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AbstractÐThis paper proposes an active low latency attack de-
tection algorithm to improve the cybersecurity of grid-connected
photovoltaic (PV) systems. The algorithm is developed by using a
hybrid model- and data-driven approach, where the test statistics
are formulated by using both the physical model of the PV farm
and historical measurements. Unlike most previous detection
algorithms that mainly focus on detection accuracy, the proposed
algorithm aims at minimizing detection delay while ensuring de-
tection accuracy. The low latency detection algorithm is developed
by designing a generalized cumulative sum (CUSUM) detector
with a dynamic watermark, which can detect cyberattacks even
if the adversary has full knowledge of the system model. To
evaluate the performance of the low latency detection algorithm,
we propose to measure the stealthiness of cyberattacks by using
the Kullback-Leibler (KL) divergence between the pre- and
post-attack distributions of the test statistics. Simulation results
demonstrate that the proposed algorithm can accurately detect
cyberattacks with minimum delays.

Index TermsÐCybersecurity, photovoltaic (PV), dynamic wa-
termarking, cumulative sum (CUSUM)

I. INTRODUCTION

Electricity generated from renewable energy sources (RES)

surpassed coal in the US for the first time in 2022 [1]. The

rapidly growing grid integration of RES is mainly driven by

the growth in solar and wind, which accounts for 14% US

domestic electricity generation in 2022 [1]. High renewable

penetration relies on interoperable distributed energy resource

(DER) grid-support functions with complex control and com-

munication capabilities. The addition of these complex control

and communication capabilities increases the vulnerability of

the RES, and make them prone to cyberattacks [2]±[5]. Cyber-

attacks can disrupt normal grid operations by causing system

instabilities such as line overloads, frequency and/or voltage

violations, reverse power flow, and voltage collapse, especially

during heavy load conditions [6], [7]. This necessitates the

development of new cybersecurity technologies that can detect

and/or mitigate the negative impacts of cyberattacks.

Many existing studies on the cybersecurity of energy sys-

tems focus on grid operations by using measurements from the

supervisory control and data acquisition (SCADA) systems,

the remote terminal units (RTUs), and/or the underlying com-

munication network of the grid [8], [9]. These measurements
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are important indicators for grid operations, but they are

insufficient given that attacks can be launched against local

measurements from sensors and actuators of RES, or the local

control policies for RES operations.

The rapid advancement of machine learning (ML) during

the past decade has driven the development of ML-based

cyberattack detection methods. Most of the ML-based methods

are data-driven, and they do not require physical models of

the system. Various data-driven ML algorithms, such as one-

class support vector machines (OCSVMs), random forests

(RFs), and principal component analysis (PCA) were applied

to multiple sources of time-series data for distributed anomaly

detection on a single solar panel [10]. Deep neural networks

(DNN) with long short-term memory (LSTM) were applied

to detect data integrity attacks by using the Northeast Solar

Energy Research Center (NSERC) PV farm dataset [11]. In

[12], a bidirectional LSTM (Bi-LSTM) framework is used

to detect false data injection (FDI) attacks on a modified

IEEE 14-bus system integrated with RES. An autoencoder is

later combined with the Bi-LSTM model in [13] to achieve

both cyberattck detection and system state forecasting. Raw

data collected from micro PMU (µPMU) were used for the

detection of cyberattacks on photovoltaic (PV) farms by using

data-driven methods such as decision tree (DT) and K-nearest

neighbor (KNN) [14]. Most ML approaches require a large

amount of data during the offline training stage, and sometimes

it might be difficult to obtain a sufficient amount of training

data from cyber-physical systems (CPS).

Most ML-based anomaly detection methods are purely data

driven, and they do not utilize the physical model of the

underlying system. Neural networks such as CNN use convo-

lution kernels, and LSTM captures the dependencies between

historical data, achieving higher detection accuracy [15]. The

data-driven approach requires a large amount training data

from historical measurements.

In contrast to pure data-driven methods, model-based meth-

ods utilize the underlying physical models of CPS to monitor

system operations. The knowledge of the physical model can

help improve detection accuracy and reduce the amount of

training data. For example, measurement results can be com-

pared to state estimations in a smart grid, and the residues can

then be used for anomaly detection [16], [17]. The detection

can be performed by using either a single measurement or a

sequence of historical measurements, such as the windowed
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χ2 detector [18].

All these detection methods can be classified as passive

methods. One of the limitations of the passive methods is that

they might not be able to detect cyberattacks designed by using

full knowledge of the system model, as the adversary can use

the knowledge of the physical model to match the attacked

data with state estimation results.

Dynamic watermarking is an active defense method that

adds a small random signal, i.e., ªwatermarkº, to the input

of the controller [19]. The power of the random signal is

small such that it does not disturb normal system operations,

and the detector can utilize the statistical distributions of the

watermark signal to test the operation conditions of the CPS.

Dynamic watermarking was first proposed to improve the

performance of χ2 detector [19], [20]. However, it is unable

to detect attacks with post-attack distributions fitting historical

measurements, such as the replay attack. This problem can

be solved by using two actuator tests with respect to the

covariance of the residuals and the correlation between the

residuals and watermarks [21]. The two-test dynamic water-

marking scheme is used as the active defense method for the

automatic generation control (AGC) of a power system, and

to detect attacks applied to voltage and current measurements

of a grid-connected PV system [22]. The two-test dynamic

watermarking algorithm is later extended to general linear

time invariant (LTI) systems with a single statistical test based

on the Wishart distribution [23], and to linear time varying

systems and nonlinear systems in [24].

Even though well-known model-driven and data-driven de-

tection methods exist in power grids, their applications in

PV system security are still in its early stages due to the

recent rise of the topic of PV system cybersecurity. Most

research focus on fault diagnosis for PV systems with no

little or no attention to detection delays [25]±[27]. Detection

delay is critical to the cybersecurity of energy systems as

a shorter delay means a timely response that can minimize

the negative impacts of the attacks. There is a fundamental

tradeoff between detection delay and detection accuracy [16].

A lower detection delay might be achieved at the cost of

detection accuracy, and vice versa. Quickest change detection

(QCD) aims at minimizing the detection delay subject to a

constraint on satisfactory detection accuracy. QCD is usually

implemented by means of sequential analysis such as the

sequential probability ratio test (SPRT) [28], the cumulative

sum (CUSUM) [29], [30], generalized likelihood ratio (GLR)

testing [31], etc. Most algorithms require perfect knowledge

of the post-change distribution [32], which is usually difficult,

if not impossible, to obtain [33]. A sequential fault detection

scheme based on the generalized local likelihood ratio (GLLR)

test is used to achieve quickest fault detection in PV systems

[34].

The objective of this paper is to develop a low-latency

attack detection algorithm for grid-connected PV systems to

minimize the detection delay under the constraint of an upper

bound of false alarm rate. Since the key component of the

PV system is the inverter under classical closed-loop control,

we apply the dynamic watermarking algorithm to achieve

active defense, enabling the detector to detect cyber attacks

originating from attackers who may have the knowledge of the

PV inverter structure. The proposed algorithm has four main

innovations. First, the algorithm is designed by using a hybrid

model- and data-driven approach. We first construct a state-

space model for a grid-connected PV farm, the knowledge of

which is used to estimate and predict the state information,

such as current and voltage, by using a Kalman filter. Key

parameters of the filter are estimated and updated by using data

collected from the system. Second, the algorithm performs

active detection of cyberattacks by using a two-test dynamic

watermarking scheme. The statistical tests of the dynamic

watermarks are formulated by analyzing the statistical proper-

ties of the residuals from state estimation and measurements.

Third, unlike existing methods that focus mainly on detection

accuracy, the algorithm is developed to minimize the average

detection delay (ADD), subject to an upper bound on the

probability of false alarm (PFA). The low latency detection

algorithm is designed by using a modified CUSUM algorithm

that incorporates dynamic watermarks. Fourth, we propose to

measure the stealthiness of various cyberattacks by using the

Kullback-Leibler (KL) divergence between the pre- and post-

attack distributions of the test statistics. The KL divergence

provides a quantitative measure on the tradeoff between the

stealthiness and the power of a given cyberattack. The KL

divergences of several attacks, such as the FDI attack, replay

attack, and destabilization attacks are analyzed and evaluated.

The rest of this paper is organized as follows. The modeling

of the grid-connected PV farm (including both physical and

state space models) and various cyberattacks are introduced in

Section II. Section III develops the details of statistical tests

with dynamic watermarking by using state estimation results

with Kalman filter. The low latency detection algorithm with

dynamic watermarking is proposed in Section IV, where the

metric KL divergence is introduced to measure the stealthiness

of attacks. Simulation results are given in V, and the paper is

concluded in Section VI.

II. SYSTEM MODELS

This section describes the model, control and dynamics of a

grid-connected PV farm. Various cyberattack models that can

compromise PV farm operations are also introduced in this

section.

A. Modeling Grid-Connected PV Farm

Fig. 1 illustrates the schematic of a typical photovoltaic

(PV) inverter. The precision of the amplitude and frequency

of the voltage at the output of the PV inverter is critical

for proper system operations. The ideal direct current (DC)

voltage source at the output of the boost converter is denoted

as VDC. Denote the phase voltage magnitude connected to the

grid as VG, with its DQ frame represented as VDG and VQG,

respectively. The three-phase output current of the inverter

is denoted as Ia, Ib, and Ic, respectively. The corresponding

DQ frame representation of the three-phase current is ID and

IQ, respectively. The operation of the PV inverter controller

is performed by controlling signals VDG, VQG, ID, and IQ, in

conjunction with the DQ frame of the three-phase reference
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Fig. 1: Diagram of PV inverter.

currents, IRef
D and IRef

Q . The values of these reference currents

are established based on the intended output voltage and power

to be supplied to the grid.

Denote the phase voltage magnitude of the inverter as VI,

and the equivalent inductance between the inverter and the grid

as LEQ, which includes the inductance of the LCL filter and the

transmission line. Based on the input signals directed towards

the PV inverter controller, the computation of the reference

DQ frames of VI can be performed as follows,

V Ref
DI =

2

VDC

[

Kp1

(

IRef
D − ID

)

+Ki1

∫ t

0

(

IRef
D − ID

)

dτ

(1a)

+ VDG + ωLEQIQ

]

,

V Ref
QI =

2

VDC

[

Kp2

(

IRef
Q − IQ

)

+Ki2

∫ t

0

(

IRef
Q − IQ

)

dτ

(1b)

+ VQG − ωLEQID

]

,

where Kp1,Kp2,Ki1 and Ki2 denote the proportional and

integral parameters, tuned in accordance with the desired static

and dynamic performance standards for the output voltage.

The reference voltage V Ref
I is derived through an inverse

DQ transformation originating from its reference DQ frame.

Subsequently, this transformed reference voltage is supplied

as input to the PWM generator.

B. State-Space model

The PV farm model can be conceptually represented as a

multi-input multi-output partially observed system. Based on

the grid-connected PV farm model, denote the system state

vector as x ∈ Rn, the control system input vector as u ∈ Rm,

and the output (or observation) vector as y ∈ Rp, which are

defined as follows

x = [ID, IQ, VDG, VQG]
T , n = 4, (2a)

u = [VDI, VQI]
T , m = 2, (2b)

y = [ω, |VG|]T , p = 2, (2c)

where VDI and VQI represent the DQ frames of VI, the voltage

at the output of the three-phase inverter. The symbols w and

|VG| denote the frequency and magnitude of the output voltage

interlinked with the grid, respectively.

To facilitate the design of the low latency attack detector,

the dynamics of the PV farm can be approximated by utilizing

the subsequent linearized differential and algebraic equations

(DAEs) as

ẋ = Ax+Bu+w, (3a)

y = Cx+ n, (3b)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are the

state matrix, control matrix, and output matrix, respectively.

In addition, w ∼ N (0,Σw) and n ∼ N (0,Σn) correspond

to zero-mean Gaussian-distributed process noise and measure-

ment noise, respectively. It should be noted that the linearized

DAE in (3) is only used for the design of the low latency

attack detector. The data used in this paper are still generated

by using the actual non-linear system as shown in Fig. 1.

The small-signal dynamics around a given operating point

can be obtained by using the DAEs. Let ∆x, ∆u and ∆y

denote the marginal variation from the equilibrium state. The

DAEs that represent the small-signal dynamics can then be

formulated as follows

∆ẋ = A∆x+B∆u+w, (4a)

∆y = C∆x+ n. (4b)

The control policy of the entire PV farm can be abstracted

into a nonlinear vector function h(·) as

∆u = h(∆y). (5)
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The continuous-time state-space model in (4) can be dis-

cretized into discrete-time as

∆x[t+ 1]−∆x[t] = A∆x[t] +B∆u[t] +w[t+ 1], (6a)

∆y[t+ 1] = C∆x[t+ 1] + n[t+ 1]. (6b)

Similarly, the discrete form of (5) is:

∆u[t] = h(yt) (7)

where yt := {y[0],y[1], . . . ,y[t]} represents past mea-

surements collected by the sensors in the context of the

proportional-integral (PI) control.

It is important to note that the values of variables within

the discrete-time difference equations typically diverge from

their counterparts in the continuous-time differential equations,

and these values are contingent upon the sampling rate. To

simplify notation, the same notations are retained, and the

small deviation notation ∆ is omitted for the remainder of this

work. The DAEs presented in (6) can also be reformulated as

x[t+ 1] = Adx[t] +Bu[t] +w[t+ 1], (8a)

y[t+ 1] = Cx[t+ 1] + n[t+ 1], (8b)

where Ad = A + In. The state transition matrices for the

discrete-time model can be derived from the continuous-time

model, provided that the control model is known. Alterna-

tively, these matrices can also be inferred from practical

measurements, even in the absence of knowledge regarding

the control model.

C. Attack models

Suppose the system is attacked at the moment τ , and assume

that the attacker has the knowledge of the control system,

including the parameters Ad,B,C, the control policy h(·)
and all historical measurements zt. This is a very generous

assumption to assume the worst possible attacks. In case the

attacker has partial knowledge of the above parameters and/or

control policy, the attack efficiency will be lower and it will

be easier to detect.

The following cyberattacks are examined within the scope

of this paper.

1) FDI attack. The measurement vector y[t] is injected

with a deterministic attack vector a[t] ∈ Rp or a noise

vector a[t] ∼ Np(0,Σa) as

z[t] =

{

y[t], t < τ,

y[t] + a[t], t ≥ τ.
(9)

2) Replay attack. The measurement vector y[t] is replaced

by historical data from l moments ago with l < τ as,

z[t] =

{

y[t], t < τ,

y[t− l], t ≥ τ.
(10)

3) Destabilization attack. The control input u[t] is injected

with a scaled controller input as

ua[t] = u[t] +Apx[t], t ≥ τ, (11)

where Ap ∈ Rm×n is the scaling parameter for the

attack. With the compromised control input ua[t], the

state transition in (8) becomes

x[t+ 1] = (Ad +BAp)x[t] +Bu[t] +w[t+ 1].
(12)

The instability of the system arises when the elements

within matrix Ap are selected in a manner that satisfies

the condition ||Ad + BAp|| ≥ 1 [35]. This instability

holds regardless of the specifics of the control vector,

resulting in an inevitable escalation or attenuation of the

state vector.

III. ACTIVE ATTACK DETECTION WITH DYNAMIC

WATERMARKING

This section outlines the proposed active attack detection

method with dynamic watermarking. The active detection

method is motivated by the fact that conventional passive

detection methods might not be able to detect attacks designed

with full or partial knowledge of the power system.

For example, if an attacker has knowledge of the covariance

matrix of the process noise Σw, then the attacker can replace

the true sensor measurements y[t] with false measurements

y
′

[t] generated by tracking the following falsified system

model

x
′

[t+ 1] = Adx
′

[t] +Bu[t] +w
′

[t+ 1], (13a)

y
′

[t+ 1] = Cx
′

[t+ 1] + n[t+ 1], (13b)

where x
′

[t] and y
′

[t] are the state vector and measurement

vector of the false system, and w
′

[t] are artificially generated

i.i.d zero-mean noise with covariance matrix Σw. Conven-

tional passive detection methods are ineffective in identifying

this kind of attack, because all state and measurement vectors

follow the dynamics of the physical model. Nevertheless,

an active defense strategy can be employed by introducing

concealed signals, i.e. ªdynamic watermarksº, which remain

undisclosed to both the system and the attacker. As a result,

true measurements will exhibit correlation with the dynamic

watermark, and such correlation disappears with falsified mea-

surements [21].

The dynamic watermarking is implemented in the form of

a random signal e[t] ∼ N (0,Σe), and they are identically

and independently distributed in time. The dynamic watermark

signal is applied to the control input as,

u[t] = h(zt) + e[t], (14)

where zt is the compromised observation vector after attack,

and zt = yt if there is no attack.

With the watermark signal, the system evolves as

x[t+ 1] = Adx[t] +Bh(zt) +Be[t] +w[t+ 1], (15a)

y[t+ 1] = Cx[t+ 1] + n[t+ 1]. (15b)

It is shown in [21] that incorporating a dynamic watermark

signal into the control input can serve to uncover any illicit

manipulation of the signals via the application of two distinct

statistical tests.
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The development of low latency detection through dynamic

watermarking requires estimation and tracking of the state

vector of the PV farm. The state estimation is performed by

using the Kalman filter as shown in the next subsection.

A. Kalman Filter

Denote x̂a|b as the estimation of x at the moment a given

observations up to and including moment b.

The prior state estimation and the prior estimation covari-

ance matrix at moment k + 1 are given by

x̂k+1|k = Adx̂k|k +Bh(zk) +Be[k], (16)

Pk+1|k = AdPk|kAd
T +Σw. (17)

Define υ[k + 1] ∈ Rp as the innovation vector at moment

k + 1 as

υ[k + 1] = z[k + 1]−Cx̂k+1|k, (18)

and the corresponding innovation covariance matrix is

Rk+1 = CPk+1|kC
T +Σn. (19)

The optimal Kalman gain matrix at moment k + 1 is

Kk+1 = Pk+1|kC
TR−1

k+1. (20)

Then the posterior state estimation and the corresponding

covariance matrix at moment k + 1 are updated by

x̂k+1|k+1 = x̂k+1|k +Kk+1υ[k + 1], (21)

Pk+1|k+1 = (Ip −Kk+1C)Pk+1|k. (22)

Substituting (16) and (18) into (21) yields

x̂k+1|k+1 = Adx̂k|k +Bh(zk)

+Be[k] +Kk+1υ[k + 1]. (23)

B. Statistical Test with Dynamic Watermarking

Based on the state estimation results in (23), define the

additive distortion power of the attacker at moment k + 1 as

d[k + 1] = x̂k+1|k+1 −Adx̂k|k −Bh(zk)

−Be[k]−Kk+1υ[k + 1].
(24)

If there is no attack, then d[k + 1] = 0, and we have the

following distributions,

x̂k+1|k+1 −Adx̂k|k −Bh(zk) ∼
Nn(0,BΣeB

T +Kk+1Rk+1K
T
k+1),

(25)

x̂k+1|k+1 −Adx̂k|k −Bh(zk)−Be[k] ∼
Nn(0,Kk+1Rk+1K

T
k+1).

(26)

Define a test statistic g[k+ 1] at moment k+ 1 as the sum

of the attack power vector and a scaled innovation vector as

g[k + 1] = d[k + 1] +Kk+1υ[k + 1]

= x̂k+1|k+1 −Adx̂k|k −Bh(zk)−Be[k].
(27)

The elements in g[k + 1] might be mutually correlated

because of the selected state of the system, which makes

Φk+1 = Kk+1Rk+1K
T
k+1 singular.

To solve this problem, denote Φ = limk→∞ Φk+1 as the

asymptotic estimate of Φk+1. Assume the rank of Φ is q ≤ p

with nonzero eigenvalues λ = [λ1, · · · , λq]
T , and the matrix

Ū ∈ Cp×q contains the corresponding eigenvectors on its

column. We can perform dimension reduction on g[k + 1]
as

ḡ[k + 1] = ŪHg[k + 1]. (28)

Then we have

lim
k→∞

E
[

ḡ[k + 1]ḡ[k + 1]H
]

= D, (29)

where D = Diag(λ) ∈ Cq×q is a diagonal matrix with the q

nonzero eigenvalues of Φ on its main diagonal.

Based on the test statistic, the statistical tests that are used

for dynamic watermarking are [21]

1) Test 1:

lim
T→∞

1

T

T−1
∑

k=0

e[k]ḡ[k + 1]T = 0m×q. (30)

2) Test 2:

lim
T→∞

1

T

T−1
∑

k=0

ḡ[k + 1]ḡ[k + 1]T = D. (31)

Tests 1 and 2 correspond to the distributions given in (25)

and (26), respectively. Test 1 is used to test the independence

between the watermark signal, e, and the test statistic, ḡ.

Test 2 is used to ensure the measurements conform to the

state estimation obtained from the Kalman filter. Without the

knowledge of the dynamic watermark, a falsified measurement

cannot pass both Tests 1 and 2. Thus both tests are indispens-

able for the active detection process.

Following the similar procedure as in [21], it can be proved

that passing both tests is sufficient to achieve an asymptotically

zero attacking power as

lim
T→∞

1

T

T−1
∑

k=0

||d[k + 1]||2 = 0, (32)

which means there is no attack.

This two-test detection procedure can be simplified into one

test by combining the two statistics e[k] and ḡ[k+1] into one

vector [23]. Define

r[k + 1] = [ḡ[k + 1]T , e[k]T ]T ∈ Rq+m. (33)

Then the the two tests described in (30) and (31) can be

combined into one equivalent test as,

lim
T→∞

1

T

T−1
∑

k=0

r[k + 1]r[k + 1]T ,

= lim
T→∞

1

T

T−1
∑

k=0

[

ḡ[k + 1]ḡ[k + 1]T ḡ[k + 1]e[k]T

e[k]ḡ[k + 1]T e[k]e[k]T

]

,

=

[

D 0q×m

0m×q Σe

]

:= Σ0 ∈ R(q+m)×(q+m).

(34)
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IV. LOW LATENCY DETECTION WITH DYNAMIC

WATERMARKING

Building upon the test statistics crafted for dynamic water-

marking, we propose to develop a low-latency attack detection

methods under the framework of dynamic watermarking.

A. Low Latency Attack Detection

The objective of low latency attack detection is to minimize

the average detection delay (ADD) subject to an upper bound

of the probability of false alarm (PFA). Denote the attack time

identified by the detector as τ̂ . Then the detection problem can

be formulated as,

min ADD = E[τ̂ − τ |τ̂ > τ ],

s.t. PFA = P(τ̂ < τ) ≤ α.
(P1)

There is a fundamental tradeoff between ADD and PFA [16].

The ADD can be reduced at the cost of a higher PFA, and

vice versa. The problem formulation in (P1) aims to minimize

the detection delay, subject to an upper bound on the PFA to

achieve guaranteed detection accuracy.

Based on the analysis in the previous section, the distribu-

tions of the dynamic watermark test statistic, r[k + 1], under

the null and alternative hypothesis can be represented as

H0 : r[k + 1] ∼ Nq+m(0,Σ0),

H1 : r[k + 1] ∼ Nq+m(µ,Σ),
(35)

where µ and Σ are the post-attack mean and covariance

matrix, respectively. The values of µ and Σ for different

attacks are analyzed in the next subsection.

Define a new variable Γ[k] as

Γ[k] = r[k]TΣ0
−1r[k]. (36)

Under the null hypothesis, Γ[k] follows a χ2-distribution

with q+m degrees of freedom with mean and variance given

as follows,

E[Γ[k]] = q +m

Var[Γ[k]] = 2(q +m)
(37)

Based on the distribution of Γ[k], we can define the test

statistics used for CUSUM as [8]

U [k + 1] = max(0, U [k] +
Γ[k + 1]− (q +m)

√

2(q +m)
), (38)

T [k] =
U [k]

k
(39)

with U [1] = 0. The test sequence T [k] accumulates the

normalized variable,
Γ[k]−(q+m)√

2(q+m)
, over time. Under the null

hypothesis, the test sequence T [k] is always close to 0. Under

the event of cyberattacks, the value of T [k] will increase over

time. Thus the CUSUM detector can be defined as a threshold

test as

τ̂ = inf{k ≥ 1|T [k] ≥ α}, (40)

where the threshold α is chosen to meet the PFA upper bound

constraint. The Markov chain approach in [36] can be used

for calculating the PFA and select the threshold.

B. Post-Attack Distributions and KL Divergence

We propose to measure the stealthiness of different attacks

by using the Kullback-Leibler (KL) divergence between the

pre- and post-attack distributions of r[k + 1]. The KL diver-

gence is a measure about how one probability distribution

is different from a second one. A smaller KL divergence

between two probability distributions means that the two

distributions are similar to each other, thus it will be harder

to distinguish between the two. In terms of low latency

attack detection, it has been shown that the detection delay

is inversely proportional to the KL divergence between the

two distributions before and after the attack [16, Theorem 3.1].

Thus a smaller KL divergence means a longer detection delay,

which corresponds to a stealthier attack.

The KL divergence of the pre- and post-attack distributions

can be calculated as

D(H1||H0) =
1

2
[µTΣ−1

0 µ+Tr(Σ−1
0 Σ) + log

|Σ0|
|Σ| −m− q],

(41)

with µ and Σ being the post-attack mean and covariance

matrices for the various attacks.

The calculations of the KL divergence requries the knowl-

edge of the pre- and post-attack distributions of r[k], which

are analyzed as follows.

Under normal operation conditions without any attack, the

limit distribution of r[k + 1] is given based on the Law of

large numbers (LLN) as

lim
k→∞

r[k + 1] ∼ Nq+m(0,Σ0). (42)

Denote K = limk→∞ Kk+1 and P = limk→∞ Pk+1 as

the asymptotic covariance matrix and Kalman gain matrix,

respectively. The post-attack distribution of r[k + 1] depends

on the various attack models as analyzed in the following.

1) FDI attack: Substituting (9) and (18) into (24) and (27),

we have the post-attack distribution of r[k + 1] under

the FDI attack as

lim
k→∞

r[k + 1] ∼ Nq+m(µ,Σ) (43)

with

µ =

[

ŪHKa[k + 1]

0m

]

(44a)

Σ = Σ0 (44b)

under deterministic FDI. Under the noisy FDI attack, we

have

µ = 0q+m (45a)

Σ =

[

D+ ŪHKΣaK
T Ū 0q×m

0m×q Σe

]

(45b)

under noise FDI.

2) Replay attack: Substitute (10) to (24) and (27). Define

the control matrix L to be the linear approximation of

the control policy h(·), such that

u[k] = Lx̂k|k + e[k]. (46)
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Then the post-attack distribution of r[k + 1] under the

replay attack can be estimated as,

lim
k→∞

r[k + 1] ∼ Nq+m(0q+m,Σ), (47)

with

Σ =

[

D+ 2ŪHKCXCTKT Ū −ŪHKCBΣe

−ΣeB
TCTKT Ū Σe,

]

(48)

where X is the solution of the following Lyapunov

equation

AeXAT
e −X+BΣeB

T = 0, (49)

and Ae is the estimated transition matrix:

Ae = (Ad +BL)(Ip −KC). (50)

3) Destabilization attack: Substituting (8) into (23) leads to

the post-attack distribution as

r[k + 1] ∼ Nq+m(µ,Σ), (51)

with

µ =

[

ŪHKCBApx̂k|k

0m,

]

(52a)

Σ =

[

D+ ŪHKCPaC
TKT Ū 0q×m

0m×q Σe,

]

(52b)

where

Pa = BApPAp
TBT +AdPAp

TBT +BApPAd
T .

(53)

V. SIMULATION RESULTS

Simulation results are presented in this section to verify

the performance of the proposed low latency attack detection

method. The PV farm model shown in Fig. 1 is implemented

by using Matlab Simulink. All attack simulations are per-

formed by using the Simulink model. In the simulation, the

DC link voltage VDC is set at 800 V, and the magnitude of the

output AC phase voltage |VG| is set as 400×
√

2
3 = 326.60 V,

operating at a frequency of 60 Hz. The reference DQ frame

currents are defined as IRef
D = −150 A and IRef

Q = 0 A. The

proportional parameters Kp1 and Kp2 are both set to 10, and

the integral parameters Ki1 and Ki2 are adjusted to 20.

The simulation time interval is set to ∆t = 10−6 s, which

corresponds to a sampling rate of 1 MHz. The continuous

state-space model is discretized using a 2 kHz sampling rate,

corresponding to a time interval of 5 × 10−4 s between

measurements. The covariance matrices for process and mea-

surement noises are respectively defined as Σw = 10−6I4
and Σn = 5×10−7I2. The covariance matrix for the dynamic

watermark is Σe = 10−6I2.

Equilibrium is achieved within 2 seconds during simu-

lations. Once the system reaches the equilibrium, data are

collected during the next minute for parameter estimation. The

state x, the input u, and the output y in the one minute period

are recorded, and are then used to estimate the corresponding

matrices Ad,B,C and D,K,P.

Cyberattacks and low latency attack detection are performed

after parameter estimations. The attacks are launched at 4.5 s

after the parameter estimation. State estimations are performed

by using the control inputs and the measurements, and the

results are then used to calculate the CUSUM test statistic.

The ADD and PFA for the detector are computed using results

gathered from 1,000 Monte Carlo simulation trials.

A. Deterministic FDI Attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

59.9

60

60.1
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 (
H

z
)

Actual signal before attack

False data

Actual signal after attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

time (s)

326.5

326.55

326.6

326.65

|V
g
| 
(v

)

Actual signal before attack

False data

Actual signal after attack

Fig. 2: The voltage frequency (top) and magnitude (bottom)

measurement under deterministic FDI attack on the PV system

at 4.5s
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25

T

4.495 4.5 4.505
0

0.05

0.1

0.15

Fig. 3: The detector statistic under deterministic FDI attack

on the PV system at 4.5s

The FDI attack with a deterministic attack vector is sim-

ulated by injecting the vector a[t] = [0.05,−0.05]T to the

measurement vector at 4.5 s. Fig. 2 shows the actual measure-

ments and those under attack. Even though the attack does not
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lead to an apparent frequency deviation, the voltage magnitude

drops due to the attack.

The CUSUM statistic under the deterministic FDI attack

with a zoom-in around 4.5s is presented in Fig. 3. The

CUSUM statistic is around 0 prior to the attack, and its value

increases dramatically after the attack. Thus the attack can be

easily detected with minimum delay with the proposed low

latency attack detection algorithm.

B. Noisy FDI Attack

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
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Fig. 4: The voltage frequency (top) and magnitude (bottom)

measurement under noise FDI attack on the PV system at 4.5s
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T

Fig. 5: The detector statistic under noise FDI attack on the PV

system at 4.5s

The noisy FDI attack vector is generated from a random

vector a[t] ∼ N2(0,Σa). We set the noise covariance to a

level that is multiple times of the system and measurement

noise, i.e., the vector on the main diagonal of Σa is set to

[3×10−5, 3×10−6]. Fig. 4 shows the actual measurements and

those with noise injections. The injection only causes trivial

fluctuation in both the frequency and voltage magnitude, and

the actual measurements still fall in a normal range because

of the control system.

The CUSUM statistic under the noisy FDI attack is pre-

sented in Fig. 5. Since the variance of the injected noise is very

low, such an attack is hard to detect. However, it still causes a

significant increase in the slope of the CUSUM statistic. Thus

the noisy FDI attack can be easily detected with the proposed

detection algorithm with low detection latency.

C. Replay attack
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Fig. 6: The voltage frequency (top) and magnitude (bottom)

measurement under replay attack on the PV system at 4.5s
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Fig. 7: The detector statistic under replay attack on the PV

system at 4.5s

The replay attack is simulated by replacing the actual

measurements from 4.5 s by historical measurements starting

at 2.5 s (a delay of 2 seconds). Fig. 6 shows the measurements

between 2s to 7s, where there is a 2 second delay between the

attacked measurement and the actual measurement. The replay
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attack does not deviate the measurements from their normal

range. However, the system will be out of normal control and

cannot respond to load changes of the grid or faults in the

PV farm, which can cause voltage fluctuations, reverse power

flow, and real power curtailments.

The CUSUM statistic under the replay attack is presented

in Fig. 7. The statistic T [k] increases much slower than other

attacks, i.e., the attack is much stealthier compared to others.

However, there is still an apparent increase in the slope of T [k].
Thus the replay attack can be easily detected with the proposed

algorithm even if it does not cause significant deviations of the

system states.

D. Destabilization attack
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Fig. 8: The voltage frequency (top) and magnitude (bottom)

measurement under destabilization attack on the PV system at

4.5s
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Fig. 9: The detector statistic under destabilization attack on

the PV system at 4.5s

The destabilization attack is launched by replacing the

control inputs u[t] with u[t] + Apx[t] starting at 4.5 s,
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PFA
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18

20
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D

Deterministic FDI

Destabilization

Fig. 10: The PFA-ADD curve under the deterministic FDI

attack and destabilization attack on the PV system

where Ap is a diagonal matrix with the main diagonal being

[1.5, 1.5, 0, 0], such that ||Ad + BAp|| ≥ 1. Fig. 8 shows

the measurements from 4.46 s to 4.56 s. The attack rapidly

causes instability in measurements which gradually exceeds

its normal range.

The CUSUM statistic under destabilization attack is pre-

sented in Fig. 9. The statistic T [k] increases much faster than

other attacks, such that it is easier to detect such an attack.

E. Detector performance

More powerful attacks can make the system rapidly drift

away from its normal state and cause damage in a short

period of time. However, they are usually easier to detect. The

adversaries have more incentives to balance the stealthiness

and power of the attack such that they can cause damages

before being detected.

The stealthiness of the attacks can be measured by using

the KL-divergence between the distributions of the CUSUM

test vector r before and after the attack. The KL-divergence

of various attacks at 4.5s is calculated by using the results

in Section IV-B, and the results are shown in Table I. The

deterministic FDI and destabilization attacks have similar

levels of KL divergence, and both are two or three orders of

magnitude higher than that of the relay and noisy FDI attacks.

Thus the deterministic FDI and destabilization attacks are

relatively easier to detect. Among the 4 attacks, the noisy FDI

attack has the best stealthiness with the lowest KL divergence.

The performance of the proposed low latency CUSUM

detector is evaluated by using the ADD-PFA tradeoff curves

shown in Figs. 10 and 11. Each point on the ADD-PFA

tradeoff curve is obtained through 1,000 Monte Carlo trials

for a given detection threshold. Under the same PFA, e.g. PFA

= 0.02, the ADD of the deterministic FDI, destabilization,

replay, and noisy attacks are 12.1, 16.5, 109, and 128 ms,

respectively. This is consistent with the KL divergence results,

that is, attacks with lower KL divergence are harder to detect,

thus they have larger ADD under the same PFA.
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Fig. 11: The PFA-ADD curve under noise FDI attack and

replay attack on the PV system

Attack type KL-divergence

FDI (deterministic) 0.2979

FDI (noise) 0.0053

Replay 0.0547

Destabilization 0.4567

TABLE I: KL-divergence between distribution of r before and after
attack.

VI. CONCLUSION

This paper has proposed an active low latency attack de-

tection algorithm for grid-connected PV systems. We have

developed a generalized CUSUM detector with dynamic wa-

termarking by constructing and analyzing the physical model

of a grid-connected PV system. The detection algorithm

was developed to minimize detection delay while ensuring

detection accuracy. In addition, we have proposed to use

the KL divergence to measure the stealthiness of different

cyberattacks. The algorithm was tested on a 400 V grid-

connected PV system with various cyberattacks. Simulation

results demonstrated that the proposed algorithm can achieve

a detection delay of 50 ms with PFA below 5%.

APPENDIX A

PROOF OF EQUATION (44) AND (45)

Under the FDI attack, the measurements are replaced by:

z[k + 1] = y[k + 1] + a[k + 1] (54)

The posterior state estimation is:

x̂k+1|k+1

= x̂k+1|k +Kk+1(z[k + 1]−Cx̂k+1|k)

= x̂k+1|k +Kk+1(y[k + 1]− Cx̂k+1|k + a[k + 1])

(55)

The test statistic g[k + 1] is:

g[k + 1] = x̂k+1|k+1 − x̂k+1|k

= Kk+1(υ[k + 1] + a[k + 1])
(56)

Then the whitened statistic ḡ[k + 1] is

ḡ[k + 1] = ŪHg[k + 1] = ŪHKk+1(υ[k + 1] + a[k + 1])
(57)

For deterministic a[k + 1], the mean of ḡ[k + 1]:

E[ḡ[k + 1]] = ŪHKE[υ[k + 1] + a[k + 1]] = ŪHKa[k + 1]
(58)

The covariance of ḡ[k + 1] is D since the mean is deter-

ministic:

Cov[ḡ[k + 1]] = D (59)

The covariance of ḡ[k + 1] and e[k] is:

E[ḡ[k + 1]e[k]T ] = E[ŪHKk+1(υ[k + 1] + a[k + 1])e[k]T ]

= ŪHKE[(υ[k + 1] + a[k + 1])e[k]T ]

= ŪHKE[(υ[k + 1] + a[k + 1])]E[e[k]T ]

= 0q×m

(60)

Then the mean of r[k + 1] is:

µ =

[

E[ḡ[k + 1]]

E[e[k]]

]

=

[

ŪHKa[k + 1]

0m

]

(61)

and the covariance of r[k + 1] is:

Σ =

[

D 0q×m

0m×q Σe

]

= Σ0 (62)

which completes the proof of (44).

For a[k + 1] ∼ Np(0,Σa), the mean of ḡ[k + 1] is:

E[ḡ[k + 1]] = ŪHKE[υ[k + 1] + a[k + 1]]

= ŪHK(E[υ[k + 1] + E[a[k + 1]]) = 0q

(63)

The covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = E[ḡ[k + 1]ḡ[k + 1]T ]

= ŪHKE[(υ[k + 1] + a[k + 1])(υ[k + 1] + a[k + 1])T ]KT Ū

= ŪHKE[υ[k + 1]υ[k + 1]T + a[k + 1]a[k + 1]T ]KT Ū

= D+ ŪHKΣaK
T Ū

(64)

using the fact that innovation υ[k + 1] and a[k + 1] are

independent. The covariance of ḡ[k+1] and e[k] has the same

form as deterministic case, then the mean and covariance of

r[k + 1] is:

µ = 0q+m (65a)

Σ =

[

D+ ŪHKΣaK
T Ū 0q×m

0m×q Σe

]

(65b)

which completes the proof of (45).
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APPENDIX B

PROOF OF EQUATION (47) AND (48)

Under the replay attack, the measurements are replaced by:

z[k + 1] = y[k + 1− l] (66)

The innovation after attack is:

υ[k + 1] = z[k + 1]−Cx̂k+1|k

= y[k + 1− l]−Cx̂k+1|k

= C(x[k + 1− l]− x̂k+1|k) + n[k + 1− l]

= C(x[k + 1− l]−Adx̂k|k −Bh(zk))

+ n[k + 1− l]−CBe[k]

(67)

Suppose we have a virtual system that satisfied the following

system equations:

x
′

[t+ 1] = Adx
′

[t] +Bh(z
′t) +Be

′

[t] +w
′

[t+ 1], (68a)

y
′

[t+ 1] = Cx
′

[t+ 1] + n
′

[t+ 1]. (68b)

and the Kalman filter update at k + 1:

x̂
′

k+1|k = Adx̂
′

k|k +Bh(z
′k) +Be

′

[k] (69)

x̂
′

k+1|k+1 = x̂
′

k+1|k +Kk+1υ
′

[k + 1] (70)

and also satisfies the linear approximation of control policy:

h(z
′k) = Lx̂

′

k|k (71)

with the initial state x
′

[0] and initial prior state estimation

x̂
′

1|0. In addition, the virtual system is a delayed version of

the real system without any attack, which satisfies:

x
′

[k + 1] = x[k + 1− l] (72)

x̂
′

k|k = x̂k−l|k−l (73)

when k ≥ l. Then the replay attack can be regarded as

replacing y[k] with y
′

[k] starting from τ .

Define the estimated control and transition matrix:

u[k] := Lx̂k|k + e[k] (74)

Ae := (Ad +BL)(Ip −KC) (75)

Assume Ae is stable, otherwise the measurements will soon be

unbounded and the attack can be detected as a destabilization

attack.

The Kalman filter estimation after the system is attacked and

becomes stable can be rewritten as:

x̂k+1|k = Adx̂k|k +Bu[k]

= (Ad +BL)x̂k|k +Be[k]

= (Ad +BL)(x̂k|k−1 +K(y
′

[k]−Cx̂k|k−1) +Be[k]

= Aex̂k|k−1 + (Ad +BL)Ky
′

[k] +Be[k]
(76)

This update also holds true for the virtual system that:

x̂
′

k+1|k = Aex̂
′

k|k−1 + (Ad +BL)Ky
′

[k] +Be
′

[k] (77)

Therefore, we consider the difference between the prior

estimation of the two systems at k + 1:

x̂
′

k+1|k − x̂k+1|k

= Ae(x̂
′

k|k−1 − x̂k|k−1) +B(e
′

[k]− e[k])

= Ae
2(x̂

′

k−1|k−2 − x̂k−1|k−2)

+AeB(e
′

[k − 1]− e[k − 1]) +B(e
′

[k]− e[k]))

= · · ·

= Ae
k(x̂

′

1|0 − x̂1|0) +

k
∑

i=1

Ae
k−iB(e

′

[i]− e[i])

(78)

The limit mean of ḡ[k + 1] is:

lim
k→∞

E[ḡ[k + 1]] = ŪHKE[υ[k + 1]]

= lim
k→∞

ŪHKE[y
′

[k + 1]−Cx̂
′

k+1|k +C(x̂
′

k+1|k

− x̂k+1|k)]

= lim
k→∞

ŪHKE[υ
′

[k + 1]] + ŪHKCE[Ae
k(x̂

′

1|0 − x̂1|0)

+

k
∑

i=1

Ae
k−iB(e

′

[i]− e[i])]

= lim
k→∞

ŪHKE[υ
′

[k + 1]] + ŪHKCE[Ae
k(x̂

′

1|0 − x̂1|0)]

+

k
∑

i=1

ŪHKCE[Ae
k−iB(e

′

[i]− e[i])]

= 0q

(79)

where the first term is the innovation of the virtual system,

which has zero mean. The second term will converge to zero

because Ae is stable. The third term is zero because the

watermark has zero mean.

The limit covariance of ḡ[k + 1] is:

lim
k→∞

Cov[ḡ[k + 1]]

= lim
k→∞

ŪHKCov[y
′

[k + 1]−Cx̂
′

k+1|k +C(x̂
′

k+1|k

− x̂k+1|k)]K
T Ū

= lim
k→∞

ŪHK(Cov[υ
′

[k + 1]] +

k
∑

i=0

Cov[CAe
iBe

′

[k − i]]

+

k
∑

i=0

Cov[CAe
iBe[k − i]])KT Ū

= D+ 2

∞
∑

i=0

ŪHKCAe
iBΣeB

T (Ae
T )iCTKT Ū

(80)

using the fact that the innovation is independent of the

dynamic watermark. Define X as the solution of the following

Lyapunov equation:

AeXAT
e −X+BΣeB

T = 0 (81)

since Ae is stable,

X =
∞
∑

i=0

Ae
iBΣeB

T (Ae
T )i (82)

This article has been accepted for publication in IEEE Journal of Emerging and Selected Topics in Industrial Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2023.3327051

U.S. Government work not protected by U.S. copyright.
Authorized licensed use limited to: University of Arkansas. Downloaded on December 29,2023 at 00:04:59 UTC from IEEE Xplore.  Restrictions apply. 



12

thus, the covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = D+ 2ŪHKCXCTKT Ū (83)

The covariance of ḡ[k + 1] and e[k] is:

E[ḡ[k + 1]e[k]T ]

= E[ŪHKk+1(C(x[k + 1− l]−Adx̂k|k −Bh(zk))

+ n[k + 1− l]−CBe[k])e[k]T ]

= ŪHKE[−CBe[k]e[k]T ]

= −ŪHKCBΣe

(84)

since other terms are independent of the current dynamic

watermark e[k]. Combined with the proofs of mean and

covariance completes the proof of equation (47) and (48).

APPENDIX C

PROOF OF EQUATION (52)

Under the destabilization attack, the attacked control input:

ua[k] = u[k] +Apx[k] (85)

the state at k + 1 if there is no attack is:

x[k + 1] = Adx[k] +Bu[k] +w[k + 1] (86)

and denote the state at k + 1 after attack as:

xa[k + 1] = Adx[k] +Bua[k] +w[k + 1]

= x[k + 1] +BApx[k]
(87)

the measurement at k + 1 is:

z[k + 1] = Cxa[k + 1] + n[k + 1]

= y[k + 1] +CBApx[k]
(88)

The innovation after attack is:

υa[k + 1] = z[k + 1]−Cx̂k+1|k

= y[k + 1]−Cx̂k+1|k +CBApx[k]
(89)

so the innovation mean is:

E[υa[k + 1]] = E[y[k + 1]−Cx̂k+1|k +CBApx[k]]

= CBApE[x[k]]

= CBApx̂k|k

(90)

the first two terms are the innovation without attack which

has zeros mean, and by the definition the posterior estiation

should be unbiased. The mean of whitened statistic ḡ[k + 1]
is:

E[ḡ[k + 1]] = ŪHKCBApx̂k|k (91)

The covariance of the innovation is:

Cov[υa[k + 1]]

= Cov[υ[k + 1] +CBAp(x[k]− x̂k|k)]

= R+CBApPAp
TBTCT

+ E[υ[k + 1](x[k]− x̂k|k)
TAp

TBTCT ]

+ E[CBAp(x[k]− x̂k|k)υ[k + 1]T ]

(92)

where

E[υ[k + 1](x[k]− x̂k|k)
TAp

TBTCT ]

= E[(C(x[k + 1]− x̂k+1|k) + n[k + 1])(x[k]− x̂k|k)
T

Ap
TBTCT ]

= CE[(x[k + 1]− x̂k+1|k)(x[k]− x̂k|k)
T ]Ap

TBTCT

= CE[(Adx[k] +Bu[k] +w[k + 1]−Adx̂k|k −Bu[k])

(x[k]− x̂k|k)
T ]Ap

TBTCT

= CAdE[(x[k]− x̂k|k)(x[k]− x̂k|k)
T ]Ap

TBTCT

= CAdPAp
TBTCT

(93)

Plug it to the covariance equation:

Cov[υa[k + 1]]

= R+CBApPAp
TBTCT +CAdPAp

TBTCT

+CBApPAp
TBTCT

(94)

Define

Pa = BApPAp
TBT +AdPAp

TBT +BApPAd
T (95)

then the covariance of ḡ[k + 1] is:

Cov[ḡ[k + 1]] = D+ ŪHKCPaC
TKT Ū (96)

The covariance of ḡ[k + 1] and e[k] is zero since all terms

in υ[k+1] are independent of e[k]. Combined with the proofs

of mean and covariance completes the proof of (52).
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