-201 32.7 1.76 63.4
EfficientNet-b0 44.6 1.45 72.3
EfficientNet-b1 31.7 1.85 61.4
EfficientNet-b2 34.7 1.56 68.3
EfficientNet-b3 36.6 1.58 72.3
EfficientNet-b4 47.5 1.49 72.3
EfficientNet-b5 34.7 1.70 63.4
Randomized 20.0 2.0 52.0

training we minimize KL divergence of the danger PMF p
from the model confidence c, i.e.

DKL(p||c) ⌘
5X

i=1

pi
�
log pi � log ci

�
. (2)

4) Results: We train each baseline for 50 epochs and
the best model is identified as the one with highest top-
1 accuracy on the validation set. The performance of the
best model for each baseline on the test set is reported in
Table I. All the models attain much higher top-1 accuracy
compared to a randomized baseline, that would yield a top-1
accuracy of 20%. For example, VGGNet-13 is correct about
48% of the times in predicting the right danger level for
an image and about 80% of the time its estimate is at-most
off-by-1 from the correct answer. Although the models are
competitive, we chose VGGNet-13 for successive sections
of the paper because of its best performance across all three
metrics.

For intuitive understanding of the model predictions, we
leverage the Gradient-weighted Class Activation Mapping
[29] (Grad-CAM) visualization tool. Grad-CAM produces a
color map highlighting the important regions of the image
that contributed towards the predicted result. This not only
provides the much needed insight into the deep learning
model, but could also help gain the trust of human when
used in real-world missions. For example, we can observe
that the image in Fig. 4 showing some people chatting has a
low predicted danger. The smoke in Fig. 4b is a significant
contributor for its danger prediction of 3. Finally, the flooded
area in Fig. 4c prompts the model to predict extreme danger.
The quantitative as well as the qualitative results demonstrate
the ability of our baseline models to learn and predict danger
from images. These baseline results are a solid precursor
to specialized models for vision-based danger assessment,
which is part of our future work.
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(a) Output Danger = 1

(b) Output Danger = 3

(c) Output Danger = 5

Fig. 4: Grad-CAM visualizations for test set images with VGGNet-
13 model predictions. Red regions provide the highest contribution
while blue regions the lowest. Best viewed in color.
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Fig. 5: Language perception pipeline. First, words are converted
into features, followed by a classifier that predicts danger yL.

VI. LANGUAGE PERCEPTION

A. Task and Metrics

The language perception module takes into account the
word input W from the human and accordingly predicts a
danger rating yL 2 {1, 2, · · · , 5}. The ability to understand
what words people tend to use in hazardous environmental
conditions is key to success in this task. It is intuitive to use
the same metrics defined in section V-A for assessing per-
formance of language perception models i.e. top-1 accuracy,
root mean squared error (RMSE), and off-by-1 accuracy.

B. Performance Evaluation

1) Baselines: Following the mainstream approach in lan-
guage classification, we first convert the words into a
low-dimensional feature vector, which is then passed to
a classifier [30]. This is shown in Fig. 5. In this work,
we use GloVe features [31] for their superior performance
reported in literature as compared to other representations
like Word2Vec [32]. We test danger prediction with three
well-known candidate classifiers: K nearest neighbor (KNN),
logistic regression, and Support Vector Machine (SVM). The
KNN algorithm predicts the danger class based on the k
nearest matches of the word W in the training data; logistic
regression aims at maximizing the conditional likelihood
of the training data; SVM maximizes the margin between
class variables, making it less prone to outliers compared to
logistic regression.

TABLE II: Language perception performance. Best performance is
shown in bold.

Model Top-1 RMSE Off-by-1
1-NN 27.2 1.72 64.5
3-NN 28.8 1.79 61.0
5-NN 30.8 1.70 66.3
11-NN 32.4 1.58 68.4
Logistic Regression 36.9 1.67 67.1
SVM (Linear) 37.1 1.68 66.8
SVM (Poly. kernel) 37.1 1.64 68.5
SVM (RBF kernel) 37.6 1.63 68.5
Randomized 20.0 2.0 52.0

TABLE III: Common words and their danger predictions generated
from the SVM model.

Words Danger output
people, gathering, dirty, night, tunnel 1
darkness, sewer, dust, cave, broken 2
debris, suffocation, wreckage, damage, violence 3
flood, accident, weapon, crash, freezing 4
fire, explosion, collapse, flooding, earthquake 5

2) Dataset: For evaluating performance of danger predic-
tion based on language input, we use the keywords associated
with the images and their corresponding danger ratings from
the hazardous environment dataset. Since about 90% of the
keywords consist of a single word, we assume one-word
input from the human and ignore the sentences in our dataset.
A typical training data point is of the form (W, ⌘), where W
is the word describing the scene and ⌘ is its danger level.
We use the same splits for training, validation, and test set
as chosen in the visual perception case, yielding a total of
31K, 4K, and 4K keywords in these sets, respectively.

3) Results: The results based on the test set are shown
in Table II. SVM’s compatibility with high-dimensional data
renders it superior top-1 accuracy compared to other models.
All three class of models achieve competitive performance
in terms of RMSE and off-by-1 accuracy. It is interesting
to note that the values of all the metrics for language-based
danger predictor are significantly lower than the best visual
perception model. This can be attributed to the richness
of visual data when compared to single word inputs from
the human. Since top-1 accuracy is widely accepted in
the literature, we chose to use SVM (RBF kernel) for the
subsequent sections.

Table III shows a few words frequently appearing in the
test set along with their corresponding danger prediction
by the model. Words with danger prediction of 1, such as
people, gathering, dirty etc., align well with our intuitive
sense of danger. Similarly, words that have a danger pre-
diction of 5, such as fire, explosion, flooding etc, are also
straightforward. Note that words with intermediate danger,
such as debris, broken, crash etc. are in fact contentious for
humans because of the lack of sufficient information that
these words bear.

VII. FUSED DANGER ASSESSMENT

Vision and language perception modalities both have their
own benefits. On one hand, image data is richer compared
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to words. On the other hand, language modality can take
advantage of human’s keen perception to focus on key
entities that contribute towards danger in the scene. Thus, it
is natural to combine both modalities with the goal to achieve
superior danger perception. Furthermore, as pointed out in
the literature [33], accounting for human feedback enables
a human-in-the-loop mission approach, thus promoting trust
between the human and the robot. Hence, we now introduce
our Bayesian fusion framework.

A. Bayesian fusion
The goal of the Bayesian fusion module is estimate D̂ ⌘

p(D = d|yV , yL), where d 2 {1, · · · , 5}. From Bayes rule,
assuming conditional independence of predictions from the
visual and language modules, given the scene danger d:

p(D = d|yV , yL) / p(yV , yL|D = d)p(D = d)

/ p(yV |D = d)p(yL|D = d)p(D = d),
(3)

where p(yV |D = d) and p(yL|D = d) denote the vision-
based and language-based sensing likelihoods, respectively.
Eq. (3) is key for our fusion module.

Note that until now, we have assumed a single word
input from the human. However, this assumption can now
be relaxed and Eq. (3) can be extended to m number of
human inputs:

D̂ ⌘ p(D = d|yV , y1L, · · · , ymL )

)D̂ / p(yV |D = d)

✓ mY

k=1

p(ykL|D = d)

◆
p(D = d). (4)

As evident from Eq. 4, we need the likelihood functions
for visual and language perception models. First, consider
the vision-based danger likelihood function and denote it by
li,jV ⌘ p(yV = i|D = j), where i, j 2 {1, · · · , 5}. The
likelihood function can be calculated from the validation set:

li,jV ⌘ p(yV = i|D = j)

⇡ # images with “true” danger j and prediction i

# images with “true” danger level j
.

(5)

In the lack of a large validation set, as in our case, Eq. (5)
may overfit to the set and cause poor performance on the test
set. To avoid this problem, we apply K-fold cross-validation
strategy where depending on the selection of the validation
set, we get K different estimates for the likelihood function
li,jV . Thereafter, the mean likelihood function is obtained, i.e.
l̂i,jV = 1

K

PK
k=1 l

i,j
V,k. We follow the same strategy to obtain

the mean language-based danger likelihood function l̂i,jL .

B. Performance evaluation
We apply 9-fold cross-validation to calculate the mean

likelihood functions l̂i,jV and l̂i,jL . See Fig. 6. Two crucial
observations can be made here. First, we found that the
maximum of the mean likelihood function occurs at the
“true” danger level, i.e. argmaxj l̂

i,j
V = argmaxj l̂

i,j
L = i.

Second, the values of likelihood functions at the “true”

Fig. 6: Vision-based and Language-based likelihood function es-
timated from 9-fold validation.

danger level, i.e. l̂i,iV and l̂i,iL , are higher at the two extremes
i.e. d = 1 and 5. This is because both images and words
with danger values at the extremes are easier to classify by
our models as compared to the ones that belong to moderate
danger.

To evaluate the performance of the fused danger estim-
ate, we use the hazardous environment dataset with the
same test set as chosen in section V-B.2. This helps us
to gauge the relative change in performance by fusing the
two modalities. Given an image I and corresponding set of
keywords ⇧, we simulate input from the human by ran-
domly sampling keywords from ⇧ without replacement. To
evaluate the estimation performance, we use the maximum
a posteriori (MAP) estimate D̂MAP = argmaxd p(D =
d|yV , y1L, · · · , ymL ). Comparing the MAP estimate D̂MAP
with the “true” danger D̃, we were able to evaluate the top-1
accuracy, off-by-1 accuracy, and RMSE with different num-
ber of word inputs from the human. For visual perception,
we use the VGG-13 model, while for language perception
we use the SVM (with RBF kernel) model. The results,
presented in Table IV, reveal that all the three metrics are
maximized by leveraging the multi-modal pipeline. Specific-
ally, combining visual data with 5 words from the human
improves top-1 accuracy by 1% point and RMSE by 17%,
compared to using any of the single modalities. Note that
although the Bayesian model is tested with 5 words, it can
incorporate even higher number of word inputs from human.
However, special care should be taken to avoid redundant
information because it can violate the independence assump-
tion used in Eq. (4), leading the Bayesian model to overtrust
the data coming from the human.
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TABLE IV: Multi-modal danger assessment performance. Best
performance is shown in bold.

Modality Top-1 RMSE Off-by-1
Vision only 47.5 1.24 79.2
Language-only 37.6 1.63 68.5
VL 1-word 46.5 1.30 78.2
VL 2-words 47.5 1.13 84.2
VL 3-words 44.6 1.27 80.2
VL 4-words 47.5 1.11 83.2
VL 5-words 48.5 1.03 83.2

VIII. RISK-AWARE PLANNING

With the capability to estimate danger, we now introduce
the escape route planning problem.

A. Planning Problem and Solution Approach
Let us represent the environment as a directed graph

G = (V,A), where vertices V represent a set of locations in
the environment, and arcs A represent the possibility to travel
between two locations. The starting vertex of the human-
robot team is denoted by vs 2 V and the goal location (for
example, one of the building exits) is denoted by vg 2 V .
Let us define a parameter ⌧ 2 {1, ..., 5}, denoting the level of
danger that the human-robot team can tolerate. Accordingly,
we define the survival probability of traveling along arc
(i, j) 2 A as sij = p(Dj  ⌧), where Dj is the ground truth
danger of the destination node j. Assuming these events to
be independent, the survival probability s⇡ along a graph
path ⇡ = [(vs = v1, v2), . . . , (vk�1, vk = vg)] connecting
start and goal vertices can be expressed as

s⇡ =
kY

i=1

svivi+1 . (6)

Note that the independence assumption might not always
hold in practice, and more sophisticated models could be
built to account for spatial dependencies in the danger map.
If all the survival probabilities were known exactly and in
advance, the path ⇡⇤ maximizing the the overall probability
of survival, i.e.

⇡⇤ 2 argmax
⇡

s⇡, (7)

could be easily obtained by computing the shortest path
between vs and vg on a weighted version of the graph G,
with weights wij computed as wij = � log sij . However, the
robot does not have access to the true survival probabilities
sij , and it must rely on the danger estimate D̂ to establish an
approximation for the survival probability ŝij = p(D̂  ⌧).
We assume that the robot-human team can only access
data of the neighboring vertices of G. Furthermore, the
unexplored vertices are assigned a uniform prior danger
distribution.

Given the problem inputs described above, the goal of
the planning module is to compute a policy that maximizes
the mission success rate, i.e. the probability of reaching
vg without traversing an arc having a ground truth danger
level higher than ⌧ . Since the survival probability in Eq. (7)
depends on robot’s belief of danger, we hypothesize that
superior danger perception with multi-modal sensing can

X (m)

Y
(m

)

Fire

Flood

Earthquake

Sewer

NormalEXIT

EXIT

Fig. 7: Graphical representation of the environment used in our
simulations, with danger map.

enable the team to avoid hazardous exposures, leading to
higher mission success.

To tackle the planning problem described above, we use
the following receding-horizon planning heuristic: at each
planning iteration, the team moves along the first arc of the
safest path ⇡⇤ computed as described above, but replacing
sij with ŝij . When the corresponding destination vertex
is reached, the team updates the danger estimate of the
neighboring vertices. This process is repeated until the team
ends up in a vertex with an intolerable danger level (in which
case the mission counts as a failure), or the the goal node
vg is reached.

B. Simulation Enironment
We use the School environment from [8] and abstract it

into the final graph shown in Fig. 7, consisting of a total
of n = 54 nodes and two exits. We manually assign scene
characteristics e.g. fire, flood, etc., for different segments of
the environment and accordingly associate each node with an
image from the test set of the hazardous environment dataset.

Fig. 8: Planning results: Success rate with different sensing mod-
alities. Results are obtained from 1000 simulation runs.

C. Results and Discussion
We perform 1000 Monte Carlo simulations of the com-

bined planning and danger estimation framework with dif-
ferent sensor modalities and for different tolerable danger
levels ⌧ . The “no-sensor” case is when the robot is unable
to perceive danger. The “full-knowledge” case refers to
the hypothetical situation when the robot is aware of the
ground truth danger map of the whole environment. During
simulations, when the team is moving from node i to j,
the survival of the team is sampled from PMF of sij . A
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successful mission is the one where the team survives the
whole mission and reaches the exit. Note that we do not
report results for ⌧ = 5 since it corresponds to the unrealistic
case when the team can survive extreme danger.

In Fig. 8, we observe that the “no sensor” case has lowest
success rate amongst all methods for every value of ⌧ .
This indicates that the ability to perceive and account for
danger is critical for mission success in disaster scenarios.
A further analysis of different modalities provides some
intriguing insights. The “vision only” sensing consistently
outperforms “language only” sensing. As mentioned earlier,
this is because of the richness of visual data compared to
single word inputs. Occasionally, the “vision-only” success
rate is even competitive to the multi-modal method, im-
plying that the perception advantage shown in Table IV
does not always yield similar benefits in terms of mission
success. Nonetheless, across all simulation scenarios, the
highest success rate is achieved in VL-10 case, by fusing
information between the vision and language domain. The
results support our hypothesis that improved perception leads
to more successful missions. In fact, sometimes VL-10 case
even outperforms the model with full knowledge. This is
probably because of higher danger estimate reported by the
model, compared to ground truth danger, thus, forcing the
robot to choose a conservative route.

IX. CONCLUSION

Our work demonstrates that leveraging the vast collection
of visual content from mass media can enable perception
systems to function in disaster scenarios. The hazardous
environment dataset paves the way for development and
testing of future danger assessment pipelines. Further, we
show through simulations that compared to an autonomous
robot that only relies on a single sensing modality, a col-
laborative robot that takes into account the feedback from
human user is better equipped to estimate danger. Finally, our
risk-aware planning framework translates the improvements
in danger assessment into tangible metrics such as higher
mission success rate, which is critical in search and rescue
operations.
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