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Abstract

We investigate the validity of the “Einstein relations” in the general setting of unimodular
random networks. These are equalities relating scaling exponents:

𝑑𝑤 = 𝑑 𝑓 + 𝜁̃,

𝑑𝑠 = 2𝑑 𝑓 /𝑑𝑤 ,

where 𝑑𝑤 is the walk dimension, 𝑑 𝑓 is the fractal dimension, 𝑑𝑠 is the spectral dimension, and 𝜁̃
is the resistance exponent. Roughly speaking, this relates the mean displacement and return
probability of a random walker to the density and conductivity of the underlying medium. We
show that if 𝑑 𝑓 and 𝜁̃ ⩾ 0 exist, then 𝑑𝑤 and 𝑑𝑠 exist, and the aforementioned equalities hold.
Moreover, our primary new estimate 𝑑𝑤 ⩾ 𝑑 𝑓 + 𝜁̃ is established for all 𝜁̃ ∈ ℝ.

For the uniform infinite planar triangulation (UIPT), this yields the consequence 𝑑𝑤 = 4 using
𝑑 𝑓 = 4 (Angel 2003) and 𝜁̃ = 0 (established here as a consequence of the Liouville Quantum
Gravity theory, following Gwynne-Miller 2020 and Ding-Gwynne 2020). The conclusion 𝑑𝑤 = 4
had been previously established by Gwynne and Hutchcroft (2018) using more elaborate
methods. A new consequence is that 𝑑𝑤 = 𝑑 𝑓 for the uniform infinite Schnyder-wood decorated
triangulation, implying that the simple random walk is subdiffusive, since 𝑑 𝑓 > 2.

*University of Washington
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1 Introduction

Consider an infinite, locally-finite graph 𝒢 and a subgraph 𝐺 of 𝒢. For 𝑥 ∈ 𝑉(𝒢), let 𝐵𝒢(𝑥, 𝑅),
denote the graph ball of radius 𝑅, and let 𝐵̃(𝑥, 𝑅) := 𝐵𝒢(𝑥, 𝑅) ∩𝑉(𝐺) denote this ball restricted to
𝐺. Let 𝑑𝒢(𝑥, 𝑦) denote the path distance between a pair 𝑥, 𝑦 ∈ 𝑉(𝒢). Denote by {𝑋𝑛} the simple
random walk on 𝐺, and the discrete-time heat kernel

𝑝𝐺𝑛 (𝑥, 𝑦) := ℙ[𝑋𝑛 = 𝑦 | 𝑋0 = 𝑥].

We write R𝐺
eff(𝑆 ↔ 𝑇) for the effective resistance between two subsets 𝑆, 𝑇 ⊆ 𝑉(𝐺). One can consult

[LP16, Ch. 2 & 9] for background on electrical network theory in finite and infinite graphs.
For a variety of models arising in statistical physics, certain asymptotic geometric and spectral

properties of the graph are known or conjectured to have scaling exponents:

|𝐵̃(𝑥, 𝑅)| ≈ 𝑅𝑑 𝑓

max
1⩽𝑡⩽𝑛

𝑑𝒢(𝑋0 , 𝑋𝑡) ≈ 𝑛1/𝑑𝑤

R𝐺
eff

(︁
𝐵̃(𝑥, 𝑅) ↔ 𝑉(𝐺) \ 𝐵̃(𝑥, 2𝑅)

)︁
≈ 𝑅𝜁̃ (1.1)

𝑝𝐺2𝑛(𝑥, 𝑥) ≈ 𝑛−𝑑𝑠/2 ,
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where one takes 𝑛, 𝑅 → ∞, but we leave the meaning of “≈” imprecise for a moment. These
exponents are, respectively, referred to as the fractal dimension, walk dimension, resistance exponent,
and spectral dimension. We refer to the extensive discussion in [BH00, Ch. 5–6].

Moreover, by modeling the subgraph 𝐺 as a homogeneous underlying substrate with density
and conductivity prescribed by 𝑑 𝑓 and 𝜁̃, one obtains the plausible relations

𝑑𝑤 = 𝑑 𝑓 + 𝜁̃ (1.2)

𝑑𝑠 =
2𝑑 𝑓
𝑑𝑤

. (1.3)

In the regime 𝜁̃ > 0, these relations have been rigorously verified under somewhat stronger
assumptions in the setting of strongly recurrent graphs (see [Tel90, Tel95] and [Bar98, KM08, Kum14b]).
In the latter set of works, the most significant departure from our assumptions is the stronger
requirement for uniform control on pointwise effective resistances of the form

max
{︁
R𝐺

eff(𝑥 ↔ 𝑦) : 𝑦 ∈ 𝐵𝐺(𝑥, 𝑅)
}︁
⩽ 𝑅𝜁̃+𝑜(1) , 𝑥 ∈ 𝑉(𝐺). (1.4)

Such methods have been extended to the setting where (𝐺, 𝜌) is a random rooted graph ([KM08,
BJKS08]) under the statistical assumption that (1.4) holds sufficiently often for all sufficiently large
scales around the root.

Our main contribution is to establish (1.2) and (1.3) under somewhat less restrictive conditions,
but using an additional feature of many such models: Unimodularity of the random rooted graph
(𝐺, 𝜌). When 𝜁̃ ⩽ 0, it has been significantly more challenging to characterize situations where
(1.2)–(1.3) hold; see, for instance, Open Problem III in [Kum14a]. Our main new estimate is the
speed relation 𝑑𝑤 ⩾ 𝑑 𝑓 + 𝜁̃, which is established for all 𝜁̃ ∈ ℝ. In particular, this shows that the
random walk is subdiffusive whenever 𝑑 𝑓 + 𝜁̃ > 2, and applies equally well to models where the
random walk is transient. Let us now highlight some notable settings in which the relations can be
applied.

The IIC in high dimensions. As a prominent example, consider the resolution by Kozma and
Nachmias [KN09] of the Alexander-Orbach conjecture for the incipient infinite cluster (IIC) of
critical percolation on ℤ𝑑, with 𝑑 sufficiently large. If (𝐺, 0) denotes the IIC, then in our language,
𝒢 = 𝐺, as they consider the intrinsic graph metric; the authors establish that for every 𝜆 > 1 and
𝑟 ⩾ 1, with probability at least 1 − 𝑝(𝜆), it holds that

𝜆−1𝑟2 ⩽ |𝐵𝐺(0, 𝑟)| ⩽ 𝜆𝑟2 , (1.5)
R𝐺

eff(0 ↔ 𝜕𝐵𝐺(0, 𝑟)) ⩾ 𝜆−1𝑟, (1.6)

where 𝑝(𝜆) ⩽ 𝑂(𝜆−𝑞) for some 𝑞 > 1. One should consider this a statistical verification that
𝑑 𝑓 = 2 and 𝜁̃ = 1, as in this setting, one gets the analog of (1.4) for free from the trivial bound
RIIC

eff (0 ↔ 𝑥) ⩽ 𝑑IIC(0, 𝑥).
Earlier, Barlow, Járai, Kumagai, and Slade [BJKS08] verified (1.2)–(1.3) under these assumptions,

allowing Kozma and Nachmias to confirm the conjectured values 𝑑𝑤 = 3 and 𝑑𝑠 = 4/3. One can
consult [Kum14a, §4.2.2] for several further examples where 𝜁̃ > 0 and (1.2)–(1.3) hold using the
strongly recurrent theory.
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The uniform infinite planar triangulation. Consider, on the other hand, the uniform infinite planar
triangulation (UIPT) considered as a random rooted graph (𝐺, 𝜌). In this case, Angel [Ang03]
established that almost surely

lim
𝑅→∞

log |𝐵𝐺(𝜌, 𝑅)|
log𝑅 = 4, (1.7)

and Gwynne and Miller [GM21] showed that almost surely

lim
𝑅→∞

log R𝐺
eff(𝜌 ↔ 𝑉(𝐺) \ 𝐵𝐺(𝜌, 𝑅))

log𝑅 = 0 .

This equality falls short of verifying (1.1). Nevertheless, we show in Section 4.3 that 𝜁̃ = 0 is a
consequence of the Liouville Quantum Gravity (LQG) estimates derived in [DMS21, GM21, GMS19,
GHS20, DG20]. But while the known statistics of |𝐵𝐺(𝜌, 𝑅)| are suitable to allow application of the
strongly recurrent theory, this does not hold for the effective resistance bounds.

This is highlighted by Gwynne and Hutchcroft [GH20] who establish 𝑑𝑤 = 4 using even finer
aspects of the LQG theory. The authors state “while it may be possible in principle to prove 𝑑𝑤 ⩾ 4
using electrical techniques, doing so appears to require matching upper and lower bounds for
effective resistances [...] differing by at most a constant order multiplicative factor.” Our methods
show that, when leveraging unimodularity, even coarse estimates with subpolynomial errors suffice.

It is open whether 𝜁̃ = 0 or 𝑑𝑤 = 4 for the uniform infinite planar quadrangulation (UIPQ), but
our verification of (1.2) shows that only one such equality needs to be established.

Random planar maps in the 𝛾-LQG universality class. More generally, we will establish in
Section 4.3 that 𝜁̃ = 0 whenever a random planar map (𝐺, 𝜌) can be coupled to a 𝛾-mated-CRT map
with 𝛾 ∈ (0, 2). The connection between such maps and LQG was established in [DMS21].

This family includes the UIPT (where 𝛾 =
√︁

8/3). Ding and Gwynne [DG20] have shown that 𝑑 𝑓
exists for such maps, and Gwynne and Huthcroft [GH20] established that 𝑑𝑤 = 𝑑 𝑓 for most known
examples, but not for the uniform infinite Schnyder-wood decorated triangulation [LSW17] (where
𝛾 = 1), for a technical reason underlying the construction of a certain coupling (see [GH20, Rem.
2.11]). We mention this primarily to emphasize the utility of a general theorem, since it is likely the
technical obstacle could have been circumvented with sufficient effort.

The IIC in dimension two. Consider the incipient infinite cluster for 2D critical percolation [Kes86],
which can be realized as a unimodular random subgraph (𝐺, 0) of 𝒢 = ℤ2 [J0́3]. It is known that
𝑑 𝑓 = 91/48 in the 2D hexagonal lattice [LSW02, Smi01], and the same value is conjectured to hold
for all 2D lattices regardless of the local structure.

Existence of the exponent 𝜁̃ is open for any lattice; experiments give the estimate 𝜁̃ = 0.9825 ±
0.0008 [Gra99]. The most precise experimental estimate for 𝑑𝑤 = 2.8784 ± 0.0008 is derived from
estimates for 𝜁̃, and our verification of (1.2) puts this on rigorous footing (assuming, of course, that
𝜁̃ is well-defined).

1.1 Reversible random networks

We consider random rooted networks (𝐺, 𝜌, 𝑐𝐺 , 𝜉) where 𝐺 is a locally-finite, connected graph,
𝜌 ∈ 𝑉(𝐺), and 𝑐𝐺 : 𝐸(𝐺) → [0,∞) are edge conductances. We allow 𝐸(𝐺) to contain self-loops
{𝑣, 𝑣} for 𝑣 ∈ 𝑉(𝐺). Here, 𝜉 : 𝑉(𝐺) ∪ 𝐸(𝐺) → Ξ is an auxiliary marking, where Ξ is some Polish
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mark space. We will sometimes use the notation (𝐺, 𝜌, 𝜉1 , 𝜉2 , . . . , 𝜉𝑘) to reference a random rooted
network with marks 𝜉𝑖 : 𝑉(𝐺)∪𝐸(𝐺) → Ξ𝑖 , which we intend as shorthand for (𝐺, 𝜌, (𝜉1 , 𝜉2 , . . . , 𝜉𝑘)),
where the mark space is the Cartesian product Ξ1 × · · · × Ξ𝑘 .

Denote by {𝑋𝑛} the random walk on 𝐺 with 𝑋0 = 𝜌 and transition probabilities

𝑝𝐺1 (𝑢, 𝑣) := ℙ [𝑋1 = 𝑣 | 𝑋0 = 𝑢] = 𝑐𝐺({𝑢, 𝑣})
𝑐𝐺𝑢

, (1.8)

where we denote 𝑐𝐺𝑢 :=
∑︁
𝑣:{𝑢,𝑣}∈𝐸(𝐺) 𝑐

𝐺({𝑢, 𝑣}). Say that (𝐺, 𝜌, 𝑐𝐺 , 𝜉) is a reversible random network if:

1. Almost surely 𝑐𝐺𝜌 > 0.

2. (𝐺, 𝑋0 , 𝑋1 , 𝑐
𝐺 , 𝜉) and (𝐺, 𝑋1 , 𝑋0 , 𝑐

𝐺 , 𝜉) have the same law.

We will usually write a reversible random network as (𝐺, 𝜌, 𝜉), allowing the conductances to
remain implicit. Note that we allow the possibility 𝑐𝐺({𝑢, 𝑣}) = 0 when {𝑢, 𝑣} ∈ 𝐸(𝐺). In this
sense, random walks occur on the subnetwork 𝐺+ with 𝑉(𝐺+) = {𝑥 ∈ 𝑉(𝐺) : 𝑐𝐺𝑥 > 0} and
𝐸(𝐺+) = {{𝑥, 𝑦} ∈ 𝑉(𝐺) : 𝑐𝐺({𝑥, 𝑦}) > 0}, while distances are measured in the path metric 𝑑𝐺.

Example 1.1 (Examples of markings). Aside from edge conductances, we will use auxiliary markings
primarily for analyzing the geometry of the random rooted graph (𝐺, 𝜌).

1. Edge weights that deform the graph metric. Consider a random nonnegative weight
𝜔 : 𝐸(𝐺) → ℝ+. Such a weight assigns a length to every finite path in 𝐺, and this yields a
weighted path metric dist𝐺𝜔 on 𝐺. See Section 1.4.

2. Breaking 𝐺 into finite subgraphs. A bond percolation is a random marking 𝜉 : 𝐸(𝐺) → {0, 1}.
We will use 𝐾𝐺𝜉 (𝜌) to denote the connected component of the root in the subgraph of 𝐺 with
edge set 𝜉−1(1) ⊆ 𝐸(𝐺). Of particular interest will be finitary bond percolations in which the
component 𝐾𝐺𝜉 (𝜌) is almost surely finite.

Remark 1.2 (Conductance at the root). Throughout, we will make the following mild boundedness
assumption (it is stated explicitly at every occurrence):

𝔼[1/𝑐𝐺𝜌 ] < ∞ .

This is analogous to the assumption 𝔼[deg𝐺(𝜌)] < ∞ that appears often in the setting of unimodular
random graphs, which are defined in Section 2.3 when we need to employ the Mass-Transport
Principle.

For now, it suffices to say that if (𝐺̃, 𝜌̃, 𝜉̃) is a unimodular random random graph with law 𝜇̃ and
𝔼[𝑐𝐺̃𝜌̃ ] < ∞, then the random graph (𝐺, 𝜌, 𝜉) with law 𝜇 is a reversible random graph, where

𝑑𝜇

𝑑𝜇̃
(𝐺0 , 𝜌0 , 𝜉0) =

𝑐
𝐺0
𝜌0

𝔼[𝑐𝐺̃𝜌̃ ]
,

and 𝑑𝜇/𝑑𝜇̃ is the Radon-Nikodym derivative. We refer to [AL07] for an extensive reference on
unimodular random graphs, and to [BC12, Prop. 2.5] for the connection between unimodular and
reversible random graphs.
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1.2 Almost sure scaling exponents

Consider two sequences {𝐴𝑛} and {𝐵𝑛} of positive real-valued random variables. Write 𝐴𝑛 ⪅ 𝐵𝑛 if
almost surely:

lim sup
𝑛→∞

log𝐴𝑛 − log 𝐵𝑛
log 𝑛 ⩽ 0,

and 𝐴𝑛 ∼∼∼ 𝐵𝑛 for the conjunction of 𝐴𝑛 ⪅ 𝐵𝑛 and 𝐵𝑛 ⪅ 𝐴𝑛 . Note our primary motivation for
this relation: It holds that 𝐴𝑛 ⪅ 𝑛𝑑 if and only if, for every 𝛿 > 0, almost surely 𝐴𝑛 ⩽ 𝑛𝑑+𝛿 for 𝑛
sufficiently large.

In what follows, we consider a reversible random network (𝐺, 𝜌) (see Section 1.1). Define the
random variables:

𝜎𝑅 := min{𝑛 ⩾ 0 : 𝑑𝐺(𝑋0 , 𝑋𝑛) > 𝑅},
ℳ𝑛 := max

0⩽𝑡⩽𝑛
𝑑𝐺(𝑋0 , 𝑋𝑡),

and define the walk exponents 𝑑𝑤 and 𝛽 by

𝜎𝑅 ∼∼∼ 𝑅𝑑𝑤

ℳ𝑛
∼∼∼ 𝑛1/𝛽 ,

assuming the corresponding limits exist. In that case we, we will use the language “𝑑𝑤 exists” or “𝛽
exists.”1

Denote the volume function
vol𝐺(𝑥, 𝑅) :=

∑︂
𝑦∈𝐵𝐺(𝑥,𝑅)

𝑐𝐺𝑦 ,

and define 𝑑 𝑓 as the asymptotic growth rate of the volume:

vol𝐺(𝜌, 𝑅) ∼∼∼ 𝑅𝑑 𝑓 ,

Define the spectral dimension by
𝑝𝐺2𝑛(𝜌, 𝜌) ∼∼∼ 𝑛−𝑑𝑠/2.

Let us define upper and lower resistance exponents. Denote the complement of 𝐵𝐺(𝜌, 𝑅) in 𝐺 by

𝐵̄𝐺(𝜌, 𝑅) := 𝑉(𝐺) \ 𝐵𝐺(𝜌, 𝑅),

and define 𝜁̃ and 𝜁̃0 as the largest and smallest values, respectively, such that, for every 𝛿 ∈ (0, 1),
almost surely, for all but finitely many 𝑅 ∈ ℕ:

𝑅𝜁̃−𝛿 ⩽ R𝐺
eff

(︂
𝐵𝐺(𝜌, 𝑅1−𝛿) ↔ 𝐵̄𝐺(𝜌, 𝑅)

)︂
⩽ R𝐺

eff

(︂
𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅)

)︂
⩽ 𝑅𝜁̃0+𝛿 . (1.9)

It helps to note that the three occurrences of 𝛿 in (1.9) could equally well be replaced by distinct
values 𝛿1 , 𝛿2 , 𝛿3 ∈ (0, 1) without changing the definition of 𝜁̃ and 𝜁̃0, as increasing 𝛿 > 0 weakens

1In the next section, we control the annealed variants as well, where one takes expectations over the random walk.
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the first and last inequalities, and the middle inequality always holds. Accordingly, the exponents
𝜁̃ ⩽ 𝜁̃0 always exist, and 𝜁̃0 ⩾ 0. The exponent 𝜁̃ is referred to as the “resistance exponent” in the
statistical physics literature; see [BH00, §5.3] and Remark 1.4 below.

We emphasize that all the exponents we define are not random variables, but functions of the
law of (𝐺, 𝜌). Our main theorem can then be stated as follows.

Theorem 1.3. Suppose that (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞. If 𝑑 𝑓 exists and
𝜁̃ = 𝜁̃0, then the exponents 𝑑𝑤 , 𝛽, and 𝑑𝑠 exist and it holds that

𝑑𝑤 = 𝛽 = 𝑑 𝑓 + 𝜁̃,

𝑑𝑠 =
2𝑑 𝑓
𝑑𝑤

.

See Corollary 1.10 for further equalities involving annealed versions of 𝑑𝑤 and 𝛽.

Remark 1.4 (The resistance exponents). The resistance exponent is usually characterized heuristically
as the value 𝜁̃ such

R𝐺
eff

(︂
𝐵𝐺(𝜌, 𝑅) ↔ 𝐵̄𝐺(𝜌, 2𝑅)

)︂
∼∼∼ 𝑅𝜁̃ . (1.10)

So the left-hand side of (1.9) would naturally be replaced by

R𝐺
eff

(︂
𝐵𝐺(𝜌, 𝑅) ↔ 𝐵̄𝐺(𝜌, 2𝑅)

)︂
⩾ 𝑅𝜁̃−𝛿 .

The lower bound we require is substantially weaker, allowing one to consider spatial fluctuations of
magnitude 𝑅𝑜(1). The upper bound in (1.9), on the other hand, is somewhat stronger than (1.10),
and encodes a level of spectral regularity. For instance, if 𝐺 satisfies an elliptic Harnack inequality
and is “strongly recurrent” in the sense of [Tel06, Def. 2.1], then

R𝐺
eff(𝐵

𝐺(𝜌, 𝑅) ↔ 𝐵̄𝐺(𝜌, 2𝑅)) ∼∼∼ R𝐺
eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅)).

See [Tel06, Thm. 4.6] and Theorem 4.9.

Comparison to the strongly recurrent theory. Let us try to interpret the strongly recurrent theory
(cf. Assumption 1.2 in [KM08]) in the setting of subpolynomial errors. The resistance assumptions
would take the form: For every 𝛿 > 0, almost surely, for 𝑅 sufficiently large:

max
{︁
R𝐺

eff(𝜌 ↔ 𝑥) : 𝑥 ∈ 𝐵𝐺(𝜌, 𝑅)
}︁
⩽ 𝑅𝜁+𝛿 , (1.11)

R𝐺
eff

(︂
𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅)

)︂
⩾ 𝑅𝜁−𝛿 . (1.12)

These assumptions imply that when 𝜁 > 0, it holds that 𝜁̃ = 𝜁̃0 = 𝜁; this is proved in Theorem 4.9.
Hence the theory we present (in the setting of reversible random graphs) is more general, at least in
terms of concluding the exponent relations (1.2) and (1.3).

Under assumptions (1.11) and (1.12), one can uniformly lower bound the Green kernel
g𝐵𝐺(𝜌,𝑅′)(𝜌, 𝑥) (see Section 4.2 for definitions) for all points 𝑥 ∈ 𝐵𝐺(𝜌, 𝑅) and some 𝑅′ ≫ 𝑅.
In other words, every point in 𝐵𝐺(𝜌, 𝑅) is visited often on average before the random walk exits
𝐵𝐺(𝜌, 𝑅′). See, for instance, [BCK05, §3.2]. This yields a subdiffusive estimate on the speed of the
random walk, specifically an almost sure lower bound on 𝔼[𝜎𝑅 | (𝐺, 𝜌)].
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Instead of a pointwise bound, we use a lower bound on 𝜁̃ to deform the graph metric 𝑑𝐺 (see
the next section). The effective resistance across an annulus being large is equivalent to its discrete
extremal length being large (see Section 2.1). Thus in most scales and localities, we can extract a
metric that locally “stretches” the space. By randomly covering the space with annuli at all scales,
we obtain a “quasisymmetric” deformation (only in an asymptotic, statistical sense) that is bigger
by a power than the graph metric. This argument is similar in spirit to one of Keith and Laakso
[KL04, Thm. 5.0.10] which shows that the Assouad dimension of a metric measure space can be
reduced through a quasisymmetric homeomorphism if the discrete modulus across annuli is large.

Finally, by applying Markov type theory, we bound the speed of the walk in the stretched metric,
which leads to a stronger bound in the graph metric.

1.3 Upper and lower exponents

Even when scaling exponents do not exist, our arguments give inequalities between various superior
and inferior limits. Given a sequence {ℰ𝑛 : 𝑛 ⩾ 1} of events on some probability space, let us say
that they occur almost surely eventually (a.s.e.) with respect to 𝑛 if ℙ[#{𝑛 ⩾ 1 : ¬ℰ𝑛} < ∞] = 1.

For a family {𝐴𝑛} of random variables, we will define
¯
𝑑 and 𝑑̄ to be the largest and smallest

values, respectively, such that for every 𝛿 > 0, almost surely eventually,

𝑛 ¯
𝑑+𝛿 ⩽ 𝐴𝑛 ⩽ 𝑛

𝑑̄+𝛿 ,

where we allow the exponents to take values {−∞,+∞} if no such number exists. Note that 𝐴𝑛 ∼∼∼ 𝑛𝑑

(i.e., the exponent 𝑑 “exists”) if and only if 𝑑̄ =
¯
𝑑.

Let us consider the corresponding extremal exponents such that for every 𝛿 > 0 the following
relations hold almost surely eventually (with respect to 𝑛, 𝑅 ⩾ 1):

𝑅¯
𝑑 𝑓 −𝛿 ⩽ vol𝐺(𝜌, 𝑅) ⩽ 𝑅𝑑̄ 𝑓 +𝛿

𝑅¯
𝑑𝑤−𝛿 ⩽ 𝜎𝑅 ⩽ 𝑅

𝑑̄𝑤+𝛿

𝑅¯
𝑑𝒜𝑤 −𝛿 ⩽ 𝔼[𝜎𝑅 | (𝐺, 𝜌)] ⩽ 𝑅𝑑̄𝒜𝑤 +𝛿

𝑛−𝛿+1/𝛽̄ ⩽ℳ𝑛 ⩽ 𝑛
𝛿+1/

¯
𝛽

𝑛−𝛿+2/𝛽̄𝒜 ⩽ 𝔼[ℳ2
𝑛 | (𝐺, 𝜌)] ⩽ 𝑛𝛿+2/

¯
𝛽𝒜

𝑛−𝛿−𝑑̄𝑠/2 ⩽ 𝑝𝐺2𝑛(𝜌, 𝜌) ⩽ 𝑛
𝛿−

¯
𝑑𝑠/2.

We will establish the following chains of inequalities, which together prove Theorem 1.3.

Theorem 1.5. Suppose that (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞. Then,

4
¯
𝑑 𝑓 − 3𝑑̄ 𝑓 + 𝜁̃ ⩽

¯
𝛽𝒜 . (1.13)
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Theorem 1.6. Suppose that (𝐺, 𝜌) is a random rooted network. Then it holds that

¯
𝛽𝒜 ⩽

¯
𝛽 (1.14)

⩽
¯
𝑑𝑤 ∧ 𝛽̄ (1.15)

⩽
¯
𝑑𝑤 ∨ 𝛽̄

⩽ 𝑑̄𝑤 (1.16)
⩽ 𝑑̄𝒜𝑤 (1.17)
⩽ 𝑑̄ 𝑓 + 𝜁̃0 , (1.18)

and

2
(︃
1 − 𝜁̃0

¯
𝑑𝑤

)︃
⩽

¯
𝑑𝑠 ⩽ 𝑑̄𝑠 ⩽

2𝑑̄ 𝑓

¯
𝑑𝑤

. (1.19)

To see that this yields Theorem 1.3, simply note that when 𝜁̃ = 𝜁̃0 and
¯
𝑑 𝑓 = 𝑑̄ 𝑓 , then the upper

and lower bounds in (1.13) and (1.18) match, and the upper and lower bounds in (1.19) are both
equal to 2𝑑 𝑓 /𝑑𝑤 because the first set of inequalities implies 𝑑𝑤 = 𝑑 𝑓 + 𝜁̃.

Remark 1.7 (Negative resistance exponent). For 𝜁̃ < 0 (and assuming 𝑑𝑠 , 𝑑𝑤 , 𝑑 𝑓 exist), the preceding
two theorems give

𝑑𝑤 ⩾ 𝑑 𝑓 + 𝜁̃

2 ⩽ 𝑑𝑠 ⩽
2𝑑 𝑓
𝑑 𝑓 + 𝜁̃

.

Without further assumptions, the last inequality cannot be replaced by an equality. Indeed, for every
𝜀 > 0, there are unimodular random planar graphs of almost sure uniform polynomial growth and
𝜁̃ ⩽ −1 + 𝜀 [EL21]. Yet these graphs must satisfy 𝑑𝑠 ⩽ 2 [Lee21].

In the general setting of Dirichlet forms on metric measure spaces, the “resistance conjecture”
[GHL15, pg. 1493] asserts conditions under which (1.2)–(1.3) might hold even for 𝜁̃ < 0. The
primary additional condition is a Poincaré inequality with matching exponent. In our setting,
the existence of 𝑑 𝑓 does not yield the “bounded covering” property, that almost surely every ball
𝐵𝐺(𝜌, 𝑅) can be covered by 𝑂(1) balls of radius 𝑅/2. It seems likely that a variant of this condition
should also be imposed to recover (1.2)–(1.3).

Let us give a brief outline of how Theorem 1.6 is proved. The unlabeled inequality is trivial.
Both inequalities (1.14) and (1.17) are a straightforward consequence of Markov’s inequality and
the Borel-Cantelli Lemma. Since this sort of application will be frequent, let us formalize it.

Lemma 1.8. Suppose {𝑋𝑛 ∈ ℝ+ : 𝑛 ⩾ 1} is a sequence of random numbers on some probability space
(Ω, ℱ , 𝜇) such that {𝑋𝑛} is almost surely non-decreasing, and {𝛼𝑛 : 𝑛 ⩾ 1} is a non-decreasing sequence of
real numbers. If 𝒢 ⊆ ℱ is a 𝜎-algebra and 𝔼[𝑋𝑛 | 𝒢] ⪅ 𝛼𝑛 , then 𝑋𝑛 ⪅ 𝛼2𝑛 . In particular, if 𝛼𝑛 = 𝑛𝑑 for
some 𝑑 ⩾ 0, then 𝑋𝑛 ⪅ 𝑛𝑑.

Proof. The assumption 𝔼[𝑋𝑛 | 𝒢] ⪅ 𝛼𝑛 asserts that for every 𝛿 > 0, almost surely eventually

𝔼[𝑋𝑛 | 𝒢] ⩽ 𝑛𝛿𝛼𝑛 .
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Markov’s inequality gives that almost surely eventually, ℙ[𝑋𝑛 ⩾ 𝑛2𝛿𝛼𝑛 | 𝒢] ⩽ 𝑛−𝛿.
Applying this to dyadic values 𝑛 = 2𝑘 for 𝑘 = 1, 2, . . ., the Borel-Cantelli Lemma implies that

almost surely, for 𝑘 sufficiently large,
𝑋2𝑘 ⩽ 22𝛿𝑘𝛼2𝑘 .

Since {𝑋𝑛} is almost surely non-decreasing and {𝛼𝑛} is non-decreasing, this implies that almost
surely eventually

𝑋𝑛 ⩽ (2𝑛)2𝛿𝛼2𝑛 .

Since this holds for every 𝛿 > 0, we conclude that 𝑋𝑛 ⪅ 𝛼2𝑛 . □

The content of inequalities (1.15) and (1.16) lies in the relations
¯
𝛽 ⩽

¯
𝑑𝑤 and 𝛽̄ ⩽ 𝑑̄𝑤 . These follow

from the elementary inequality
ℳ𝑛 ⩾ 𝟙{𝜎𝑅⩽𝑛}𝑅, (1.20)

which gives the implications, for every 𝛿 > 0,

ℳ𝑛 ⩽ 𝑛
1/(

¯
𝛽−𝛿) a.s.e. =⇒ 𝜎𝑅 ⩾ 𝑅¯

𝛽−𝛿 a.s.e. =⇒
¯
𝑑𝑤 ⩾

¯
𝛽 − 𝛿

𝜎𝑅 ⩽ 𝑅
𝑑̄𝑤+𝛿 a.s.e. =⇒ ℳ𝑛 ⩾ 𝑛

1/(𝑑̄𝑤+𝛿) a.s.e. =⇒ 𝛽̄ ⩽ 𝑑̄𝑤 + 𝛿.

Since these hold for every 𝛿 > 0, we obtain the desired inequalities. Inequalities (1.18) and (1.19)
are proved in Section 4.2 using the standard relationships between effective resistance, the Green
kernel, and return probabilities. That leaves (1.13), which relies on Markov type theory, as we now
explain.

1.4 Reversible random weights

Consider a reversible random graph (𝐺, 𝜌) and random edge weights 𝜔 : 𝐸(𝐺) → ℝ+. Denote by
dist𝐺𝜔 the 𝜔-weighted path metric in 𝐺.2 When (𝐺, 𝜌, 𝜔) is a reversible random network and (𝐺, 𝜌)
is clear from context, we will say simply that the weight 𝜔 is reversible. The next theorem (proved in
Section 3) is a variant of the approach pursued in [Lee21].

Theorem 1.9. Suppose (𝐺, 𝜌, 𝜔) is a reversible random network with 𝔼[1/𝑐𝐺𝜌 ] < ∞ and such that almost
surely

lim
𝑅→∞

log log vol𝐺(𝜌, 𝑅)
log𝑅 = 0. (1.21)

Suppose, moreover, that
𝔼

[︁
𝜔(𝑋0 , 𝑋1)2

]︁
< ∞, (1.22)

where {𝑋𝑛} is random walk on 𝐺 started from 𝑋0 = 𝜌. Then it holds that

𝔼

[︃
max
0⩽𝑡⩽𝑛

dist𝐺𝜔(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔)
]︃
⪅ 𝑛. (1.23)

2Strictly speaking, since we allow 𝜔 to take the value 0, this is only a pseudometric, but that will not present any
difficulty.
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(a) Stretching an annulus

𝑥

𝑦

(b) Tiling by annuli

Figure 1: Stretching the graph at a fixed scale

Given this theorem, let us now sketch the proof of (1.13). Consider a graph annulus

𝒜 := {𝑥 ∈ 𝑉(𝐺) : 𝑅 ⩽ 𝑑𝐺(𝜌, 𝑥) ⩽ 𝑅1+𝛿}.

If the effective resistance across 𝒜 is at least 𝑅𝜁̃, then by the duality between effective resistance and
discrete extremal length (see Section 2.1), there is a length functional 𝐿 : 𝐸(𝐺[𝒜]) → ℝ+ satisfying∑︂

{𝑥,𝑦}∈𝐸(𝐺[𝒜])
𝑐𝐺({𝑥, 𝑦})𝐿(𝑥, 𝑦)2 ⩽ 𝑅−𝜁̃

dist𝐺[𝒜]
𝐿

(︂
𝐵𝐺(𝑥, 𝑅), 𝐵̄𝐺(𝑥, 𝑅1+𝛿)

)︂
⩾ 1,

where 𝐺[𝒜] is the subgraph induced on 𝒜.
Let us suppose that the total volume in 𝒜 satisfies

𝑉𝒜 :=
∑︂

𝑒∈𝐸(𝐺[𝒜])
𝑐𝐺(𝑒) ≈ 𝑅𝑑 𝑓 ,

and we normalize 𝐿 to have expectation squared ⩽ 1 under the measure 𝑐𝐺({𝑥, 𝑦})/𝑉𝒜 on 𝐸(𝐺[𝒜]):

𝐿̂ := 𝑅(𝜁̃+𝑑 𝑓 )/2𝐿 ≈
(︂
𝑅𝜁̃ ·𝑉𝒜

)︂1/2
𝐿.

This yields:
dist𝐺[𝒜]

𝐿̂

(︂
𝐵𝐺(𝑥, 𝑅), 𝐵̄𝐺(𝑥, 𝑅1+𝛿)

)︂
⩾ 𝑅(𝜁̃+𝑑 𝑓 )/2 ,

meaning that, with normalized unit area, 𝐿̂ “stretches” the graph annulus by a positive power when
𝜁̃ + 𝑑 𝑓 > 2 (see Figure 1(a)).

If 𝐺 is sufficiently regular (e.g., a lattice), then we could tile annuli at this scale (as in Figure 1(b))
so that if we define 𝜔𝑅 as the sum of the length functionals over the tiled annuli, then for any pair
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𝑥, 𝑦 ∈ 𝑉(𝐺) with 𝑑𝐺(𝑥, 𝑦) ⩾ 𝑅1+𝛿 and at least one of 𝑥 or 𝑦 near the center of an annulus, we would
have dist𝐺𝜔𝑅 (𝑥, 𝑦) ⩾ 𝑅

(𝜁̃+𝑑 𝑓 )/2. In a finite-dimensional lattice, a bounded number of shifts of the
tiling is sufficient for every vertex to reside near the center of some annulus.

By combining length functionals over all scales, and replacing the regular tiling by a suitable
random family of annuli, we obtain, for every 𝛿 > 0, a reversible random weight 𝜔 : 𝐸(𝐺) → ℝ+
satisfying (1.22) (intuitively, because of the unit area normalization), and such that almost surely
eventually

dist𝐺𝜔
(︂
𝜌, 𝐵̄𝐺(𝜌, 𝑅)

)︂
⩾ 𝑅(𝑑−𝛿)/2 , (1.24)

where 𝑑 := 𝑑 𝑓 + 𝜁̃. In other words, distances in dist𝐺𝜔 are (asymptotically) increased by power
(𝑑 − 𝛿)/2.

Thus (1.23) gives for every 𝛿 > 0, eventually almost surely

𝔼
[︁
ℳ2

𝑛 | (𝐺, 𝜌)
]︁
⩽ 𝑛2(1+𝛿)/(𝑑−𝛿).

Taking 𝛿 → 0 yields
¯
𝛽𝒜 ⩾ 𝑑. This is carried out formally in Section 4.1.

1.4.1 Annealed vs. quenched subdiffusivity

One can express 𝔼[𝜎𝑅 | (𝐺, 𝜌)] in terms of electrical potentials. Suppose that, accordingly, one is
able to establish, for some 𝑑 > 0, a two-sided annealed estimate:

𝑅𝑑−𝑜(1) ⩽ 𝔼[𝜎𝑅] ⩽ 𝑅𝑑+𝑜(1) as 𝑅 → ∞,

where expectation is taken over both the walk and the random network (𝐺, 𝜌). Then a standard
application of Borel-Cantelli (cf. Lemma 1.8) gives that almost surely 𝜎𝑅 ⩽ 𝑅𝑑+𝑜(1), but not an
almost sure lower bound. On the other hand, a bound of the form

𝔼[ℳ2
𝑛] ⩽ 𝑛2/𝑑+𝑜(1) as 𝑛 → ∞

provides that ℳ𝑛 ⩽ 𝑛1/𝑑+𝑜(1) almost surely, which entails 𝜎𝑅 ⩾ 𝑅𝑑−𝑜(1) almost surely.
In this way, the two exponents 𝛽 and 𝑑𝑤 are complementary, allowing one to obtain two-

sided quenched estimates from two-sided annealed estimates. This is crucial for establishing
𝑑𝑠 = 2𝑑 𝑓 /𝑑𝑤 , as the upper bound in (1.19) uses the fully quenched exponent

¯
𝑑𝑤 which, in the setting

of Theorem 1.3, arises from the lower bound (1.13) on the annealed exponent
¯
𝛽𝒜 .

We remark on the following strengthening of Theorem 1.3.

Corollary 1.10. Under the assumptions of Theorem 1.3, it additionally holds that 𝛽 = 𝛽𝒜 and 𝑑𝑤 = 𝑑𝒜𝑤 .

Proof. We may assume that 𝑑𝑤 and 𝛽 exist, and 𝑑𝑤 = 𝛽. From Theorem 1.6 we obtain:

¯
𝛽𝒜 = 𝛽 = 𝑑̄𝒜𝑤 .

The relations
¯
𝛽 ⩽

¯
𝑑𝒜𝑤 and 𝛽̄𝒜 ⩽ 𝑑̄𝑤 follow from (1.20), yielding

𝛽 ⩾ 𝛽̄𝒜 ⩾
¯
𝛽𝒜 = 𝛽,

𝛽 ⩽
¯
𝑑𝒜𝑤 ⩽ 𝑑̄

𝒜
𝑤 = 𝛽. □
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2 Reversible random weights

Throughout this section, (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞.

2.1 Modulus and effective resistance

For a network 𝐻 and two disjoint subsets 𝑆, 𝑇 ⊆ 𝑉(𝐻), define the modulus

Mod𝐻(𝑆 ↔ 𝑇) := min
{︂
∥𝜔∥2

ℓ2(𝑐𝐻 ) : dist𝐻𝜔 (𝑆, 𝑇) ⩾ 1
}︂
, (2.1)

where the minimum is over all weights 𝜔 : 𝐸(𝐻) → ℝ+, and

∥𝜔∥2
ℓ2(𝑐𝐻 ) =

∑︂
𝑒∈𝐸(𝐻)

𝑐𝐻(𝑒)|𝜔(𝑒)|2.

For 𝑥 ∈ 𝑉(𝐻) and 0 < 𝑟 < 𝑅, define the annular modulus:

M𝐻(𝑥, 𝑟, 𝑅) := Mod𝐻
(︂
𝐵𝐻(𝑥, 𝑟) ↔ 𝐵̄𝐻(𝑥, 𝑅)

)︂
.

Note that when 𝐻 is finite, the minimizer in (2.1) exists and is unique (as it is the minimum of a
strictly convex function over a compact set). In particular, even when 𝐻 is infinite, this also holds
for 𝑀𝐻(𝑥, 𝑟, 𝑅), as we have

Mod𝐻
(︂
𝐵𝐻(𝑥, 𝑟) ↔ 𝐵̄𝐻(𝑥, 𝑅)

)︂
= Mod𝐻[𝐵𝐻 (𝑥,𝑅+1)]

(︂
𝐵𝐻(𝑥, 𝑟) ↔ 𝐵̄𝐻(𝑥, 𝑅)

)︂
.

Denote this minimal weight by 𝜔∗
(𝐻,𝑥,𝑟,𝑅). The standard duality between effective resistance and

discrete extremal length [Duf62] gives an alternate characterization of M𝐻(𝑥, 𝑟, 𝑅), as follows.

Lemma 2.1. For any finite graph 𝐻 and disjoint subsets 𝑆, 𝑇 ⊆ 𝑉(𝐻), it holds that

Mod𝐻(𝑆 ↔ 𝑇) =
(︂
R𝐻

eff(𝑆 ↔ 𝑇)
)︂−1

. (2.2)

Hence for any (possibly infinite graph) 𝐺, all 𝑥 ∈ 𝑉(𝐺) and 0 ⩽ 𝑟 ⩽ 𝑅,

M𝐻(𝑥, 𝑟, 𝑅) =
(︂
R𝐺

eff

(︂
𝐵𝐺(𝑥, 𝑟) ↔ 𝐵̄𝐺(𝑥, 𝑅)

)︂)︂−1
.

For a function 𝑔 : 𝑉(𝐻) → ℝ, we denote the Dirichlet energy

E𝐻(𝑔) :=
∑︂

{𝑥,𝑦}∈𝐸(𝐻)
𝑐𝐻({𝑥, 𝑦})|𝑔(𝑥) − 𝑔(𝑦)|2.

We will make use of the Dirichlet principle (see [LP16, Ch. 2]): When 𝐻 is finite and 𝑆 ∩ 𝑇 = ∅,

R𝐻
eff(𝑆 ↔ 𝑇) =

(︂
min

{︁
E𝐻(𝑔) : 𝑔 |𝑆 ≡ 0, 𝑔 |𝑇 ≡ 1

}︁)︂−1
, (2.3)

and when 𝐻 is additionally connected, the minimizer of (2.3) is the unique function harmonic on
𝑉(𝐻) \ (𝑆 ∪ 𝑇) with the given boundary values.
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2.2 Approximate nets

We now define some objects that will act as random approximate nets in the metric space (𝑉(𝐺), 𝑑𝐺).
The definitions are made conditioned on (𝐺, 𝜌), and the random variables are otherwise taken to be
mutually independent.

Fix 𝑅′ ⩾ 𝑅 ⩾ 1 and 𝜆 ⩾ 1. For 𝑣 ∈ 𝑉(𝐺), define

𝛾𝑅,𝑅′(𝑣) := max
{︁
vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝑣, 𝑅′)

}︁
.

Let {𝒖𝑣 : 𝑣 ∈ 𝑉(𝐺)} be an independent family of Bernoulli {0, 1} random variables where

ℙ (𝒖𝑣 = 1) = min
(︃
1,𝜆

𝑐𝐺𝑣
𝛾𝑅,𝑅′(𝑣)

)︃
, (2.4)

and define 𝑼𝑅,𝑅′(𝜆) := {𝑥 ∈ 𝑉(𝐺) : 𝒖𝑣 = 1}. Observe the inequality, valid for every 𝑥 ∈ 𝑉(𝐺) and
1 ⩽ 𝑟 ⩽ 𝑅:

ℙ[𝑑𝐺(𝑥,𝑼𝑅,𝑅′(𝜆)) > 𝑟] ⩽
∏︂

𝑣∈𝐵𝐺(𝑥,𝑟)

(︃
1 − 𝜆𝑐𝐺𝑣

𝛾𝑅,𝑅′(𝑣)

)︃
+

⩽ exp ⎛⎜⎝−𝜆
∑︂

𝑣∈𝐵𝐺(𝑥,𝑟)

𝑐𝐺𝑣
𝛾𝑅,𝑅′(𝑣)

⎞⎟⎠ ⩽ exp
(︃
−𝜆 vol𝐺(𝑥, 𝑟)

vol𝐺(𝑥, 2𝑅′)

)︃
, (2.5)

where we have employed the two inequalities∑︂
𝑣∈𝐵𝐺(𝑥,𝑟)

𝑐𝐺𝑣 = vol𝐺(𝑥, 𝑟),

max
𝑣∈𝐵𝐺(𝑥,𝑟)

𝛾𝑅,𝑅′(𝑣) ⩽ vol𝐺(𝑥, 2𝑅′).

The idea here is that, by (2.5), the balls {𝐵𝐺(𝑢, 𝑅) : 𝑢 ∈ 𝑼𝑅,𝑅′(𝜆)} tend to cover vertices 𝑥 ∈ 𝑉(𝐺)
for which vol𝐺(𝑥, 𝑅) ≈ vol𝐺(𝑥, 2𝑅′), as long as 𝜆 is chosen sufficiently large. On the other hand, the
sampling rate (2.4) allow us to control 𝔼 |𝐵𝐺(𝜌, 𝑅′) ∩𝑼𝑅,𝑅′(𝜆)|. Referring to the argument sketched
at the end of Section 1.3, we will center an annulus at every 𝑥 ∈ 𝑼𝑅,𝑅′(𝜆), and thus we need to
control the average covering multiplicity to keep 𝔼[𝜔(𝑋0 , 𝑋1)2] finite.

Since the law of 𝑼𝑅,𝑅′(𝜆) does not depend on the root, we have the following.

Lemma 2.2. The triple (𝐺, 𝜌,𝑼𝑅,𝑅′(𝜆)) is a reversible random network.

Our construction of reversible random networks are all of this form: Starting with a reversible
random network (𝐺, 𝜌), we augment 𝐺 by some markings in a manner that “doesn’t depend on
the root 𝜌,” to obtain a reversible random network (𝐺, 𝜌, 𝜉). This notion is formalized in the next
section.

2.3 The Mass-Transport Principle

Let G• denote the collection of isomorphism classes of rooted, connected, locally-finite net-
works, and let G•• denote the collection of isomorphism classes of doubly-rooted, connected,
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locally-finite networks. We will consider functionals 𝐹 : G•• → [0,∞). Equivalently, these are
functionals 𝐹(𝐺0 , 𝑥0 , 𝑦0 , 𝜉0) that are invariant under automorphisms of 𝜓 of 𝐺0: 𝐹(𝐺0 , 𝑥0 , 𝑦0 , 𝜉0) =
𝐹(𝜓(𝐺0),𝜓(𝑥0),𝜓(𝑦0), 𝜉0 ◦ 𝜓−1).

The mass-transport principle (MTP) for a random rooted network (𝐺, 𝜌, 𝜉) asserts that for any
nonnegative Borel 𝐹 : G•• → [0,∞), it holds that

𝔼

⎡⎢⎢⎢⎢⎣
∑︂

𝑥∈𝑉(𝐺)
𝐹(𝐺, 𝜌, 𝑥, 𝜉)

⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣
∑︂

𝑥∈𝑉(𝐺)
𝐹(𝐺, 𝑥, 𝜌, 𝜉)

⎤⎥⎥⎥⎥⎦ .
Unimodular random networks are precisely those that satisfy the MTP (see [AL07]).

Using the fact that biasing the law of a reversible random network (𝐺, 𝜌, 𝜉) with 𝔼[1/𝑐𝐺𝜌 ] < ∞
by 1/𝑐𝐺𝜌 (see [BC12, Prop. 2.5]) yields a unimodular random network, one arrives at the following
biased MTP.

Lemma 2.3. If (𝐺, 𝜌, 𝜉) is a reversible random network with 𝔼[1/𝑐𝐺𝜌 ] < ∞, then for any nonnegative Borel
functional 𝐹 : G•• → [0,∞), it holds that

𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑥, 𝜉)
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝑥, 𝜌, 𝜉)
⎤⎥⎥⎥⎥⎦ . (2.6)

Let us now explain the claim of Lemma 2.2 further. The following is a special case of [AHNR18,
Lem. 2.2], where it is stated for unimodular random networks. Its proof is a straightforward
consequence of the characterization of unimodular random graphs via the mass-transport principle.

Lemma 2.4. Suppose that (𝐺, 𝜌, 𝜉) is a reversible random network with 𝔼[1/𝑐𝐺𝜌 ] < ∞ and (𝐺, 𝜌, 𝜉′) is
a random rooted network such that for every pair of vertices 𝑢, 𝑣 ∈ 𝑉(𝐺), the conditional distribution of
(𝐺, 𝑢, 𝑣, 𝜉′) given (𝐺, 𝜌, 𝜉) coincides almost surely with some measurable function of the (doubly-rooted)
isomorphism class of (𝐺, 𝑢, 𝑣, 𝜉). Then (𝐺, 𝜌, 𝜉′) is a reversible random network.

2.4 Construction of the weights

Recall that (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞. Denote 𝑑∗ := 4
¯
𝑑 𝑓 − 3𝑑̄ 𝑓 + 𝜁̃.

Our goal is to prove the following.

Theorem 2.5. There is a reversible random weight 𝜔 : 𝐸(𝐺) → ℝ+ such that 𝔼[𝜔(𝑋0 , 𝑋1)2] < ∞, and
such that, for every 𝛿 > 0, almost surely eventually

dist𝐺𝜔
(︂
𝜌, 𝐵̄𝐺(𝜌, 𝑅)

)︂
⩾ 𝑅(𝑑∗−𝛿)/2. (2.7)

To this end, for 𝜀 ∈ (0, 1), define the set of networks with controlled geometry at scale 𝑅:

𝒮(𝜀, 𝑅) :=
{︃
(𝐺, 𝑥) : 1 + vol𝐺(𝑥, 5𝑅1+𝜀)

vol𝐺(𝑥, 𝑅)2
M𝐺(𝑥, 2𝑅, 𝑅1+𝜀) ⩽ 𝑅(1+𝜀)(𝑑̄ 𝑓 −𝜁̃)−2

¯
𝑑 𝑓 +𝜀

and vol𝐺(𝑥, 𝑅 − 1)
vol𝐺(𝑥, 10𝑅1+𝜀)

⩾ 𝑑∗(log𝑅)𝑅−(𝑑̄ 𝑓 −¯
𝑑 𝑓 )−𝜀(1+𝑑̄ 𝑓 )

}︃
,

where we recall the definition of the annular modulus M𝐺 from Section 2.1.
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Lemma 2.6. For every 𝜀 > 0 and 𝑅 ⩾ 1, there is a reversible random weight 𝜔𝑅 : 𝐸(𝐺) → ℝ+ such that

𝔼
[︁
𝜔𝑅(𝑋0 , 𝑋1)2

]︁
⩽ 2𝑅−𝑑∗+𝜀(3+3𝑑̄ 𝑓 −𝜁̃) , (2.8)

and if 𝑥 ∈ 𝑉(𝐺) satisfies 𝑑𝐺(𝜌, 𝑥) ⩾ 3𝑅1+𝜀, then

dist𝐺𝜔𝑅 (𝜌, 𝑥) ⩾ 𝟙𝒮(𝜀,𝑅)(𝐺, 𝜌). (2.9)

Before proving the lemma, let us see that it establishes Theorem 2.5.

Proof of Theorem 2.5. Clearly we may assume 𝑑∗ > 0. Fix a value 𝜀 ∈ (0, 𝑑∗), and define the sets

𝒮𝑅0(𝜀) :=
⋂︂
𝑅⩾𝑅0

𝒮(𝜀, 𝑅) ,

𝒮(𝜀) :=
⋃︂
𝑅0⩾1

𝒮𝑅0(𝜀) .

Lemma 2.7. Almost surely (𝐺, 𝜌) ∈ 𝒮(𝜀).

Proof. To establish the claim, we need to show that almost surely: (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅) for 𝑅 sufficiently
large. By definition of the exponents 𝜁̃, 𝑑̄ 𝑓 , ¯

𝑑 𝑓 , for every 𝛿 > 0, it holds that almost surely eventually
M𝐺(𝜌, 𝑅, 𝑅1+𝛿) ⩽ 𝑅−𝜁̃+𝛿 (recall Lemma 2.1) and 𝑅¯

𝑑 𝑓 −𝛿 ⩽ vol𝐺(𝜌, 𝑅) ⩽ 𝑅𝑑̄ 𝑓 +𝛿.
Therefore we have, for every 𝛿 > 0, almost surely eventually

1 + vol𝐺(𝑥, 5𝑅1+𝜀)
vol𝐺(𝑥, 𝑅)2

M𝐺(𝑥, 2𝑅, 𝑅1+𝜀) ⩽ 1 + (5𝑅)(1+𝜀)(𝑑̄ 𝑓 +𝛿)

𝑅2(
¯
𝑑 𝑓 −𝛿)

𝑅(1+𝜀)(−𝜁̃+𝛿)

⩽ 𝑅(1+𝜀)(𝑑̄ 𝑓 −𝜁̃)−2
¯
𝑑 𝑓 +(5+2𝜀)𝛿 (2.10)

where the second inequality holds for 𝑅 sufficiently large (depending on 𝛿 > 0).
Similarly, we have that, for every 𝛿 > 0, almost surely eventually

vol𝐺(𝑥, 𝑅 − 1)
vol𝐺(𝑥, 10𝑅1+𝜀)

⩾ (𝑅 − 1)¯𝑑 𝑓 −𝛿(10𝑅1+𝜀)−𝑑̄ 𝑓 −𝛿 ⩾ 𝑑∗(log𝑅)𝑅¯
𝑑 𝑓 −(1+𝜀)𝑑̄ 𝑓 −(3+𝜀)𝛿 , (2.11)

where the latter inequality holds for 𝑅 sufficiently large (depending on 𝛿 > 0). Choosing 𝛿 > 0
sufficiently small shows that (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅) whenever (2.10) and (2.11) hold. □

Define 𝛼 := 3 + 3𝑑̄ 𝑓 − 𝜁̃. For 𝑘 ⩾ 1, let 𝜔2𝑘 be the weight guaranteed by Lemma 2.6, and define
the random weight

𝜔 :=

(︄∑︂
𝑘⩾1

2𝑘(𝑑∗−𝜀𝛼)

𝑘2 𝜔2
2𝑘

)︄1/2

,

so that
𝔼

[︁
𝜔(𝑋0 , 𝑋1)2

]︁ (2.8)
⩽ 2

∑︂
𝑘⩾1

𝑘−2 ⩽ 𝑂(1).
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Moreover, for any 𝑘 ⩾ 1 and 𝑥 ∈ 𝑉(𝐺), if 𝑑𝐺(𝜌, 𝑥) ⩾ 3 · 2𝑘(1+𝜀), then (2.9) gives

dist𝐺𝜔(𝜌, 𝑥) ⩾ 𝑘−12𝑘(𝑑∗−𝜀𝛼)/2 dist𝐺𝜔2𝑘
(𝜌, 𝑥) ⩾ 𝑘−12𝑘(𝑑∗−𝜀𝛼)/2𝟙𝒮2𝑘 (𝜀)(𝐺, 𝜌),

hence for all 𝑥 ∈ 𝑉(𝐺),

𝑑𝐺(𝜌, 𝑥) ∈ [3 · 2𝑘(1+𝜀) , 3 · 2(𝑘+1)(1+𝜀)) =⇒ dist𝐺𝜔(𝜌, 𝑥) ⩾
(︁
𝑑𝐺(𝜌, 𝑥)/3

)︁ (𝑑∗−𝜀𝛼)/(2(1+𝜀))
2 log(1 + 𝑑𝐺(𝜌, 𝑥))

𝟙𝒮2𝑘 (𝜀)(𝐺, 𝜌).

Now by Lemma 2.7, this shows that almost surely eventually (with respect to 𝑘),

𝑑𝐺(𝜌, 𝑥) ∈ [3 · 2𝑘(1+𝜀) , 3 · 2(𝑘+1)(1+𝜀)) =⇒ dist𝐺𝜔(𝜌, 𝑥) ⩾ 𝑑𝐺(𝜌, 𝑥)(𝑑∗−𝜀𝛼)/(2(1+𝜀))−𝜀 ,

and, therefore, almost surely eventually with respect to 𝑅,

𝑑𝐺(𝜌, 𝑥) ⩾ 𝑅 =⇒ dist𝐺𝜔(𝜌, 𝑥) ⩾ 𝑑𝐺(𝜌, 𝑥)(𝑑∗−𝜀𝛼))/(2(1+𝜀))−𝜀.

Since we can take 𝜀 > 0 arbitrarily small, the desired result follows. □

Let us now prove the lemma.

Proof of Lemma 2.6. Fix 𝑅 ⩾ 1, and define

𝒮′(𝜀, 𝑅) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑧 ∈ 𝑉(𝐺) : 1 + vol𝐺(𝑧, 4𝑅1+𝜀)(︂
max{vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝑧, 𝑅)}

)︂2 M𝐺(𝑧, 𝑅, 2𝑅1+𝜀) ⩽ 𝑅(1+𝜀)(𝑑̄ 𝑓 −𝜁̃)−2
¯
𝑑 𝑓 +𝜀

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Lemma 2.8. If (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅) and 𝑑𝐺(𝜌, 𝑧) ⩽ 𝑅, then 𝑧 ∈ 𝒮′(𝜀, 𝑅).

Proof. Note that 𝑑𝐺(𝜌, 𝑧) ⩽ 𝑅 gives

M𝐺(𝑧, 𝑅, 2𝑅1+𝜀) ⩽ M𝐺(𝜌, 2𝑅, 𝑅1+𝜀).

Similarly, we have vol𝐺(𝑧, 4𝑅1+𝜀) ⩽ vol𝐺(𝜌, 5𝑅1+𝜀), and

max
{︁
vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝑧, 𝑅)

}︁
⩾ vol𝐺(𝜌, 𝑅). □

Denote 𝑅′ := 5𝑅1+𝜀 and, recalling Section 2.1, define

𝜔(𝑧) := 𝜔∗
(𝐺,𝑧,𝑅,2𝑅1+𝜀)𝟙𝒮′(𝜀,𝑅)(𝑧) , (2.12)

where we recall the definition of 𝜔∗
(𝐻,𝑥,𝑟,𝑅) from Section 2.1. Then define: 𝜔𝑅 : 𝐸(𝐺) → ℝ+ by

𝜔̂ :=
∑︂

𝑧∈𝑼𝑅,𝑅′(𝜆)
𝜔(𝑧) ,

𝜔̃({𝑥, 𝑦}) :=

{︄
1 {𝑥, 𝑦} ⊈ 𝐵𝐺(𝑼𝑅,𝑅′(𝜆), 𝑅) and {(𝐺, 𝑥), (𝐺, 𝑦)} ∩ 𝒮(𝜀, 𝑅) ≠ ∅
0 otherwise.

𝜔𝑅 := 𝜔̂ + 𝜔̃ ,

where 𝜆 > 0 is a number (depending on 𝑅) that we will choose later.
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Lemma 2.9. If 𝑥 ∈ 𝑉(𝐺) satisfies 𝑑𝐺(𝜌, 𝑥) ⩾ 3𝑅1+𝜀, then dist𝐺𝜔𝑅 (𝜌, 𝑥) ⩾ 𝟙𝒮(𝜀,𝑅)(𝐺, 𝜌).

Proof. If 𝑑𝐺(𝜌,𝑼𝑅,𝑅′(𝜆)) > 𝑅 and (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅), then 𝜔̃({𝜌, 𝑦}) ⩾ 1 for every {𝜌, 𝑦} ∈ 𝐸(𝐺),
implying dist𝐺𝜔̃(𝜌, 𝑥) ⩾ 1.

Now suppose that 𝑧 ∈ 𝑼𝑅,𝑅′(𝜆) satisfies 𝑑𝐺(𝜌, 𝑧) ⩽ 𝑅 and (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅). By Lemma 2.8, we
have 𝑧 ∈ 𝒮′(𝜀, 𝑅), and therefore 𝜔̂ ⩾ 𝜔∗

(𝐺,𝑧,𝑅,2𝑅1+𝜀). Thus by definition,

dist𝐺𝜔𝑅 (𝜌, 𝑥) ⩾ dist𝐺𝜔∗
(𝐺,𝑧,𝑅,2𝑅1+𝜀)

(︂
𝐵𝐺(𝑧, 𝑅), 𝐵̄𝐺(𝑧, 2𝑅1+𝜀)

)︂
⩾ 1,

since 𝜌 ∈ 𝐵𝐺(𝑧, 𝑅), and 𝑥 ∉ 𝐵𝐺(𝑧, 2𝑅1+𝜀). □

What remains is to bound 𝔼[𝜔𝑅(𝑋0 , 𝑋1)2]. Use Cauchy-Schwarz to write

𝔼
[︁
𝜔̂(𝑋0 , 𝑋1)2

]︁
= 𝔼

⎡⎢⎢⎢⎢⎣⎛⎜⎝
∑︂

𝑧∈𝑼𝑅,𝑅′(𝜆)
𝜔(𝑧)(𝑋0 , 𝑋1)⎞⎟⎠

2⎤⎥⎥⎥⎥⎦
⩽ 𝔼

⎡⎢⎢⎢⎢⎣
|︁|︁𝐵𝐺(𝑋0 , 2𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)

|︁|︁ ∑︂
𝑧∈𝐵𝐺(𝑋0 ,2𝑅1+𝜀)

𝟙𝑼𝑅,𝑅′(𝜆)(𝑧)𝜔
(𝑧)(𝑋0 , 𝑋1)2

⎤⎥⎥⎥⎥⎦
= 𝔼

⎡⎢⎢⎢⎢⎣
|︁|︁𝐵𝐺(𝑋0 , 2𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)

|︁|︁ ∑︂
𝑧∈𝑉(𝐺)

𝟙𝑼𝑅,𝑅′(𝜆)(𝑧)𝜔
(𝑧)(𝑋0 , 𝑋1)2

⎤⎥⎥⎥⎥⎦ , (2.13)

where we have used the fact that 𝜔(𝑧) is supported on edges 𝑒 such that 𝑒 ⊆ 𝐵𝐺(𝑧, 2𝑅1+𝜀).
Define the functional

𝐹(𝐺, 𝑦, 𝑧, 𝑈𝑅,𝑅′(𝜆)) := 𝑐𝐺𝑦
|︁|︁𝐵𝐺(𝑦, 2𝑅1+𝜀) ∩𝑈𝑅,𝑅′(𝜆)

|︁|︁𝟙𝑈𝑅,𝑅′(𝜆)(𝑧)𝔼[𝜔
(𝑧)(𝑋0 , 𝑋1)2 | 𝑋0 = 𝑦]

so that the expression in (2.13) is equal to

𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑧∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑧,𝑼𝑅,𝑅′(𝜆))
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑧∈𝑉(𝐺)

𝐹(𝐺, 𝑧, 𝜌,𝑼𝑅,𝑅′(𝜆))
⎤⎥⎥⎥⎥⎦ ,

where the equality is a consequence of the biased Mass-Transport Principle (2.6). It follows that

𝔼
[︁
𝜔̂(𝑋0 , 𝑋1)2

]︁
⩽ 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑧∈𝑉(𝐺)

𝐹(𝐺, 𝑧, 𝜌,𝑼𝑅,𝑅′(𝜆))
⎤⎥⎥⎥⎥⎦

= 𝔼

⎡⎢⎢⎢⎢⎣
𝟙𝑼𝑅,𝑅′(𝜆)(𝜌)

𝑐𝐺𝜌

∑︂
𝑧∈𝐵𝐺(𝜌,2𝑅1+𝜀)

|︁|︁𝐵𝐺(𝑧, 2𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)
|︁|︁ 𝑐𝐺𝑧 𝔼 [︂

𝜔(𝜌)(𝑋0 , 𝑋1)2 | 𝑋0 = 𝑧
]︂⎤⎥⎥⎥⎥⎦

= 𝔼

⎡⎢⎢⎢⎢⎣
𝟙𝑼𝑅,𝑅′(𝜆)(𝜌)

𝑐𝐺𝜌

∑︂
𝑧∈𝐵𝐺(𝜌,2𝑅1+𝜀)

|︁|︁𝐵𝐺(𝑧, 2𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)
|︁|︁ ∑︂
𝑦:{𝑦,𝑧}∈𝐸(𝐺)

𝑐𝐺({𝑦, 𝑧})𝜔(𝜌)(𝑦, 𝑧)2
⎤⎥⎥⎥⎥⎦
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⩽ 𝔼

⎡⎢⎢⎢⎢⎣
𝟙𝑼𝑅,𝑅′(𝜆)(𝜌)

𝑐𝐺𝜌
|𝐵𝐺(𝜌, 4𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)|

∑︂
{𝑦,𝑧}∈𝐸(𝐺)

𝑐𝐺({𝑦, 𝑧})𝜔(𝜌)(𝑦, 𝑧)2
⎤⎥⎥⎥⎥⎦

= 𝔼

[︄
𝟙𝑼𝑅,𝑅′(𝜆)(𝜌)

𝑐𝐺𝜌

|︁|︁𝐵𝐺(𝜌, 4𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)
|︁|︁ M𝐺(𝜌, 𝑅, 2𝑅1+𝜀)𝟙𝒮′(𝜀,𝑅)(𝜌)

]︄
,

where in the last line we have used the definition of 𝜔(𝜌) from (2.12).
Now (2.4) gives, for every 𝑥 ∈ 𝐵𝐺(𝜌, 4𝑅1+𝜀),

ℙ[𝑥 ∈ 𝑼𝑅,𝑅′(𝜆) | (𝐺, 𝜌)] ⩽ 𝜆𝑐𝐺𝑥

max{vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝑥, 𝑅′)}
⩽

𝜆𝑐𝐺𝑥

max{vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝜌, 𝑅)}
,

where we have used 𝑅′ = 5𝑅1+𝜀 ⩾ 4𝑅1+𝜀 + 𝑅.
For notational convenience, define the value 𝑉 := max{vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝜌, 𝑅)}. Then the

preceding inequality yields

𝔼
[︁
𝟙𝑼𝑅,𝑅′(𝜆)(𝜌)

|︁|︁𝐵𝐺(𝜌, 4𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)
|︁|︁ | (𝐺, 𝜌)]

⩽
𝜆𝑐𝐺𝜌
𝑉

𝔼
[︁|︁|︁𝐵𝐺(𝜌, 4𝑅1+𝜀) ∩𝑼𝑅,𝑅′(𝜆)

|︁|︁ | (𝐺, 𝜌), 𝜌 ∈ 𝑼𝑅,𝑅′(𝜆)
]︁
,

and the latter expectation is∑︂
𝑥∈𝐵𝐺(𝜌,4𝑅1+𝜀)

ℙ [𝑥 ∈ 𝑼𝑅,𝑅′(𝜆) | (𝐺, 𝜌), 𝜌 ∈ 𝑼𝑅,𝑅′(𝜆)] ⩽ 1 + 𝜆
vol𝐺(𝜌, 4𝑅1+𝜀)

𝑉
,

using independence of the Bernoullis {𝒖𝑥 : 𝑥 ∈ 𝑉(𝐺)} in the sampling procedure.
Therefore,

𝔼
[︁
𝜔̂(𝑋0 , 𝑋1)2

]︁
⩽ 𝜆2 𝔼

⎡⎢⎢⎢⎢⎢⎣𝟙𝒮′(𝜀,𝑅)(𝜌)
1 + vol𝐺(𝜌, 4𝑅1+𝜀)(︂

max{vol𝐺(𝑦, 𝑅) : 𝑦 ∈ 𝐵𝐺(𝜌, 𝑅)}
)︂2 M𝐺(𝜌, 𝑅, 2𝑅1+𝜀)

⎤⎥⎥⎥⎥⎥⎦
⩽ 𝜆2𝑅(1+𝜀)(𝑑̄ 𝑓 −𝜁̃)−2

¯
𝑑 𝑓 +𝜀 ,

by definition of 𝒮′(𝜀, 𝑅).
Let us use (2.5) with 𝑟 = 𝑅 − 1 to bound

𝔼[𝜔̃(𝑋0 , 𝑋1)2] ⩽ ℙ
[︁
𝑑𝐺(𝜌,𝑼𝑅,𝑅′(𝜆)) ⩾ 𝑅 | (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅)

]︁
⩽ 𝔼

[︄
exp

(︄
−𝜆 vol𝐺(𝜌, 𝑅 − 1)

vol𝐺(𝜌, 10𝑅1+𝜀)

)︄ |︁|︁ (𝐺, 𝜌) ∈ 𝒮(𝜀, 𝑅)
]︄

⩽ exp
(︂
−𝜆𝑑∗(log𝑅)𝑅−(𝑑̄ 𝑓 −¯

𝑑 𝑓 )−(1+𝑑̄ 𝑓 )𝜀
)︂
,

where the last line follows from the definition of 𝒮(𝜀, 𝑅), and in the first line we have used that
𝜔̃(𝑋0 , 𝑋1) = 0 if (𝐺, 𝜌) ∉ 𝒮(𝜀, 𝑅).

Now choose 𝜆 := 𝑅(𝑑̄ 𝑓 −¯
𝑑 𝑓 )+(1+𝑑̄ 𝑓 )𝜀, yielding

𝔼
[︁
𝜔𝑅(𝑋0 , 𝑋1)2

]︁
⩽ 2

(︂
𝔼[𝜔̂(𝑋0 , 𝑋1)2 + 𝜔̃(𝑋0 , 𝑋1)2]

)︂
⩽ 𝑅−𝑑∗ + 𝑅−𝑑∗+𝜀(3+3𝑑̄ 𝑓 −𝜁̃) . □
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3 Markov type and the rate of escape

Our goal now is to prove Theorem 1.9. It is essentially a consequence of the fact that every 𝑁-point
metric space has maximal Markov type 2 with constant 𝑂(log𝑁) (see Section 3.2 below), and that
the random walk on a reversible random graph with almost sure subexponential growth (in the
sense of (1.21)) can be approximated, quantitatively, by a limit of random walks restricted to finite
subgraphs.

3.1 Restricted walks on clusters

Definition 3.1 (Restricted random walk). Consider a network 𝐺 = (𝑉, 𝐸, 𝑐𝐺) and a finite subset
𝑆 ⊆ 𝑉 . Let

𝑁𝐺(𝑥) := {𝑦 ∈ 𝑉 : {𝑥, 𝑦} ∈ 𝐸}
denote the neighborhood of a vertex 𝑥 ∈ 𝑉 .

Define a measure 𝜋𝑆 on 𝑆 by

𝜋𝑆(𝑥) :=
𝑐𝐺𝑥

𝑐𝐺(𝐸𝐺(𝑆))
𝟙𝑆(𝑥) , (3.1)

where 𝐸𝐺(𝑆) := {{𝑥, 𝑦} ∈ 𝐸(𝐺) : {𝑥, 𝑦} ∩ 𝑆 ≠ ∅} is the set of edges incident on 𝑆.
We define the random walk restricted to 𝑆 as the following process {𝑍𝑡}: For 𝑡 ⩾ 0, put

ℙ(𝑍𝑡+1 = 𝑦 | 𝑍𝑡 = 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐𝐺(𝐸𝐺(𝑥,𝑉\𝑆))

𝑐𝐺𝑥
𝑦 = 𝑥

𝑐𝐺({𝑥,𝑦})
𝑐𝐺𝑥

𝑦 ∈ 𝑁𝐺(𝑥) ∩ 𝑆
0 otherwise,

where we have used the notation 𝐸𝐺(𝑥,𝑈) := {{𝑥, 𝑦} ∈ 𝐸 : 𝑦 ∈ 𝑈}. It is straightforward to check
that {𝑍𝑡} is a reversible Markov chain on 𝑆 with stationary measure 𝜋𝑆. If 𝑍0 has law 𝜋𝑆, we say
that {𝑍𝑡} is the stationary random walk restricted to 𝑆.

A bond percolation on 𝐺 is a mapping 𝜉 : 𝐸(𝐺) → {0, 1}. For a vertex 𝑣 ∈ 𝑉(𝐺) and a bond
percolation 𝜉, we let 𝐾𝐺𝜉 (𝑣) denote the connected component of 𝑣 in the subgraph of 𝐺 given by
𝜉−1(1). Say that a bond percolation 𝜉 : 𝐸(𝐺) → {0, 1} is finitary if 𝐾𝐺𝜉 (𝜌) is almost surely finite. In
what follows, if 𝐻 is a subgraph of 𝐺, we use the notation 𝑐𝐺(𝐻) :=

∑︁
𝑥∈𝑉(𝐻) 𝑐

𝐺
𝑥 .

Lemma 3.2. Suppose (𝐺, 𝜌, 𝜉) is a reversible random network and 𝜉 is finitary. Let 𝜌̂ ∈ 𝑉(𝐺) be chosen
according to the measure 𝜋𝐾𝐺𝜉 (𝜌) from Definition 3.1. Then (𝐺, 𝜌) and (𝐺, 𝜌̂) have the same law.

Proof. Define the transport

𝐹(𝐺, 𝑥, 𝑦, 𝜉) := 𝑐𝐺𝑥
𝑐𝐺𝑦

𝑐𝐺(𝐾𝐺𝜉 (𝑥))
𝟙𝐾𝐺𝜉 (𝑥)

(𝑦)𝟙𝒮(𝐺, 𝑥),

where 𝒮 denotes some Borel measurable subset of G• (recall the definition from Section 2.3). Then
the biased mass-transport principle (2.6) gives

ℙ[(𝐺, 𝜌) ∈ 𝑆] = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑥, 𝜉)
⎤⎥⎥⎥⎥⎦
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= 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝑥, 𝜌, 𝜉)
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎢⎣
∑︂

𝑥∈𝐾𝐺𝜉 (𝜌)

𝑐𝐺𝑥

𝑐𝐺(𝐾𝐺𝜉 (𝜌))
𝟙𝑆(𝐺, 𝑥)

⎤⎥⎥⎥⎥⎥⎦ ,
and

ℙ[(𝐺, 𝜌̂) ∈ 𝑆] = 𝔼

⎡⎢⎢⎢⎢⎢⎣
∑︂

𝑥∈𝐾𝐺𝜉 (𝜌)

𝜋𝐾𝐺𝜉 (𝜌)
(𝑥)𝟙𝒮(𝐺, 𝑥)

⎤⎥⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎢⎣
∑︂

𝑥∈𝐾𝐺𝜉 (𝜌)

𝑐𝐺𝑥

𝑐𝐺(𝐾𝐺𝜉 (𝜌))
𝟙𝒮(𝐺, 𝑥)

⎤⎥⎥⎥⎥⎥⎦ . □

We will also need the following simple lemma relating the cardinality of clusters to their volume.

Lemma 3.3. Suppose (𝐺, 𝜌, 𝜉) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞ and 𝜉 is a finitary
bond percolation. Then,

𝔼

[︄
|𝑉(𝐾𝐺𝜉 (𝜌))|
𝑐𝐺(𝐾𝐺𝜉 (𝜌))

]︄
= 𝔼[1/𝑐𝐺𝜌 ] .

Proof. Define the transport

𝐹(𝐺, 𝑥, 𝑦, 𝜉) := 𝑐𝐺𝑥

𝟙𝐾𝐺𝜉 (𝑥)
(𝑦)

𝑐𝐺(𝐾𝐺𝜉 (𝑥))
.

Then the biased mass-transport principle (2.6) gives

𝔼

[︄
|𝑉(𝐾𝐺𝜉 (𝜌))|
𝑐𝐺(𝐾𝐺𝜉 (𝜌))

]︄
= 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑥, 𝜉)
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝑐𝐺𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝑥, 𝜌, 𝜉)
⎤⎥⎥⎥⎥⎦ = 𝔼[1/𝑐𝐺𝜌 ]. □

3.2 Maximal Markov type

A metric space (𝒳 , 𝑑𝒳) has maximal Markov type 2 with constant 𝐾 if it holds that for every finite state
space Ω, every map 𝑓 : Ω → 𝑋, and every stationary, reversible Markov chain {𝑍𝑛} on Ω,

𝔼

[︃
max
0⩽𝑡⩽𝑛

𝑑𝒳(𝑍0 , 𝑍𝑡)2
]︃
⩽ 𝐾2𝑛 𝔼

[︁
𝑑𝒳(𝑍0 , 𝑍1)2

]︁
, ∀𝑛 ⩾ 1.

This is a maximal variant of K. Ball’s Markov type [Bal92]. Note that every Hilbert space has
maximal Markov type 2 with constant 𝐾 for some universal 𝐾 (independent of the Hilbert space);
see, e.g., [NPSS06, §8]. Bourgain’s embedding theorem [Bou85] asserts that every 𝑁-point metric
space embeds into a Hilbert space with bilipschitz distortion 𝑂(log𝑁), yielding the following.

Lemma 3.4. If (𝒳 , 𝑑𝒳) is a finite metric space with 𝑁 = |𝒳|, then for every stationary, reversible Markov
chain {𝑍𝑛} on 𝒳, it holds that

𝔼

[︃
max
0⩽𝑡⩽𝑛

𝑑𝒳(𝑍0 , 𝑍𝑡)2
]︃
⩽ 𝑂(𝑛)(log𝑁)2 𝔼

[︁
𝑑𝒳(𝑍0 , 𝑍1)2

]︁
, ∀𝑛 ⩾ 1.

Note that the lemma holds vacuously when 𝑁 = 1.
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3.3 Reduction to finite subgraphs

Consider now a reversible random network (𝐺, 𝜌, 𝜔, 𝜉), where 𝜉 is a finitary bond percolation, and
define the random time

𝜏𝜉 := max{𝑡 ⩾ 0 : 𝑋0 , 𝑋1 , . . . , 𝑋𝑡 ∈ 𝐾𝐺𝜉 (𝜌)}, (3.2)

where {𝑋𝑡} is the random walk on 𝐺 with 𝑋0 = 𝜌. For a number 𝐿 ⩾ 1, let 𝒮𝐿 denote the event
{log |𝑉(𝐾𝐺𝜉 (𝜌))| ⩽ 𝐿}.

Lemma 3.5. Suppose (𝐺, 𝜌, 𝜔, 𝜉) is a reversible random network, where 𝜉 is a finitary bond percolation.
Then for any 𝐿 ⩾ 1, it holds that

𝔼

[︃
𝟙𝒮𝐿 max

0⩽𝑡⩽𝜏𝜉∧𝑛
dist𝐺𝜔(𝑋0 , 𝑋𝑡)2

]︃
⩽ 𝑂(𝑛𝐿2)𝔼

[︁
𝜔(𝑋0 , 𝑋1)2

]︁
.

Proof. Let {𝑋𝜉
𝑛 } be the restricted random walk on 𝐾𝐺𝜉 (𝜌), where 𝑋𝜉

0 has law 𝜋𝐾𝐺𝜉 (𝜌)
conditioned on

(𝐺, 𝜌, 𝜔, 𝜉). Let us furthermore use {𝑋̃𝜉
𝑛 } for the random walk on 𝐺 started from 𝑋̃𝜉

0 = 𝑋𝜉
0 , and note

that we take both {𝑋̃𝜉
𝑛 } and {𝑋𝜉

𝑛 } to be independent of the random walk {𝑋𝑛} on 𝐺 with 𝑋0 = 𝜌.
Define the sets

𝒜𝐿 :=
{︂
(𝐺0 , 𝑢, 𝜉0) : log

|︁|︁|︁𝑉(𝐾𝐺0
𝜉0
(𝑢))

|︁|︁|︁ ⩽ 𝐿}︂ ,
ℬ𝑡 :=

{︂
(𝐺0 , 𝑢, {𝑣0 , 𝑣1 , . . . , 𝑣𝑡}, 𝜉0) : 𝑣0 , 𝑣1 , . . . , 𝑣𝑡 ∈ 𝐾𝐺0

𝜉0
(𝑢)

}︂
,

where (𝐺0 , 𝑢) is a rooted graph, 𝑣0 , 𝑣1 , . . . , 𝑣𝑡 ∈ 𝑉(𝐺0), and 𝜉0 : 𝐸(𝐺) → {0, 1}.
Note that there is a natural coupling of {𝑋̃𝜉

𝑡 } and {𝑋𝜉
𝑡 } such that

(𝐺, 𝜌, {𝑋̃𝜉
𝑡 : 0 ⩽ 𝑡 ⩽ 𝑛}, 𝜉) ∈ ℬ𝑛 =⇒ {𝑋̃𝜉

0 , 𝑋̃
𝜉
1 , . . . , 𝑋̃

𝜉
𝑛 } = {𝑋𝜉

0 , 𝑋
𝜉
1 , . . . , 𝑋

𝜉
𝑛 } . (3.3)

Applying Lemma 3.4 to the stationary, reversible Markov chain {𝑋𝜉
𝑛 } on 𝐾𝐺𝜉 (𝜌) and the metric

space (𝑉(𝐾𝐺𝜉 (𝜌)), dist
𝐾𝐺𝜉 (𝜌)
𝜔 ), we obtain that almost surely over the choice of (𝐺, 𝜌, 𝜔, 𝜉),

𝔼

[︃
max
0⩽𝑡⩽𝑛

dist
𝐾𝐺𝜉 (𝜌)
𝜔 (𝑋𝜉

0 , 𝑋
𝜉
𝑡 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︃
⩽ 𝑂(𝑛)

(︂
log |𝐾𝐺𝜉 (𝜌)|

)︂2
𝔼

[︃
dist

𝐾𝐺𝜉 (𝜌)
𝜔 (𝑋𝜉

0 , 𝑋
𝜉
1 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︃

⩽ 𝑂(𝑛)
(︂
log |𝐾𝐺𝜉 (𝜌)|

)︂2
𝔼

[︂
𝜔(𝑋𝜉

0 , 𝑋
𝜉
1 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︂
.

Using the fact that dist𝐺𝜔(𝑥, 𝑦) ⩽ dist
𝐾𝐺𝜉 (𝜌)
𝜔 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉(𝐾𝐺𝜉 (𝜌)) and the definition of 𝒜𝐿

gives

𝟙𝒜𝐿((𝐺, 𝜌, 𝜉))𝔼
[︃

max
0⩽𝑡⩽𝑛

dist𝐺𝜔(𝑋𝜉
0 , 𝑋

𝜉
𝑡 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︃
⩽ 𝑂(𝑛𝐿2)𝔼

[︂
𝜔(𝑋𝜉

0 , 𝑋
𝜉
1 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︂
.

Employing the coupling given by (3.3) yields

𝟙𝒜𝐿((𝐺, 𝜌, 𝜉))𝔼
[︃

max
0⩽𝑡⩽𝑛

{︂
𝟙ℬ𝑡

(︂
(𝐺, 𝜌, {𝑋̃𝜉

𝑠 : 0 ⩽ 𝑠 ⩽ 𝑡}, 𝜉)
)︂

dist𝐺𝜔(𝑋̃𝜉
0 , 𝑋̃

𝜉
𝑡 )

2
}︂ |︁|︁ (𝐺, 𝜌, 𝜔, 𝜉)]︃
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⩽ 𝑂(𝑛𝐿2)𝔼
[︂
𝜔(𝑋𝜉

0 , 𝑋
𝜉
1 )

2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︂
,

and taking expectations gives

𝔼

[︃
𝟙𝒜𝐿((𝐺, 𝜌, 𝜉)) max

0⩽𝑡⩽𝑛

{︂
𝟙ℬ𝑡

(︂
(𝐺, 𝜌, {𝑋̃𝜉

𝑡 : 0 ⩽ 𝑠 ⩽ 𝑡}, 𝜉)
)︂

dist𝐺𝜔(𝑋̃𝜉
0 , 𝑋̃

𝜉
𝑡 )

2
}︂]︃
⩽ 𝑂(𝑛𝐿2)𝔼

[︁
𝜔(𝑋0 , 𝑋1)2

]︁
(3.4)

where for the right-hand side, we have used Lemma 3.2 to conclude that (𝐺, 𝑋0) (recall 𝑋0 = 𝜌) and
(𝐺, 𝑋𝜉

0 ) have the same law, and we have used the fact that the steps (𝑋𝜉
0 , 𝑋

𝜉
1 ) of the restricted walk

can be coupled to (𝑋0 , 𝑋1) so that when 𝑋1 ≠ 𝑋𝜉
1 , we have 𝑋1 = 𝑋0.

Let us now make a key observation: The left-hand side of (3.4) is equal to

𝔼

[︃
𝟙𝒜𝐿

(︂
(𝐺, 𝑋̃𝜉

0 , 𝜉)
)︂

max
0⩽𝑡⩽𝑛

{︂
𝟙ℬ𝑡

(︂
(𝐺, 𝑋̃𝜉

0 , {𝑋̃
𝜉
𝑡 : 0 ⩽ 𝑠 ⩽ 𝑡}, 𝜉)

)︂
dist𝐺𝜔(𝑋̃𝜉

0 , 𝑋̃
𝜉
𝑡 )

2
}︂]︃
,

since 𝐾𝐺𝜉 (𝜌) = 𝐾𝐺𝜉 (𝑋̃
𝜉
0 ).

Now Lemma 3.2 shows that (𝐺, 𝑋0 , 𝑋1 , . . . , 𝑋𝑛) and (𝐺, 𝑋̃𝜉
0 , 𝑋̃

𝜉
1 , . . . , 𝑋̃

𝜉
𝑛 ) have the same law,

hence (3.4) gives

𝔼

[︃
𝟙𝒜𝐿((𝐺, 𝜌, 𝜉)) max

0⩽𝑡⩽𝑛

{︁
𝟙ℬ𝑡 ((𝐺, 𝜌, {𝑋𝑠 : 0 ⩽ 𝑠 ⩽ 𝑡}, 𝜉))dist𝐺𝜔(𝑋0 , 𝑋𝑡)2

}︁]︃
⩽ 𝑂(𝑛𝐿2)𝔼[𝜔(𝑋0 , 𝑋1)2],

which is the claimed bound. □

3.3.1 A unimodular random partitioning scheme

We need a unimodular random partitioning scheme that adapts to the volume measure. Here we
state it for any unimodular vertex measure. This argument employs a unimodular variation on the
method and analysis from [CKR01], adapted to an arbitrary underlying measure as in [KLMN05].
We will use the notation diam𝐺(𝑆) := max{dist𝐺(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑆}.

Lemma 3.6. Suppose (𝐺, 𝜌, 𝜇) is a reversible random network, where 𝜇 : 𝑉(𝐺) → ℝ+ satisfies 𝜇(𝜌) > 0
almost surely. Then for every Δ > 0, there is a bond percolation 𝜒Δ : 𝐸(𝐺) → {0, 1} such that

1. (𝐺, 𝜌, 𝜒Δ) is a reversible random network.

2. Almost surely diam𝐺(𝐾𝐺𝜒Δ
(𝜌)) ⩽ Δ.

3. For every 𝑟 ⩾ 0, it holds that almost surely

ℙ
[︁
𝐵𝐺(𝜌, 𝑟) ⊈ 𝐾𝐺𝜒Δ

(𝜌) | (𝐺, 𝜌)
]︁
⩽

16𝑟
Δ

(︄
1 + log

(︄
𝜇

(︁
𝐵𝐺(𝜌, 5

8Δ)
)︁

𝜇
(︁
𝐵𝐺(𝜌, 1

8Δ
)︁ )︄)︄

,

where we use the notation 𝜇(𝑆) :=
∑︁
𝑥∈𝑆 𝜇(𝑥) for 𝑆 ⊆ 𝑉(𝐺).
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Proof. By assumption, 𝐺 is locally finite, hence 𝐵𝐺(𝜌,Δ) is finite. Thus we may assume that 𝜇(𝑥) > 0
for all 𝑥 ∈ 𝑉(𝐺) as follows: Define 𝜇̂(𝑥) = 𝜇(𝑥) if 𝜇(𝑥) > 0 and 𝜇̂(𝑥) = 1 otherwise. We may
then prove the lemma for 𝜇̂, and observe that because properties (2) and (3) only refer to finite
neighborhoods of the root, 𝜇 and 𝜇̂ are identical on these neighborhoods, except for a set of zero
measure.

Let {𝛽𝑥 : 𝑥 ∈ 𝑉(𝐺)} be a sequence of independent random variables where 𝛽𝑥 is an exponential
with rate 𝜇(𝑥). Let 𝑅 ∈ [Δ4 , Δ2 ) be independent and chosen uniformly random. For a finite subset
𝑆 ⊆ 𝑉(𝐺), write 𝜇(𝑆) :=

∑︁
𝑥∈𝑆 𝜇(𝑥). We need the following elementary lemma.

Lemma 3.7. For any finite subset 𝑆 ⊆ 𝑉(𝐺), it holds that

ℙ [𝛽𝑥 = min{𝛽𝑣 : 𝑣 ∈ 𝑆} | (𝐺, 𝜇)] =
𝜇(𝑥)
𝜇(𝑆) , ∀𝑥 ∈ 𝑆.

Proof. A straightforward calculation shows that min{𝛽𝑣 : 𝑣 ∈ 𝑆 \ {𝑥}} is exponential with rate
𝜇(𝑆 \ {𝑥}). Moreover, if 𝛽 and 𝛽′ are independent exponentials with rates 𝜆 and 𝜆′, respectively,
then

ℙ[𝛽 = min(𝛽, 𝛽′)] = 𝜆
𝜆 + 𝜆′ . □

Define a labeling ℓ : 𝑉(𝐺) → 𝑉(𝐺), where ℓ (𝑥) ∈ 𝐵𝐺(𝑥, 𝑅) is such that

𝛽ℓ (𝑥) = min
{︁
𝛽𝑦 : 𝑦 ∈ 𝐵𝐺(𝑥, 𝑅)

}︁
.

Define the bond percolation 𝜒Δ by

𝜒Δ({𝑥, 𝑦}) := 𝟙{ℓ (𝑥)=ℓ (𝑦)} , {𝑥, 𝑦} ∈ 𝐸(𝐺).

In other words, we remove edges whose endpoints receive different labels.
Since the law of 𝜒Δ does not depend on 𝜌 (cf. the discussion in Section 2.3), it follows that

(𝐺, 𝜌, 𝜒Δ) is a reversible random network, yielding claim (1). Moreover, since ℓ (𝑥) = 𝑧 implies that
dist𝐺(𝑥, 𝑧) ⩽ 𝑅 ⩽ Δ, it holds that almost surely

diam𝐺(𝐾𝐺𝜒Δ
(𝜌)) = diam𝐺(ℓ−1(ℓ (𝜌))) ⩽ Δ,

yielding claim (2).
Since the statement of the lemma is vacuous for 𝑟 > Δ/8, consider some 𝑟 ∈ [0,Δ/8]. Let

𝑥∗ ∈ 𝐵𝐺(𝜌, 𝑟 + 𝑅) be such that

𝛽𝑥∗ = min
{︁
𝛽𝑥 : 𝑥 ∈ 𝐵𝐺(𝜌, 𝑅 + 𝑟)

}︁
.

Then we have
ℙ

[︁
𝐵𝐺(𝜌, 𝑟) ⊈ 𝐾𝐺𝜒Δ

(𝜌)
]︁
⩽ ℙ

[︁
dist𝐺(𝜌, 𝑥∗) ⩾ 𝑅 − 𝑟

]︁
. (3.5)

For 𝑥 ∈ 𝐵𝐺(𝜌, 2Δ), define the interval 𝐼(𝑥) := [dist𝐺(𝜌, 𝑥) − 𝑟, dist𝐺(𝜌, 𝑥) + 𝑟]. Note that the bad
event {dist𝐺(𝜌, 𝑥∗) ⩾ 𝑅 − 𝑟} coincides with the event {𝑅 ∈ 𝐼(𝑥∗)}. Order the points of 𝐵𝐺(𝜌, 2Δ) in
non-decreasing order from 𝜌: 𝑥0 = 𝜌, 𝑥1 , 𝑥2 , . . . , 𝑥𝑁 . Then (3.5) yields

ℙ
[︁
𝐵𝐺(𝜌, 𝑟) ⊈ 𝐾𝐺𝜒Δ

(𝜌)
]︁
⩽ ℙ[𝑅 ∈ 𝐼(𝑥∗)]
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=

𝑁∑︂
𝑗=1

ℙ[𝑅 ∈ 𝐼(𝑥 𝑗)] · ℙ[𝑥 𝑗 = 𝑥∗ | 𝑅 ∈ 𝐼(𝑥 𝑗)]

⩽
2𝑟
Δ/8

𝑁∑︂
𝑗=1

ℙ[𝑥 𝑗 = 𝑥∗ | 𝑅 ∈ 𝐼(𝑥 𝑗)]. (3.6)

Note that since 𝑅 ⩾ Δ/4 and 𝑟 ⩽ Δ/8,

𝑅 ∈ 𝐼(𝑥 𝑗) =⇒ 𝑥 𝑗 ∈ 𝐵𝐺(𝜌, 5
8Δ) \ 𝐵

𝐺(𝜌, 1
8Δ).

Observe, moreover, that 𝑅 ∈ 𝐼(𝑥 𝑗) implies 𝑥1 , 𝑥2 , . . . , 𝑥 𝑗 ∈ 𝐵𝐺(𝜌, 𝑅 + 𝑟), hence

ℙ[𝑥 𝑗 = 𝑥∗ | 𝑅 ∈ 𝐼(𝑥 𝑗)] = ℙ
[︁
𝛽𝑥 𝑗 = min

{︁
𝛽𝑥 : 𝑥 ∈ 𝐵𝐺(𝜌, 𝑅 + 𝑟)

}︁
| 𝑅 ∈ 𝐼(𝑥 𝑗)

]︁
⩽

𝜇(𝑥 𝑗)
𝜇({𝑥1 , 𝑥2 , . . . , 𝑥 𝑗})

,

where the last inequality follows from Lemma 3.7.
Plugging these bounds into (3.6) gives

ℙ
[︁
𝐵𝐺(𝜌, 𝑟) ⊈ 𝐾𝐺𝜒Δ

(𝜌)
]︁
⩽

16𝑟
Δ

|𝐵𝐺(𝜌, 5
8Δ)|∑︂

𝑗=|𝐵𝐺(𝜌, 1
8Δ)|+1

𝜇(𝑥 𝑗)
𝜇(𝑥1) + · · · + 𝜇(𝑥 𝑗)

.

Finally, observe that for any 𝑎0 , 𝑎1 , 𝑎2 , . . . , 𝑎𝑚 > 0,
𝑚∑︂
𝑗=1

𝑎 𝑗

𝑎0 + 𝑎1 + 𝑎2 + · · · + 𝑎 𝑗
=

𝑚∑︂
𝑗=1

𝑎 𝑗/𝑎0

1 + 𝑎1/𝑎0 + · · · + 𝑎 𝑗/𝑎0

⩽

∫ (𝑎1+···+𝑎𝑚)/𝑎0

0

1
𝑡 + 1 𝑑𝑡 = log

(︃
1 + 𝑎1 + · · · + 𝑎𝑚

𝑎0

)︃
,

and therefore

ℙ
[︁
𝐵𝐺(𝜌, 𝑟) ⊈ 𝐾𝐺𝜒Δ

(𝜌)
]︁
⩽

16𝑟
Δ

log

(︄
1 +

𝜇(𝐵𝐺(𝜌, 5
8Δ))

𝜇(𝐵𝐺(𝜌, 1
8Δ))

)︄
,

as desired (noting that log(1 + 𝑦) ⩽ 1 + log(𝑦) for 𝑦 ⩾ 1). □

3.4 Proof of Theorem 1.9

The next lemma outlines our strategy for proving Theorem 1.9.

Lemma 3.8. Suppose (𝐺, 𝜌, 𝜔, 𝜉) is a reversible random network and for every 0 < 𝜀 < 1, there is a sequence
of events {ℰ𝑘 : 𝑘 ⩾ 1} such that each ℰ𝑘 is measurable with respect to the 𝜎-algebra generated by (𝐺, 𝜌, 𝜔, 𝜉),
and such that:

1. Almost surely, ℰ𝑘 holds for all but finitely many 𝑘.

2. It holds that for all 𝑘 ⩾ 1,

𝔼

[︃
𝟙ℰ𝑘 max

0⩽𝑡⩽4(1−𝜀)𝑘
dist𝐺𝜔(𝑋0 , 𝑋𝑡)2

]︃
⩽ 4(1+𝜀)𝑘 . (3.7)

25



Then (1.23) holds.

The reader should take note of the crucial property: The events {ℰ𝑘} are independent of the
random walk {𝑋𝑡}, conditioned on (𝐺, 𝜌).

Proof. Using assumption (2) in conjunction with Markov’s inequality and the Borel-Cantelli Lemma,
it holds that almost surely, for all but finitely many 𝑘,

𝟙ℰ𝑘 𝔼

[︃
max

0⩽𝑡⩽4(1−𝜀)𝑘
dist𝐺𝜔(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔, 𝜉)

]︃
⩽ 4(1+2𝜀)𝑘 ,

where expectation is taken over the random walk {𝑋𝑡}. Now using assumption (1) yields that
almost surely, for all but finitely many 𝑘,

𝔼

[︃
max

0⩽𝑡⩽4(1−𝜀)𝑘
dist𝐺𝜔(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔, 𝜉)

]︃
⩽ 4(1+2𝜀)𝑘 ,

and as a consequence, for all but finitely many 𝑛,

𝔼

[︃
max
0⩽𝑡⩽𝑛

dist𝐺𝜔(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔, 𝜉)
]︃
⩽ 41+2𝜀𝑛(1+2𝜀)/(1−𝜀).

Since this holds for every 𝜀 > 0, (1.23) follows. □

With this in hand, we can proceed to our goal of proving Theorem 1.9.

Proof of Theorem 1.9. Recall that (𝐺, 𝜌, 𝜔) is a reversible random network and {𝑋𝑛} is the random
walk on 𝐺 started from 𝑋0 = 𝜌.

Define the random vertex measure 𝜇(𝑥) := 𝑐𝐺𝑥 for 𝑥 ∈ 𝑉(𝐺). For each 𝑘 ⩾ 1, let 𝜉𝑘 := 𝜒4𝑘
denote the bond percolation provided by applying Lemma 3.6 with 𝜇 and Δ = 4𝑘 , where we take
the sequence {𝜉𝑘 : 𝑘 ⩾ 1} to be mutually independent given (𝐺, 𝜌). This makes the ensemble
(𝐺, 𝜌, 𝜔, ⟨𝜉𝑘 : 𝑘 ⩾ 1⟩) a reversible random network.

Denote
𝒏𝑘 := 4𝑘

16𝑘2
(︃
1 + log vol𝐺(𝜌,4𝑘 )

𝑐𝐺𝜌

)︃ (3.8)

so that according to the guarantees of Lemma 3.6, for 𝑘 ⩾ 1, almost surely,

𝑉(𝐾𝐺𝜉𝑘 (𝜌)) ⊆ 𝐵𝐺(𝜌, 4𝑘) , (3.9)

ℙ[𝐵𝐺(𝜌, 𝒏𝑘) ⊈ 𝑉(𝐾𝐺𝜉𝑘 (𝜌)) | (𝐺, 𝜌, 𝜔)] ⩽ 𝑂(𝑘−2) . (3.10)

Define the events:

𝒜𝑘 :=
{︂
𝐵𝐺(𝜌, 𝒏𝑘) ⊆ 𝑉(𝐾𝐺𝜉𝑘 (𝜌))

}︂
ℬ𝑘(𝜀) :=

{︁
log vol𝐺(𝜌, 4𝑘) ⩽ 4𝜀𝑘

}︁
𝒞𝑘 :=

{︂
|𝑉(𝐾𝐺𝜉 (𝜌))| ⩽ 𝑘

2𝑐𝐺(𝐾𝐺𝜉 (𝜌))
}︂

𝒟𝑘 :=
{︂
𝑐𝐺𝜌 ⩾ 𝑘

−2
}︂
.

26



Lemma 3.9. For every 𝜀 > 0, almost surely 𝒜𝑘 ,ℬ𝑘(𝜀), 𝒞𝑘 ,𝒟𝑘 hold for all but finitely many 𝑘.

Proof. For 𝒜𝑘 , this follows from an application of the Borel-Cantelli Lemma and (3.10). For 𝒟𝑘 ,
this similarly follows from the the fact that 𝑐𝐺𝜌 is almost surely positive. For ℬ𝑘(𝜀), this follows from
the assumption (1.21). Finally, for 𝒞𝑘 this follows from another application of Markov’s inequality
and the Borel-Cantelli Lemma in conjunction with Lemma 3.3 and the fact that 𝔼[1/𝑐𝐺𝜌 ] < ∞. □

In light of Lemma 3.8, the next lemma suffices to complete the proof of Theorem 1.9.

Lemma 3.10. Consider 𝜀 > 0 and the event ℰ𝑘 := 𝒜𝑘 ∩ ℬ𝑘(𝜀) ∩ 𝒞𝑘(𝜀) ∩ 𝒟𝑘 . Then,

𝔼

[︃
𝟙ℰ𝑘 max

0⩽𝑡⩽4(1−2𝜀)𝑘
dist𝐺𝜔(𝑋0 , 𝑋𝑡)2

]︃
⩽ 4(1+5𝜀)𝑘 . (3.11)

Proof. Note first that for 𝑘 sufficiently large,

ℬ𝑘(𝜀) ∩ 𝒟𝑘 =⇒ 𝒏𝑘 ⩾ 4(1−2𝜀)𝑘 .

Moreover, (3.9) gives, for 𝑘 sufficiently large,

ℬ𝑘(𝜀) ∩ 𝒞𝑘 =⇒ log |𝑉(𝐾𝐺𝜉 (𝜌))| ⩽ 42𝜀𝑘 .

Finally, we have 𝒜𝑘 =⇒ 𝜏𝜉𝑘 ⩾ 𝒏𝑘 , where we recall the definition of 𝜏𝜉𝑘 from (3.2).
Thus applying Lemma 3.5 with 𝜉 = 𝜉̂𝑘 and 𝐿 = 42𝜀𝑘 gives that, for 𝑘 sufficiently large,

𝔼

[︃
𝟙ℰ𝑘 max

0⩽𝑡⩽4(1−2𝜀)𝑘
dist𝐺𝜔 (𝑋0 , 𝑋𝑡)2

]︃
⩽ 𝑂(4(1+4𝜀)𝑘)𝔼[𝜔(𝑋0 , 𝑋1)2].

Since 𝔼[𝜔(𝑋0 , 𝑋1)2] < ∞ by assumption, it follows that (3.11) holds for 𝑘 sufficiently large. □

□

4 Exponent relations

Let us first prove Theorem 1.6. In Section 4.3, we apply our main theorem to some random network
models.

4.1 The speed upper bound

The next theorem verifies (1.13).

Theorem 4.1. If (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝑐𝐺𝜌 ] < ∞, then
¯
𝛽𝒜 ⩾ 4

¯
𝑑 𝑓 − 3𝑑̄ 𝑓 + 𝜁̃.

Proof. Recall that {𝑋𝑛} is the random walk on 𝐺 (cf. (1.8)) started from 𝑋0 = 𝜌. Let us denote
𝑑∗ := 4

¯
𝑑 𝑓 − 3𝑑̄ 𝑓 + 𝜁̃. If 𝑑∗ ⩽ 2, we can use the weight 𝜔 ≡ 1 for which dist𝐺𝜔 = 𝑑𝐺, and (1.23) yields

¯
𝛽𝒜 ⩾ 2. Consider now 𝑑∗ > 2 and fix 𝛿 ∈ (0, 𝑑∗ − 2). Apply Theorem 2.5 to arrive at a reversible
random weight 𝜔 : 𝐸(𝐺) → ℝ+ such that 𝔼[𝜔(𝑋0 , 𝑋1)2] < ∞ and almost surely eventually (with
respect to 𝑅),

dist𝐺𝜔(𝜌, 𝐵̄𝐺(𝜌, 𝑅)) ⩾ 𝑅(𝑑∗−𝛿)/2. (4.1)
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Now, since 𝑑̄ 𝑓 < ∞, it follows that (1.21) holds, and we can apply Theorem 1.9 to (𝐺, 𝜌, 𝜔)
yielding: Almost surely eventually (with respect to 𝑛),

𝔼

[︃
max
0⩽𝑡⩽𝑛

dist𝐺𝜔(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔)
]︃
⩽ 𝑛1+𝛿 .

Combining this with (4.1) yields almost surely eventually

𝔼

[︃
max
0⩽𝑡⩽𝑛

𝑑𝐺(𝑋0 , 𝑋𝑡)𝑑∗−𝛿 | (𝐺, 𝜌, 𝜔)
]︃
⩽ 𝑛1+𝛿 .

Now since 𝑑∗ − 𝛿 > 2, convexity of 𝑦 ↦→ 𝑦(𝑑∗−𝛿)/2 gives

𝔼

[︃
max
0⩽𝑡⩽𝑛

𝑑𝐺(𝑋0 , 𝑋𝑡)2 | (𝐺, 𝜌, 𝜔)
]︃
⩽ 𝑛2(1+𝛿)/(𝑑∗−𝛿).

Since we can take 𝛿 > 0 arbitrarily small, this yields
¯
𝛽𝒜 ⩾ 𝑑∗, completing the proof. □

4.2 Effective resistance and the Green kernel

For the present subject, we assume only that (𝐺, 𝜌) is a random rooted network (i.e., we will not
employ reversibility). First, let us recall the standard relationship between effective resistances and
commute times [CRR+97] gives the following.

Lemma 4.2. For any 𝑅 ⩾ 1, almost surely:

𝔼[𝜎𝑅 | (𝐺, 𝜌), 𝑋0 = 𝜌] ⩽ R𝐺
eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅)) vol𝐺(𝜌, 𝑅).

This immediately yields (1.18):

Theorem 4.3. It holds that 𝑑̄𝒜𝑤 ⩽ 𝑑̄ 𝑓 + 𝜁̃0.

Let us now prove the upper and lower bounds in (1.19).

Theorem 4.4. It holds that

𝑑̄𝑠 ⩽
2𝑑̄ 𝑓

¯
𝑑𝑤

.

Proof. Using reversibility of the random walk conditioned on (𝐺, 𝜌), we have almost surely

𝑝𝐺2𝑛(𝜌, 𝜌) ⩾
∑︂

𝑥∈𝐵𝐺(𝜌,𝑅)
𝑝𝐺𝑛 (𝜌, 𝑥)𝑝𝐺𝑛 (𝑥, 𝜌) = 𝑐𝐺𝜌

∑︂
𝑥∈𝐵𝐺(𝜌,𝑅)

𝑝𝐺𝑛 (𝜌, 𝑥)2

𝑐𝐺𝑥
.

Thus applying Cauchy-Schwarz yields

𝑝𝐺2𝑛(𝜌, 𝜌)
𝑐𝐺𝜌

⩾

(︂∑︁
𝑥∈𝐵𝐺(𝜌,𝑅) 𝑝

𝐺
𝑛 (𝜌, 𝑥)

)︂2

vol𝐺(𝜌, 𝑅)
⩾

(︁
ℙ[𝑋𝑛 ∈ 𝐵𝐺(𝜌, 𝑅) | (𝐺, 𝜌)]

)︁2

vol𝐺(𝜌, 𝑅)
. (4.2)
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Observe that
ℙ[𝑋𝑛 ∈ 𝐵𝐺(𝜌, 𝑅) | (𝐺, 𝜌)] ⩾ ℙ[𝜎𝑅 > 𝑛 | (𝐺, 𝜌)]. (4.3)

By definition, for every 𝛿 > 0, almost surely eventually (with respect to 𝑅), 𝜎𝑅 > 𝑅¯
𝑑𝑤−𝛿 and

vol𝐺(𝜌, 𝑅) ⩽ 𝑅𝑑̄ 𝑓 +𝛿. Combining these with (4.2) and (4.3) gives almost surely eventually (with
respect to 𝑛),

𝑝𝐺2𝑛(𝜌, 𝜌)
𝑐𝐺𝜌

⩾
(︂
vol𝐺

(︂
𝜌, 𝑛1/(

¯
𝑑𝑤−𝛿)

)︂)︂−1
⩾ 𝑛−(𝑑̄ 𝑓 +𝛿)/(¯

𝑑𝑤−𝛿).

As this holds for every 𝛿 > 0, it yields the claimed inequality. □

We now move on to the lower bound in (1.19). Define the random variable

𝑍𝑛 :=
𝑛∑︂
𝑡=1

𝟙{𝑋𝑡=𝜌} .

We need a preliminary application of the 2nd moment method.

Lemma 4.5. Suppose that 𝑝𝐺2𝑛(𝜌, 𝜌) ⩾ 𝑛𝜀−1 for some 𝑛 ⩾ 1 and 𝜀 > 0. Then,

ℙ

[︃
𝑍2𝑛 ⩾

1
2𝑛

𝜀
|︁|︁ (𝐺, 𝜌)]︃ ⩾ 1

12 .

Proof. For the proof that follows, we condition on (𝐺, 𝜌) and recall that 𝑋0 = 𝜌. Define 𝑞𝑡 := 𝑝𝐺𝑡 (𝜌, 𝜌).
Then,

𝔼[𝑍2𝑛] = 𝑞1 + 𝑞2 + · · · + 𝑞2𝑛 ,

𝔼[𝑍2
2𝑛] =

2𝑛∑︂
𝑡=1

𝑞𝑡 + 2
2𝑛∑︂
𝑡=1

2𝑛∑︂
𝑠=𝑡+1

ℙ[𝑋𝑡 = 𝜌, 𝑋𝑠 = 𝜌]

= 𝔼[𝑍2𝑛] + 2
2𝑛∑︂
𝑡=1

2𝑛−𝑡∑︂
𝑠=1

𝑞𝑡𝑞𝑠 ,

where in the final equality we have used the Markov property ℙ[𝑋𝑠 = 𝜌 | 𝑋𝑡 = 𝜌] = ℙ[𝑋𝑠−𝑡 = 𝜌].
Since the even return times are non-increasing (see, e.g., [LPW09, Prop. 10.18]), we have

𝑞2𝑗 ⩾ 𝑞2𝑛 ⩾ 𝑛𝜀−1 for all 𝑗 = 1, 2, . . . , 𝑛, hence

𝔼[𝑍2𝑛] ⩾ 𝑛 · 𝑛𝜀−1 = 𝑛𝜀. (4.4)

In particular, (𝔼[𝑍2𝑛])2 ⩾ 𝔼[𝑍2𝑛], and therefore

3 (𝔼[𝑍2𝑛])2 ⩾ 𝔼[𝑍2𝑛] + 2 (𝑞1 + 𝑞2 + · · · + 𝑞2𝑛)2 ⩾ 𝔼[𝑍2
2𝑛].

The Payley-Zygmund inequality now asserts that

ℙ

(︃
𝑍2𝑛 ⩾

1
2 𝔼[𝑍2𝑛]

)︃
⩾

1
4
(𝔼[𝑍2𝑛])2

𝔼[𝑍2
2𝑛]

⩾
1
12 .

Combined with (4.4), this yields the desired bound. □
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Corollary 4.6. For any 𝜀 > 0, it holds that if 𝑍2𝑛 ⩽
1
2𝑛

𝜀 almost surely eventually, then 𝑝𝐺2𝑛(𝜌, 𝜌) ⩽ 𝑛𝜀−1

almost surely eventually.

Proof. Suppose ℰ is the event that 𝑝𝐺2𝑛(𝜌, 𝜌) > 𝑛𝜀−1 infinitely often. Then Lemma 4.5 gives

1
12 ⩽ lim inf

𝑛→∞
ℙ[𝑍2𝑛 ⩾

1
2𝑛

𝜀 | ℰ] ⩽ ℙ[𝑍2𝑛 ⩾
1
2𝑛

𝜀 infinitely often | ℰ] ,

where the latter inequality is a consequence of Fatou’s Lemma. Thus if 𝑍2𝑛 ⩽
1
2𝑛

𝜀 almost surely
eventually, we must have ℙ(ℰ) = 0. □

Definition 4.7 (Green kernels). For 𝑆 ⊆ 𝑉(𝐺), let 𝜏𝑆 := min{𝑛 ⩾ 0 : 𝑋𝑛 ∈ 𝑆}, and define the Green
kernel killed off 𝑆 by

g𝐺𝑆 (𝑥, 𝑦) := 𝔼

⎡⎢⎢⎢⎢⎣
∑︂

0<𝑡<𝜏𝑉(𝐺)\𝑆

𝟙{𝑋𝑡=𝑦}
|︁|︁ 𝑋0 = 𝑥

⎤⎥⎥⎥⎥⎦ .
It is well-known (see [LP16, Ch. 2]) that for any 𝑥 ∈ 𝑉(𝐺) and 𝑆 ⊆ 𝑉(𝐺):

𝑐𝐺𝑥 R𝐺
eff(𝑥 ↔ 𝑉(𝐺) \ 𝑆) = g𝐺𝑆 (𝑥, 𝑥) . (4.5)

Theorem 4.8. It holds that

¯
𝑑𝑠 ⩾ 2

(︃
1 − 𝜁̃0

¯
𝑑𝑤

)︃
.

Proof. Fix 𝛿 > 0. Define the random variable

𝑍̃𝑛 :=
∑︂

0<𝑡<𝜏𝑆𝑛

𝟙{𝑋𝑡=𝜌} ,

where 𝑆𝑛 := 𝐵̄𝐺(𝜌, 𝑛1/(
¯
𝑑𝑤−𝛿)). Then we have:

𝔼[𝑍̃𝑛 | (𝐺, 𝜌)] = g𝐺𝑆𝑛 (𝜌, 𝜌)
(4.5)
= 𝑐𝐺𝜌 R𝐺

eff

(︂
𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑛1/(

¯
𝑑𝑤−𝛿))

)︂
⩽ 𝑐𝐺𝜌 𝑛

(𝜁̃0+𝛿)/(¯
𝑑𝑤−𝛿) ,

where the latter inequality holds almost surely for 𝑛 sufficiently large, by the definition of 𝜁̃0.
Now Markov’s inequality and the Borel-Cantelli Lemma (recall Lemma 1.8) give that almost

surely eventually
𝑍̃𝑛 ⩽ 𝑐

𝐺
𝜌 𝑛

𝛿+(𝜁̃0+𝛿)/(¯
𝑑𝑤−𝛿) .

For convenience, let us note the consequence: Almost surely eventually,

𝑍̃𝑛 ⩽
1
2𝑛

2𝛿+(𝜁̃0+𝛿)/(¯
𝑑𝑤−𝛿) .

By definition of
¯
𝑑𝑤 , it holds that almost surely eventually 𝑋1 , . . . , 𝑋2𝑛 ∈ 𝐵𝐺(𝜌, 𝑛1/

¯
𝑑𝑤−𝛿) and

therefore almost surely eventually,

𝑍2𝑛 ⩽ 𝑍̃𝑛 ⩽
1
2𝑛

2𝛿+(𝜁̃0+𝛿)/(¯
𝑑𝑤−𝛿).

From Corollary 4.6, we conclude that almost surely eventually

𝑝𝐺2𝑛(𝜌, 𝜌) ⩽ 𝑛
−1+2𝛿+(𝜁̃0+𝛿)/(¯

𝑑𝑤−𝛿).

Since this holds for every 𝛿 > 0, we conclude that
¯
𝑑𝑠 ⩾ 2(1 − 𝜁̃0/¯

𝑑𝑤), as desired. □
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4.2.1 Comparison to the strongly recurrent regime

Finally, let us prove that the assumptions (1.11) and (1.12) imply 𝜁̃ = 𝜁̃0 in the case 𝜁 > 0. The first
part of the argument follows [BCK05, §3.2].

Theorem 4.9. If (1.11) and (1.12) hold for some 𝜁 > 0, then 𝜁̃ = 𝜁̃0 = 𝜁.

Proof. First note that if 𝑑𝐺(𝜌, 𝑥) = 𝑅 + 1, then

R𝐺
eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅)) ⩽ R𝐺

eff(𝜌 ↔ 𝑥)
(1.11)
⩽ (𝑅 + 1)𝜁̃+𝛿 , (4.6)

hence (1.11) yields
𝜁̃0 ⩽ 𝜁. (4.7)

Thus we are left to prove that 𝜁̃ ⩾ 𝜁.
For 𝑦 ∈ 𝑉(𝐺) and 𝑅 ⩾ 1, define

𝑄𝑅
𝜌 (𝑦) := ℙ

[︂
𝜏{𝜌} < 𝜏𝐵̄𝐺(𝜌,𝑅) | 𝑋0 = 𝑦

]︂
=
𝑐𝐺𝜌

𝑐𝐺𝑦

g𝐵𝐺(𝜌,𝑅)(𝜌, 𝑦)
g𝐵𝐺(𝜌,𝑅)(𝜌, 𝜌)

, (4.8)

where the latter equality arises because both𝑄𝑅
𝜌 and the function 𝑦 ↦→ g𝐵𝐺(𝜌,𝑅)(𝜌, 𝑦)/𝑐𝐺𝑦 are harmonic

on 𝐵𝐺(𝜌, 𝑅) \ {𝜌}. Moreover, 𝑄𝑅
𝜌 and the right-hand side vanish on 𝐵̄𝐺(𝜌, 𝑅) and are equal to 1 at 𝜌.

Hence, the Dirichlet principle (2.3) yields

E𝐺(𝑄𝑅
𝜌 ) =

1
R𝐺

eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅))
. (4.9)

In particular, we have|︁|︁|︁1 −𝑄𝑅
𝜌 (𝑦)

|︁|︁|︁2 =

|︁|︁|︁𝑄𝑅
𝜌 (𝜌) −𝑄𝑅

𝜌 (𝑦)
|︁|︁|︁2 ⩽ R𝐺

eff(𝜌 ↔ 𝑦) E𝐺(𝑄𝑅
𝜌 ) =

R𝐺
eff(𝜌 ↔ 𝑦)

R𝐺
eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅))

, (4.10)

where the inequality is another application of the Dirichlet principle (2.3).
Assume now that 𝜁 > 0, and fix 𝛿 ∈ (0, 𝜁). Denote 𝑅′ := 𝑅(𝜁+2𝛿)/(𝜁−𝛿) and 𝑄𝜌 := 𝑄𝑅′

𝜌 . Using
(1.11) and (1.12), we have almost surely eventually

max{R𝐺
eff(𝜌 ↔ 𝑥) : 𝑥 ∈ 𝐵𝐺(𝜌, 𝑅)} ⩽ 𝑅𝜁+𝛿 , (4.11)

R𝐺
eff

(︂
𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅′)

)︂
⩾ 𝑅𝜁+2𝛿 . (4.12)

So by (4.10), almost surely eventually

min
{︁
𝑄𝜌(𝑦) : 𝑦 ∈ 𝐵𝐺(𝜌, 𝑅)

}︁
⩾ 1 − 𝑅−𝛿/2 >

1
2 . (4.13)

Remark 4.10. Here one notes that this conclusion cannot be reached for 𝜁 = 0 because we cannot
choose 𝑅′ large enough with respect to 𝑅 so as to create a gap between the respective upper and
lower bounds in (4.11) and (4.12). Indeed, it is this sort of gap that Telcs defines as “strongly
recurrent” (see [Tel01, Def. 2.1]), although his quantitative notion (which requires a uniform
multiplicative gap with 𝑅′ = 𝑂(𝑅)) is too strong for us, as it entails 𝜁̃ > 0.
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Let us assume that 𝑅 is such that (4.13) holds. Define the function

𝑄̃𝜌(𝑥) := 2 min{𝑄𝜌(𝑥), 1
2 }.

Then 𝑄̃𝜌 vanishes outside 𝐵𝐺(𝜌, 𝑅′) (as 𝑄𝜌 does) and is identically 1 on 𝐵𝐺(𝜌, 𝑅), and moreover

E𝐺(𝑄̃𝜌) ⩽ 4 E𝐺(𝑄𝜌).

So the Dirichlet principle gives

R𝐺
eff(𝐵

𝐺(𝜌, 𝑅) ↔ 𝐵̄𝐺(𝜌, 𝑅′)) ⩾ 1
4E𝐺(𝑄𝜌)

=
R𝐺

eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅′))
4 ⩾

R𝐺
eff(𝜌 ↔ 𝐵̄𝐺(𝜌, 𝑅))

4 ⩾ 𝑅𝜁−𝛿 ,

where the last inequality follows from (1.12) and holds almost surely eventually (with respect to 𝑅).
Since this holds for any 𝛿 > 0, we conclude that 𝜁̃ ⩾ 𝜁, as required. □

4.3 Resistance exponent for planar maps coupled to a mated-CRT

We first establish that 𝜁̃ = 0 for the 𝛾-mated-CRT with 𝛾 ∈ (0, 2). It is known that 𝜁̃0 = 0 [GM21,
Prop. 3.1]. While the following argument is somewhat technical and, to our knowledge, does not
appear elsewhere, we stress that it is a relatively straightforward consequence of [GMS19, DG20].

Fix some 𝛾 ∈ (0, 2) and for 𝜀 > 0, let 𝒢𝜀 be the 𝛾-mated-CRT with increment 𝜀. See, for instance,
the description in [GMS19]. For our purposes, we may consider this as a random planar multigraph.
When needed, we can replace multiple edges by appropriate conductances.

From [DMS21, Thm. 1.9], one can identify 𝑉(𝒢𝜀) = 𝜀ℤ and there is a space-filling SLE curve
𝜂 : ℝ → ℂ parameterized by the LQG mass of the 𝛾-quantum cone, with 𝜂(0) = 0 and such that
{𝑎, 𝑏} ∈ 𝐸(𝒢𝜀) are connected by an edge if and only if the corresponding cells 𝜂([𝑎 − 𝜀, 𝑎]) and
𝜂([𝑏 − 𝜀, 𝑏]) share a non-trivial connected boundary arc. Thus we can envision 𝜂 as an embedding of
𝑉(𝒢𝜀) into the complex plane, where a vertex 𝑣 ∈ 𝑉(𝒢𝜀) is sent to 𝜂(𝑣). Let us denote the Euclidean
ball 𝐵ℂ(𝑧, 𝑟) := {𝑦 ∈ ℂ : |𝑦 − 𝑧 | ⩽ 𝑟}.

The underlying idea is simple: We will arrange that, with high probability, the image of a graph
annulus under 𝜂 contains a Euclidean annulus 𝒜 of large width. Then we pull back a Lipschitz test
functional from 𝒜 to 𝒢𝜀, and use the Dirichlet principle (2.3) to lower bound the effective resistance
across the annulus.

By [DG20, Prop. 4.6], there is a number 𝑑𝛾 > 2 such that the following holds: For every 𝜃 ∈ (0, 1)
and 𝛿 > 0, there is an 𝛼 = 𝛼(𝛿, 𝛾, 𝜃) > 0 such that as 𝜀 → 0,

ℙ
[︂
𝜂
(︂
𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾+𝛿))

)︂
⊆ 𝐵ℂ(0, 𝜃)

]︂
⩾ 1 − 𝑂(𝜀𝛼)

ℙ
[︂
𝜂−1

(︂
𝐵ℂ(0, 𝜃) ∩ 𝜂(𝜀ℤ)

)︂
⊆ 𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾−𝛿))

]︂
⩾ 1 − 𝑂(𝜀𝛼).

In particular, taking 𝜃 = 1/4 and 𝜃 = 3/4, respectively, yields, for some 𝛼 = 𝛼(𝛿, 𝛾) > 0:

ℙ
[︂
𝜂
(︂
𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾+𝛿))

)︂
⊆ 𝐵ℂ(0, 1/4) ∩ 𝜂(𝜀ℤ)

⊆ 𝐵ℂ(0, 3/4) ∩ 𝜂(𝜀ℤ) ⊆ 𝜂
(︂
𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾−𝛿))

)︂]︂
⩾ 1 − 𝑂(𝜀𝛼) . (4.14)
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For a subset 𝐷 ⊆ ℂ, denote

𝒱𝒢𝜀(𝐷) := {𝑥 ∈ 𝜀ℤ : 𝜂([𝑥 − 𝜀, 𝑥]) ∩ 𝐷 ≠ ∅},

and let 𝒢𝜀(𝐷) be the subgraph of 𝒢𝜀 induced on 𝒱𝒢𝜀(𝐷). For a function 𝑓 : 𝐷 → ℝ, define
𝑓 𝜀 : 𝒱𝒢𝜀(𝐷) → ℝ by

𝑓 𝜀(𝑧) :=

{︄
𝑓 (𝜂(𝑧)) 𝑧 ∈ 𝒱𝒢𝜀(𝐷) \ 𝒱𝒢𝜀(𝜕𝐷)
sup𝑥∈𝜂([𝑧−𝜀,𝑧])∩𝜕𝐷 𝑓 (𝑧) 𝑧 ∈ 𝒱𝒢𝜀(𝜕𝐷).

Take now𝐷 := 𝐵ℂ(0, 1) and define 𝑓 : 𝐷 → ℝ by 𝑓 (𝑧) := min(1, 4 (|𝑧 | − 3/8)+), which is a 4-Lipschitz
function satisfying

𝑓 |𝐵ℂ(0,3/8) ≡ 0, 𝑓 |𝐵ℂ(0,1)\𝐵ℂ(0,5/8) ≡ 1. (4.15)

Let { 𝑓𝑛} be a sequence of continuously differentiable, uniformly Lipschitz functions such that
𝑓𝑛 → 𝑓 uniformly on 𝐷. Then we may apply [GMS19, Lem. 3.3] to each 𝑓𝑛 to obtain, for every
𝑛 ⩾ 1,

ℙ

(︃
E𝒢𝜀(𝐷)( 𝑓 𝜀𝑛 ) ⩽ 𝜀𝛼 + 𝐴

∫
𝐷

|∇ 𝑓𝑛(𝑧)|2 𝑑𝑧
)︃
⩾ 1 − 𝑂(𝜀𝛼),

where 𝐴 = 𝐴(𝛾), 𝛼 = 𝛼(𝛾) > 0. We conclude that with probability at least 1 − 𝑂(𝜀𝛼), the Dirichlet
energy of 𝑓 𝜀𝑛 is uniformly (in 𝑛) bounded. Taking 𝑓 𝜀 = lim𝑛→∞ 𝑓 𝜀𝑛 , we obtain the following in
conjunction with (4.14) and (4.15).

Lemma 4.11. For every 𝛾 ∈ (0, 2) and 𝛿 > 0, there are numbers 𝛼, 𝐴 > 0 such that for every 𝜀 > 0, with
probability at least 1 − 𝑂(𝜀𝛼), there is a function 𝑓 𝜀 : 𝑉(𝒢𝜀) → ℝ such that

1. 𝑓 𝜀 vanishes on 𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾+𝛿)),

2. 𝑓 𝜀 is identically 1 on 𝜕𝒢𝜀𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾−𝛿)).

3. E𝒢𝜀( 𝑓 𝜀) ⩽ 𝐴.

In particular, the Dirichlet principle (2.3) gives, with probability at least 1 − 𝑂(𝜀𝛼),

R𝒢𝜀

eff

(︂
𝜕𝒢𝜀𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾+𝛿))) ↔ 𝜕𝒢𝜀𝐵𝒢𝜀(0, 𝜀−1/(𝑑𝛾−𝛿))

)︂
⩾ 1/𝐴.

Note that the law of 𝒢𝜀 is independent of 𝜀 > 0, and therefore denoting its law by 𝒢 and taking
𝑅 := 1/𝜀, we arrive at the following.

Corollary 4.12. Let 𝒢 denote the 𝛾-mated-CRT for 𝛾 ∈ (0, 2). Then for every 𝛿 > 0, there are numbers
𝛼, 𝜅 > 0 such that with probability at least 1 − 𝑂(𝑅−𝛼)

R𝒢
eff

(︂
𝜕𝒢𝐵

𝒢(0, 𝑅) ↔ 𝜕𝒢𝐵
𝒢(0, 𝑅1+𝛿)

)︂
⩾ 𝜅. (4.16)

In particular, it holds that for every 𝛿 > 0, almost surely eventually

R𝒢
eff

(︂
𝜕𝒢𝐵

𝒢(0, 𝑅) ↔ 𝜕𝒢𝐵
𝒢(0, 𝑅1+𝛿)

)︂
⩾ 𝜅.

Since this holds for every 𝛿 > 0, and (𝒢 , 0) is a unimodular random network, we have 𝜁̃ = 0.
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Proof. (4.16) follows immediately from Lemma 4.11. The other conclusion is a standard consequence:
The Borel-Cantelli Lemma implies that almost surely, for all but finitely many 𝑘 ∈ ℕ, we have

R𝒢
eff

(︂
𝜕𝒢𝐵

𝒢(0, 2𝑘) ↔ 𝜕𝒢𝐵
𝒢(0, 2(1+𝛿)𝑘)

)︂
⩾ 𝜅,

so by the series law for effective resistances, it holds that almost surely eventually

R𝒢
eff

(︂
𝜕𝒢𝐵

𝒢(0, 𝑅) ↔ 𝜕𝒢𝐵
𝒢(0, 2𝑅1+𝛿)

)︂
⩾ R𝒢

eff

(︂
𝜕𝒢𝐵

𝒢(0, 2⌊log2 𝑅⌋) ↔ 𝜕𝒢𝐵
𝒢(0, 2⌈log2(𝑅1+𝛿)⌉)

)︂
⩾ 𝜅,

and thus for any 𝛿′ > 𝛿, almost surely eventually R𝒢
eff

(︁
𝜕𝒢𝐵𝒢(0, 𝑅) ↔ 𝜕𝒢𝐵𝒢(0, 𝑅1+𝛿′)

)︁
⩾ 𝜅. □

Note that since 𝜁̃ = 𝜁̃0 = 0 and 𝑑 𝑓 exists [DG20], it follows from Theorem 1.3 that 𝑑𝑤 = 𝑑 𝑓
and 𝑑𝑠 = 2. Both equalities were known previously: 𝑑𝑠 ⩽ 2 from [Lee21], 𝑑𝑤 ⩽ 𝑑 𝑓 and 𝑑𝑠 ⩾ 2
from [GM21], and and 𝑑𝑤 ⩾ 𝑑 𝑓 from [GH20]. Let us remark that the preceding argument requires
somewhat less detailed information about 𝒢 than that of [GH20]. In particular, bounding 𝜁̃ only
requires control of one scale at a time.

4.3.1 Other planar maps

We consider now the case of random planar maps that can be appropriately coupled to a 𝛾-mated
CRT for some 𝛾 ∈ (0, 2); we refer to [GHS20] for a discussion of such examples, including the UIPT,
and random planar maps whose law is biased by the number of different spanning trees (𝛾 =

√
2),

bipolar orientations (𝛾 =
√︁

4/3), or Schynder woods (𝛾 = 1).
Our goal is to prove that 𝜁̃ = 0 for each of these random planar maps (𝑀, 𝜌). We employ the

same approach as in the preceding section, arguing that an annulus in (𝑀, 𝜌) can be mapped into
𝒢 so that its image contains an annulus of large width, and that the Dirichlet energy of functionals
in 𝒢 is controlled when pulling them back to 𝑀.

Fix 𝛾 ∈ (0, 2) and let 𝒢 be the 𝛾-mated-CRT with increment 1. Let 𝒢𝑛 be the subgraph of 𝒢
induced on the vertices [−𝑛, 𝑛] ∩ℤ. Parts (1)–(3) in the following theorem are the conjunction of
Lemma 1.11 and Theorem 1.9 in [GHS20]. Part (4) is [GM21, Lem. 4.3].

Theorem 4.13. For each model considered in [GHS20], the following holds. There is a coupling of (𝑀, 𝜌)
and (𝒢 , 0), and a family of random rooted graphs {(𝑀𝑛 , 𝜌𝑛) : 𝑛 ⩾ 1} and numbers 𝛼, 𝐾, 𝑞 > 0 such that for
every 𝑛 ⩾ 1, with probability at least 1 − 𝑂(𝑛−𝛼):

1. 𝐵𝒢(0, 𝑛1/𝐾) ⊆ 𝑉(𝒢𝑛),

2. The induced, rooted subnetworks 𝐵𝑀(𝜌, 𝑛1/𝐾) and 𝐵𝑀𝑛 (𝜌𝑛 , 𝑛1/𝐾) are isomorphic.

3. There is a mapping 𝜙𝑛 : 𝑉(𝑀𝑛) → 𝑉(𝒢𝑛) with 𝜙𝑛(𝜌𝑛) = 0, and for all 3 ⩽ 𝑟 ⩽ 𝑅,

𝜙𝑛
(︂
𝐵𝑀𝑛

(︁
𝜌𝑛 , (𝐾 log 𝑛)−𝑞(𝑟 − 2)

)︁ )︂
⊆ 𝐵𝒢𝑛 (0, 𝑟)

𝜙𝑛
(︂
𝑉(𝑀𝑛) \ 𝐵𝑀𝑛

(︁
𝜌𝑛 , (𝐾 log 𝑛)𝑞𝑅 − 1

)︁ )︂
⊆ 𝑉(𝒢𝑛) \ 𝐵𝒢𝑛 (0, 𝑅).

4. For every 𝑓 : 𝑉(𝒢𝑛) → ℝ, it holds that

E𝑀𝑛 ( 𝑓 ◦ 𝜙𝑛) ⩽ 𝐾(log 𝑛)𝑞E𝒢𝑛 ( 𝑓 ).
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Corollary 4.14. For any model considered in [GHS20], it holds that 𝜁̃ = 0.

We prove this momentarily, but first note the following consequence. Since 𝑑 𝑓 > 2 for each of
these models [DG20, Prop. 4.7], and 𝜁̃0 = 0 by [GM21, Prop. 4.4], Theorem 1.3 yields:

Theorem 4.15. For any model considered in [GHS20], it holds that 𝑑𝑤 = 𝑑 𝑓 > 2 and 𝑑𝑠 = 2.

Remark 4.16. We remark that the lower bound 𝑑𝑠 ⩾ 2 is established in [GM21], and the upper
bound 𝑑𝑠 ⩽ 2 follows for any unimodular random planar graph where the law of the degree of the
root has tails that decay sufficiently fast [Lee21] (which is true for each of these models; see [GM21,
§1.3]). The consequence 𝑑𝑤 = 𝑑 𝑓 is proved in [GH20] for every model except the uniform infinite
Schynder-wood decorated triangulation. This is for a technical reason underlying the identification
of 𝑉(𝑀𝑛) with a subset of 𝑉(𝑀) used in the proof of [GHS20, Lem. 1.11] (see [GHS20, Rem. 1.3]
and [GH20, Rem. 2.11]).

Proof of Corollary 4.14. Fix 𝛿 > 0 and 𝑅 ⩾ 2. Denote

𝑟 := (𝐾 log 𝑛)−𝑞(𝑅 − 2),
𝑅̃ := (𝐾 log 𝑛)𝑞𝑅1+𝛿 ,

𝑛 := ⌈𝑅̃𝐾⌉ ,
and let ℰ𝑛 be an event on which Theorem 4.13(1)–(4) and (4.16) hold. Note that we can take
ℙ(ℰ𝑛) ⩾ 1 − 𝑂(𝑅−𝛼′) for some 𝛼′ = 𝛼′(𝛿, 𝐾) > 0.

Assume now that ℰ𝑛 holds. Then (4.16) and the Dirichlet principle (2.3) give a test function
𝑓 : 𝑉(𝒢) → ℝ such that

𝑓 (𝐵𝒢(0, 𝑅)) = 0, 𝑓 (𝜕𝒢𝐵𝒢(0, 𝑅1+𝛿)) = 1, E𝒢( 𝑓 ) ⩽ 1/𝜅.
Theorem 4.13(1) asserts that the restriction of 𝑓 to 𝐵𝒢(0, 𝑅1+𝛿) gives a function 𝑓 : 𝑉(𝒢𝑛) → ℝ on
which

𝑓 (𝐵𝒢𝑛 (0, 𝑅)) = 0, 𝑓 (𝜕𝒢𝐵𝒢𝑛 (0, 𝑅1+𝛿)) = 1, E𝒢𝑛 ( 𝑓 ) ⩽ 1/𝜅.
Without increasing the energy of 𝑓 , we may assume that 𝑓 (𝑉(𝒢𝑛) \ 𝐵𝒢𝑛 (0, 𝑅1+𝛿)) = 1 as well.

By our choice of 𝑟 and 𝑅̃, Theorem 4.13(3) implies that

𝑓 ◦ 𝜙𝑛(𝐵𝑀𝑛 (𝜌, 𝑟)) = 0, 𝑓 ◦ 𝜙𝑛(𝜕𝑀𝑛𝐵
𝑀𝑛 (𝜌, 𝑅̃)) = 1, E𝑀𝑛 ( 𝑓 ◦ 𝜙𝑛) ⩽ 𝐾′(log𝑅)/𝜅,

where the last inequality is from Theorem 4.13(4), and 𝐾′ = 𝐾′(𝐾, 𝑞, 𝛿). Now the Dirichlet principle
(2.3) yields

R𝑀𝑛

eff

(︂
𝜕𝑀𝑛𝐵

𝑀𝑛 (𝜌𝑛 , 𝑟) ↔ 𝜕𝑀𝑛𝐵
𝑀𝑛 (𝜌𝑛 , 𝑅̃)

)︂
⩾

1
𝐾′(log𝑅)/𝜅 ,

and from the graph isomorphism Theorem 4.13(2) and the fact that 𝑛1/𝐾 ⩾ 𝑅̃, we conclude that

R𝑀
eff

(︂
𝜕𝑀𝐵

𝑀(𝜌, 𝑟) ↔ 𝜕𝑀𝐵
𝑀(𝜌, 𝑅̃)

)︂
⩾

1
𝐾′(log𝑅)/𝜅 .

Since this conclusion holds with probability at least 1 − 𝑂(𝑅−𝛼′), we conclude (using Borel-Cantelli
as in the proof of Corollary 4.12) that for every 𝛿 > 0, almost surely eventually

R𝑀
eff

(︂
𝜕𝑀𝐵

𝑀(𝜌, 𝑅) ↔ 𝜕𝑀𝐵
𝑀(𝜌, 𝑅1+𝛿)

)︂
⩾ 𝑅−𝛿 .

This yields 𝜁̃ = 0, completing the proof. □
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