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Abstract—This paper proposes an active low latency attack de-
tection algorithm to improve the cybersecurity of grid-connected
photovoltaic (PV) systems. The algorithm is developed by using a
hybrid model- and data-driven approach, where the test statistics
are formulated by using both the physical model of the PV farm
and historical measurements. Unlike most previous detection
algorithms that mainly focus on detection accuracy, the proposed
algorithm aims at minimizing detection delay while ensuring de-
tection accuracy. The low latency detection algorithm is developed
by designing a generalized cumulative sum (CUSUM) detector
with a dynamic watermark, which can detect cyberattacks even
if the adversary has full knowledge of the system model. To
evaluate the performance of the low latency detection algorithm,
we propose to measure the stealthiness of cyberattacks by using
the Kullback-Leibler (KL) divergence between the pre- and
post-attack distributions of the test statistics. Simulation results
demonstrate that the proposed algorithm can accurately detect
cyberattacks with minimum delays.

Index Terms—Cybersecurity, photovoltaic (PV), dynamic wa-
termarking, cumulative sum (CUSUM)

I. INTRODUCTION

Electricity generated from renewable energy sources (RES)
surpassed coal in the US for the first time in 2022 [1]. The
rapidly growing grid integration of RES is mainly driven by
the growth in solar and wind, which accounts for 14% US
domestic electricity generation in 2022 [1]. High renewable
penetration relies on interoperable distributed energy resource
(DER) grid-support functions with complex control and com-
munication capabilities. The addition of these complex control
and communication capabilities increases the vulnerability of
the RES, and make them prone to cyberattacks [2]-[5]. Cyber-
attacks can disrupt normal grid operations by causing system
instabilities such as line overloads, frequency and/or voltage
violations, reverse power flow, and voltage collapse, especially
during heavy load conditions [6], [7]. This necessitates the
development of new cybersecurity technologies that can detect
and/or mitigate the negative impacts of cyberattacks.

Many existing studies on the cybersecurity of energy sys-
tems focus on grid operations by using measurements from the
supervisory control and data acquisition (SCADA) systems,
the remote terminal units (RTUs), and/or the underlying com-
munication network of the grid [8], [9]. These measurements
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are important indicators for grid operations, but they are
insufficient given that attacks can be launched against local
measurements from sensors and actuators of RES, or the local
control policies for RES operations.

The rapid advancement of machine learning (ML) during
the past decade has driven the development of ML-based
cyberattack detection methods. Most of the ML-based methods
are data-driven, and they do not require physical models of
the system. Various data-driven ML algorithms, such as one-
class support vector machines (OCSVMs), random forests
(RFs), and principal component analysis (PCA) were applied
to multiple sources of time-series data for distributed anomaly
detection on a single solar panel [10]. Deep neural networks
(DNN) with long short-term memory (LSTM) were applied
to detect data integrity attacks by using the Northeast Solar
Energy Research Center (NSERC) PV farm dataset [11]. In
[12], a bidirectional LSTM (Bi-LSTM) framework is used
to detect false data injection (FDI) attacks on a modified
IEEE 14-bus system integrated with RES. An autoencoder is
later combined with the Bi-LSTM model in [13] to achieve
both cyberattck detection and system state forecasting. Raw
data collected from micro PMU (uPMU) were used for the
detection of cyberattacks on photovoltaic (PV) farms by using
data-driven methods such as decision tree (DT) and K-nearest
neighbor (KNN) [14]. Most ML approaches require a large
amount of data during the offline training stage, and sometimes
it might be difficult to obtain a sufficient amount of training
data from cyber-physical systems (CPS).

Most ML-based anomaly detection methods are purely data
driven, and they do not utilize the physical model of the
underlying system. Neural networks such as CNN use convo-
lution kernels, and LSTM captures the dependencies between
historical data, achieving higher detection accuracy [15]. The
data-driven approach requires a large amount training data
from historical measurements.

In contrast to pure data-driven methods, model-based meth-
ods utilize the underlying physical models of CPS to monitor
system operations. The knowledge of the physical model can
help improve detection accuracy and reduce the amount of
training data. For example, measurement results can be com-
pared to state estimations in a smart grid, and the residues can
then be used for anomaly detection [16], [17]. The detection
can be performed by using either a single measurement or a
sequence of historical measurements, such as the windowed
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x? detector [18].

All these detection methods can be classified as passive
methods. One of the limitations of the passive methods is that
they might not be able to detect cyberattacks designed by using
full knowledge of the system model, as the adversary can use
the knowledge of the physical model to match the attacked
data with state estimation results.

Dynamic watermarking is an active defense method that
adds a small random signal, i.e., “watermark”, to the input
of the controller [19]. The power of the random signal is
small such that it does not disturb normal system operations,
and the detector can utilize the statistical distributions of the
watermark signal to test the operation conditions of the CPS.
Dynamic watermarking was first proposed to improve the
performance of x2 detector [19], [20]. However, it is unable
to detect attacks with post-attack distributions fitting historical
measurements, such as the replay attack. This problem can
be solved by using two actuator tests with respect to the
covariance of the residuals and the correlation between the
residuals and watermarks [21]. The two-test dynamic water-
marking scheme is used as the active defense method for the
automatic generation control (AGC) of a power system, and
to detect attacks applied to voltage and current measurements
of a grid-connected PV system [22]. The two-test dynamic
watermarking algorithm is later extended to general linear
time invariant (LTI) systems with a single statistical test based
on the Wishart distribution [23], and to linear time varying
systems and nonlinear systems in [24].

Even though well-known model-driven and data-driven de-
tection methods exist in power grids, their applications in
PV system security are still in its early stages due to the
recent rise of the topic of PV system cybersecurity. Most
research focus on fault diagnosis for PV systems with no
little or no attention to detection delays [25]-[27]. Detection
delay is critical to the cybersecurity of energy systems as
a shorter delay means a timely response that can minimize
the negative impacts of the attacks. There is a fundamental
tradeoff between detection delay and detection accuracy [16].
A lower detection delay might be achieved at the cost of
detection accuracy, and vice versa. Quickest change detection
(QCD) aims at minimizing the detection delay subject to a
constraint on satisfactory detection accuracy. QCD is usually
implemented by means of sequential analysis such as the
sequential probability ratio test (SPRT) [28], the cumulative
sum (CUSUM) [29], [30], generalized likelihood ratio (GLR)
testing [31], etc. Most algorithms require perfect knowledge
of the post-change distribution [32], which is usually difficult,
if not impossible, to obtain [33]. A sequential fault detection
scheme based on the generalized local likelihood ratio (GLLR)
test is used to achieve quickest fault detection in PV systems
[34].

The objective of this paper is to develop a low-latency
attack detection algorithm for grid-connected PV systems to
minimize the detection delay under the constraint of an upper
bound of false alarm rate. Since the key component of the
PV system is the inverter under classical closed-loop control,
we apply the dynamic watermarking algorithm to achieve
active defense, enabling the detector to detect cyber attacks

originating from attackers who may have the knowledge of the
PV inverter structure. The proposed algorithm has four main
innovations. First, the algorithm is designed by using a hybrid
model- and data-driven approach. We first construct a state-
space model for a grid-connected PV farm, the knowledge of
which is used to estimate and predict the state information,
such as current and voltage, by using a Kalman filter. Key
parameters of the filter are estimated and updated by using data
collected from the system. Second, the algorithm performs
active detection of cyberattacks by using a two-test dynamic
watermarking scheme. The statistical tests of the dynamic
watermarks are formulated by analyzing the statistical proper-
ties of the residuals from state estimation and measurements.
Third, unlike existing methods that focus mainly on detection
accuracy, the algorithm is developed to minimize the average
detection delay (ADD), subject to an upper bound on the
probability of false alarm (PFA). The low latency detection
algorithm is designed by using a modified CUSUM algorithm
that incorporates dynamic watermarks. Fourth, we propose to
measure the stealthiness of various cyberattacks by using the
Kullback-Leibler (KL) divergence between the pre- and post-
attack distributions of the test statistics. The KL divergence
provides a quantitative measure on the tradeoff between the
stealthiness and the power of a given cyberattack. The KL
divergences of several attacks, such as the FDI attack, replay
attack, and destabilization attacks are analyzed and evaluated.

The rest of this paper is organized as follows. The modeling
of the grid-connected PV farm (including both physical and
state space models) and various cyberattacks are introduced in
Section II. Section III develops the details of statistical tests
with dynamic watermarking by using state estimation results
with Kalman filter. The low latency detection algorithm with
dynamic watermarking is proposed in Section IV, where the
metric KL divergence is introduced to measure the stealthiness
of attacks. Simulation results are given in V, and the paper is
concluded in Section VI.

II. SYSTEM MODELS

This section describes the model, control and dynamics of a
grid-connected PV farm. Various cyberattack models that can
compromise PV farm operations are also introduced in this
section.

A. Modeling Grid-Connected PV Farm

Fig. 1 illustrates the schematic of a typical photovoltaic
(PV) inverter. The precision of the amplitude and frequency
of the voltage at the output of the PV inverter is critical
for proper system operations. The ideal direct current (DC)
voltage source at the output of the boost converter is denoted
as Vpc. Denote the phase voltage magnitude connected to the
grid as Vg, with its DQ frame represented as Vpg and Vg,
respectively. The three-phase output current of the inverter
is denoted as I,, I, and I, respectively. The corresponding
DQ frame representation of the three-phase current is Ip and
I, respectively. The operation of the PV inverter controller
is performed by controlling signals Vpg, Vg, Ip, and Ig, in
conjunction with the DQ frame of the three-phase reference
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Fig. 1: Diagram of PV inverter.

currents, Igef and IQR"‘f. The values of these reference currents
are established based on the intended output voltage and power
to be supplied to the grid.

Denote the phase voltage magnitude of the inverter as V1,
and the equivalent inductance between the inverter and the grid
as Lgq, which includes the inductance of the LCL filter and the
transmission line. Based on the input signals directed towards
the PV inverter controller, the computation of the reference
DQ frames of V7 can be performed as follows,

2

VRef _
DI
Vbe

t
Ky (I = Inp) + K / (I8 = Ip) dr
0

(Ta)

+ Vb + wLEQIQl ,

VRef — 2

o Vbe

t
Ko (1~ To) + Ko [ (187~ Lo} dr
(Ib)

+ Vo — WLEQID] ,

where K1, K2, K;1 and Ko denote the proportional and
integral parameters, tuned in accordance with the desired static
and dynamic performance standards for the output voltage.
The reference voltage ViR' is derived through an inverse
DQ transformation originating from its reference DQ frame.
Subsequently, this transformed reference voltage is supplied
as input to the PWM generator.

B. State-Space model

The PV farm model can be conceptually represented as a
multi-input multi-output partially observed system. Based on
the grid-connected PV farm model, denote the system state
vector as x € R", the control system input vector as u € R™,

and the output (or observation) vector as y € RP, which are
defined as follows

x = [Ip, I, Vb, Voa) ", n = 4, (2a)
u = [Vor, Vol 7, m=2, (2b)
y = w, |[Vo|]%, p=2, (2¢)

where Vpp and Vi represent the DQ frames of V7, the voltage
at the output of the three-phase inverter. The symbols w and
|VG| denote the frequency and magnitude of the output voltage
interlinked with the grid, respectively.

To facilitate the design of the low latency attack detector,
the dynamics of the PV farm can be approximated by utilizing
the subsequent linearized differential and algebraic equations
(DAE:s) as

X =Ax+Bu+w, (3a)

y=Cx+n, (3b)

where A € R™™", B € R"™, and C € RP*" are the
state matrix, control matrix, and output matrix, respectively.
In addition, w ~ AN(0,X,) and n ~ N(0,X,,) correspond
to zero-mean Gaussian-distributed process noise and measure-
ment noise, respectively. It should be noted that the linearized
DAE in (3) is only used for the design of the low latency
attack detector. The data used in this paper are still generated
by using the actual non-linear system as shown in Fig. 1.

The small-signal dynamics around a given operating point
can be obtained by using the DAEs. Let Ax, Au and Ay
denote the marginal variation from the equilibrium state. The
DAEs that represent the small-signal dynamics can then be
formulated as follows

Ax = AAx + BAu +w, (4a)
Ay = CAx +n. (4b)

The control policy of the entire PV farm can be abstracted
into a nonlinear vector function h(-) as

Au = h(Ay). (%)

Authorized licensed use limited to: University of Arkansas. Downloaded on December 29,2023 at 00:04:59 UTC from IEEE Xplore. Restrictions apply.

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in IEEE Journal of Emerging and Selected Topics in Industrial Electronics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2023.3327051

The continuous-time state-space model in (4) can be dis-
cretized into discrete-time as

Ax[t + 1] — Ax[t] = AAX[t] + BAult] + w[t + 1], (6a)
Ayt + 1] = CAx[t + 1] + n[t + 1]. (6b)

Similarly, the discrete form of (5) is:
Ault] = h(y") (7N

where y' = {y[0],y[1],...,y[t]} represents past mea-
surements collected by the sensors in the context of the
proportional-integral (PI) control.

It is important to note that the values of variables within
the discrete-time difference equations typically diverge from
their counterparts in the continuous-time differential equations,
and these values are contingent upon the sampling rate. To
simplify notation, the same notations are retained, and the
small deviation notation A is omitted for the remainder of this
work. The DAEs presented in (6) can also be reformulated as

X[t + 1] = Agx[t] + Bult] + w[t + 1],
vyt +1] = Cx[t + 1] + nft + 1],

(8a)
(8b)

where Aq = A + I,,. The state transition matrices for the
discrete-time model can be derived from the continuous-time
model, provided that the control model is known. Alterna-
tively, these matrices can also be inferred from practical
measurements, even in the absence of knowledge regarding
the control model.

C. Attack models

Suppose the system is attacked at the moment 7, and assume
that the attacker has the knowledge of the control system,
including the parameters Ag4, B, C, the control policy h(-)
and all historical measurements z‘. This is a very generous
assumption to assume the worst possible attacks. In case the
attacker has partial knowledge of the above parameters and/or
control policy, the attack efficiency will be lower and it will
be easier to detect.

The following cyberattacks are examined within the scope
of this paper.

1) FDI attack. The measurement vector y|t] is injected

with a deterministic attack vector a[t] € R? or a noise
vector a[t] ~ N,(0,3,) as

) oy, t<T,
zlt] = { ylt] +alt], t>r ®

2) Replay attack. The measurement vector y/[¢] is replaced
by historical data from ! moments ago with [ < 7 as,

S — 3 Y
d {y[tlL

3) Destabilization attack. The control input u[t] is injected
with a scaled controller input as

t<T,
t>T.

(10)

u,ft] = uft] + Apx[t], t>r, (11)

where A, € R™*™ is the scaling parameter for the
attack. With the compromised control input u,[t], the
state transition in (8) becomes

x[t + 1] = (Aq + BAp)x[t] + Bult] + w[t + 1].
12)

The instability of the system arises when the elements
within matrix A are selected in a manner that satisfies
the condition ||Agq + BAp|| > 1 [35]. This instability
holds regardless of the specifics of the control vector,
resulting in an inevitable escalation or attenuation of the
state vector.

III. ACTIVE ATTACK DETECTION WITH DYNAMIC
WATERMARKING

This section outlines the proposed active attack detection
method with dynamic watermarking. The active detection
method is motivated by the fact that conventional passive
detection methods might not be able to detect attacks designed
with full or partial knowledge of the power system.

For example, if an attacker has knowledge of the covariance
matrix of the process noise Xy, then the attacker can replace
the true sensor measurements y[t] with false measurements
y/ [t] generated by tracking the following falsified system
model

(13a)
(13b)

X [t+1] = Aax [t] + Bult] + w [t + 1],
y [t+1] = Cx [t + 1] + n[t + 1],

where x [t] and y'[t] are the state vector and measurement
vector of the false system, and w' [{] are artificially generated
1.i.d zero-mean noise with covariance matrix Y. Conven-
tional passive detection methods are ineffective in identifying
this kind of attack, because all state and measurement vectors
follow the dynamics of the physical model. Nevertheless,
an active defense strategy can be employed by introducing
concealed signals, i.e. “dynamic watermarks”, which remain
undisclosed to both the system and the attacker. As a result,
true measurements will exhibit correlation with the dynamic
watermark, and such correlation disappears with falsified mea-
surements [21].

The dynamic watermarking is implemented in the form of
a random signal e[t] ~ N (0,3,), and they are identically
and independently distributed in time. The dynamic watermark
signal is applied to the control input as,

uft] = h(z") + ef[t], (14)

where z! is the compromised observation vector after attack,
and z* = y! if there is no attack.
With the watermark signal, the system evolves as
X[t + 1] = Agx[t] + Bh(z") + Be[t] + w(t + 1],
ylt +1] = Cx[t + 1] + nft +1].

(15a)
(15b)

It is shown in [21] that incorporating a dynamic watermark
signal into the control input can serve to uncover any illicit
manipulation of the signals via the application of two distinct
statistical tests.
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The development of low latency detection through dynamic
watermarking requires estimation and tracking of the state
vector of the PV farm. The state estimation is performed by
using the Kalman filter as shown in the next subsection.

A. Kalman Filter

Denote x,;, as the estimation of x at the moment a given
observations up to and including moment b.

The prior state estimation and the prior estimation covari-
ance matrix at moment k + 1 are given by

Xpey1k = AaXp + Bh(z") + Belk],
Piiip = AdPypAd” + Zw.

(16)
a7

Define v[k + 1] € RP as the innovation vector at moment
k+1as

vk +1] = z[k + 1] — CXppa)i, (18)
and the corresponding innovation covariance matrix is
Rj41 = CPj11,CT + =, (19)
The optimal Kalman gain matrix at moment k£ + 1 is
Kit1 =P C R (20)

Then the posterior state estimation and the corresponding
covariance matrix at moment k£ + 1 are updated by

Kpt1)b+1 = Xip1e + Kep1vlk + 1], 21
Priijpr1 = (Ip = Kpp1C)Pryp1 i (22)
Substituting (16) and (18) into (21) yields
)A(k-‘rl\k-ﬁ-l = Adf(k|k + Bh(Zk)
+ Belk] + Ki1v[k + 1. (23)

B. Statistical Test with Dynamic Watermarking

Based on the state estimation results in (23), define the
additive distortion power of the attacker at moment k + 1 as

d[k + 1] = Xy 11541 — AaXg, — Bh(z")
—Belk] — Ky+1v[k + 1].

If there is no attack, then d[k + 1] = 0, and we have the
following distributions,

(24)

Xp+1lk+1 — AdXgk — Bh(Zk) ~

(25)

N,.(0,BE.B” + K11 Ry 1KLL 1),

9 — Ag%.x — Bh(z") — Belk] ~
Xpt1|k+1 dXk|k (z") elk] (26)

N (0, Kp 1R K7 ).

Define a test statistic g[k + 1] at moment k + 1 as the sum
of the attack power vector and a scaled innovation vector as

glk +1] =d[k + 1] + Kgp1v[k + 1]

N X % (27
= Xpt1jk+1 — AaXpp — Bh(z") —

Belk].

The elements in g[k + 1] might be mutually correlated
because of the selected state of the system, which makes
P = Kk.+1Rk+1Kg+l singular.

To solve this problem, denote ® = limy_,., ®r1 as the
asymptotic estimate of ®; ;. Assume the rank of ® is ¢ < p
with nonzero eigenvalues A = [A1, -+, \,]7, and the matrix
U € CP*7 contains the corresponding eigenvectors on its
column. We can perform dimension reduction on glk + 1]
as

glk+1] =Uglk +1]. (28)

Then we have

lim E [g[k + 1]g[k + 1)7] =D, (29)
k—o0
where D = Diag(A) € C?%7 is a diagonal matrix with the ¢
nonzero eigenvalues of ® on its main diagonal.

Based on the test statistic, the statistical tests that are used
for dynamic watermarking are [21]

1) Test 1:
. 1 T—1 ) -
Jim kZ:O elklglk +1]7 = 0,xg. (30
2) Test 2:
. 1 T—1 ) ) .
Jim k; glk+1glk+1T=D. (31

Tests 1 and 2 correspond to the distributions given in (25)
and (26), respectively. Test 1 is used to test the independence
between the watermark signal, e, and the test statistic, g.
Test 2 is used to ensure the measurements conform to the
state estimation obtained from the Kalman filter. Without the
knowledge of the dynamic watermark, a falsified measurement
cannot pass both Tests 1 and 2. Thus both tests are indispens-
able for the active detection process.

Following the similar procedure as in [21], it can be proved
that passing both tests is sufficient to achieve an asymptotically
zero attacking power as

T—1
1
lim — 2=
Jim > {ldlk+ 117 =0, (32)
k=0
which means there is no attack.
This two-test detection procedure can be simplified into one

test by combining the two statistics e[k] and g[k + 1] into one

vector [23]. Define
rlk+1] = [g[k + 1], e[k]"] € RTT™, (33)

Then the the two tests described in (30) and (31) can be
combined into one equivalent test as,

T-1

1
Jim k; [k + e[k +1]7,
1= [glk+1glk+1T glk+ 1)e[k]”
= lim — , (34
TSo0 T Z:% e[klglk + 1T e[kle[k]T G4

— 20 c R(q-{—nL)X(q—Hn).
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IV. Low LATENCY DETECTION WITH DYNAMIC
WATERMARKING

Building upon the test statistics crafted for dynamic water-
marking, we propose to develop a low-latency attack detection
methods under the framework of dynamic watermarking.

A. Low Latency Attack Detection

The objective of low latency attack detection is to minimize
the average detection delay (ADD) subject to an upper bound
of the probability of false alarm (PFA). Denote the attack time
identified by the detector as 7. Then the detection problem can
be formulated as,

min ADD = E[7 — 7|7 > 7],
st. PFA=P(f<7)<a.

There is a fundamental tradeoff between ADD and PFA [16].
The ADD can be reduced at the cost of a higher PFA, and
vice versa. The problem formulation in (P1) aims to minimize
the detection delay, subject to an upper bound on the PFA to
achieve guaranteed detection accuracy.

Based on the analysis in the previous section, the distribu-
tions of the dynamic watermark test statistic, r[k + 1], under
the null and alternative hypothesis can be represented as

Ho I'[k‘ + 1] ~ Nqum(O, 20)7
Hirr[k+1] ~ Nqum(//'v %),
where 1 and ¥ are the post-attack mean and covariance
matrix, respectively. The values of p and ¥ for different

attacks are analyzed in the next subsection.
Define a new variable T'[k] as

L[k] = r[k]T2o 'r[k].

(P1)

(35)

(36)

Under the null hypothesis, T'[k] follows a x?2-distribution
with ¢ +m degrees of freedom with mean and variance given

as follows,
E[L[k]] =q+m
Var[T'[k]] = 2(q +m) ©7

Based on the distribution of T'[k], we can define the test
statistics used for CUSUM as [8]

Lk +1] - (g +m)

Ulk + 1] = max(0,U|k| + , (38)
1) = max(0, U] + =2 )
k
T = 2 (39)
k
with U[1] = 0. The test sequence T[k] accumulates the

L[k]—(g+m) :
)’ over time. Under the null
hypothesis, the test sequence T'[k] is always close to 0. Under

the event of cyberattacks, the value of T'[k]| will increase over
time. Thus the CUSUM detector can be defined as a threshold
test as

normalized variable,

7 =inf{k > 1|T[k] > a}, (40)

where the threshold « is chosen to meet the PFA upper bound
constraint. The Markov chain approach in [36] can be used
for calculating the PFA and select the threshold.

B. Post-Attack Distributions and KL Divergence

We propose to measure the stealthiness of different attacks
by using the Kullback-Leibler (KL) divergence between the
pre- and post-attack distributions of r[k + 1]. The KL diver-
gence is a measure about how one probability distribution
is different from a second one. A smaller KL divergence
between two probability distributions means that the two
distributions are similar to each other, thus it will be harder
to distinguish between the two. In terms of low latency
attack detection, it has been shown that the detection delay
is inversely proportional to the KL divergence between the
two distributions before and after the attack [16, Theorem 3.1].
Thus a smaller KL divergence means a longer detection delay,
which corresponds to a stealthier attack.

The KL divergence of the pre- and post-attack distributions
can be calculated as

with ¢ and X being the post-attack mean and covariance
matrices for the various attacks.

The calculations of the KL divergence requries the knowl-
edge of the pre- and post-attack distributions of r[k|, which
are analyzed as follows.

Under normal operation conditions without any attack, the
limit distribution of r[k + 1] is given based on the Law of
large numbers (LLN) as

klim rlk+1] ~ Nq+7,,,(0, o). 42)
—00

Denote K = limy_, oo Kiy1 and P = limg_,oo Pg41 as
the asymptotic covariance matrix and Kalman gain matrix,
respectively. The post-attack distribution of r[k + 1] depends
on the various attack models as analyzed in the following.

1) FDI attack: Substituting (9) and (18) into (24) and (27),

we have the post-attack distribution of r[k + 1] under
the FDI attack as

lim rlk+ 1] ~ Nypm(p, ) (43)
k—o0
with
UfKalk + 1
p= |V (449)
O
=3 (44b)
under deterministic FDI. Under the noisy FDI attack, we
have
D+ UK, KU 0,5
wo|°7 2 qx (45b)
07n><q e

under noise FDI.

2) Replay attack: Substitute (10) to (24) and (27). Define
the control matrix L to be the linear approximation of
the control policy h(-), such that

u[k] = L)A(k“f + e[k} (46)
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Then the post-attack distribution of r[k + 1] under the
replay attack can be estimated as,

T rfk 1] ~ Ny (O B), - (47)
with
s D +2UYKCXCTK’U -UHKCBX,
-».BTCTKTU e,

(48)
where X is the solution of the following Lyapunov
equation

AXAT - X +B=.BT =0, (49)
and A, is the estimated transition matrix:
A. =(Aq +BL)(I, - KC). (50)

3) Destabilization attack: Substituting (8) into (23) leads to
the post-attack distribution as

I‘[k}+1] NNq+m([L, E)a (51)
with
UZKCBA %
o= pXk|k (52a)
01’1’17
D+ UPKCP,CTKTU 0
s |°" axm (52b)
Oqu e
where

P, =BA,PA,"BT + A4PA,"B” + BA,PA,".
(53)

V. SIMULATION RESULTS

Simulation results are presented in this section to verify
the performance of the proposed low latency attack detection
method. The PV farm model shown in Fig. 1 is implemented
by using Matlab Simulink. All attack simulations are per-
formed by using the Simulink model. In the simulation, the
DC link voltage Vpc is set at 800 V, and the magnitude of the

output AC phase voltage |Vg| is set as 400 x 1/ 2 = 326.60 V,
operating at a frequency of 60 Hz. The reference DQ frame
currents are defined as I§*" = —150 A and I§* = 0 A. The
proportional parameters K, and K2 are both set to 10, and
the integral parameters K;; and ;o are adjusted to 20.

The simulation time interval is set to At = 1076 s, which
corresponds to a sampling rate of 1 MHz. The continuous
state-space model is discretized using a 2 kHz sampling rate,
corresponding to a time interval of 5 x 107* s between
measurements. The covariance matrices for process and mea-
surement noises are respectively defined as ¥, = 1071,
and X, = 5 x 10~ "I,. The covariance matrix for the dynamic
watermark is 3o = 10761,.

Equilibrium is achieved within 2 seconds during simu-
lations. Once the system reaches the equilibrium, data are
collected during the next minute for parameter estimation. The
state x, the input u, and the output y in the one minute period

are recorded, and are then used to estimate the corresponding
matrices Ag,B,C and D, K, P.

Cyberattacks and low latency attack detection are performed
after parameter estimations. The attacks are launched at 4.5 s
after the parameter estimation. State estimations are performed
by using the control inputs and the measurements, and the
results are then used to calculate the CUSUM test statistic.
The ADD and PFA for the detector are computed using results
gathered from 1,000 Monte Carlo simulation trials.

A. Deterministic FDI Attack
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Actual signal before attack

False data

60.1r Actual signal after attack ]

o B

59.9 I I I I I I I I I
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o

= 326.55 Actual signal before attack
False data
Actual signal after attack

326.5 I I I I I I I I I
2 25 3 35 4 45 5 55 6 6.5 7
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Fig. 2: The voltage frequency (top) and magnitude (bottom)
measurement under deterministic FDI attack on the PV system
at 4.5s

25

201 0.15

0
4.495 4.5

3 35 4 45 5 55 6 6.5 7
time (s)

Fig. 3: The detector statistic under deterministic FDI attack

on the PV system at 4.5s

The FDI attack with a deterministic attack vector is sim-
ulated by injecting the vector aft] = [0.05,—0.05]7 to the
measurement vector at 4.5 s. Fig. 2 shows the actual measure-
ments and those under attack. Even though the attack does not
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lead to an apparent frequency deviation, the voltage magnitude
drops due to the attack.

The CUSUM statistic under the deterministic FDI attack
with a zoom-in around 4.5s is presented in Fig. 3. The
CUSUM statistic is around O prior to the attack, and its value
increases dramatically after the attack. Thus the attack can be
easily detected with minimum delay with the proposed low
latency attack detection algorithm.

B. Noisy FDI Attack
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. Actual signal after attack ‘
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Fig. 4: The voltage frequency (top) and magnitude (bottom)
measurement under noise FDI attack on the PV system at 4.5s

time (s)

Fig. 5: The detector statistic under noise FDI attack on the PV
system at 4.5s

The noisy FDI attack vector is generated from a random
vector aft] ~ N(0,X,). We set the noise covariance to a
level that is multiple times of the system and measurement
noise, i.e., the vector on the main diagonal of 3, is set to
[3x107°,3x107°]. Fig. 4 shows the actual measurements and
those with noise injections. The injection only causes trivial

fluctuation in both the frequency and voltage magnitude, and
the actual measurements still fall in a normal range because
of the control system.

The CUSUM statistic under the noisy FDI attack is pre-
sented in Fig. 5. Since the variance of the injected noise is very
low, such an attack is hard to detect. However, it still causes a
significant increase in the slope of the CUSUM statistic. Thus
the noisy FDI attack can be easily detected with the proposed
detection algorithm with low detection latency.

C. Replay attack
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Fig. 6: The voltage frequency (top) and magnitude (bottom)
measurement under replay attack on the PV system at 4.5s

0.8

time (s)

Fig. 7: The detector statistic under replay attack on the PV
system at 4.5s

The replay attack is simulated by replacing the actual
measurements from 4.5 s by historical measurements starting
at 2.5 s (a delay of 2 seconds). Fig. 6 shows the measurements
between 2s to 7s, where there is a 2 second delay between the
attacked measurement and the actual measurement. The replay
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attack does not deviate the measurements from their normal
range. However, the system will be out of normal control and
cannot respond to load changes of the grid or faults in the
PV farm, which can cause voltage fluctuations, reverse power
flow, and real power curtailments.

The CUSUM statistic under the replay attack is presented
in Fig. 7. The statistic T[k] increases much slower than other
attacks, i.e., the attack is much stealthier compared to others.
However, there is still an apparent increase in the slope of T'[k].
Thus the replay attack can be easily detected with the proposed
algorithm even if it does not cause significant deviations of the
system states.

D. Destabilization attack
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Fig. 8: The voltage frequency (top) and magnitude (bottom)
measurement under destabilization attack on the PV system at
4.5s
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Fig. 9: The detector statistic under destabilization attack on
the PV system at 4.5s

The destabilization attack is launched by replacing the
control inputs uft] with uft] + Apx[t] starting at 4.5 s,

20

—©— Deterministic FDI
=#— Destabilization

8 I I I

0 0.05 0.1
PFA

Fig. 10: The PFA-ADD curve under the deterministic FDI
attack and destabilization attack on the PV system

0.15 0.2

where A is a diagonal matrix with the main diagonal being
[1.5,1.5,0,0], such that ||[Agq + BA,|| > 1. Fig. 8 shows
the measurements from 4.46 s to 4.56 s. The attack rapidly
causes instability in measurements which gradually exceeds
its normal range.

The CUSUM statistic under destabilization attack is pre-
sented in Fig. 9. The statistic T'[k] increases much faster than
other attacks, such that it is easier to detect such an attack.

E. Detector performance

More powerful attacks can make the system rapidly drift
away from its normal state and cause damage in a short
period of time. However, they are usually easier to detect. The
adversaries have more incentives to balance the stealthiness
and power of the attack such that they can cause damages
before being detected.

The stealthiness of the attacks can be measured by using
the KL-divergence between the distributions of the CUSUM
test vector r before and after the attack. The KL-divergence
of various attacks at 4.5s is calculated by using the results
in Section IV-B, and the results are shown in Table I. The
deterministic FDI and destabilization attacks have similar
levels of KL divergence, and both are two or three orders of
magnitude higher than that of the relay and noisy FDI attacks.
Thus the deterministic FDI and destabilization attacks are
relatively easier to detect. Among the 4 attacks, the noisy FDI
attack has the best stealthiness with the lowest KL divergence.

The performance of the proposed low latency CUSUM
detector is evaluated by using the ADD-PFA tradeoff curves
shown in Figs. 10 and 11. Each point on the ADD-PFA
tradeoff curve is obtained through 1,000 Monte Carlo trials
for a given detection threshold. Under the same PFA, e.g. PFA
= 0.02, the ADD of the deterministic FDI, destabilization,
replay, and noisy attacks are 12.1, 16.5, 109, and 128 ms,
respectively. This is consistent with the KL divergence results,
that is, attacks with lower KL divergence are harder to detect,
thus they have larger ADD under the same PFA.
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Fig. 11: The PFA-ADD curve under noise FDI attack and
replay attack on the PV system

Attack type KL-divergence

FDI (deterministic) 0.2979
FDI (noise) 0.0053
Replay 0.0547
Destabilization 0.4567

TABLE I: KL-divergence between distribution of r before and after
attack.

VI. CONCLUSION

This paper has proposed an active low latency attack de-
tection algorithm for grid-connected PV systems. We have
developed a generalized CUSUM detector with dynamic wa-
termarking by constructing and analyzing the physical model
of a grid-connected PV system. The detection algorithm
was developed to minimize detection delay while ensuring
detection accuracy. In addition, we have proposed to use
the KL divergence to measure the stealthiness of different
cyberattacks. The algorithm was tested on a 400 V grid-
connected PV system with various cyberattacks. Simulation
results demonstrated that the proposed algorithm can achieve
a detection delay of 50 ms with PFA below 5%.

APPENDIX A
PROOF OF EQUATION (44) AND (45)

Under the FDI attack, the measurements are replaced by:

zlk + 1] = y[k + 1] + a[k + 1] (54)
The posterior state estimation is:
Kot 1[k+1
= Xp 1k + Kera(z[k + 1] = CXpqapp) (55)
= Xpr1k + Ki1 (y[k + 1] = CXpqp, + alk + 1])
The test statistic g[k + 1] is:
glk + 1] = Xpy1jpr1 — Xprapn 56)

=K1 (v[k + 1] +afk + 1))

10

Then the whitened statistic g[k + 1] is

glk +1] = Uglk + 1] = UK, 11 (v[k + 1] + alk + 1])
(57)

For deterministic a[k + 1], the mean of g[k + 1]:

E[gk + 1]] = UPKE[v[k + 1] + a[k + 1]] = U Ka[k + 1]
(58)

The covariance of gk + 1] is D since the mean is deter-
ministic:

Cov[glk +1]] =D (59)

The covariance of g[k + 1] and e[k] is:

Elglk + 1]e[k]”] = E[U"Ky41(v[k + 1] + a[k + 1])e[k]"]
KE[(v[k + 1] + a[k + 1])e[k]"]

[_]H
UYKE[(v[k + 1] + alk + 1])]E[e[k]]
0

gxXm
(60)
Then the mean of r[k + 1] is:
_ |E[glk+1]]|  |UYKalk+1] 6D
LBl ][ o
and the covariance of r[k + 1] is:
D Ogxm
z= sl =5 (62)
0m><q Z:e
which completes the proof of (44).
For a[k + 1] ~ N,,(0,X,), the mean of gk + 1] is:
E[g[k + 1]] = UPKE[v[k + 1] + a[k + 1]] ©3)

= UK (E[v[k + 1] + E[a[k + 1]]) = 0,
The covariance of g[k + 1] is:

Cov(g[k + 1]] = E[g[k + 1]g[k + 1]7]
= UYKE[(v[k + 1] + alk + 1)) (v[k + 1] + alk + 1)) T]KTU
= U¥KE[w[k + 1v[k + 1] +alk + 1]a[k + 1]T KT U
=D+ UK, K'U
(64)

using the fact that innovation v[k + 1] and alk + 1] are
independent. The covariance of g[k+ 1] and e[k] has the same
form as deterministic case, then the mean and covariance of
r[k + 1] is:

- D+ UK, KTU

0q><m

(65b)

O x q e

which completes the proof of (45).
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APPENDIX B
PROOF OF EQUATION (47) AND (48)

Under the replay attack, the measurements are replaced by:

zlk+ 1] =ylk+1-1] (66)
The innovation after attack is:
=ylk+1—1] - Cxppyp
=Cxk+1-1]— kk+1|k) +nlk+1-1 (67)

= C(x[k +1—1] — A%y, — Bh(z"))
+nlk+1-1] — CBelk]

Suppose we have a virtual system that satisfied the following
system equations:

X [t +1] = Aqx [t] + Bh(z*) + Be [t] + w [t + 1], (68a)

yt+1]=Cx[t+1]+n'[t+1]. (68b)
and the Kalman filter update at k& + 1:

%15 = AdaXy, + Bh(z") + Be'[K] (69)

X1 ot1 = Xppp1jp T Kiprv [k +1] (70)

and also satisfies the linear approximation of control policy:

h(z*) = Lk, , (71)

with the initial state x [0] and initial prior state estimation
)21‘0. In addition, the virtual system is a delayed version of
the real system without any attack, which satisfies:

X [k+1]=xk+1—1] (72)

Xpolke = Xk—1]k—1 (73)

when k > [. Then the replay attack can be regarded as
replacing y[k] with y [k] starting from 7.
Define the estimated control and transition matrix:

u[k] = L)A(k“C + e[k]
A, = (Aq + BL)(I, - KC)

(74)
(75)

Assume A is stable, otherwise the measurements will soon be
unbounded and the attack can be detected as a destabilization
attack.

The Kalman filter estimation after the system is attacked and
becomes stable can be rewritten as:

)A(k+1‘k = Adf(klk + Bu[k’}
= (Aa + BL)(%p—1 + K(y [k] — Cyyj—1) + Belk]

’

= Aef(k|k—1 + (Aq + BL)Ky [k] + Be[k]
(76)

This update also holds true for the virtual system that:

X1k = AeXy_y + (Ad + BL)Ky [K] + Be'[k]  (77)

Therefore, we consider the difference between the prior

estimation of the two systems at k + 1:

X1k — Rtk
= Ae(fclk\k_l — Xyji—1) + B(e'[k] — e[k])
= Aez(&;g—1|k—2 — Xp—1]k—2)
+ AB(e [k —1] — e[k —1]) + B(e'[k] —e[k])) ()

k
= AL (Xy ) — Xip0) + Y AT B(e'[i] — efi)

1=1
The limit mean of g[k + 1] is:
Jim E[g[k + 1] = UYKE[v[k + 1]]
— 00
= lim UYKE[y [k + 1] = Cxj s + CRppp

= Xpy1ik)]
= lim U"KE[ [k + 1] + UYKCE[AF (%)0 — %1/0)
—00

k
+ 30 ALBE [ - efi))

= lim U"KE[v [k + 1]] + UYKCE[AF (%)) — %10)]
—00
k

+)  UYKCE[A'B(e'[i] — eli])]
i=1
(79
where the first term is the innovation of the virtual system,
which has zero mean. The second term will converge to zero
because A, is stable. The third term is zero because the
watermark has zero mean.
The limit covariance of g[k + 1] is:

lim Covig[k + 1]]
k— o0

. T H 4 NG N
= kILH;oU KCovly [k + 1] — CXjp ), + C(Xp 1

— Xpy1x)]KTU
k
= lim UYK(Cov[v'[k+1]] + > Cov[CA'Be [k — i]]
k—o0 part
k .
+) " Cov[CA.'Belk — i| )K" U
=0

=D+2) UYKCA.BX.B"(A.")'C"K"U
i=0
(80)
using the fact that the innovation is independent of the
dynamic watermark. Define X as the solution of the following
Lyapunov equation:

AXAT X +BZ.BT =0 (81)
since A, is stable,
X =Y ASBEB"(AT) (82)

=0
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thus, the covariance of g[k + 1] is:

Cov(g[k +1]] = D + 2UPKCXCTKTU  (83)

The covariance of g[k + 1] and e[k] is:
Elg[k + e[k]"]
= E[U"K41(C(x[k + 1 — I] — Ag%ky; — Bh(z"))
+nfk+1—1] — CBelk])e[k]"]
U”KE[-CBe[kle[k]T]
= -U"KCBX,

(84)

since other terms are independent of the current dynamic
watermark e[k]. Combined with the proofs of mean and
covariance completes the proof of equation (47) and (48).

APPENDIX C
PROOF OF EQUATION (52)

Under the destabilization attack, the attacked control input:

u,[k] = ulk] + Apx[k] (85)

the state at k£ + 1 if there is no attack is:

x[k 4+ 1] = Aax[k] + Bulk] + wlk + 1] (86)

and denote the state at k + 1 after attack as:
Xolk + 1] = Agx[k] + Bu,[k] + w[k + 1]

= x[k + 1] + BApx[k] 7

the measurement at k + 1 is:
z[k + 1] = Cx,[k + 1] + n[k + 1]

=ylk+ 1] + CBAx[k] (8%)

The innovation after attack is:
valk +1] = z[k + 1] = CXppapp

. (89)
= y[k + 1] = Cxpq1x + CBApX[K]

so the innovation mean is:
Elv.[k +1]] = E[y[k + 1] — CXpqrk + CBAx[k]]

= CBA,E[x[]]

(90)

the first two terms are the innovation without attack which
has zeros mean, and by the definition the posterior estiation
should be unbiased. The mean of whitened statistic g[k + 1]
is:

Elglk + 1]] = UYKCBA % 1)

The covariance of the innovation is:
Cov[vg[k + 1]]
= Cov[v[k + 1] + CBA, (x[k] — Xy 1)]
=R+ CBA,PA,"BTC” (92)
+ Efvlk + 1](x[k] — %4x)" Ap" BTCT]
+ E[CBAp (x[k] - &y )vlk + 1]

12
where
Efv[k + 1](x[k] — %x4) " Ap" BT CT]
= E[(C(x[k + 1] = Ky y1s) + nlk + 1) (x[k] — xg)"
A,"BTCT)
= CE[(x[k + 1] — Kpy 1) (x[k] — %gx) " ]Ap BT CT
= CE[(Aax[k] + Bu[k] + w([k + 1] — Ag%ky), — Bulk])
(x[k] — %x5)T1Ap BT CT
= CA4E[(x[k] — %y ) (x[k] — %g5)T]A,TBTCT
= CA4PA, BTCT
(93)

Plug it to the covariance equation:
Cov[vglk + 1]]
=R+ CBA,PA,"BTC” + CA4PA,"BTCT (94
+ CBA,PA,"BTC”
Define
P.=BA,PA, BT + AqPA,"B” + BA,PA4" (95)
then the covariance of g[k + 1] is:

Cov[glk +1]] = D + UPKCP,CTK'U  (96)

The covariance of g[k + 1] and e[k] is zero since all terms
in v[k+1] are independent of e[k]. Combined with the proofs
of mean and covariance completes the proof of (52).

REFERENCES

[1] I. O'MALLEY, “U.S. renewable electricity surpassed coal in 2022,”
Associated Press, 2023.

[2] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Computer networks, vol. 169, p. 107094, 2020.

[3] S. K. Mazumder, A. Kulkarni, S. Sahoo, F. Blaabjerg, H. A. Mantooth,
J. C. Balda, Y. Zhao, J. A. Ramos-Ruiz, P. N. Enjeti, P. Kumar et al.,
“A review of current research trends in power-electronic innovations in
cyber—physical systems,” IEEE Journal of Emerging and Selected Topics
in Power Electronics, vol. 9, no. 5, pp. 5146-5163, 2021.

[4] J. C. Balda, A. Mantooth, R. Blum, and P. Tenti, “Cybersecurity and
power electronics: Addressing the security vulnerabilities of the internet
of things,” IEEE Power Electronics Magazine, vol. 4, no. 4, pp. 37-43,
2017.

[5] A. Walker, J. Desai, D. Saleem, and T. Gunda, “Cybersecurity in
photovoltaic plant operations,” National Renewable Energy Lab.(NREL),
Golden, CO (United States), Tech. Rep., 2021.

[6] X.Liu, M. Shahidehpour, Y. Cao, L. Wu, W. Wei, and X. Liu, “Microgrid
risk analysis considering the impact of cyber attacks on solar pv and
ess control systems,” IEEE transactions on smart grid, vol. 8, no. 3, pp.
1330-1339, 2016.

[71 A. Teymouri, A. Mehrizi-Sani, and C.-C. Liu, “Cyber security risk
assessment of solar pv units with reactive power capability,” in JECON
2018-44th Annual Conference of the IEEFE Industrial Electronics Society.
IEEE, 2018, pp. 2872-2877.

[8] S. Nath, I. Akingeneye, J. Wu, and Z. Han, “Quickest detection of false
data injection attacks in smart grid with dynamic models,” IEEE Journal
of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1,
pp. 1292-1302, 2019.

[9] 1. Akingeneye and J. Wu, “Pmu-assisted bad data detection in power
systems,” in 2018 IEEE/PES Transmission and Distribution Conference
and Exposition (T&D). 1EEE, 2018, pp. 1-5.

[10] D. M. Shilay, K. G. Lorey, T. Weiz, T. Lovetty, and Y. Cheng,
“Catching anomalous distributed photovoltaics: An edge-based multi-
modal anomaly detection,” arXiv preprint arXiv:1709.08830, 2017.

[11] K. G. Lore, D. M. Shila, and L. Ren, “Detecting data integrity attacks on
correlated solar farms using multi-layer data driven algorithm,” in 2018
IEEE Conference on Communications and Network Security (CNS).
IEEE, 2018, pp. 1-9.

Authorized licensed use limited to: University of Arkansas. Downloaded on December 29,2023 at 00:04:59 UTC from IEEE Xplore. Restrictions apply.

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in IEEE Journal of Emerging and Selected Topics in Industrial Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JESTIE.2023.3327051

13

[12] M. Mohammadpourfard, Y. Weng, I. Genc, and T. Kim, “An accurate  [35] M. Izbicki, S. Amini, C. R. Shelton, and H. Mohsenian-Rad, “Identi-

false data injection attack (fdia) detection in renewable-rich power fication of destabilizing attacks in power systems,” in 2017 American

grids,” in 2022 10th Workshop on Modelling and Simulation of Cyber- Control Conference (ACC). IEEE, 2017, pp. 3424-3420.

Physical Energy Systems (MSCPES). 1EEE, 2022, pp. 1-5. [36] J. Tang, J. Song, and A. Gupta, “A dynamic watermarking algorithm
[13] A. Moradzadeh, M. Mohammadpourfard, I. Genc, S. S. Seker, and for finite markov decision problems,” arXiv preprint arXiv:2111.04952,

B. Mohammadi-Ivatloo, “Deep learning-based cyber resilient dynamic 2021.

line rating forecasting,” International Journal of Electrical Power &
Energy Systems, vol. 142, p. 108257, 2022.

[14] Q. Li, FE. Li, J. Zhang, J. Ye, W. Song, and A. Mantooth, “Data-driven
cyberattack detection for photovoltaic (pv) systems through analyzing
micro-pmu data,” in 2020 IEEE Energy Comversion Congress and
Exposition (ECCE). 1EEE, 2020, pp. 431-436.

[15] J. Zhang, L. Guo, and J. Ye, “Hardware-in-the-loop testbed for cyber-
physical security of photovoltaic farms,” in 2021 IEEE 12th Inter-
national Symposium on Power Electronics for Distributed Generation
Systems (PEDG). 1EEE, 2021, pp. 1-7.

[16] S. Nath and J. Wu, “Quickest change point detection with multiple
postchange models,” Sequential Analysis, vol. 39, no. 4, pp. 543-562,
2020.

[17] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks
on scada systems,” IEEE Transactions on Control Systems Technology,
vol. 22, no. 4, pp. 1396-1407, 2013.

[18] R. Tunga, C. Murguia, and J. Ruths, “Tuning windowed chi-squared de-
tectors for sensor attacks,” in 2018 Annual American Control Conference
(ACC). 1IEEE, 2018, pp. 1752-1757.

[19] Y. Mo and B. Sinopoli, “Secure control against replay attacks,” in
2009 47th annual Allerton conference on communication, control, and
computing (Allerton). 1EEE, 2009, pp. 911-918.

[20] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using kalman
filter,” IEEE transactions on control of network systems, vol. 1, no. 4,
pp. 370-379, 2014.

[21] B. Satchidanandan and P. R. Kumar, “Dynamic watermarking: Active
defense of networked cyber—physical systems,” Proceedings of the IEEE,
vol. 105, no. 2, pp. 219-240, 2016.

[22] J. Ramos-Ruiz, J. Kim, W.-H. Ko, T. Huang, P. Enjeti, P. Kumar, and
L. Xie, “An active detection scheme for cyber attacks on grid-tied pv
systems,” in 2020 IEEE CyberPELS (CyberPELS). 1EEE, 2020, pp.
1-6.

[23] P. Hespanhol, M. Porter, R. Vasudevan, and A. Aswani, “Dynamic
watermarking for general Iti systems,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). 1EEE, 2017, pp. 1834—
1839.

[24] M. Porter, P. Hespanhol, A. Aswani, M. Johnson-Roberson, and R. Va-
sudevan, “Detecting generalized replay attacks via time-varying dynamic
watermarking,” IEEE Transactions on Automatic Control, vol. 66, no. 8,
pp. 3502-3517, 2020.

[25] J. Panchal, B. Wen, and R. Burgos, “Power electronics based self-
monitoring and diagnosing for photovoltaics systems,” in 2021 IEEE
22nd Workshop on Control and Modelling of Power Electronics (COM-
PEL). IEEE, 2021, pp. 1-8.

[26] K. Dhibi, M. Mansouri, K. Bouzrara, H. Nounou, and M. Nounou, “An
enhanced ensemble learning-based fault detection and diagnosis for grid-
connected pv systems,” IEEE Access, vol. 9, pp. 155 622-155 633, 2021.

[27] X. Jiao, X. Li, T. Yang, Y. Yang, and W. Xiao, “A novel fault diagnosis
scheme for pv plants based on real-time system state identification,”
IEEE Journal of Photovoltaics, 2023.

[28] A. S. Willsky, “A survey of design methods for failure detection in
dynamic systems,” Automatica, vol. 12, no. 6, pp. 601-611, 1976.

[29] F. Gustafsson and F. Gustafsson, Adaptive filtering and change detection.
Citeseer, 2000, vol. 1.

[30] I. Akingeneye and J. Wu, “Low latency detection of sparse false data
injections in smart grids,” IEEE Access, vol. 6, pp. 58 564-58 573, 2018.

[31] M. Basseville, “Detecting changes in signals and systems—a survey,”
Automatica, vol. 24, no. 3, pp. 309-326, 1988.

[32] S. Nath and J. Wu, “Bayesian quickest change point detection with
multiple candidates of post-change models,” in 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). 1EEE,
2018, pp. 51-55.

[33] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in 2016 IEEE Conference on Control Applica-
tions (CCA). 1EEE, 2016, pp. 474-480.

[34] L. Chen, S. Li, and X. Wang, “Quickest fault detection in photovoltaic
systems,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1835-
1847, 2016.

Authorized licensed use limited to: University of Arkansas. Downloaded on December 29,2023 at 00:04:59 UTC from IEEE Xplore. Restrictions apply.
U.S. Government work not protected by U.S. copyright.



	Introduction
	System Models
	Modeling Grid-Connected PV Farm
	State-Space model
	Attack models

	Active Attack Detection with Dynamic Watermarking
	Kalman Filter
	Statistical Test with Dynamic Watermarking

	Low Latency Detection with Dynamic Watermarking
	Low Latency Attack Detection
	Post-Attack Distributions and KL Divergence

	Simulation results
	Deterministic FDI Attack
	Noisy FDI Attack
	Replay attack
	Destabilization attack
	Detector performance

	Conclusion
	Appendix A: Proof of equation (44) and (45)
	Appendix B: Proof of equation (47) and (48)
	Appendix C: Proof of equation (52)
	References

