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Abstract—Robots often have to perform manipulation tasks in
close proximity to people (Fig 1). As such, it is desirable to use a
robot arm that has limited joint torques so as to not injure the
nearby person. Unfortunately, these limited torques then limit
the payload capability of the arm. By using contact with the
environment, robots can expand their reachable workspace that,
otherwise, would be inaccessible due to exceeding actuator torque
limits. We adapt our recently developed INSAT algorithm [1] to
tackle the problem of torque-limited whole arm manipulation
planning through contact. INSAT requires no prior over contact
mode sequence and no initial template or seed for trajectory
optimization. INSAT achieves this by interleaving graph search
to explore the manipulator joint configuration space with incre-
mental trajectory optimizations seeded by neighborhood solutions
to find a dynamically feasible trajectory through contact. We
demonstrate our results on a variety of manipulators and
scenarios in simulation. We also experimentally show our planner
exploiting robot-environment contact for the pick and place of a
payload using a Kinova Gen3 robot. In comparison to the same
trajectory running in free space, we experimentally show that the
utilization of bracing contacts reduces the overall torque required
to execute the trajectory.

I. Introduction

Collaborative robots can reduce the physiological burden of
physically demanding tasks for human operators working

in confined spaces. These robots can assist humans by ma-
nipulating heavy payloads deep inside a confined space. For
such tasks, these long-reach robots need large torque actuators
and massive links to support its own weight along with the
payload to operate in configurations near its maximum reach.
However, such operational requirements compromise the safety
of collaboration with the human worker at close proximity. As
a result, we are faced with a manipulation planning problem
where the planner should minimize the manipulator joint
torques and accelerations while respecting task manipulation
requirements and avoiding obstacles.

To overcome the conflicting requirements of safe collab-
oration and operation in deep confined spaces, it has been
shown that the robot can brace against the environment to
reduce the overall effort required to manipulate heavy objects
[2]. The physical constraints imposed by the environment
can be transformed into opportunities that can be exploited
to enable efficient manipulation that expends low energy,
increases accuracy [3, 4], and reduces compliance [5].

In this work, we present a motion planning algorithm for
manipulation that automatically discovers and exploits bracing
locations along the entire trajectory to achieve a desired task
such as transporting an overweight payload. Consequently,
our torque-limited manipulation planning algorithm can oppor-
tunistically make/break/sustain contact with the environment to
reach deep inside a confined space with insufficient actuator
torques or carry a heavy payload beyond the manipulator’s
capability.

Fig. 1: An example of a hyperredundant robot manipulator lifting
a heavy tool in a confined space by leveraging contact with the
environment to assist a human worker.

The summary of our contributions is as follows

• A novel adaptation of INSAT: INterleaved Search And
Trajectory optimization [1] for the application of torque-
limited manipulation planning through contact. By inter-

leaving discrete graph-search with continuous trajectory
optimization, our algorithm is able to plan through contact
over long horizons for high-dimensional complex manip-
ulation problems in confined non-convex environments.

• A dynamically feasible trajectory through contact can be
non-smooth with impacts and discontinuities. We intro-
duce a new virtual contact frictional force model to enable
planning for complex contact-rich motions without pre-
specified contact schedule using gradient-based optimizer.

• To the best of our knowledge, manipulation planning
that actively reasons about effort reduction by utilizing
additional support from contact has not been proposed
and demonstrated on a real robot arm until now, which
forms the most important contribution of this work.

The key idea behind our framework is (a) to identify a low-
dimensional manifold, (b) perform a search over a grid-based
graph that discretizes this manifold, and (c) while searching
the graph, utilize contact-implicit trajectory optimization to
compute the cost of partial solutions found by the search. As
a result, the search over the lower-dimensional graph decides
what trajectory optimizations to run and with what seeds,
while the cost of solution from the trajectory optimization
drives the search in the lower-dimensional graph until a
dynamically feasible trajectory from start to goal is found.

This paper is structured as follows: we discuss prior work
in Sec. II, formalize the problem statement in III and intro-
duce the tunable virtual contact models for contact-implicit
trajectory optimization in IV. We then describe our proposed
method in Sec. V. Finally, we show the experimental results
in Sec. VI, and conclude in Sec. VII.
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II. Prior Work

Although the idea of bracing against the environment for
manipulation was proposed as early as 1980s [6], not much
attention has been paid since then. Sensing and control for
bracing with probabilistic contact estimation [7] and multiple
simultaneous contacts with the environment [8] were intro-
duced in the 2000s. The methods proposed in [9] and [2]
from the late 2010s were the first to consider manipulation
planning through bracing against the environment. However,
[2] is primarily a control algorithm to drive the robot to
the right contact point and posture and not a planner that
reasons about bracing to achieve a desired long-term task.
Whereas the idea presented in [9] is limited in that it (i) ignores
the contact dynamics (ii) only considers static environmental
bracing and (iii) is demonstrated only on a simple planar
elastomer manipulator with a single 2D obstacle.

In contrast, our planner generates trajectory with dynamic
bracing (contact sliding) and is evaluated in a much more
challenging environment and is demonstrated on a real robot.
Planning to brace and navigating through the environment by
bracing can be construed as constrained manipulation planning
over a sub-manifold which has been addressed by [10] and its
variants. But these are quasi-static methods that does not factor
in the dynamics of contact and manipulator system essential
to understand and leverage the effects of bracing.

Planning through contact with unspecified mode sequence
is an active challenge in robot locomotion and manipulation
[11]. The aim of the general formulation, called Contact
Implicit Trajectory Optimization (CITO), is to jointly find
trajectories for state, control input, and contact forces. Most of
the successful previous works propose different combinations
of trajectory optimization-based approaches [12], including
direct shooting [13] and direct transcription [14, 15]. For
incorporating contact, they use either complementarity con-
ditions with implicit time-stepping [14, 15] or soft constraints
implemented as a penalty term [16, 17] in the cost function
[18, 19]. However, standalone optimization-based approaches
are brittle when it comes to global reasoning over long horizon
and depends heavily on the quality of initial guesses.

On the other hand, the contact mode sequence is inherently
discrete and the optimizer faces a fundamentally discrete
choice at each time, which is difficult to optimize whether
modeled using continuous constraints or integer variables. To
that end, recent approaches use graph search-based methods
[20–22] or rapidly-exploring random tree [23] to plan contact
switches and generate a seed for the subsequent trajectory
optimization. However, these local methods are greedy and do
not offer a fall-back in case the trajectory optimization does
not succeed using the discrete contact sequence. In contrast,
INSAT offers a principle way to globally reason over the
discrete and continuous parts of the problem.

III. Problem Statement

In this work, we denote the robot manipulator as R, and
XR ⊆ R# as the configuration space (C-space) for a # degree-
of-freedom (DoF) manipulator. Let Xobs ⊂ XR be the C-space
obstacle, Xfree

= XR \ Xobs be the free space and X( ⊂ Xobs

denote the surface of the obstacle with which the robot can
make and break contact. The planning state is comprised of
joint angles and joint velocities x = [q, q̇] ∈ X ⊆ R2# . The

manipulator is controlled by bounded joint torque inputs u ∈
R
# . Given (a) a start state x( , (b) a goal state x� , (c) the

planning space X with the obstacles Xobs and the obstacle
contact surface X( , the task is to find a control trajectory
u(C); C ∈ [0, )] according to Eq. 1.

For torque-limited planning, the manipulator’s maximum
velocity and torque constraints must be satisfied while plan-
ning. The energy-optimal motion planning for torque limited
manipulation can be cast as the following optimization:

find u(C)

s.t. x(C) = f(x( , u(C)),

x()) = x�

x(C) ∈ (X \ Xobs) ∪ X(

| ¤x(C) | ≤ ¤xlim, | ¥x(C) | ≤ ¥xlim, |u(C) | ≤ ulim

(1)

where f denotes the manipulator dynamics with contact that
captures the interaction of R with the environment (Eq. 2).
Note that x(C) can lie on X( and hence encodes the sequence
of making and breaking contact with environment.

IV. Manipulator and Contact Model Dynamics

We model the dynamics of R and its interaction with
the environment as a rigid-multi-body system using Euler-
Lagrange mechanics with generalized coordinates q as:

M(q) ¥q + C(q, ¤q) ¤q + G(q) = B(q)3 + J
 (q)T
 (2)

where M, C, G are mass, Coriolis and gravity matrices, B(q) is
the input mapping, 3 the generalized input, J
 (q) the contact
Jacobian that maps ¤q to the Cartesian velocities at the external
contact point, and 
 the contact forces.

In this work, we use MuJoCo [24] to simulate the manipula-
tor dynamics with contact at high-fidelity. Contact introduces
impacts and discontinuities in the system dynamics as the
contact forces (i.e. 
 from MuJoCo) vanish completely when
not in contact and explode at the instant of making contact.
A dynamically feasible control trajectory for our application
might be non-smooth as the robot has to make/break/sustain
contact with the environment. To optimize for such a trajectory
using gradient-based solver we introduce two tunable smooth
contact models. A smooth contact model is differentiable even
at the collision event of the contact and enables faster trajectory
optimization convergence. These models provide virtual forces
that can be exploited in trajectory optimization to overcome the
vanishing/exploding gradients of contact dynamics and enable
automatic discovery of contact locations and smooth breaking
of static friction. The vector of generalized joint inputs 3 can
be decomposed as follows:

3 = u − J� (q)
T

�(q, ¤q) (3)

where u is the joint torque input, �(q, ¤q) ∈ R#Γ and J� (q)
are respectively the generalized virtual contact forces from
the tunable smooth contact models (Eq. 4, 5, 6) in the
contact frame and the corresponding Jacobian matrix and #Γ

is number of contact pairs. �(q, ¤q) acts on the environment
in addition to the forces due to the contact mechanics from
MuJoCo (i.e. 
).
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Fig. 2: The tunable smooth (except at ¤k= (q, ¤q) = 0) contact friction
model that supplies virtual frictional force to break static friction in
trajectory optimization.

1) Tunable Smooth Contact Models: We propose two tun-
able smooth contact models that supply virtual force. The first
one (Eq. 4) [17] models virtual contact normal force �

#
= (q, ¤q)

using a linear combination of nonlinear springs and dampers
that resists penetration into the environment.

�
#
= (q, ¤q) = :=4

−U:k (q) + 1=sig(−U1k= (q)) ¤k= (q, ¤q) (4)

where k= (q) is the depth of penetration, ¤k= (q, ¤q) is the
relative pre-impact velocity at the point of contact, := is the
contact stiffness or spring stiffness, 1= is the contact damping
constant. Equation 5 models the virtual contact friction coef-
ficient `= as a function of relative impact velocity at the point
of contact (Fig. 2).

`= = ¯̀ −

�

�

�

�

�

�

�

�

2 ¯̀

1 + exp

(

¤k= (q, ¤q)

U`

) − ¯̀

�

�

�

�

�

�

�

�

, U` =
¤kthres

;=
( d

2 ¯̀−d

) (5)

where ¯̀ = (`B + `: )/2, `B and `: are the static and kinetic
friction coefficients, `= is the virtual coefficient of friction,
¤kthres is the velocity threshold that breaks stiction and d →
0+ is a very small positive value. Then the virtual contact
frictional force �

5
= (q, ¤q) is given as

�
5
= (q, ¤q) = `= (�

#
= (q, ¤q) +


# ) (6)

Note that in Eq. 4 the normal force �
#
= is nonzero and acts

from a distance (i.e. k(q, ¤q) > 0) when :=, 1= ≠ 0. By using
this virtual contact force, the optimizer can discover the contact
locations to brace the robot on the environment and offset the
torque limits of the robot. Similarly, the coefficient of friction
is equal to the average of static and kinetic friction coefficients
when ¤k= (q, ¤q) = 0. And based on the model parameter ¤kthres

at which the object breaks static friction and starts sliding,
the coefficient of virtual friction is equal to the very small
value d and the frictional force from the physics engine takes
over. This enables the opposing virtual friction to counteract
the static friction from the physics engine and automatically
discover sliding between the objects.

The trajectory optimization is set up with costs on the
tunable parameters of the smooth virtual force models such
that it minimizes the deviation from strict rigid body contact
conditions (Sec. V-B). The net virtual force acting on a free
body is the sum of the virtual forces associated with the contact
candidates on that body, = ∈ {0, 1, . . . , #Γ}.

V. Torque-Limited Planning With Contact

Our planning framework interleaves graph search with tra-
jectory optimization to combine the benefits of former’s ability
to search non-convex spaces and solve combinatorial parts of
the problem and the latter’s ability to obtain a locally optimal
solution not constrained to discretization. We will first describe
the graph search set up in the low-D space, and then the
trajectory optimization in the full-D space that finds the control
input trajectory along with the contact model parameters (Fig.
4). We will then explain how INSAT [1] is adapted for
the application of torque-limited manipulation planning with
contact. Finally, we provide experimental evidence (Sec. VI)
that interleaving provides a superior alternative in terms of
quality of the solution and behavior of the planner than the
naive option of running them in sequence.

Consider an invertible many-to-one mapping , : X −→ X!

that projects a full dimensional state x = [q, ¤q] ∈ X into the
low-dimensional space X! . So x! = ,(x). Then ,−1 : X! −→
X is an one-to-many inverse mapping of , that lifts a low
dimensional state x! ∈ X! to any possible full-dimensional
state x ∈ X. So x = ,−1 (x!). 5x′x′′ (C) denotes a time C

parameterized full-D trajectory from ,−1 (x′
!
) to ,−1 (x′′

!
). The

argument C is dropped for brevity.

Fig. 3: Generation of contact configurations. When the low-D state
x! is expanded, the newly generated state is in collision (shown in
black with a dashed edge) with X>1B . In this work, we use the inbuilt
property of MuJoCo to naturally repel the objects in collision to
generate the first configuration x′

!
that exits from Xobs \ X( to X(

as a successor.

A. Low-Dimensional Graph Search

To plan a trajectory that respects system dynamics and
controller saturation, and simultaneously reason globally over
large non-convex environments, it is imperative to maintain the
combinatorial graph search tractable. To this end, we consider
a low-dimensional space X! (#-D) comprising the joint angles
q. We build the low-D graph G! by discretizing the free joint
configuration space of the manipulator (X \Xobs) ∪X( . Each
edge in the graph corresponds to robot’s unit joint movement
by a known distance (Fig. 4). Every newly generated node
is checked to not violate joint angle limits and joint torque
limits by calculating the gravity compensation before adding
to the graph. So for an # DoF manipulator, the branching
factor of the graph is 2# (unit joint movement in either
direction satisfying joint angle and static joint torque limits).
The graph search can be sped up using a heuristic ℎ(x!),
an underestimate on the cost-to-goal of the optimal trajectory.
We use the Euclidean distance between two nodes in the joint
configuration space as our heuristic ℎ(x!) =





x! − x�
!







1) Contact vs. Collision: In motion planning, the task is to
find a collision-free path from start to goal. This means making
contact or touching the obstacle is considered as collision
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Algorithm 1 INSAT

1: procedure Key(x!)
2: return 6(x!) + n ∗ ℎ(x!)

3: procedure GenerateTrajectory(x! , x′
!
)

4: for x′′
!
∈ �=24BC>AB(x!) do ⊲ From x(

!
to x!

5: if x′′
!
= x(

!
then

6: ,−1 (x′′
!
) = x(

7: else if x′
!
= x�

!
then

8: ,−1 (x′
!
) = x�

9: qx′′x′ = O(,−1 (x′′
!
), ,−1 (x′

!
)) ⊲ Eq. 8

10: if qx′′x′ .�B�>;;8B8>=�A44() then ⊲ Sec. V-A1
11: qx(x′ = OF (qx(x′′ , qx′′x′) ⊲ Eq. 8 with warm-start
12: return qx(x′

13: return NULL w/ discrete ∞ cost
14: procedure Main(x( , x�)
15: x(

!
= ,(x(); x�

!
= ,(x�); ∀x! , 6(x!) = ∞; 6(x(

!
) = 0

16: Insert x(
!

in OPEN with Key(x(
!
)

17: while Key(x�
!

) = ∞ do

18: x! = OPEN.?>?()
19: for x′

!
∈ (D22(x!) do

20: x′
!
= (> 5 C�>?H(s!)

21: if x′
!
∈ CLOSED then

22: x′
!
= �44?�>?H(s!); 6(x′

!
) = ∞

23: qx(x′ = GenerateTrajectory(x! , x′
!
)

24: if �C>C0; (qx(x′) < 6(x′
!
) then ⊲ Eq. 1

25: 6(x′
!
) = �C>C0; (qx(x′) ⊲ Eq. 1

26: Insert/Update x′
!

in OPEN with Key(x′
!
)

with the environment. However, for planning with contact, the
planner should be allowed to collide (or make contact) with the
environment to leverage contact forces and offset robot’s limits.
To that end, we distinguish contact from collision by defining
an obstacle surface X( . The obstacle surface is a subspace of
the obstacle space such that the distance from any point in the
obstacle to the free space is bounded by V → 0+.

X(
= {x ∈ Xobs |





x − xfree




 < V, xfree ∈ (X \ Xobs)} (7)

When generating successors in the low-D graph (Fig. 3), the
newly generated successor that is in collision is projected out
of the obstacle space by using the intrinsic property of MuJoCo
to repel intersecting rigid bodies to generate a state that first
exits Xobs \ X( . Such a state typically lies in X( and forms
the contact configuration.

B. Trajectory Optimization for Planning through Contact

The trajectory optimizer is set up to solve a boundary value
problem by finding a joint torque input trajectory that connects
the full-D subspaces ,(x′

!
) and ,(x′′

!
) of two manipulator

configurations x′
!

and x′′
!
. We solve this using Successive Con-

vexification (SCvx) [12]. SCvx solves a sequence of smooth
quadratic approximations of the original nonlinear problem
subjected to linearized dynamics. But, as the manipulator
dynamics with contact is discontinuous, the linearization of
dynamics is poor. To alleviate this, we use the tunable soft
contact model (Sec IV-1) to solve the trajectory optimization
problem (Eq. 8). We begin with the relaxed setting for the
contact model (i.e. large values for k = [:1, :2, . . . , :#Γ

]T, b =

[11, 12, . . . , 1#Γ
]T, - = [`1, `2, . . . , `#Γ

]T that correspond
to non-zero virtual contact forces when not in contact and

nonzero virtual frictional force when the object is at rest) in
which the system dyanamics (manipulator dynamics + contact
dynamics with the environment) and its gradients are smooth
and solve the Eq. 8 using SCvx.

min
u[.],k,b,-





x! [#] − x�!





 +

#−1
∑

8=0

(‖u[8] ‖ + ‖ ¤x[8] ‖)

+

#Γ
∑

==1

‖k‖ + ‖b‖ + ‖-‖

(8a)

s.t. x[0] = x0
; x[8 + 1] = f(x8 , u8) (8b)

| ¤x(C) | ≤ ¤xlim; | ¥x(C) | ≤ ¥xlim; |u(C) | ≤ ulim (8c)

Note that the virtual forces disappear when k, b, - = 0 (Eq.
4, 6) and the above minimization problem optimizes for that.
Although Eq. 8 looks like direct shooting, the variant of SCvx
combines the benefit of shooting and direct transcription by
exploiting the sparsity in linear dynamics constraint during the
convexification phase and maintaining dynamic consistency
by rolling out the trajectory with the full nonlinear dynamics
using MuJoCo (see [12]).

Fig. 4: Illustration of low-D graph, full-D subspaces of low-D states,
trajectory optimization O(.) and warm-started trajectory optimization
OF (.) and iterating over low-D ancestors (line 4).

C. INSAT: INterleaved Search And Trajectory Optimization

Fig. 5: A schematic of the working principle of INSAT

An overview of the algorithm is presented using a flowchart
in Fig. 5. INSAT performs interleaved search on discrete low-
dimensional manipulator configuration space and continuous
high-dimensional joint velocity and contact model parameter
space. The low dimensional search gets the manipulator around
obstacles and evaluates various contact mode sequences. The
high-dimensional trajectory optimization validates or invali-
dates the dynamic feasibility of paths discovered by the low-
dimensional search. Consequently, INSAT generates dynami-
cally feasible trajectory for the manipulator to brace with the
environment, offset/stay within its torque limits, and reach the
desired goal.
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Fig. 6: Simulation experiments on (a) a planar arm, (b) hyper-redundant arm and (c) Kinova Gen3. In (a), the planar arm swings its way up
into the ledge. It first rolls itself into a compact configuration (a3) to minimize the net torque by minimizing the moment arm and unfolds
with the accrued momentum (a4) into the ledge. Once on the ledge, it slides its way by staying in contact and expending least joint effort.
In (b), similar behavior as (a) is exhibited but on a 9 DoF redundant system. The robot has to slide and climb the shelf in a stretched out
configuration. The robot climbs the stair without breaking contact. In (c) the Kinova Gen3 robot picks and places a an overweight object
(shown in red) from a confined shelf to a table. The robot’s payload limit is 4kg and we used a 4.7kg payload. The mass violates the static
torque limits without contact support from the environment at the start configuration. The robot maintains the contact with the shelf as much
as possible by dragging the object out and swinging across its base to pump energy to eventually carry the object on to the table. The task
requires reasonably long horizon planning in which standalone trajectory optimization struggles. By guiding the trajectory optimization with
graph search over manipulator configurations, INSAT is able to produce a dynamically feasible trajectory of unique behavior.

Alg. 1 presents the pseudocode of INSAT for torque-limited
manipulation planning with contact. The algorithm takes as
input the full-D start and goal states x( and x� . To search
in the low-D graph G! , we use weighted A* (WA*)[25]
which maintains a priority queue called OPEN that dictates the
order of expansion of the states and the termination condition
based on Key(x!) value (lines 1, 17). Alg. 1 maintains two
functions: cost-to-come 6(x!) and a heuristic ℎ(x!). 6(x!) is
the cost of the current path from the x( to x! and ℎ(x!) is an
underestimate of the cost of reaching the goal from x! . WA*
initializes OPEN with x(

!
(line 16) and tracks the expanded

states using another list called CLOSED (line 21).
A graphical illustration of how the low-D state expansions

and full-D trajectory generations might look is shown in Fig 4.
Each time the search expands a state x! , it removes x! from
OPEN and generates the successors as per the discretization
(lines 18-20). For every low-dimensional successor x′

!
, we

solve a trajectory optimization problem described in Sec. V-B
to find a corresponding full-D trajectory from the farthest
ancestor x′′

!
of x! (line 4) to ,−1 (x′

!
) (lines 9-11, Fig 4). The

trajectory optimization output qx′′x′ is checked for collision
(line 10, Sec. V-A1). If the optimized trajectory qx′′x′ is in
collision or infeasible (Fig 4), the algorithm continues with
the next farthest ancestor (line 4). Upon finding the state

x′′
!

which enables a full-dimensional feasible trajectory qx′′x′ ,
the entire trajectory from start qx(x′ is constructed by warm-
starting the optimization (OF ) with the trajectories qx(x′′ and
the newly generated trajectory qx′′x′ (line 11) by relaxing all the
waypoint and derivative constraints (Fig. 4) until convergence
or trajectory becoming infeasible, whichever occurs first.

VI. Experiments and Results

Before we present the results, we remark that our pro-
posed method is the first algorithm that (i) introduces global,
long horizon manipulation planning through bracing and (ii)
demonstrates it on a physical robot or realistic robot examples
in simulation. As such, we could not find a perfect baseline
for comparison that solves our exact problem. So we used
a method that is fairly common to generate smooth trajec-
tories for manipulation planning. Also we intend to show
the benefits of interleaving graph search and contact implicit
trajectory optimization over the common choice of using them
in sequence [20–23]. To do so, we compare our method with
a sequential combination of bi-directional RRT and direct
collocation [23]. The choice of bi-directional RRT over graph
search algorithms is that RRT variants are a popular choice for
fast high-dimensional manipulation planning. All the methods
are implemented in C++ on a 3.6GHz Intel Xeon machine.
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Fig. 7: Film strip showing a 7 DoF Kinova Gen3 robot utilizing bracing contacts to transfer a 2.5 kg payload between two cabinets using
minimal torque. The arm slides the payload all the way to the center by bracing with its wrist before lifting on its own. The payload is then
placed at the proximal end of the target shelf and pushed by bracing its forearm.

A. Simulation Experiments

We show the results from simulation in three different
environments and robot types namely (a) a planar 5-link arm
climbing a ledge (b) a contrived hyper-redundant (9 DoF)
version of UR5 manipulator that has to enter a rectangular
tube and crawl over a step and (c) a pick and place task of an
overweight payload by Kinova Gen3 robot. Due to page limit,
we only provide qualitative analysis for (a) and (b) (see (Fig.
6) caption). In order to minimize torque and spend the least
effort by exploiting contact, the manipulator exhibits swinging
behavior to reach the contact locations and postures in all
our simulation scenarios. Fig. 8 visualizes the the planner’s
output torque trajectory for scenario (c) along with the torque
reduction ratio (TRR) [2]. TRR = (‖3wo‖ − ‖3c‖)/‖3c‖ where
3wo is the net joint torque from the baseline and 3c is the net
torque from INSAT (Eq. 3). As our baseline cannot discover
and exploit contact, the value of 3wo is higher which explains a
high TRR of 0.78. We also found that INSAT leverages passive
dynamics as much as possible. Note from Fig. 8 that actuators
3, 5, 6 and 7 remain shut off with zero torque throughout the
slide out and swing phase and activate only during the land

phase (Fig 6). This suggests that the planner took advantage of
the passive dynamics to effortlessly slide out of the confined
shelf just using the actuators 2 and 4.
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Fig. 8: Joint torque trajectory for simulation scenario (c) and TRR
calculated with respect to our baseline (Bi-RRT + direct collocation).
The torque plot for joints 2 and 4 using dotted lines use the y-axis
on the right.

B. Real Robot Experiments

In order to experimentally validate our method, we planned
a trajectory for a Kinova Gen 3 robot to lift a 2.5 Kg payload

between adjacent cabinets as shown in Fig. 7. The robot was
commanded in joint velocity mode using ROS Melodic on
Ubuntu 18.04. As a comparison point, the same trajectory was
executed in free space (i.e., without the cabinets). During both
experiments, the joint torque was recorded using the Kinova
Gen3’s integrated torque sensors. Table I shows the RMS
of the sensed joint torques in both experiments. From these
values, it is clear that our planner was able to utilize bracing
contacts to meaningfully reduce the torque in most joints when
compared to free-space motion.

Joint ID 1 2 3 4 5 6 7 Total

Free-
space

1.93 33.28 10.14 14.06 0.97 6.29 0.20 66.86

Bracing 4.65 23.96 6.67 11.80 1.28 5.67 0.59 54.62

Difference -2.72 9.32 3.46 2.26 -0.31 0.63 -0.40 12.24

TABLE I: Experimental RMS torques [Nm] during (i) the braced
trajectory shown in Fig. 7 and (ii) the same trajectory running in free-
space (i.e. without the cabinets) producing net savings of 12.24Nm.

VII. Conclusion & Future Directions

In this work, we presented an interleaved approach to
solving this problem with the aim to deploy it on real robots.
This is achieved by interleaving graph search with continuous
trajectory optimization. We show that planning with torque and
obstacle constraints can be achieved in a way that finds bracing
locations in the environment in order to make an otherwise in-
accessible configuration reachable due to the torque reduction
achieved by bracing. We deployed this method experimentally
and showed that the use of bracing contacts can reduce the
required actuator torque for a given trajectory. The major lim-
itations of this work are the planning time (taking in the order
of 15-20 minutes for complex scenarios) and the fidelity of
the dynamics model required to assess contact configurations
for bracing. Nevertheless, we believe that our algorithm can
enable realistic deployment on robotic systems that operate in
confined spaces. This will allow the next generation of minimal
torque actuation robots to operate safely in deep and confined
spaces for collaborative manufacturing. While in this work we
utilize a full dynamics planner, some confined spaces may
be too restricted to execute any dynamic behavior. Therefore,
in future work, we will explore the minimum dynamic model
fidelity needed for torque-limited manipulation through contact
in confined spaces.
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