Relations between scaling exponents
in unimodular random graphs

James R. Lee*

Abstract

We investigate the validity of the “Einstein relations” in the general setting of unimodular
random networks. These are equalities relating scaling exponents:

dw = df + Z,
ds =2df/dwr

where d, is the walk dimension, d 7 is the fractal dimension, d; is the spectral dimension, and 4
is the resistance exponent. Roughly speaking, this relates the mean displacement and return
probability of a random walker to the density and conductivity of the underlying medium. We
show that if dy and C > 0 exist, then dy, and d; exist, and the aforementioned equalities hold.
Moreover, our primary new estimate dy, > df + { is established for all { € R.

For the uniform infinite planar triangulation (UIPT), this yields the consequence d;, = 4 using
ds = 4 (Angel 2003) and C = 0 (established here as a consequence of the Liouville Quantum
Gravity theory, following Gwynne-Miller 2020 and Ding-Gwynne 2020). The conclusion d, = 4
had been previously established by Gwynne and Hutchcroft (2018) using more elaborate
methods. A new consequence is that dy, = dy for the uniform infinite Schnyder-wood decorated
triangulation, implying that the simple random walk is subdiffusive, since dy > 2.

*University of Washington
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1 Introduction

Consider an infinite, locally-finite graph G and a subgraph G of G. For x € V(G), let BY(x, R),
denote the graph ball of radius R, and let B(x,R) := B9(x, R) N V(G) denote this ball restricted to
G. Let d9(x, y) denote the path distance between a pair x,y € V(G). Denote by {X, } the simple
random walk on G, and the discrete-time heat kernel

pS(x,y) = P[X, =y | Xo = x].

We write REH(S < T) for the effective resistance between two subsets S, T C V(G). One can consult
[LP16, Ch. 2 & 9] for background on electrical network theory in finite and infinite graphs.

For a variety of models arising in statistical physics, certain asymptotic geometric and spectral
properties of the graph are known or conjectured to have scaling exponents:

|B(x,R)| ~ R
max dg(Xo, Xi) ~ nl/do

1<t<n
RS, (B(x,R) < V(G)\ B(x,2R)) ~ R (1.1)

P 6,) = 1,



where one takes 1, R — oo, but we leave the meaning of “~” imprecise for a moment. These
exponents are, respectively, referred to as the fractal dimension, walk dimension, resistance exponent,
and spectral dimension. We refer to the extensive discussion in [BH00, Ch. 5-6].

Moreover, by modeling the subgraph G as a homogeneous underlying substrate with density
and conductivity prescribed by df and C, one obtains the plausible relations

dy = df + z (1-2)
2df
ds = 7 (1.3)

In the regime { > 0, these relations have been rigorously verified under somewhat stronger
assumptions in the setting of strongly recurrent graphs (see [Tel90, Tel95] and [Bar98, KM08, Kum14b]).
In the latter set of works, the most significant departure from our assumptions is the stronger
requirement for uniform control on pointwise effective resistances of the form

max {RG,(x < y) : y € BS(x,R)} < RD,  x e V(G). (1.4)

Such methods have been extended to the setting where (G, p) is a random rooted graph ([KMO0S,
BJKS08]) under the statistical assumption that (1.4) holds sufficiently often for all sufficiently large
scales around the root.

Our main contribution is to establish (1.2) and (1.3) under somewhat less restrictive conditions,
but using an additional feature of many such models: Unimodularity of the random rooted graph
(G, p). When C < 0, it has been significantly more challenging to characterize situations where
(1.2)—(1.3) hold; see, for instance, Open Problem III in [Kum14a]. Our main new estimate is the
speed relation d,, > d f+ C, which is established for all € R. In particular, this shows that the
random walk is subdiffusive whenever dy + > 2, and applies equally well to models where the
random walk is transient. Let us now highlight some notable settings in which the relations can be
applied.

The IIC in high dimensions. As a prominent example, consider the resolution by Kozma and
Nachmias [KN09] of the Alexander-Orbach conjecture for the incipient infinite cluster (IIC) of
critical percolation on Z¢, with d sufficiently large. If (G, 0) denotes the IIC, then in our language,
G = G, as they consider the intrinsic graph metric; the authors establish that for every A > 1 and
r > 1, with probability at least 1 — p(A), it holds that

A2 < |BS(0, 1)

| < Ar?, (1.5)
RG,(0 < 9BC(0, 1))

<A
> A7t

r,

where p(A) < O(A79) for some g > 1. One should consider this a statistical verification that
df = 2 and { =1, as in this setting, one gets the analog of (1.4) for free from the trivial bound
RIC(0 & x) < d"(0, x).

Earlier, Barlow, Jarai, Kumagai, and Slade [BJKS08] verified (1.2)—(1.3) under these assumptions,
allowing Kozma and Nachmias to confirm the conjectured values d,, = 3 and ds = 4/3. One can
consult [Kum14a, §4.2.2] for several further examples where C > 0and (1.2)—(1.3) hold using the
strongly recurrent theory.



The uniform infinite planar triangulation. Consider, on the other hand, the uniform infinite planar
triangulation (UIPT) considered as a random rooted graph (G, p). In this case, Angel [Ang03]
established that almost surely
log |BS(p, R
lim 1081B%(p, R)| _

4 1.7
R— 0 lOg R ! ( )

and Gwynne and Miller [GM21] showed that almost surely

_IogRG(p o VG)\ B, R)
R—00 log R h

This equality falls short of verifying (1.1). Nevertheless, we show in Section 4.3 that (=0isa
consequence of the Liouville Quantum Gravity (LQG) estimates derived in [DMS21, GM21, GMS19,
GHS20, DG20]. But while the known statistics of |[B®(p, R)| are suitable to allow application of the
strongly recurrent theory, this does not hold for the effective resistance bounds.

This is highlighted by Gwynne and Hutchcroft [GH20] who establish d;, = 4 using even finer
aspects of the LQG theory. The authors state “while it may be possible in principle to prove d, > 4
using electrical techniques, doing so appears to require matching upper and lower bounds for
effective resistances [...] differing by at most a constant order multiplicative factor.” Our methods
show that, when leveraging unimodularity, even coarse estimates with subpolynomial errors suffice.

It is open whether C =0 or dy = 4 for the uniform infinite planar quadrangulation (UIPQ), but
our verification of (1.2) shows that only one such equality needs to be established.

Random planar maps in the y-LQG universality class. More generally, we will establish in
Section 4.3 that C = 0 whenever a random planar map (G, p) can be coupled to a y-mated-CRT map
with y € (0,2). The connection between such maps and LQG was established in [DMS21].

This family includes the UIPT (where y = \/%). Ding and Gwynne [DG20] have shown that d ¢
exists for such maps, and Gwynne and Huthcroft [GH20] established that d,, = ds for most known
examples, but not for the uniform infinite Schnyder-wood decorated triangulation [LSW17] (where
y = 1), for a technical reason underlying the construction of a certain coupling (see [GH20, Rem.
2.11]). We mention this primarily to emphasize the utility of a general theorem, since it is likely the
technical obstacle could have been circumvented with sufficient effort.

The IIC in dimension two. Consider the incipient infinite cluster for 2D critical percolation [Kes86],
which can be realized as a unimodular random subgraph (G, 0) of G = Z? [J03]. It is known that
dr =91 /48 in the 2D hexagonal lattice [LSW02, Smi01], and the same value is conjectured to hold
for all 2D lattices regardless of the local structure.

Existence of the exponent ( is open for any lattice; experiments give the estimate { = 0.9825 +
0.0008 [Gra99]. The most precise experimental estimate for d,, = 2.8784 + 0.0008 is derived from
estimates for C, and our verification of (1.2) puts this on rigorous footing (assuming, of course, that
Cis well-defined).

1.1 Reversible random networks

We consider random rooted networks (G, p, G, &) where G is a locally-finite, connected graph,
p € V(G), and c® : E(G) — [0, o) are edge conductances. We allow E(G) to contain self-loops
{v,v} forv € V(G). Here, £ : V(G) U E(G) — E is an auxiliary marking, where E is some Polish



mark space. We will sometimes use the notation (G, p, &1, &2, . . ., &) to reference a random rooted
network with marks &; : V(G)UE(G) — E;, which we intend as shorthand for (G, p, (1, &2, - .., &k)),
where the mark space is the Cartesian product &y X - - - X Ej.

Denote by {X, } the random walk on G with Xy = p and transition probabilities

c“({u,0})
s

Cu

py(u,0):=P[X1=0|Xo=u] = (1.8)

where we denote c§ := 3.1, o1er(c) €© ({1, v}). Say that (G, p, c©, &) is a reversible random network if:

1. Almost surely cg’ > 0.

2. (G, Xo,X1,¢%,&) and (G, X1, Xo, c©, £) have the same law.

We will usually write a reversible random network as (G, p, &), allowing the conductances to
remain implicit. Note that we allow the possibility c¢({u,v}) = 0 when {u,v} € E(G). In this
sense, random walks occur on the subnetwork G, with V(G;) = {x € V(G) : ¢¢ > 0} and
E(G+) = {{x,y} € V(G) : ¢c®({x, y}) > 0}, while distances are measured in the path metric 4°.

Example 1.1 (Examples of markings). Aside from edge conductances, we will use auxiliary markings
primarily for analyzing the geometry of the random rooted graph (G, p).

1. Edge weights that deform the graph metric. Consider a random nonnegative weight
w : E(G) — R;. Such a weight assigns a length to every finite path in G, and this yields a
weighted path metric dist$ on G. See Section 1.4.

2. Breaking G into finite subgraphs. A bond percolation is a random marking & : E(G) — {0, 1}.
We will use Kg( p) to denote the connected component of the root in the subgraph of G with

edge set £71(1) € E(G). Of particular interest will be finitary bond percolations in which the
component Kéc(p) is almost surely finite.

Remark 1.2 (Conductance at the root). Throughout, we will make the following mild boundedness
assumption (it is stated explicitly at every occurrence):

[E[l/cg] < 0.

This is analogous to the assumption E[deg(p)] < oo that appears often in the setting of unimodular
random graphs, which are defined in Section 2.3 when we need to employ the Mass-Transport
Principle.

For now, it suffices to say that if (G, §, £) is a unimodular random random graph with law i and

[E[c(p;] < oo, then the random graph (G, p, &) with law p is a reversible random graph, where

Go
du )
d‘a(GOI pO/ EO) - ~ 7

G

E[c P ]
and du/dfi is the Radon-Nikodym derivative. We refer to [AL07] for an extensive reference on
unimodular random graphs, and to [BC12, Prop. 2.5] for the connection between unimodular and

reversible random graphs.



1.2 Almost sure scaling exponents

Consider two sequences {A, } and {B,} of positive real-valued random variables. Write A,, < By, if

almost surely: oo A oo B
Og n— Og n
<0

lim sup

1300 logn '
and A, ® B, for the conjunction of A, £ B, and B, £ A,. Note our primary motivation for
this relation: It holds that A, < n® if and only if, for every 6 > 0, almost surely A, < n? for n

sufficiently large.
In what follows, we consider a reversible random network (G, p) (see Section 1.1). Define the
random variables:
or :=min{n >0:d%(Xo, X,) > R},
M, = max d®(Xo, X;),

O<t<n
and define the walk exponents d;, and 8 by

RE Rdw
Mn X Tll/ B
assuming the corresponding limits exist. In that case we, we will use the language “d,, exists” or “f

exists.”1
Denote the volume function

vol®(x, R) := Z cg,

yE€BG(x,R)
and define dy as the asymptotic growth rate of the volume:
volG(p,R) ~ RY,

Define the spectral dimension by
ds/2

Psu(p,p) X1~
Let us define upper and lower resistance exponents. Denote the complement of B%(p, R) in G by
B%(p,R) :=V(G) \ B®(p, R),

and define C and (; as the largest and smallest values, respectively, such that, for every 6 € (0,1),
almost surely, for all but finitely many R € N:

RE < RS, (BS(p, R1™) & BO(p, R)) < RS (p © BO(p, R)) < RY*2. (19

It helps to note that the three occurrences of 6 in (1.9) could equally well be replaced by distinct
values 01, 62, 03 € (0,1) without changing the definition of Cand p, as increasing 6 > 0 weakens

In the next section, we control the annealed variants as well, where one takes expectations over the random walk.



the first and last inequalities, and the middle inequality always holds. Accordingly, the exponents
< always exist, and Co = 0. The exponent C is referred to as the “resistance exponent” in the
statistical physics literature; see [BHO00, §5.3] and Remark 1.4 below.

We emphasize that all the exponents we define are not random variables, but functions of the
law of (G, p). Our main theorem can then be stated as follows.

Theorem 1.3. Suppose that (G, p) is a reversible random network satisfying E[1/ cg] < oo. If dy exists and
C = Co, then the exponents dy,, B, and d, exist and it holds that

2d
d, = “4f
dZU

See Corollary 1.10 for further equalities involving annealed versions of d,, and f.

Remark 1.4 (The resistance exponents). The resistance exponentis usually characterized heuristically
as the value C such

RC, (BG(p,R) & BS(p, 2R)) ~ RC. (1.10)

So the left-hand side of (1.9) would naturally be replaced by

RSH(BG(p,R) BG(p,ZR)) RE0.

The lower bound we require is substantially weaker, allowing one to consider spatial fluctuations of
magnitude R°M). The upper bound in (1.9), on the other hand, is somewhat stronger than (1.10),
and encodes a level of spectral regularity. For instance, if G satisfies an elliptic Harnack inequality
and is “strongly recurrent” in the sense of [Tel06, Def. 2.1], then

RS (B (p, R) < B%(p,2R)) ® R(p < B(p, R)).

See [Tel06, Thm. 4.6] and Theorem 4.9.

Comparison to the strongly recurrent theory. Let us try to interpret the strongly recurrent theory
(cf. Assumption 1.2 in [KMO08]) in the setting of subpolynomial errors. The resistance assumptions
would take the form: For every 6 > 0, almost surely, for R sufficiently large:

max {R%(p © x): x € B%(p, R)} < R*™?, (1.11)
RC, (p o BG(p,R)) > R, (1.12)

These assumptions imply that when C > 0, it holds that == thisis proved in Theorem 4.9.
Hence the theory we present (in the setting of reversible random graphs) is more general, at least in
terms of concluding the exponent relations (1.2) and (1.3).

Under assumptions (1.11) and (1.12), one can uniformly lower bound the Green kernel
986 (p,r) (P, X) (see Section 4.2 for definitions) for all points x € B%(p,R) and some R’ > R.
In other words, every point in B¢(p, R) is visited often on average before the random walk exits
BS( p, R’). See, for instance, [BCKO05, §3.2]. This yields a subdiffusive estimate on the speed of the
random walk, specifically an almost sure lower bound on E[or | (G, p)].

7



Instead of a pointwise bound, we use a lower bound on  to deform the graph metric d (see
the next section). The effective resistance across an annulus being large is equivalent to its discrete
extremal length being large (see Section 2.1). Thus in most scales and localities, we can extract a
metric that locally “stretches” the space. By randomly covering the space with annuli at all scales,
we obtain a “quasisymmetric” deformation (only in an asymptotic, statistical sense) that is bigger
by a power than the graph metric. This argument is similar in spirit to one of Keith and Laakso
[KL04, Thm. 5.0.10] which shows that the Assouad dimension of a metric measure space can be
reduced through a quasisymmetric homeomorphism if the discrete modulus across annuli is large.

Finally, by applying Markov type theory, we bound the speed of the walk in the stretched metric,
which leads to a stronger bound in the graph metric.

1.3 Upper and lower exponents

Even when scaling exponents do not exist, our arguments give inequalities between various superior
and inferior limits. Given a sequence {&, : n > 1} of events on some probability space, let us say
that they occur almost surely eventually (a.s.e.) with respect to n if P[#{n > 1: =&E,} < o] = 1.

For a family {A,} of random variables, we will define d and d to be the largest and smallest
values, respectively, such that for every 6 > 0, almost surely eventually,

ng+5 < An < nd+6

7

where we allow the exponents to take values {—co, +00} if no such number exists. Note that A,, & n

(i-e., the exponent d “exists”) if and only if d = d.
Let us consider the corresponding extremal exponents such that for every 6 > 0 the following
relations hold almost surely eventually (with respect to n, R > 1):
R4~ < vol®(p, R) < R0
Iaéiw_(3 OR < Raw‘*'é
Elox | (G, p)] < R+
EIM? | (G, p)] < n”*2/E"

<ps,(p,p) <n® B2

N

Rdﬂ—é

N

n—6+1/ﬁ_

N

n—6+2/59’*

N

n-a-as /2

We will establish the following chains of inequalities, which together prove Theorem 1.3.

Theorem 1.5. Suppose that (G, p) is a reversible random network satisfying E[1/ cg] < 0. Then,

4dy -3dp+C < p7. (1.13)



Theorem 1.6. Suppose that (G, p) is a random rooted network. Then it holds that

pr< B (1.14)
< dw AP (1.15)
< dy VP
< dg (1.16)
< dh (1.17)
< df + Co, (1.18)
and . -
Co S 2df
- 7 < S < s < - - .
2 (1 dw) d, < d 7 (1.19)

To see that this yields Theorem 1.3, simply note that when {=Cpand d = d r, then the upper
and lower bounds in (1.13) and (1.18) match, and the upper and lowe~r bounds in (1.19) are both
equal to 2d/d, because the first set of inequalities implies d,, = df + C.

Remark 1.7 (Negative resistance exponent). For C <0(and assuming ds, dy, df exist), the preceding
two theorems give

dw>df+z

de
2<ds < —.
df+C

Without further assumptions, the last inequality cannot be replaced by an equality. Indeed, for every
¢ > 0, there are unimodular random planar graphs of almost sure uniform polynomial growth and
C < =1+ ¢ [EL21]. Yet these graphs must satisfy ds < 2 [Lee21].

In the general setting of Dirichlet forms on metric measure spaces, the “resistance conjecture”
[GHL15, pg. 1493] asserts conditions under which (1.2)—(1.3) might hold even for C < 0. The
primary additional condition is a Poincaré inequality with matching exponent. In our setting,
the existence of df does not yield the “bounded covering” property, that almost surely every ball
B%(p, R) can be covered by O(1) balls of radius R/2. It seems likely that a variant of this condition

should also be imposed to recover (1.2)—(1.3).

Let us give a brief outline of how Theorem 1.6 is proved. The unlabeled inequality is trivial.
Both inequalities (1.14) and (1.17) are a straightforward consequence of Markov’s inequality and
the Borel-Cantelli Lemma. Since this sort of application will be frequent, let us formalize it.

Lemma 1.8. Suppose {X,, € Ry : n > 1} is a sequence of random numbers on some probability space
(Q, F, u) such that {X,, } is almost surely non-decreasing, and {c,, : n > 1} is a non-decreasing sequence of
real numbers. If G C F is a o-algebra and E[X,, | G] £ an, then X,, < ag,. In particular, if a,, = ndfor
somed > 0, then X,, < n°.

Proof. The assumption E[X,, | G] £ a, asserts that for every 6 > 0, almost surely eventually

E[X, | G] < nay .



Markov’s inequality gives that almost surely eventually, P[X,, > n®a, | G] < n™°.
Applying this to dyadic values n = 2k for k = 1,2, ..., the Borel-Cantelli Lemma implies that
almost surely, for k sufficiently large,
Xor < 226k0(2k-

Since {X, } is almost surely non-decreasing and {«,} is non-decreasing, this implies that almost
surely eventually ‘
X, < (2n)2as,.

Since this holds for every 6 > 0, we conclude that X, § az,. O

The content of inequalities (1.15) and (1.16) lies in the relations < dy, and < d;,. These follow
from the elementary inequality -
M 2 Tor<amyR, (1.20)

which gives the implications, for every 6 > 0,

M, < 6 pse — OR = RF? ase. = dy, > g -

or S Rt gse. = M, > n'/@+0) g5 = B < dy +

Since these hold for every 6 > 0, we obtain the desired inequalities. Inequalities (1.18) and (1.19)
are proved in Section 4.2 using the standard relationships between effective resistance, the Green
kernel, and return probabilities. That leaves (1.13), which relies on Markov type theory, as we now
explain.

1.4 Reversible random weights

Consider a reversible random graph (G, p) and random edge weights @ : E(G) — R.. Denote by
dist® the w-weighted path metric in G.2 When (G, p, w) is a reversible random network and (G, p)
is clear from context, we will say simply that the weight w is reversible. The next theorem (proved in
Section 3) is a variant of the approach pursued in [Lee21].

Theorem 1.9. Suppose (G, p, w) is a reversible random network with E[1/ cg;] < oo and such that almost
surely

loglog vol®(p, R
lim 08108 VOL' (0, R) (1.21)
R—00 log R
Suppose, moreover, that
E [0(Xo, X1)*| < oo, (1.22)

where {X,,} is random walk on G started from Xo = p. Then it holds that

E | max distS(Xo, X;)? | (G, p, )| < n. (1.23)
0<t<n

2Strictly speaking, since we allow w to take the value 0, this is only a pseudometric, but that will not present any
difficulty.

10



(a) Stretching an annulus (b) Tiling by annuli

Figure 1: Stretching the graph at a fixed scale

Given this theorem, let us now sketch the proof of (1.13). Consider a graph annulus
A:={xeV(G): R <d%p,x) < R'™}.

If the effective resistance across A is at least RS, then by the duality between effective resistance and
discrete extremal length (see Section 2.1), there is a length functional L : E(G[A]) — R, satisfying

c“({x,y}L(x,y)* <R™*
{ry}EEGLAD
distS1! (BG(x,R),BG(x,R1+5)) >1,

where G[A] is the subgraph induced on A.
Let us suppose that the total volume in (A satisfies

Va = Z S(e) ~ R,
¢cE(GLA))

and we normalize L to have expectation squared < 1 under the measure c®({x, y})/Va on E(G[A)):
[ .= REHD2L & (Ri : Vy[)l/z L.

This yields:
diStLCj[ﬂ] (BG(X, R), BG(.‘X, R1+6)) > R(z+df)/2/
meaning that, with normalized unit area, [ “stretches” the graph annulus by a positive power when
C+ ds > 2 (see Figure 1(a)).
If G is sufficiently regular (e.g., a lattice), then we could tile annuli at this scale (as in Figure 1(b))
so that if we define wg as the sum of the length functionals over the tiled annuli, then for any pair

11



x,y € V(G) with d(x,y) > R'*° and at least one of x or y near the center of an annulus, we would

have disth(x, y) > RE+49/2 1 a finite-dimensional lattice, a bounded number of shifts of the

tiling is sufficient for every vertex to reside near the center of some annulus.

By combining length functionals over all scales, and replacing the regular tiling by a suitable
random family of annuli, we obtain, for every 6 > 0, a reversible random weight w : E(G) — R,
satisfying (1.22) (intuitively, because of the unit area normalization), and such that almost surely
eventually

distS (p, BS(p, R)) > RU-D)/2, (1.24)

where d := dy + {. In other words, distances in dist" are (asymptotically) increased by power
(d-0)/2.

Thus (1.23) gives for every 6 > 0, eventually almost surely
E[M2](G,p)| < n¥1+0)/(@=0),

Taking 6 — 0 yields @ﬂ > d. This is carried out formally in Section 4.1.

1.4.1 Annealed vs. quenched subdiffusivity

One can express E[or | (G, p)] in terms of electrical potentials. Suppose that, accordingly, one is
able to establish, for some d > 0, a two-sided annealed estimate:

R*7°M < E[or] < R*°M  asR — oo,

where expectation is taken over both the walk and the random network (G, p). Then a standard
application of Borel-Cantelli (cf. Lemma 1.8) gives that almost surely og < R, but not an
almost sure lower bound. On the other hand, a bound of the form

E[M?] < 0?30 aspn — oo

provides that M,, < n'/4+°() almost surely, which entails o > R~°() almost surely.

In this way, the two exponents  and d,, are complementary, allowing one to obtain two-
sided quenched estimates from two-sided annealed estimates. This is crucial for establishing
ds = 2ds/dy, as the upper bound in (1.19) uses the fully quenched exponent d;, which, in the setting
of Theorem 1.3, arises from the lower bound (1.13) on the annealed exponent .

We remark on the following strengthening of Theorem 1.3.
Corollary 1.10. Under the assumptions of Theorem 1.3, it additionally holds that g = p7 and d,, = d.

Proof. We may assume that d,, and f§ exist, and d,, = . From Theorem 1.6 we obtain:
p7t =B =d;.
The relations g < dZ and g7 < dy, follow from (1.20), yielding

>

7

p> p
B < B. O

I, ™I
QI
€ % N

Il

A
A<
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2 Reversible random weights

Throughout this section, (G, p) is a reversible random network satisfying E[1/ cg] < oo,

2.1 Modulus and effective resistance

For a network H and two disjoint subsets S, T C V(H), define the modulus

Mod" (S & T) := min {||a)||  dist? (S, T) > 1} , 2.1)

2
02(cH)

where the minimum is over all weights w : E(H) — R, and

ol = D c(@)la(e).

ecE(H)
For x € V(H) and 0 < r < R, define the annular modulus:
MH(x, , R) := Mod"! (BH(x, r) e BH (x,R)) .

Note that when H is finite, the minimizer in (2.1) exists and is unique (as it is the minimum of a
strictly convex function over a compact set). In particular, even when H is infinite, this also holds
for MH(x, 7, R), as we have

Mod! (BH (x,7) & BH(x,R)) — ModHIB" (. R+1)] (BH(x, r) o BH(x,R)) .

Denote this minimal weight by a)ZH orR)’ The standard duality between effective resistance and

discrete extremal length [Duf62] gives an alternate characterization of MH (x,7,R), as follows.

Lemma 2.1. For any finite graph H and disjoint subsets S,T C V(H), it holds that
-1
Mod"(S & T) = (Rgf(s o T)) . 2.2)
Hence for any (possibly infinite graph) G, all x € V(G) and 0 < r < R,
_ -1
MH(x, 7, R) = (Rgff (BG(x,r) o BG(x,R))) :
For a function g : V(H) — R, we denote the Dirichlet energy

Mgy = > Ml yhla) - 9w
{x,y}eE(H)
We will make use of the Dirichlet principle (see [LP16, Ch. 2]): When H is finiteand SNT = 0,

-1
7

RIS & T) = (min [67(g): gls = 0,glr = 1}) 2.3)

and when H is additionally connected, the minimizer of (2.3) is the unique function harmonic on
V(H) \ (S UT) with the given boundary values.
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2.2 Approximate nets

We now define some objects that will act as random approximate nets in the metric space (V(G), d°).
The definitions are made conditioned on (G, p), and the random variables are otherwise taken to be
mutually independent.

FixR’ > R > 1and A > 1. For v € V(G), define
yrr(v) := max {vol°(y,R) : y € B°(v, R")} .

Let {u, : v € V(G)} be an independent family of Bernoulli {0, 1} random variables where

. S
P (u, = 1) = min (l, A)/R,R’('U)) , (2.4)

and define Ug r/(A) := {x € V(G) : u, = 1}. Observe the inequality, valid for every x € V(G) and
1<r<R:

P[d®(x, Ug r/(A)) > 7] < l_[ (1 Acg )

veBG(x,r) ) )/R,R/(U)
c§ VO]G(X, r)
<exp|-A Z - < exp (_/\V—OIG(X,ZR')) , (2.5)

veBG(x,r)

where we have employed the two inequalities

Z c$ = vol®(x, 7),
veBC(x,r)

max yrr(v) < vol®(x,2R’).
veBG(x,r)

The idea here is that, by (2.5), the balls {B®(u, R) : u € Ug r/(A)} tend to cover vertices x € V(G)
for which vol®(x, R) ~ vol®(x, 2R’), as long as A is chosen sulfficiently large. On the other hand, the
sampling rate (2.4) allow us to control E |BS(p, R’) N Ug r/(A)|. Referring to the argument sketched
at the end of Section 1.3, we will center an annulus at every x € Ugr r/(A), and thus we need to
control the average covering multiplicity to keep E[w(Xo, X1)?] finite.

Since the law of U r/(1) does not depend on the root, we have the following.

Lemma 2.2. The triple (G, p, Ur,r/(A)) is a reversible random network.

Our construction of reversible random networks are all of this form: Starting with a reversible
random network (G, p), we augment G by some markings in a manner that “doesn’t depend on
the root p,” to obtain a reversible random network (G, p, ). This notion is formalized in the next
section.

2.3 The Mass-Transport Principle

Let 4, denote the collection of isomorphism classes of rooted, connected, locally-finite net-
works, and let 9., denote the collection of isomorphism classes of doubly-rooted, connected,
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locally-finite networks. We will consider functionals F : 9., — [0, ). Equivalently, these are
functionals F(Gy, xo, Yo, £o) that are invariant under automorphisms of ¢ of Go: F(Go, xo, Yo, &0) =
F(i(Go), Y (x0), P (yo), Eo 0 7).

The mass-transport principle (MTP) for a random rooted network (G, p, £) asserts that for any
nonnegative Borel F : 4, — [0, ), it holds that

E Z F(G,p,x,&)| =E Z F(G,x,p,&)|.

xeV(G) xeV(G)

Unimodular random networks are precisely those that satisfy the MTP (see [ALO7]).
Using the fact that biasing the law of a reversible random network (G, p, &) with E[1/ cg;] < o0

by 1/ CS (see [BC12, Prop. 2.5]) yields a unimodular random network, one arrives at the following
biased MTP.

Lemma 2.3. If (G, p, &) is a reversible random network with E[1/ cg] < oo, then for any nonnegative Borel
functional F : 44 — [0, 00), it holds that

1 1
El5 D, FGpx8|=E|5 > FGxp8)| (26)
o xev(G) Cp xev(G)

Let us now explain the claim of Lemma 2.2 further. The following is a special case of [AHNR18,
Lem. 2.2], where it is stated for unimodular random networks. Its proof is a straightforward
consequence of the characterization of unimodular random graphs via the mass-transport principle.

Lemma 2.4. Suppose that (G, p, &) is a reversible random network with [E[l/cff] < ooand (G,p,&)is
a random rooted network such that for every pair of vertices u,v € V(G), the conditional distribution of
(G,u,v,&") given (G, p, &) coincides almost surely with some measurable function of the (doubly-rooted)
isomorphism class of (G, u,v, &). Then (G, p, &’) is a reversible random network.

2.4 Construction of the weights

Recall that (G, p) is a reversible random network satisfying E[1/ CF(,;] < co. Denote d, := 4ds — 3d e+ C.
Our goal is to prove the following.

Theorem 2.5. There is a reversible random weight w : E(G) — Ry such that E[w(Xo, X1)?] < oo, and
such that, for every 6 > 0, almost surely eventually

distS (p, BG(p,R)) > R@)/2, 2.7)
To this end, for ¢ € (0, 1), define the set of networks with controlled geometry at scale R:

1+ vol®(x,5R!+¢)

S(¢,R) := {(G,x) : MS(x, 2R, R1*¢) < RO+6)d~0)-2dy+e

vol®(x, R)?
G _ -
Voé (x/R B 1) > d*(log R)R—(df—t_if)—é‘(1+df)} ,
vol” (x, 10R1+¢)

where we recall the definition of the annular modulus M€ from Section 2.1.
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Lemma 2.6. For every ¢ > 0and R > 1, there is a reversible random weight wgr : E(G) — Ry such that
E [wr(Xo, X1)?] < 2R-H+:@+34,-0), (2.8)
and if x € V(G) satisfies d°(p, x) > 3R*¢, then

distS, (p, %) > Ts(e,r)(G, p)- (2.9)

Before proving the lemma, let us see that it establishes Theorem 2.5.

Proof of Theorem 2.5. Clearly we may assume d. > 0. Fix a value ¢ € (0, d.), and define the sets

Sro(e):= (] S(e,R),

R>Ryp

S(e) = | Swy(e).

Ro>1
Lemma 2.7. Almost surely (G, p) € S(e).

Proof. To establish the claim, we need to show that almost surely: (G, p) € S(¢, R) for R sufficiently
large. By definition of the exponents C, df, dy, for every 6 > 0, it holds that almost surely eventually
MC(p, R, R1*®) < R=¢*? (recall Lemma 2.1) and R0 < VO]G(p,R) < RU9,

Therefore we have, for every 6 > 0, almost surely eventually

G e d
L+ vol°(x, 5RY™) 16 o givey  LEORITOI by iy
vol®(x, R)? Y R2@=9)
< R(1+g)(af—€)—zgf+(5+2e)é (2.10)

where the second inequality holds for R sufficiently large (depending on 6 > 0).
Similarly, we have that, for every 6 > 0, almost surely eventually

vol®(x, R — 1)

> (R _ 1)t_if—5(10R1+6)—af—6 > d*(lo R)Rdf—(1+£)t_if—(3+€)§/ (211)
vol®(x, 10R1+¢) 8

where the latter inequality holds for R sufficiently large (depending on 6 > 0). Choosing 6 > 0
sufficiently small shows that (G, p) € S(¢, R) whenever (2.10) and (2.11) hold. O

Define a := 3 +3dy — C. For k > 1, let wy be the weight guaranteed by Lemma 2.6, and define

the random weight
V 1/2
Z 2k(d*—aa) a)2
k2 2k ’

k>1

w =

so that

E [w(Xo, X1)?] 2P Z k2 < 0(1).
k=1
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Moreover, for any k > 1and x € V(G), if d%(p, x) > 3 - 2K0+9), then (2.9) gives
distS(p, x) > k~12k(d-—€a)/2 distgzk (p,x) > kT12ME=21g (G, p),
hence for all x € V(G),

(@, x)/3)(d*—wc)/(2(1+s))
2log(1+dS(p, x))

dG(p, x)e[3- 2k(1+s)’3 . 2(k+1)(1+5)) S distg(p, x) = “Szk(f)(G’ p)

Now by Lemma 2.7, this shows that almost surely eventually (with respect to k),
d%(p,x) € [3- pk(+e) 3. pkal)(1+e)y distg(p,x) > d%(p, x)dea/@re)-
and, therefore, almost surely eventually with respect to R,
d%(p,x) > R = dist$(p, x) > dC(p, x) e/ CAre)=¢,
Since we can take ¢ > 0 arbitrarily small, the desired result follows. m]

Let us now prove the lemma.

Proof of Lemma 2.6. Fix R > 1, and define

1+ vol®(z, 4R1*¢)

S'(¢,R):={z € V(G): -M%(z, R, 2R™*) < R+ =0)-2df+e

(max{volc(y,R) (Y € BG(Z,R)})
Lemma 2.8. If (G, p) € S(¢,R) and d°(p,z) < R, then z € 8'(¢, R).
Proof. Note that d%(p, z) < R gives
MS(z, R,2R**¢) < M(p, 2R, R1¥9).
Similarly, we have vol®(z, 4R1*¢) < vol© (p,5R1*¢), and
max {VOIG(y,R) (Y € BG(z,R)} > VOlG(p,R). m|

Denote R’ := 5R'*¢ and, recalling Section 2.1, define

w(Z) = wEG,Z,R,2R1+E)ﬂS/(S’R)(Z) ’ (212)
where we recall the definition of a)zH or.R) from Section 2.1. Then define: wg : E(G) — R4 by
@ = Z w?,
ZEUR/RI(A)
~ 1 {xl y} ¢— BG(UR,R’(/\)/ R) and {(G/ x)/ (G/ y)} N S(E/ R) * 0
o({x,y}) = .
0 otherwise.

a)thcf)+cD,

where A > 0 is a number (depending on R) that we will choose later.
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Lemma 2.9. If x € V(G) satisfies d®(p, x) > 3R'*¢, then distSR(p, x) > 1s,r)(G, p).

Proof. If d%(p,Ur r/(A)) > R and (G, p) € S(¢,R), then @({p,y}) > 1 for every {p,y} € E(G),
implying dist$(p, x) > 1.
Now suppose that z € Ug r/(A) satisfies d°(p, z) < R and (G, p) € S(¢, R). By Lemma 2.8, we

have z € 8’(¢, R), and therefore & > a)EG’Z,R,ZRM). Thus by definition,
distSR(p,x) > distg* _ (BG(z,R),BG(z,ZRHE)) >1,
(G,z,R,2R1+¢€)
since p € B®(z,R), and x ¢ B®(z,2R1*¢). O

What remains is to bound E[wg(Xp, X1)?]. Use Cauchy-Schwarz to write

2

E [&(Xo, X1)?| =E Z 0 (Xo, X1)
L ZGUR,R/(/\)

< E ||B9(Xo, 2R™*) N U r/(A)| Z Tt ()(2) @3 (X0, X1)?
2€BG(Xp,2R1+¢)

= E [|BS(Xo, 2R™) N Ur,pr (V)] D Tt oi(2) 0 (X, X)? |, (2.13)
zeV(G)

where we have used the fact that *) is supported on edges e such that e C BS(z,2R1*¢).
Define the functional

F(G,y,z,Ugr(A)) := c§ |BC(y, 2R™¢) 0 Ug g/ ()| 11y () (2) E[0® (X0, X1)* | Xo = ]

so that the expression in (2.13) is equal to

1 1
E|l—< Y. FGpzUrr(d)| =E = > E(G,zp Ur V)],
P zeV(G) P zeV(G)

where the equality is a consequence of the biased Mass-Transport Principle (2.6). It follows that

E [@(XOI Xl)z]

N
A

1
= 2 FGzp Unr())
| 7P zeV(G)

1 . (p)
- E ”“—é)p > Bz, 2R N U ()| S E [w<P>(X0,X1)2 | X =
€p z€BG(p,2R1+¢)

14 w(p)
=E|—2 3 BOG 2R nUr e )] Y. Sy, zDw(y, 2)?
€p zeBG(p,2R1+¢) y{y,z}eE(G)
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<E [ [BC(p, 4R ) NUr e (V)] D cC({y, 2Dy, 2)?
_ s {y,z}eE(G)
[ U0 1)(P)
_E R'RC—G|BG(p,4R1+5)ﬂUR,Rf(A)|MG(p,R,ZRHS)ﬂS'(s,R)(P) .
P

where in the last line we have used the definition of w® from (2.12).
Now (2.4) gives, for every x € B¢(p, 4R'*¢),
AcS - AcS
max{vol®(y, R) : y € BG(x, R")} b max{vol®(y,R): y € BG(p,R)},
where we have used R’ = 5R1*¢ > 4R*¢ + R,

For notational convenience, define the value V := max{volc(y, R) : y € B%(p,R)}. Then the
preceding inequality yields

E [Tug o )(p) [BC(p, 4R™ ) N UR (M) | (G, p)]

Plx € Ur,r(A) [ (G, p)] <

ACS G 1+e¢
< 7 E [lB (P/ 4R )m UR,R'(/\)| | (G/ P)/p € UR,R,(/\)] s

and the latter expectation is

VO]G(p, 4R1+¢)

P [x € UR,R’(/\) | (G/ P)/P € UR,R’(A)] <T+A vV ’

x€BG(p,AR1+¢)

using independence of the Bernoullis {u, : x € V(G)} in the sampling procedure.
Therefore,

1+ vol®(p, 4R1+¢)

E [©(Xo, X1)*| < A*E [1s¢,r)(p) sM%(p, R, 2R"*)

(max{volc(y,R) TS BG(p,R)})
< A2RO+e)dp-0)-2df+e
by definition of S’(¢, R).
Let us use (2.5) with r = R — 1 to bound
E[@(Xo, X1)] < P [d%(p, Ur r (1)) = R | (G, p) € S(¢, R)]

1°(p,R-1
exp(—/\ vol“(p )

<E
vol©(p, 10R1+¢)

) |(G,p) € S(¢,R)

< exp (—)\d*(log R)R‘(E’f‘ﬁlf)—(“ﬁf)f) ,

where the last line follows from the definition of S(¢, R), and in the first line we have used that
@(Xo, X1) =01if (G, p) ¢_S(€, R)._
Now choose A := RUr=4)*1+d1)¢ vielding

E [wr(Xo, X1)2] <2 (E[@(Xo, X1)? + @(Xo, X1)2]) < R 4 R7-+e0430,-0. :
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3 Markov type and the rate of escape

Our goal now is to prove Theorem 1.9. It is essentially a consequence of the fact that every N-point
metric space has maximal Markov type 2 with constant O(log N) (see Section 3.2 below), and that
the random walk on a reversible random graph with almost sure subexponential growth (in the
sense of (1.21)) can be approximated, quantitatively, by a limit of random walks restricted to finite
subgraphs.

3.1 Restricted walks on clusters

Definition 3.1 (Restricted random walk). Consider a network G = (V,E, ¢) and a finite subset
SC V. Let
Ng(x):={y eV :{x,y} € E}
denote the neighborhood of a vertex x € V.
Define a measure 75 on S by

G
Cx
=1 , 3.1
ms(0) = e 150 @)
where E¢(S) := {{x,y} € E(G) : {x,y} N S # 0} is the set of edges incident on S.
We define the random walk restricted to S as the following process {Z;}: For t > 0, put

cC(ES(x,V\S))

C y=x
G
P(Zin=ylZi=x)= %’éy}) y€Ng(x)NS
0 otherwise,

where we have used the notation E¢(x, U) := {{x,y} € E : y € U}. It is straightforward to check
that {Z;} is a reversible Markov chain on S with stationary measure nts. If Zy has law 75, we say
that {Z,} is the stationary random walk restricted to S.

A bond percolation on G is a mapping & : E(G) — {0,1}. For a vertex v € V(G) and a bond
percolation &, we let K?(U) denote the connected component of v in the subgraph of G given by
&71(1). Say that a bond percolation & : E(G) — {0, 1} is finitary if Kg(p) is almost surely finite. In
what follows, if H is a subgraph of G, we use the notation c®(H) := 3 xeV(H) cC.

Lemma 3.2. Suppose (G, p, &) is a reversible random network and & is finitary. Let p € V(G) be chosen
according to the measure 1y, from Definition 3.1. Then (G, p) and (G, p) have the same law.

Proof. Define the transport
G

F(G/ x/ ]/, 5) = Cg(c; “Kg(x)(y)HS(G/ x)/

vy
cS(KE (x)

where S denotes some Borel measurable subset of 4, (recall the definition from Section 2.3). Then
the biased mass-transport principle (2.6) gives

1
PI(G,p) €SI =E | >, F(G,p,x&
P xeV(G)
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G

1 Cx
=E C_G Z F(G,x,p, &) =E Z m“s(clx) ’
P xeV(G) *KC(p) c\p
and
G
c
Pl(G,p)eS]=E o (X)1s(G,x)| = E ———15(G,x)|. m|
Z Kz (p) Z CG(KS(p))

xng(p) XEK?(P)
We will also need the following simple lemma relating the cardinality of clusters to their volume.

Lemma 3.3. Suppose (G, p, &) is a reversible random network satisfying [E[l/cg] < oo and & is a finitary
bond percolation. Then,

= E[1/cS].

V(KS(p))|
cC(KE(p))
Proof. Define the transport

FG G “Kg(x)(y)
( ,x,y,é).—cxm.

Then the biased mass-transport principle (2.6) gives

G

|V(K§(P))|‘ 1
Co xev(c) %0 xev(G)

1
Ty | E|@ o FOP x| =BT 3 FGxp | EI/fL o

3.2 Maximal Markov type

A metric space (X, dx) has maximal Markov type 2 with constant K if it holds that for every finite state
space (), every map f : O — X, and every stationary, reversible Markov chain {Z,} on (),

E [max dX(ZO,Zt)Z] <K*nE|[dx(Zo,Z1)*], VYn>1.

O<t<n
This is a maximal variant of K. Ball’s Markov type [Bal92]. Note that every Hilbert space has
maximal Markov type 2 with constant K for some universal K (independent of the Hilbert space);

see, e.g., [NPSS06, §8]. Bourgain’s embedding theorem [Bou85] asserts that every N-point metric
space embeds into a Hilbert space with bilipschitz distortion O(log N), yielding the following.

Lemma 3.4. If (X, dx) is a finite metric space with N = |X|, then for every stationary, reversible Markov
chain {Z,,} on X, it holds that

E [gntax dx(Zo, Zi)*| < O(n)(log NY*E [dx(Zo, Z1)?], VYn>1.
<t

n

Note that the lemma holds vacuously when N = 1.
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3.3 Reduction to finite subgraphs

Consider now a reversible random network (G, p, w, &), where ¢ is a finitary bond percolation, and
define the random time

e = max{t > 0: Xo, X1,..., X; € KZ(p)}, (3.2)

where {X;} is the random walk on G with Xy = p. For a number L > 1, let S denote the event
{log |[V(KE (p))| < L}.

Lemma 3.5. Suppose (G, p, w, &) is a reversible random network, where & is a finitary bond percolation.
Then for any L > 1, it holds that

E|ls, max distf,(Xo,Xt)2

O<t<tegAn

< O(nL*)E [w(Xo, X1)*] -

Proof. Let {Xﬁ } be the restricted random walk on Kg(p), where Xg has law 7t KS(p) conditioned on

(G, p,w, &). Let us furthermore use {f(,‘; } for the random walk on G started from f(g = Xg , and note

that we take both {X5} and {X’} to be independent of the random walk {X, } on G with X = p.
Define the sets

A= {(Go,u, &) log|V (K w)| < L},
By = {(Go,u, {vo,v1,...,0t},&0) 100, 01,...,0t € Kgf(”)} /

where (Gy, 1) is a rooted graph, vg, v1,...,v: € V(Gp), and & : E(G) — {0, 1}.
Note that there is a natural coupling of {f(f} and {X f } such that

(G, pXf:0<t<n}, O eB, = (X5, X5, X5y ={X;, X5,..., X5} (3.3)
Applying Lemma 3.4 to the stationary, reversible Markov chain {X}} on Kg(p) and the metric

KG
space (V(Kg(p)), dist,,* (p)), we obtain that almost surely over the choice of (G, p, w, &),

. KEP) e e
E | max dist,” " (X5, X;)" | (G, p, w, &)
0<t<n

< 0 log KE(p)) " E [aists” (x5, X021 G0,
< 0 (105 IKS (o)) E [ (X, X516, p,0,0)|.

G
Using the fact that distg (x,y) < dis’ci5 (p)(x, y)forallx,y € V(Kg(p)) and the definition of Ay
gives

1.4,(G, p, &) E [Or?ta<x distS(X¢, X2 1 (G, p, w, &) | < OMLAE [a)(Xé,Xf)2 1 (G, p,w,g)] :

Employing the coupling given by (3.3) yields
14,((G, p, &) E [max {HB,((G,p, (RE0<s < t},g)) distg(f(g,f(f)z} |G, p, o, 5)]
0<t<n
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< OMLA)E [w(X§, X{P 1 (G, p,w,9)]

and taking expectations gives

E [14,((G, p, &) max {T]gt ((G, pAKE0<s < t},g)) distg(xé,xf)z} < O(nL2) E [w(Xo, X1)?]

(3.4)

where for the right-hand side, we have used Lemma 3.2 to conclude that (G, Xo) (recall Xy = p) and
(G, Xg) have the same law, and we have used the fact that the steps (X, < Xf) of the restricted walk

can be coupled to (Xp, X1) so that when X; # Xf , we have X7 = Xj.
Let us now make a key observation: The left-hand side of (3.4) is equal to

E |12, ((6, %5, )) o {12, ((6, 55, (%50 < < 1, 0) a5,
<t<n
since K¢ (p) = K¢(Xp).
Now Lemma 3.2 shows that (G, Xy, X1,...,Xy) and (G, 5(‘5, f(f, e, f(,f) have the same law,
hence (3.4) gives

E [ﬂﬂL((G,p, &) max {15,((G, p, {X : 0 < s < t}, &) distg(Xo, X} | < O(1L?) E[w(Xo, X1)7],

which is the claimed bound. |

3.3.1 A unimodular random partitioning scheme

We need a unimodular random partitioning scheme that adapts to the volume measure. Here we
state it for any unimodular vertex measure. This argument employs a unimodular variation on the
method and analysis from [CKR01], adapted to an arbitrary underlying measure as in [KLMNO05].
We will use the notation diam®(S) := max{dist®(x, y):x,y €S}

Lemma 3.6. Suppose (G, p, i) is a reversible random network, where u : V(G) — R, satisfies u(p) > 0
almost surely. Then for every A > O, there is a bond percolation x : E(G) — {0, 1} such that

1. (G, p, xa) is a reversible random network.
2. Almost surely diamG(K)?A(p)) <A

3. Forevery r > 0, it holds that almost surely
(B%(p, 30)) ))

G G @ H
P [B%(p, 1) £ K3,(p) | (G, p)] < — (1+10g(H(BG(p,%A)

where we use the notation u(S) := 3} es u(x) for S € V(G).
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Proof. By assumption, G is locally finite, hence B®(p, A) is finite. Thus we may assume that u(x) > 0
for all x € V(G) as follows: Define fi(x) = u(x) if p(x) > 0 and fi(x) = 1 otherwise. We may
then prove the lemma for (i, and observe that because properties (2) and (3) only refer to finite
neighborhoods of the root, 1 and [i are identical on these neighborhoods, except for a set of zero
measure.

Let {B : x € V(G)} be a sequence of independent random variables where f, is an exponential
with rate u(x). Let R € [%, %) be independent and chosen uniformly random. For a finite subset
S C V(G), write u(S) := Y es t(x). We need the following elementary lemma.

Lemma 3.7. For any finite subset S C V(G), it holds that

I]j’[ﬁ’x:min{ﬁv:veS}|(G,y)]:M Vx € S.

u(s)’

Proof. A straightforward calculation shows that min{f, : v € S\ {x}} is exponential with rate
u(S \ {x}). Moreover, if B and p’ are independent exponentials with rates A and A’, respectively,

then
A

P[p = min(B, B)] = T O

Define a labeling ¢ : V(G) — V(G), where {(x) € B®(x, R) is such that

Be(x) = min {ﬁy RS BG(x,R)} .

Define the bond percolation xa by

xal{x, y}) = Tyw=ewyy, {x,y} € E(G).

In other words, we remove edges whose endpoints receive different labels.

Since the law of ya does not depend on p (cf. the discussion in Section 2.3), it follows that
(G, p, xa) is a reversible random network, yielding claim (1). Moreover, since ¢(x) = z implies that
distG(x, z) < R < A, it holds that almost surely

diam® (K¢, (p)) = diam®(¢7'(¢(p))) < A,

yielding claim (2).
Since the statement of the lemma is vacuous for » > A/8, consider some r € [0,A/8]. Let
x* € BS(p, r + R) be such that

Bx- =min {By : x € BS(p, R + n}.

Then we have
P [BS(p,r) € K$ (p)] < P [dist®(p, x*) > R —7]. (3.5)

For x € B%(p,2A), define the interval I(x) := [distG(p, x)-—r, distG(p, x) + r]. Note that the bad
event {distG(p, x*) > R — r} coincides with the event {R € I(x*)}. Order the points of B®(p,2A) in
non-decreasing order from p: xo = p, x1, X2, ..., xn. Then (3.5) yields

P [B%(p,r) € K& (p)] <P[R € I(x")]
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M=

P[R € I(xj)] - P[x; = x" | R € I(x})]

-
I
—_

Mz

2r
A_ Plx; = x| R € I(x})]. (3.6)
i=1
Note that since R > A/4and r < A/S,
Rel(xj) = x; € B%(p,3A)\ B(p, LA).
Observe, moreover, that R € I(x;) implies x1, x2,...,Xj € BG(p, R + 1), hence
p(x;)

R N = — mi . G )
Plxj = x |R€I(x])]—[P’[,ij—mm{ﬁx.xeB (p,R+r)}|R€I(x])] < W, )

where the last inequality follows from Lemma 3.7.
Plugging these bounds into (3.6) gives

1BS(p,30)|

P Bp,r) £ KE, ()] < Y

j=IBC(p, 3 A)|+1

px;)
)+ ()’

Finally, observe that for any ag, a1,4az,...,a, >0,

m

m
> = T
a0+a1+a2+ +a;j 1+ay/ag+---+aj/ag

]:1 ]=1
(ar++am)/ag 4ot
[ gyttt

BS(p, 2A
14 u(B=(p f ) /
1(B¢(p, gA))
as desired (noting that log(1 + y) < 1 +log(y) for y > 1). O

N

and therefore

P [BS(p,r) ¢ K§ @ﬂ\——

3.4 Proof of Theorem 1.9
The next lemma outlines our strategy for proving Theorem 1.9.

Lemma 3.8. Suppose (G, p, w, &) is a reversible random network and for every 0 < & < 1, there is a sequence
of events {Ey : k > 1} such that each Ey. is measurable with respect to the o-algebra generated by (G, p, w, &),
and such that:

1. Almost surely, Ey holds for all but finitely many k.
2. It holds that for all k > 1,

E|lg, max distS(Xo, X;)?| < 404k, (3.7)
0<t<41-9)k
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Then (1.23) holds.

The reader should take note of the crucial property: The events {E} are independent of the
random walk {X;}, conditioned on (G, p).

Proof. Using assumption (2) in conjunction with Markov’s inequality and the Borel-Cantelli Lemma,
it holds that almost surely, for all but finitely many k,

ﬂak[E[ max  dist$(Xo, X;)? | (G, p, w, &) | < 4129k,

0<t<4-ok

where expectation is taken over the random walk {X;}. Now using assumption (1) yields that
almost surely, for all but finitely many k,

E [ max  distS(Xo, X;)? | (G, p,w,&)| < 40420k

0<t<4-9k

and as a consequence, for all but finitely many #,

E [max dist(Xo, X:)? | (G, p, w, &) | < 4125, (1+20)/0-9),

0<t<n

Since this holds for every ¢ > 0, (1.23) follows. O
With this in hand, we can proceed to our goal of proving Theorem 1.9.

Proof of Theorem 1.9. Recall that (G, p, w) is a reversible random network and {X,} is the random
walk on G started from Xj = p.

Define the random vertex measure p(x) := c$ for x € V(G). For each k > 1, let & = xu
denote the bond percolation provided by applying Lemma 3.6 with u and A = 4%, where we take
the sequence {& : k > 1} to be mutually independent given (G, p). This makes the ensemble
(G, p,w,{&k : k > 1)) areversible random network.

Denote
4k
ny = (3.8)

G
16k2 (1 +log %)

p

so that according to the guarantees of Lemma 3.6, for k > 1, almost surely,

V(KE (p) € B9(p, 4Y), (3.9)
P[B®(p,mx) £ V(K (p) | (G, p, @)] < O(k?). (3.10)

Define the events:
A = {B(p, m) € VK (o))}
By(e) == {logvolc(p,4k) < 4gk}
Ci = {IVKE ()] < K (KE (p))

Dy = {cg > k_2}.
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Lemma 3.9. For every ¢ > 0, almost surely Ay, Bx (&), Cx, Dy hold for all but finitely many k.

Proof. For Ay, this follows from an application of the Borel-Cantelli Lemma and (3.10). For Dy,
this similarly follows from the the fact that cg is almost surely positive. For By (¢), this follows from
the assumption (1.21). Finally, for Ci this follows from another application of Markov’s inequality
and the Borel-Cantelli Lemma in conjunction with Lemma 3.3 and the fact that E[1/ cfj] <oco, O

In light of Lemma 3.8, the next lemma suffices to complete the proof of Theorem 1.9.

Lemma 3.10. Consider ¢ > 0 and the event Ey := Ay N Br(e) N Cr(e) N Dy. Then,

E|lg, max dist§(Xo, X;)?| < 4159k, (3.11)

0<t<4(1-2¢)k
Proof. Note first that for k sufficiently large,
Br(e) N Dy = ny > 41720k,
Moreover, (3.9) gives, for k sufficiently large,
Bi(e) NCr = log|V(KE(p))| < 4%
Finally, we have Ay = 15, > ny, where we recall the definition of 7¢, from (3.2).

Thus applying Lemma 3.5 with & = & and L = 4% gives that, for k sufficiently large,

E|lg, max distS (Xo, X;)?| < O@9%) E[w(Xo, X1)?].

0<t<4(1-26)k

Since E[w(Xo, X1)?] < oo by assumption, it follows that (3.11) holds for k sufficiently large. O

4 Exponent relations

Let us first prove Theorem 1.6. In Section 4.3, we apply our main theorem to some random network
models.

4.1 The speed upper bound

The next theorem verifies (1.13).
Theorem 4.1. If (G, p) is a reversible random network satisfying [E[1/c§] < oo, then 7 > 4ds — 3(3f +C.

Proof. Recall that {X,,} is the random walk on G (cf. (1.8)) started from Xy = p. Let us denote
d.:=4ds — 36_lf + C. If d. < 2, we can use the weight w = 1 for which distg =dC, and (1.23) yields
B > 2. Consider now d. > 2 and fix 6 € (0,d* — 2). Apply Theorem 2.5 to arrive at a reversible
random weight @ : E(G) — R, such that E[w(X, X1)?] < o and almost surely eventually (with
respect to R),

dist%(p, B®(p, R)) » RW-=9/2, (4.1)
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Now, since d f < oo, it follows that (1.21) holds, and we can apply Theorem 1.9 to (G, p, w)
yielding: Almost surely eventually (with respect to n),

E [max dist(Xo, X:)? | (G, p, w)| < n'*°.

o<t<n

Combining this with (4.1) yields almost surely eventually

E [max d%(Xo, Xp)*7° | (G, p, w)| < n'*®.
0<t<n

(d.~0)/2

Now since d. — 6 > 2, convexity of y > y gives

E [max dG(XO,Xt)Z | (G, p’ CL)) < n2(1+5)/(d*—5).

0<t<n

Since we can take 6 > 0 arbitrarily small, this yields @ﬂ > d., completing the proof. m]

4.2 Effective resistance and the Green kernel

For the present subject, we assume only that (G, p) is a random rooted network (i.e., we will not
employ reversibility). First, let us recall the standard relationship between effective resistances and
commute times [CRR*97] gives the following.

Lemma 4.2. For any R > 1, almost surely:
Elor | (G, p), Xo = p] < Ry(p © BS(p, R)) vol“(p, R).
This immediately yields (1.18):
Theorem 4.3. It holds that Eiﬂ < Elf + Co.
Let us now prove the upper and lower bounds in (1.19).
Theorem 4.4. It holds that
2dy

d, < —-.
<7

Proof. Using reversibility of the random walk conditioned on (G, p), we have almost surely
G 2
Py (p, X)
o> Y pllpopitep =S PR
xeBG(p,R) xeBG(p,R) Cy

Thus applying Cauchy-Schwarz yields

2
i) | (Exason i 0)  (@Ix, ¢ B, R) (G, p)

2
cg ~ VOIG(p, R) g VOlG(p, R) .
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Observe that
P[X. € B°(p, R) | (G, p)] > P[og > n | (G, p)]. (4.3)

By definition, for every 6 > 0, almost surely eventually (with respect to R), og > R%~% and
VOIG(p, R) < R%*9, Combining these with (4.2) and (4.3) gives almost surely eventually (with
respect to n),

Pzn(Pr p) ( vol® ( o, nl/tdo- o>)) > n-@5+0)/(du-0).

5

As this holds for every 6 > 0, it yields the claimed inequality. O

We now move on to the lower bound in (1.19). Define the random variable

n
Zn= ) xp)-
t=1

We need a preliminary application of the 2nd moment method.
Lemma 4.5. Suppose that pZGn(p, p) > nt~! for somen > 1and ¢ > 0. Then,

IP[ZZn > —nf| (G, p)] 112

Proof. For the proof that follows, we condition on (G, p) and recall that Xy = p. Define g; := pZ(p, p).
Then,

[Zzn]=Q1+6]2+"'+6]2n,
2n  2n

Z”/f”ZZ = p, Xs = pl

t=1 s=t+1
2n 2n—t

=E[Zo]+2) > i85,

t=1 s=1

where in the final equality we have used the Markov property P[X; = p | X; = p] = P[Xs—¢ = p].
Since the even return times are non-increasing (see, e.g., [LPW09, Prop. 10.18]), we have
q2j = qon > nt1 for allj=1,2,...,n, hence

E[Zon] = n-n¢t = né. (4.4)
In particular, (E[Z2,])? > E[Z2,], and therefore
3(E[Z24))* > EZ2u] +2(q1 + g2 + -+ + q20)° > E[Z3,].
The Payley-Zygmund inequality now asserts that

P (Zzn > [E[Zzn]) Al}([lﬂfz[[Z%]]) = 11—2

Combined with (4.4), this yields the desired bound. |
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Corollary 4.6. For any ¢ > 0, it holds that if Z,, < 3n¢ almost surely eventually, then pgn(p, p) < nét
almost surely eventually.

Proof. Suppose & is the event that p$ (p, p) > n¢~! infinitely often. Then Lemma 4.5 gives

11—2 < liminfP[Zy, > %nf | E] < P[Zy, > %ne infinitely often | £],
n—00

where the latter inequality is a consequence of Fatou’s Lemma. Thus if Z», < 1n¢ almost surely
eventually, we must have P(&) = 0. O

Definition 4.7 (Green kernels). For S C V(G), let 75 := min{n > 0 : X,, € S}, and define the Green
kernel killed off S by

gg(x, y):=E Z Tix,=y) | Xo=x].

O<f<Tv(G)\5
It is well-known (see [LP16, Ch. 2]) that for any x € V(G) and S € V(G):
¢S R%(x © V(G)\ S) =gS(x, x). (4.5)

I'heorem 4.8. It holds that .
Co
>2(1-=]).
ds > 2 (1 o )

Proof. Fix 6 > 0. Define the random variable

Zy = Z Tixi=p} /

O<t<ts,

where S,, := BS(p, n1/(@=9)) Then we have:
~ (4.5) _ s z s
E[Z, 1 (G, p)) = 95, (p, p) = €S R (p > BO(p, n/+79))) < c§ nlCor0(dum0),

where the latter inequality holds almost surely for 1 sufficiently large, by the definition of Co.
Now Markov’s inequality and the Borel-Cantelli Lemma (recall Lemma 1.8) give that almost
surely eventually
Zi’l < C[? né"’(CO‘HS)/(dw_é) .

For convenience, let us note the consequence: Almost surely eventually,

Zy < 1n25+(50+5)/(dw—6).
2

By definition of dy, it holds that almost surely eventually Xi,..., X5, € BG(p, nl/%w=0) and
therefore almost surely eventually,

Zow < Zy < 1n25+(50+5)/@w—6)'
2

From Corollary 4.6, we conclude that almost surely eventually

S (p, p) < 1 1+20+(Co+0)/(dw—0)
n\s '

Since this holds for every 6 > 0, we conclude that ds > 2(1 — Co/dw), as desired. O
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4.2.1 Comparison to the strongly recurrent regime

Finally, let us prove that the assumptions (1.11) and (1.12) imply C = o in the case C > 0. The first
part of the argument follows [BCKO05, §3.2].

Theorem 4.9. If (1.11) and (1.12) hold for some C > 0, then =0 =0

Proof. First note that if d%(p, x) = R + 1, then

_ (1.11) -
RG(p & B%(p,R) <RS%(p o x) < (R+1), (4.6)
hence (1.11) yields 5
Co < C. 4.7)
Thus we are left to prove that C>C.
For y € V(G) and R > 1, define
_ 5 98600 (P2 Y)

Qy(y):=P [T{p} < Tpe(p,r) | Xo = y] (4.8)

B cg 985 (p,R) (P, p)’
where the latter equality arises because both Qﬁ and the function y — ggo(,,r) (P, ¥)/ cf are harmonic
on B%(p, R) \ {p}. Moreover, Qﬁ and the right-hand side vanish on B®(p, R) and are equal to 1 at p.

Hence, the Dirichlet principle (2.3) yields
1

_ . 49
RS(p < BS(p, R)) 42

£6(QF) =

In particular, we have

RS(p < y)
RS (p © BS(p,R))’

2 2
[1- Q8| = [R(e) - QRw| < RS(p © 1 ES(QR) = (4.10)

where the inequality is another application of the Dirichlet principle (2.3).
Assume now that ¢ > 0, and fix 6 € (0, ). Denote R’ := R(¢+20)/(¢=0) and Qp = Qﬁ’. Using
(1.11) and (1.12), we have almost surely eventually

max{RgH(p & x):x € B%p,R)} <R, (4.11)
Rei (P © Bc(p,R’)) > RO, (4.12)

So by (4.10), almost surely eventually
min {Q,(y) : y € B%(p,R)} >1- R > % (4.13)

Remark 4.10. Here one notes that this conclusion cannot be reached for C = 0 because we cannot
choose R’ large enough with respect to R so as to create a gap between the respective upper and
lower bounds in (4.11) and (4.12). Indeed, it is this sort of gap that Telcs defines as “strongly
recurrent” (see [Tel01, Def. 2.1]), although his quantitative notion (which requires a uniform
multiplicative gap with R’ = O(R)) is too strong for us, as it entails C > 0.
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Let us assume that R is such that (4.13) holds. Define the function
Qp(x) = 2min{Qp(x)/ %}

Then Qp vanishes outside B¢(p, R’) (as Qp does) and is identically 1 on B (p, R), and moreover

6°(Qp) < 48°(Qp)-

So the Dirichlet principle gives

_ 1 RS (p < B%(p,R’)) RY(p < BS(p,R))
G G G ’ _eff eff ()
RS(B“(p,R) & B®(p,R")) > o0, I > I > R0,

where the last inequality follows from (1.12) and bolds almost surely eventually (with respect to R).
Since this holds for any 6 > 0, we conclude that C > (, as required. O

4.3 Resistance exponent for planar maps coupled to a mated-CRT

We first establish that = 0 for the y-mated-CRT with y € (0,2). It is known that Co = 0[GM21,
Prop. 3.1]. While the following argument is somewhat technical and, to our knowledge, does not
appear elsewhere, we stress that it is a relatively straightforward consequence of [GMS19, DG20].

Fix some y € (0,2) and for ¢ > 0, let G¢ be the y-mated-CRT with increment ¢. See, for instance,
the description in [GMS19]. For our purposes, we may consider this as a random planar multigraph.
When needed, we can replace multiple edges by appropriate conductances.

From [DMS21, Thm. 1.9], one can identify V(G¢) = ¢Z and there is a space-filling SLE curve
n : R — C parameterized by the LQG mass of the y-quantum cone, with n(0) = 0 and such that
{a,b} € E(G¢) are connected by an edge if and only if the corresponding cells n([a — ¢, a]) and
n([b — ¢, b]) share a non-trivial connected boundary arc. Thus we can envision 7 as an embedding of
V(G¢) into the complex plane, where a vertex v € V(G*) is sent to 17(v). Let us denote the Euclidean
ball BS(z,r):={y € C: |y —z| < r}.

The underlying idea is simple: We will arrange that, with high probability, the image of a graph
annulus under 1 contains a Euclidean annulus (A of large width. Then we pull back a Lipschitz test
functional from A to G¢, and use the Dirichlet principle (2.3) to lower bound the effective resistance
across the annulus.

By [DG20, Prop. 4.6], there is a number d,, > 2 such that the following holds: For every 6 € (0, 1)
and 0 > 0, thereis an a = a(6, v, 0) > 0 such thatas ¢ — 0,

p [r] (ng(O, e-l/<d~/+5>)) c BE(0, e)] >1-0(Y)
P [n_l(BC(O, 0)N n(sZ)) c BY9(0, s-l/@lr@))] >1-0(e%).
In particular, taking 0 = 1/4 and O = 3/4, respectively, yields, for some a = a(6, y) > 0:
p [n (Bg"(o, s—l/(dﬁé))) c BE(0,1/4) N n(e2)

c BE(0,3/4) nn(eZ) C n (Bg*'(o, e-l/<dv-6>))] >1-0(e%).  (4.14)
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For a subset D C C, denote
VGi(D):={x e eZ:n(x—-¢,x])NnD # 0},

and let G¢(D) be the subgraph of G¢ induced on VG¢(D). For a function f : D — R, define
fe¢:VGH(D) — Rby

Foz) = f(n(z)) z € VG*(D)\ VG (dD)
|SUPLey(amc sprap f(2) 2z € VGE(AD).

Take now D := BY(0, 1) and define f : D — Rby f(z) := min(1, 4(|z| — 3/8), ), which is a 4-Lipschitz
function satisfying
flBc,as) =0, flBensc0,5/8) = 1- (4.15)

Let {f.} be a sequence of continuously differentiable, uniformly Lipschitz functions such that
fn — f uniformly on D. Then we may apply [GMS19, Lem. 3.3] to each f, to obtain, for every
n=l,

P &9 D)(ff) < &° +A/ |an(z)|2dz) >1-0(e%),
D

where A = A(y), @ = a(y) > 0. We conclude that with probability at least 1 — O(e®), the Dirichlet
energy of f: is uniformly (in n) bounded. Taking f¢ = lim,_ f,/, we obtain the following in
conjunction with (4.14) and (4.15).

Lemma 4.11. For every y € (0,2) and 6 > 0, there are numbers o, A > 0 such that for every € > 0, with
probability at least 1 — O (&%), there is a function f¢ : V(G¢) — R such that

1. f¢ vanishes on B9 (0, e=1/(4y+9)),
2. f¢isidentically 1 on dgeBY* (0, e~1/(@r~9)),
3. 89°(f) < A.
In particular, the Dirichlet principle (2.3) gives, with probability at least 1 — O(e%),

R (9geB9£(O, e+ 9.9 (0, 8_1/(%_6))) >1/4.

Note that the law of G¢ is independent of ¢ > 0, and therefore denoting its law by G and taking
R :=1/¢, we arrive at the following.

Corollary 4.12. Let G denote the y-mated-CRT for y € (0,2). Then for every 6 > 0, there are numbers
o,k > 0 such that with probability at least 1 — O(R™%)

RS, (ang(o, R) < 9gBY(0, R1+5)) > . (4.16)
In particular, it holds that for every 6 > 0, almost surely eventually

RO, (ang(o, R) < 9gBY(0, R“é)) > K.
Since this holds for every 6 > 0, and (G, 0) is a unimodular random network, we have C=0.
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Proof. (4.16) follows immediately from Lemma 4.11. The other conclusion is a standard consequence:
The Borel-Cantelli Lemma implies that almost surely, for all but finitely many k € N, we have

RS, (ang(o, 24y s 95B9 (0, 2(1+5>k)) >«
so by the series law for effective resistances, it holds that almost surely eventually
RS (ang(o, R) & 9gBY(0, 2R1+5)) > RS, (ang(o,ztlogz Rl o &QBQ(O,zrlogz<R“5)1)) -

and thus for any 6’ > 6, almost surely eventually Regff (9gBY(0,R) & dgBY(0, R1*)) > . ]

Note that since { = {y = 0 and d ¢ exists [DG20], it follows from Theorem 1.3 that dy, = df
and ds = 2. Both equalities were known previously: ds < 2 from [Lee21], d,, < df and ds > 2
from [GM21], and and dy, > dy from [GH20]. Let us remark that the preceding argument requires
somewhat less detailed information about G than that of [GH20]. In particular, bounding C only
requires control of one scale at a time.

4.3.1 Other planar maps

We consider now the case of random planar maps that can be appropriately coupled to a y-mated
CRT for some y € (0, 2); we refer to [GHS20] for a discussion of such examples, including the UIPT,
and random planar maps whose law is biased by the number of different spanning trees (y = V2),
bipolar orientations (y = y/4/3), or Schynder woods (y = 1).

Our goal is to prove that C = 0 for each of these random planar maps (M, p). We employ the
same approach as in the preceding section, arguing that an annulus in (M, p) can be mapped into
G so that its image contains an annulus of large width, and that the Dirichlet energy of functionals
in G is controlled when pulling them back to M.

Fix y € (0,2) and let G be the y-mated-CRT with increment 1. Let G, be the subgraph of G
induced on the vertices [-n, n] N Z. Parts (1)—(3) in the following theorem are the conjunction of
Lemma 1.11 and Theorem 1.9 in [GHS20]. Part (4) is [GM21, Lem. 4.3].

Theorem 4.13. For each model considered in [GHS20], the following holds. There is a coupling of (M, p)
and (G, 0), and a family of random rooted graphs {(M,,, pn) : n > 1} and numbers o, K, g > 0 such that for
every n > 1, with probability at least 1 — O(n~):

1. BY(0,nV/X) c V(Gn),
2. The induced, rooted subnetworks BM(p, n/Xy and BMn (pn, n/Ky are isomorphic.
3. There is a mapping ¢, : V(M,) — V(Gy) with ¢,(p,) =0, and forall 3 < r <R,
bn (B™ (o, (Klogm) (7 - 2))) < B9(0, )
b (V(Mn) \ B (p,,, (K log n)'R — 1)) C V(G,)\ B9 (0, R).
4. Forevery f : V(G,) — R, it holds that

EM1(f o ¢,) < K(log n)169"(f).
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Corollary 4.14. For any model considered in [GHS20], it holds that Z=0.

We prove this momentarily, but first note the following consequence. Since dy > 2 for each of
these models [DG20, Prop. 4.7], and Co=0 by [GM21, Prop. 4.4], Theorem 1.3 yields:

Theorem 4.15. For any model considered in [GHS20], it holds that d,, = dy > 2 and ds = 2.

Remark 4.16. We remark that the lower bound ds > 2 is established in [GM21], and the upper
bound d; < 2 follows for any unimodular random planar graph where the law of the degree of the
root has tails that decay sufficiently fast [Lee21] (which is true for each of these models; see [GM21,
§1.3]). The consequence d,, = d is proved in [GH20] for every model except the uniform infinite
Schynder-wood decorated triangulation. This is for a technical reason underlying the identification
of V(M,) with a subset of V(M) used in the proof of [GHS20, Lem. 1.11] (see [GHS20, Rem. 1.3]
and [GH20, Rem. 2.11]).

Proof of Corollary 4.14. Fix 6 > 0 and R > 2. Denote

7:=(Klogn) (R -2),

R := (Klogn)TR'*?,

n:=[RY],
and let &, be an eyent on which Theorem 4.13(1)—(4) and (4.16) hold. Note that we can take
P(&Ey) > 1-0O(R™™) for some a’ = a’(6, K) > 0.

Assume now that &, holds. Then (4.16) and the Dirichlet principle (2.3) give a test function
f : V(G) — R such that

f(BY(O,R) =0,  f(dgBY(0,R™®) =1,  &9(f) <1/x.

Theorem 4.13(1) asserts that the restriction of f to BY(0, R*°) gives a function f : V(G,) — R on
which 3 5 y
f(B9'(0,R) =0,  f(9gBS(O,R™) =1,  &9(f) <1/x.
Without increasing the energy of f , we may assume that f (V(Gn) \ B97(0, R1*%)) = 1 as well.
By our choice of 7 and R, Theorem 4.13(3) implies that

fodu(BM(p,7)=0,  fodudm,B(p,R)=1, &M (fop,) < K'(logR)/x,

where the last inequality is from Theorem 4.13(4), and K’ = K’(K, g, 0). Now the Dirichlet principle

(2.3) yields
1

K’(logR)/x’
1/K

Ri\/lffﬂ (aMn BMH (pn’ 17) < aM” BMH (pi’l/ R)) g

and from the graph isomorphism Theorem 4.13(2) and the fact that n'/K > R, we conclude that

1

M M = M D
RM (aMB (p,7) <> B (p,R)) > Clog Rk

Since this conclusion holds with probability at least 1 — O(R™), we conclude (using Borel-Cantelli
as in the proof of Corollary 4.12) that for every 6 > 0, almost surely eventually

RY (aMBM(p,R) o aMBM(p,R1+5)) > R,

This yields { = 0, completing the proof. m]
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