
Multiscale entropic regularization for MTS
on general metric spaces

Farzam Ebrahimnejad* James R. Lee†

Paul G. Allen School of Computer Science & Engineering
University of Washington

Abstract

We present an 𝑂((log 𝑛)2)-competitive algorithm for metrical task systems (MTS) on any
𝑛-point metric space that is also 1-competitive for service costs. This matches the competitive
ratio achieved by Bubeck, Cohen, Lee, and Lee (2019) and the refined competitive ratios obtained
by Coester and Lee (2019). Those algorithms work by first randomly embedding the metric space
into an ultrametric and then solving MTS there. In contrast, our algorithm is cast as regularized
gradient descent where the regularizer is a multiscale metric entropy defined directly on the
metric space. This answers an open question of Bubeck (Highlights of Algorithms, 2019).

Contents

1 Introduction 2

2 The multiscale noisy metric entropy 4
2.1 Mirror descent dynamics . 5
2.2 Metric compatibility . 6

3 Construction of a compatible DAG over (𝑋, 𝑑) 7
3.1 Hierarchical nets . 7
3.2 Distortion analysis . 10
3.3 Compression . 11

4 Algorithm and competitive analysis 14
4.1 Discrete-time algorithm . 14
4.2 Analysis via unfolding to an ultrametric . 15
4.3 Analysis of the general case . 17
4.4 Bounding the service cost . 19
4.5 Bounding the the movement cost . 20

*febrahim@cs.washington.edu
†jrl@cs.washington.edu

1

1 Introduction

Let (𝑋, 𝑑) be a finite metric space with |𝑋 | = 𝑛 > 1. The Metrical Task Systems (MTS) problem,
introduced in [BLS92] is defined as follows. The input is a sequence ⟨𝑐𝑡 : 𝑋 → ℝ+ | 𝑡 = 1, 2, . . .⟩ of
nonnegative cost functions on the state space 𝑋. At every time 𝑡, an online algorithm maintains a
state 𝜌𝑡 ∈ 𝑋.

The corresponding cost is the sum of a service cost 𝑐𝑡(𝜌𝑡) and a movement cost 𝑑(𝜌𝑡−1 , 𝜌𝑡).
Formally, an online algorithm is a sequence of mappings 𝝆 = ⟨𝜌1 , 𝜌2 , . . . , ⟩ where, for every 𝑡 ⩾ 1,
𝜌𝑡 : (ℝ𝑋

+)𝑡 → 𝑋 maps a sequence of cost functions ⟨𝑐1 , . . . , 𝑐𝑡⟩ to a state. The initial state 𝜌0 ∈ 𝑋 is
fixed. The total cost of the algorithm 𝝆 in servicing 𝒄 = ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩ is defined as the sum of the service
and movement costs:

serv𝝆(𝒄) :=
∑︂
𝑡⩾1

𝑐𝑡(𝜌𝑡(𝑐1 , . . . , 𝑐𝑡))

move𝝆(𝒄) :=
∑︂
𝑡⩾1

𝑑(𝜌𝑡−1(𝑐1 , . . . , 𝑐𝑡−1), 𝜌𝑡(𝑐1 , . . . , 𝑐𝑡))

cost𝝆(𝒄) := serv𝝆(𝒄) + move𝝆(𝒄).

The cost of the offline optimum, denoted cost∗(𝒄), is the infimum of
∑︁
𝑡⩾1[𝑐𝑡(𝜌𝑡) + 𝑑(𝜌𝑡−1 , 𝜌𝑡)] over any

sequence ⟨𝜌𝑡 : 𝑡 ⩾ 1⟩ of states.
A randomized online algorithm 𝝆 is said to be 𝛼-competitive if for every 𝜌0 ∈ 𝑋, there is a constant

𝛽 > 0 such that for all cost sequences 𝒄:

𝔼
[︁
cost𝝆(𝒄)

]︁
⩽ 𝛼 · cost∗(𝒄) + 𝛽 .

Such an algorithm is said to be 𝛼-competitive for service costs and 𝛼′-competitive for movement costs if
there is a constant 𝛽 > 0 such that for all cost sequences 𝒄:

𝔼
[︁
serv𝝆(𝒄)

]︁
⩽ 𝛼 · cost∗(𝒄) + 𝛽

𝔼
[︁
move𝝆(𝒄)

]︁
⩽ 𝛼′ · cost∗(𝒄) + 𝛽.

For the 𝑛-point uniform metric, a simple coupon-collector argument shows that the competitive
ratio is Ω(log 𝑛), and this is tight [BLS92]. A long-standing conjecture is that this Θ(log 𝑛) competi-
tive ratio holds for an arbitrary 𝑛-point metric space. The lower bound has almost been established
[BBM06, BLMN05]; for any 𝑛-point metric space, the competitive ratio is Ω(log 𝑛/log log 𝑛). Follow-
ing a long sequence of works (see, e.g., [Sei99, BKRS00, BBBT97, Bar96, FM03, FRT04]), an upper
bound of 𝑂((log 𝑛)2) was shown in [BCLL21].

Competitive analysis via gradient descent. Let us consider an equivalent fractional perspective
on MTS where the online algorithm maintains, at every point in time, a probability distribution
𝜇𝑡 ∈ ℝ𝑋

+ , and we interpret the costs similarly as a vector 𝑐𝑡 ∈ ℝ𝑋
+ . The cost of the algorithm is then

given by ∑︂
𝑡⩾1

(︂
⟨𝜇𝑡 , 𝑐𝑡⟩ +𝕎1

𝑋(𝜇𝑡−1 , 𝜇𝑡)
)︂
,

where 𝕎1
𝑋

is the 𝐿1 transportation cost between two probability distributions on (𝑋, 𝑑). This
perspective is convenient, as now the state of the algorithm is given by a point in the probability
simplex Δ𝑋 ⊆ ℝ𝑋

+ .

2

This yields a natural first algorithm for solving MTS:

𝜇𝑡+1 := proj
Δ𝑋

(𝜇𝑡 − 𝜂𝑐𝑡) , (1.1)

where 𝜂 > 0 is some parameter we can choose and proj
Δ𝑋

denotes the Euclidean projection onto the
convex body Δ𝑋 . Moreover, it gives a natural way of relating the cost incurred by the algorithm to
the cost incurred by any other state 𝜈 ∈ Δ𝑋 : It is a basic exercise in convex geometry to show that

∥𝜇𝑡+1 − 𝜈∥2 − ∥𝜇𝑡 − 𝜈∥2 ⩽ 𝜂⟨𝑐𝑡 , 𝜈 − 𝜇𝑡⟩. (1.2)

In other words, if ⟨𝑐𝑡 , 𝜇𝑡⟩ > ⟨𝑐𝑡 , 𝜈⟩, then 𝜇𝑡 approaches 𝜈 proportionally in the squared Euclidean
distance.

Thus we cannot consistently incur more service cost than any fixed state. This does not provide a
competitive algorithm because there is, in general, no convenient relationship between the Euclidean
distance ∥𝜇𝑡 − 𝜇𝑡+1∥ and the transportation distance 𝕎1

𝑋
(𝜇𝑡 , 𝜇𝑡+1).

But one can replace the Euclidean distance by any Bregman divergence 𝔻Φ associated to a
strictly convex function Φ. Equivalently, we perform the projection (1.1) in the local inner product

⟨𝑢, 𝑣⟩𝜇𝑡 := ⟨∇2Φ(𝜇𝑡)𝑢, 𝑣⟩.

Thus by choosing an appropriate geometry on Δ𝑋 , one can hope to obtain a competitive algorithm.
Such algorithms often go by the name mirror descent and the regularizer Φ is called the mirror map
(we will often use the term regularizer interchangeably).

This framework is proposed in [ABBS10, BCN14] and applied to the 𝑘-server problem in
[BCL+18], and to MTS in [BCLL21] and [CL19]. In all these papers, the algorithms apply only to
ultrametrics (equivalently, to hierarchically separated tree metrics (HSTs)). In [BCLL21], mirror
descent is used to analyze the algorithm on weighted stars, and these algorithms are glued together
in an ad-hoc way to handle HSTs. In [CL19], stronger bounds (known as “refined guarantees”)
are obtained by finding an appropriate regularizer on arbitrary HSTs. In both cases, general finite
metric spaces are then handled via random embeddings into HSTs.

In the present work, we apply this method directly to MTS on general metric spaces and match
the best-known competitive ratio. Previously, it was unknown how to achieve any poly(log 𝑛)
competitive ratio for general metric spaces using mirror descent and achieving this was posed as an
open problem by Bubeck1.

We consider this an important step in advancing the underlying philosophy. Note that past
approaches to MTS have involved a series of ad-hoc, complicated algorithms, along with clever
potential function analyses. In contrast, in the mirror descent approach, once one specifies a convex
body and a regularizer, both the algorithm and the method of analysis fall out naturally. Indeed,
the most subtle part of competitive analysis lies in connecting the cost an online algorithm incurs to
the cost of some offline optimum, and this is done entirely through the general Bregman divergence
analog of (1.2), which becomes

𝔻Φ(𝜈 ∥ 𝜇𝑡+1) −𝔻Φ(𝜈 ∥ 𝜇𝑡) ⩽ ⟨𝑐𝑡 , 𝜈 − 𝜇𝑡⟩.

1Posed in his talk at HALG 2019.

3

2 The multiscale noisy metric entropy

To obtain poly(log 𝑛)-competitive algorithms for MTS, previous approaches [BCLL21, CL19] employ
a regularizer that can be cast as a multiscale entropy for probability distributions on an underlying
tree metric. To handle general metric spaces, we will consider probability distributions on a lifted
convex body that is specified by a directed ayclic graph whose sinks are the points of (𝑋, 𝑑). See
Figure 1 for a pictoral representation when the metric space is a path.

Figure 1: A hierarchical flow DAG over the path

The hierarchical flow DAG. Consider a finite set 𝑋 and a directed ayclic weighted graph
𝒟 = (𝑉, 𝐴) with 𝑋 ⊆ 𝑉 and such that

(i) 𝒟 has a single source 𝕣 ∈ 𝑉 , and

(ii) The set of sinks in 𝒟 is 𝑋.

We say that 𝒟 is a DAG over 𝑋. In what follows, we use the notation ℝ+ := {𝑥 ∈ ℝ : 𝑥 ⩾ 0} and
ℝ++ := {𝑥 ∈ ℝ : 𝑥 > 0}. For an arc (𝑢, 𝑣) ∈ 𝐴, we will often use the shorthand 𝑢𝑣.

A vector 𝐹 ∈ ℝ𝐴
+ is called a flow in 𝒟 if holds that∑︂

𝑣 : 𝑢𝑣∈𝐴
𝐹𝑢𝑣 =

∑︂
𝑣 : 𝑣𝑢∈𝐴

𝐹𝑣𝑢 , ∀𝑢 ∈ 𝑉 \ (𝑋 ∪ {𝕣 }). (2.1)

For a flow 𝐹 and 𝑢 ∈ 𝑉 \𝑋, define 𝐹𝑢 :=
∑︁
𝑣 : 𝑢𝑣∈𝐴 𝐹𝑢𝑣 . For a sink 𝑥 ∈ 𝑋, we define 𝐹𝑥 :=

∑︁
𝑢 : 𝑢𝑥∈𝐴 𝐹𝑢𝑥

as the flow into 𝑥. Say that 𝐹 is a unit flow in 𝒟 if 𝐹𝕣 = 1, and let ℱ𝒟 ⊆ ℝ𝐴
+ denote the convex set of

all unit flows in 𝒟.
A (directed) path 𝛾 in 𝒟 is a sequence 𝛾 = ⟨𝑢1𝑢2 , 𝑢2𝑢3 , . . . , 𝑢𝑚−1𝑢𝑚⟩ with 𝑢𝑖𝑢𝑖+1 ∈ 𝐴 for each

𝑖 ∈ {1, . . . , 𝑚 − 1}. We will occasionally also specify a path as a sequence of vertices. We use 𝛾̄ to
denote the final vertex 𝑢𝑚 of 𝛾. Let 𝒫𝒟 denote the set of all paths in 𝒟 from 𝕣 to some sink.

The multiscale entropy. Let 𝜔 ∈ ℝ𝐴
++ denote a vector of nonnegative arc lengths that are decreasing

along paths, i.e., such that 𝜔𝑢𝑣 > 𝜔𝑣𝑤 whenever 𝑢𝑣, 𝑣𝑤 ∈ 𝐴. Let 𝜃 ∈ ℝ𝐴
++ specify a probability

distribution on the edges leaving every vertex, i.e.,∑︂
𝑣 : 𝑢𝑣∈𝐴

𝜃𝑢𝑣 = 1, ∀𝑢 ∈ 𝑉 \ 𝑋. (2.2)

4

Define the associated values

𝜂𝑢𝑣 := 1 + log(1/𝜃𝑢𝑣) (2.3)
𝛿𝑢𝑣 := 𝜃𝑢𝑣/𝜂𝑢𝑣 . (2.4)

We refer to the triple 𝒟̂ := (𝒟 , 𝜔, 𝜃) as a marked DAG. For a given normalization parameter 𝜅 > 0,
such a marked DAG yields a multiscale entropy functional Φ𝒟̂ : ℱ𝒟 → ℝ+ defined by

Φ𝒟̂(𝐹) := 1
𝜅

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣
𝜂𝑢𝑣

(𝐹𝑢𝑣 + 𝛿𝑢𝑣𝐹𝑢) log
(︃
𝐹𝑢𝑣

𝐹𝑢
+ 𝛿𝑢𝑣

)︃
.

One can consult [CL19] for a detailed discussion of multiscale entropies of this form on HSTs.

Two notions of depth. We define two notions of depth associated to 𝒟̂. The first is the combinatorial
depth Δ0(𝒟) which is the maximum number of arcs in any path from 𝕣 to some sink 𝑋. For 𝛾 ∈ 𝒫𝒟 ,
let us define

𝜃(𝛾) :=
∏︂
𝑢𝑣∈𝛾

𝜃𝑢𝑣 , (2.5)

and let the information depth be defined as

Δ𝐼(𝒟̂) := max
𝛾∈𝒫𝒟

log(1/𝜃(𝛾)).

Note that 𝜃(·) induces a probability distribution on 𝒫𝒟 , and as clearly for 𝛾 ∈ 𝒫𝒟 it holds that
𝜃(𝛾) ⩾ 𝑒−Δ𝐼 (𝒟̂) we have

log |𝒫𝒟 | ⩽ Δ𝐼(𝒟̂). (2.6)

2.1 Mirror descent dynamics

Let us now fix a marked DAG 𝒟̂ and take Φ := Φ𝒟̂ . We seek to define a continuous path
𝐹 : [0,∞] → ℱ𝒟 that represents the dynamics of projected vector flow in response to a continuous
path 𝑐(𝑡) ∈ ℝ𝑋

+ of costs arriving at the points of 𝑋.
A natural Euclidean flow would be specified heuristically by

𝐹(𝑡 + 𝑑𝑡) = projℱ𝒟
(𝐹(𝑡) − 𝑐(𝑡) 𝑑𝑡) ,

where for 𝑣 ∈ ℝ𝐴, we define projℱ𝒟
(𝑣) as the unique point of ℱ𝒟 with minimal Euclidean distance

to 𝑣. In other words, we move a little in the direction −𝑐(𝑡) and then project back to the feasible
region ℱ𝒟 .

Instead, we will define our dynamics using the Bregman projection projΦℱ𝒟
associated to our

multiscale entropic regularizer, where

projΦℱ𝒟
(𝑣) := argmin {𝔻Φ (𝑣′ ∥ 𝑣) : 𝑣′ ∈ ℱ𝒟} ,

and
𝔻Φ (𝑣′ ∥ 𝑣) := Φ(𝑣′) −Φ(𝑣) − ⟨∇Φ(𝑣), 𝑣′ − 𝑣⟩

5

is the Bregman divergence associated to Φ.
One can show that if 𝑐(𝑡) is continuous, then there is a path 𝐹 : [0,∞) → ℱ𝒟 for which the

following dynamics are well-defined (for almost every 𝑡 ∈ [0,∞)):

𝐹(𝑡 + 𝑑𝑡) = projΦℱ𝒟
(𝐹(𝑡) − 𝑐(𝑡) 𝑑𝑡)

This path further satisfies (for almost all 𝑡 ∈ [0,∞)) the system of partial differential equations
given by

𝜕𝑡

(︃
𝐹𝑢𝑣(𝑡)
𝐹𝑢(𝑡)

)︃
= 𝜅

𝜂𝑢𝑣
𝜔𝑢𝑣

(︃
𝐹𝑢𝑣(𝑡)
𝐹𝑢(𝑡)

+ 𝛿𝑢𝑣

)︃
(𝛽𝑢(𝑡) − 𝑐̂𝑢𝑣(𝑡)) , 𝑢𝑣 ∈ 𝐴, (2.7)

where 𝑐̂𝑢𝑣(𝑡) = 𝟙{𝐹𝑢𝑣(𝑡)>0}𝑐𝑣(𝑡) if 𝑣 ∈ 𝑋, and otherwise

𝑐̂𝑢𝑣(𝑡) = 𝟙{𝐹𝑢𝑣(𝑡)>0}
∑︂

𝑤 : 𝑣𝑤∈𝐴

𝐹𝑣𝑤(𝑡)
𝐹𝑣(𝑡)

𝑐̂𝑣𝑤(𝑡), (2.8)

and 𝛽𝑢(𝑡) is the unique value that guarantees

𝜕𝑡
∑︂

𝑣 : 𝑢𝑣∈𝐴

𝐹𝑢𝑣(𝑡)
𝐹𝑢(𝑡)

= 0,

i.e.,

𝛽𝑢(𝑡) =

∑︁
𝑣 : 𝑢𝑣∈𝐴

𝜂𝑢𝑣
𝜔𝑢𝑣

(︂
𝐹𝑢𝑣(𝑡)
𝐹𝑢(𝑡) + 𝛿𝑢𝑣

)︂
𝑐̂𝑢𝑣(𝑡)∑︁

𝑣 : 𝑢𝑣∈𝐴
𝜂𝑢𝑣
𝜔𝑢𝑣

(︂
𝐹𝑢𝑣(𝑡)
𝐹𝑢(𝑡) + 𝛿𝑢𝑣

)︂ .

Here we express the algorithm in continuous time for conceptual simplicity; its evolution is
completely specified by the regularizer Φ𝒟̂ and the costs 𝑐(𝑡). But the existence of a solution to (2.7)
is derived from the limit of discrete-time algorithms in Section 4.

2.2 Metric compatibility

To analyze the algorithm specified by (2.7) on a metric space (𝑋, 𝑑), we need additionally that
𝒟̂ = (𝒟 , 𝜔, 𝜃) is compatible with the geometry of (𝑋, 𝑑). Suppose that 𝒟̂ is a marked DAG over
𝑋. Say that 𝒟̂ is 𝜏-geometric if it holds that for every pair of consecutive arcs 𝑢𝑣, 𝑣𝑤 ∈ 𝐴, we have
𝜔𝑢𝑣 ⩾ 𝜏𝜔𝑣𝑤 .

Let us define a metric on 𝒫𝒟 as follows: Suppose 𝛾1 , 𝛾2 ∈ 𝒫𝒟 and let 𝑢 ∈ 𝑉 be the first vertex at
which they diverge, i.e., at which 𝑢𝑣1 ∈ 𝛾1 , 𝑢𝑣2 ∈ 𝛾2 and 𝑣1 ≠ 𝑣2. Define the distance

dist𝒟̂(𝛾1 , 𝛾2) := max(𝜔𝑢𝑣1 , 𝜔𝑢𝑣2).

One can check that this gives a metric on 𝒫𝒟 since the arc lengths are decreasing along source-sink
paths. In fact, this defines an ultrametric on 𝒫𝒟 .

Say that 𝒟̂ is 𝜀-expanding (with respect to (𝑋, 𝑑)) if for every pair 𝛾1 , 𝛾2 ∈ 𝒫𝒟 , it holds that

dist𝒟̂(𝛾1 , 𝛾2) ⩾ 𝜀𝑑(𝛾̄1 , 𝛾̄2),

where we recall that 𝛾̄1 , 𝛾̄2 ∈ 𝑋 are the endpoints of 𝛾1 and 𝛾2, respectively.

6

We may extend dist𝒟̂ to a distance on ℱ𝒟 by defining 𝕎1
𝒟̂
(𝐹, 𝐹′) as the 𝐿1-transportation cost

between 𝐹, 𝐹′ ∈ ℱ𝒟 with the underlying metric dist𝒟̂ , noting that 𝐹 and 𝐹′ can be viewed as
probability distributions on 𝒫𝒟 .

Say that 𝒟̂ is 𝐿-Lipschitz (with respect to (𝑋, 𝑑)) if for every path 𝑥1 , 𝑥2 , . . . , 𝑥𝑚 ∈ 𝑋, there is a
sequence of flows 𝐹(1) , 𝐹(2) , . . . , 𝐹(𝑚) ∈ ℱ𝒟 such that:

1. 𝐹(𝑖) is a unit flow to 𝑥𝑖 for every 𝑖 = 1, 2, . . . , 𝑚.

2. It holds that
𝑚−1∑︂
𝑖=1

𝕎1
𝒟̂(𝐹(𝑖) , 𝐹(𝑖+1)) ⩽ 𝐿

𝑚−1∑︂
𝑖=1

𝑑(𝑥𝑖 , 𝑥𝑖+1).

Our main result follows from the next two theorems, which are proved in Section 4 and Section 3,
respectively.

Theorem 2.1. Suppose (𝑋, 𝑑) is a metric space and 𝒟̂ is a 𝜏-geometric marked DAG over 𝑋, for some 𝜏 ⩾ 4.
If 𝒟̂ is 𝜀-expanding and 𝐿-Lipschitz with respect to (𝑋, 𝑑), then for 𝜅 = 6𝐿, the MTS algorithm specified by
(2.7) is 1-competitive for service costs, and 𝑂

(︂
𝐿
𝜀

(︂
Δ0(𝒟) + Δ𝐼(𝒟̂)

)︂)︂
-competitive for movement costs.

Theorem 2.2. For every 𝑛-point metric space (𝑋, 𝑑), there is a 12-geometric marked DAG 𝒟̂ over 𝑋 that is
1-expanding and 𝑂(log 𝑛)-Lipschitz, and moreover satisfies

Δ0(𝒟) + Δ𝐼(𝒟̂) ⩽ 𝑂(log 𝑛).

3 Construction of a compatible DAG over (𝑋, 𝑑)

In Section 3.1, we present the main construction of a marked DAG 𝒟̂ whose vertices are net points
at every scale. Achieving the crucial property Δ𝐼(𝒟̂) ⩽ 𝑂(log 𝑛) requires choosing the net points
and the arcs of 𝒟 carefully. In Section 3.2, we argue that 𝒟̂ is 𝜀-expanding and 𝐿-Lipschitz for 𝜀 = 1
and 𝐿 ⩽ 𝑂(log 𝑛). It may not be that Δ0(𝒟) ⩽ 𝑂(log 𝑛), but in Section 3.3 we give a generic way of
obtaining this property while leaving the other essential properties intact.

3.1 Hierarchical nets

Fix an 𝑛-point metric space (𝑋, 𝑑) and assume, without loss of generality, that diam(𝑋) = 1. Define
𝜀 := min{𝑑(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝑋} and 𝐾 := 1 + ⌈log𝜏(1/𝜀)⌉.

Construction of nets. Consider a parameter 𝜂 > 0. We construct an 𝜂-net 𝑁 ⊆ 𝑋 inductively as
follows. Define 𝑁0 := ∅ and for 𝑗 ⩾ 1, inductively define the set

𝑆 𝑗 := 𝑋 \ 𝐵𝑋(𝑁𝑗−1 , 𝜂).

If 𝑆 𝑗 = ∅, then we take 𝑁 := 𝑁𝑗−1. Otherwise, let 𝑥 𝑗 ∈ 𝑆 𝑗 be a point that maximizes |𝐵𝑋(𝑥, 𝜂/3)|
among 𝑥 ∈ 𝑆 𝑗 and define 𝑁𝑗 := 𝑁𝑗−1 ∪ {𝑥 𝑗}.

7

Lemma 3.1. The set 𝑁 ⊆ 𝑋 is an 𝜂-net with the property that for any set𝑊 ⊆ 𝑋, if

𝑥∗ ∈ argmax {|𝐵𝑋(𝑦, 𝜂/3)| : 𝑦 ∈ 𝑁 ∩ 𝐵𝑋(𝑊, 1.5𝜂)} ,

then
|𝐵𝑋(𝑥∗ , 𝜂/3)| ⩾ max {|𝐵𝑋(𝑤, 𝜂/3)| : 𝑤 ∈𝑊}

Proof. Suppose 𝑥 𝑗 ∈ 𝑁 is the element with 𝑗 minimal such that 𝐵𝑋(𝑥 𝑗 , 1.5𝜂) ∩𝑊 ≠ ∅. Then(︁
𝐵𝑋(𝑥1 , 𝜂) ∪ · · · ∪ 𝐵𝑋(𝑄 𝑗−1 , 𝜂)

)︁
∩ 𝐵𝑋(𝑊, 𝜂/3) = ∅,

and hence by the greedy selection procedure,

|𝐵𝑋(𝑥 𝑗 , 𝜂/3)| = |𝐵𝑋(𝑥∗ , 𝜂/3)|
|𝐵𝑋(𝑥 𝑗 , 𝜂/3)| ⩾ max {|𝐵𝑋(𝑤, 𝜂/3)| : 𝑤 ∈𝑊} ,

completing the proof. □

Denote 𝜏 := 12. For each 𝑘 ∈ {0, 1, . . . , 𝐾}, let𝑈𝑘 denote a 𝜏−𝑘-net that satisfies Lemma 3.1 with
𝜂 = 𝜏−𝑘 . We now construct a DAG 𝒟 = (𝑉, 𝐴) with 𝑉 := {(𝑢, 𝑘) : 𝑢 ∈ 𝑈𝑘 , 𝑘 ∈ {0, 1, . . . , 𝐾}}. For
𝑘 ∈ {0, 1, . . . , 𝐾 − 1}, let 𝐴𝑘 denote the collection of pairs (𝑢, 𝑢′) for every 𝑢 ∈ 𝑈𝑘 and 𝑢′ ∈ 𝑈𝑘+1
satisfying:

𝑑(𝑢, 𝑢′) ⩽ 4𝜏−𝑘 (3.1)

|𝐵𝑋(𝑢, 𝜏−𝑘/3)| ⩾ max
{︂
|𝐵𝑋(𝑤, 𝜏−𝑘/3)| : 𝑤 ∈ 𝐵𝑋(𝑢′, 6𝜏−(𝑘+1))

}︂
. (3.2)

We define 𝐴 :=
⋃︁𝐾−1
𝑘=0 {((𝑢, 𝑘), (𝑢′, 𝑘 + 1)) : (𝑢, 𝑢′) ∈ 𝐴𝑘}, and

𝜔(𝑢,𝑘)(𝑢′,𝑘+1) := 10𝜏−𝑘 .

Since 𝑈𝐾 = 𝑋, we can identify the sinks in 𝒟 with the points of 𝑋. We take 𝕣 := (𝑢, 0), where
𝑈0 = {𝑢}.

Observation 3.2. Suppose that (𝑢, 𝑘) ∈ 𝑈𝑘 and (𝑥, 𝐾) ∈ 𝑉 is reachable in 𝒟 from (𝑢, 𝑘). Then

𝑑(𝑢, 𝑥) ⩽ 4𝜏−𝑘 + 4𝜏−(𝑘+1) + · · · + 4𝜏−(𝐾−1) < 5𝜏−𝑘 .

For a set 𝑆 ⊆ 𝑋 and 𝑘 ∈ {0, 1, . . . , 𝐾}, define

𝜑𝑘(𝑆) := argmax
{︁
|𝐵𝑋(𝑦, 𝜏−𝑘/3)| : 𝑦 ∈ 𝐵𝑋(𝑆, 2𝜏−𝑘) ∩𝑈𝑘

}︁
. (3.3)

We will require the following fact later.

Lemma 3.3. Consider a set 𝑆 ⊆ 𝑋 with diam𝑋(𝑆) ⩽ 2𝜏−𝑘 . If 𝑢′ ∈ 𝑆 ∩𝑈𝑘+1, then (𝜑𝑘(𝑆), 𝑢′) ∈ 𝐴𝑘 .

Proof. Denote 𝑢 := 𝜑𝑘(𝑆). Since 𝑢′ ∈ 𝑆 and 𝑢 ∈ 𝐵𝑋(𝑆, 2𝜏−𝑘), it holds that 𝑑(𝑢, 𝑢′) ⩽ 4𝜏−𝑘 , and
therefore (3.1) is satisfied. Now denote 𝑊 := 𝐵𝑋(𝑢′, 6𝜏−(𝑘+1)). Then 𝐵𝑋(𝑊, 1.5𝜏−𝑘) ⊆ 𝐵𝑋(𝑆, 2𝜏−𝑘),
hence Lemma 3.1 implies that

|𝐵𝑋(𝑢, 𝜏−𝑘/3)| ⩾ max
{︁
|𝐵𝑋(𝑤, 𝜏−𝑘/3)| : 𝑤 ∈𝑊

}︁
,

which shows that (3.2) is satisfied as well. □

8

For 𝑘 ∈ {0, 1, . . . , 𝐾 − 1} and (𝑢, 𝑢′) ∈ 𝐴𝑘 , we define

𝜃(𝑢,𝑘),(𝑢′,𝑘+1) := |𝐵𝑋(𝑢′, 𝜏−(𝑘+1)/3)|∑︁
𝑤:(𝑢,𝑤)∈𝐴𝑘 |𝐵𝑋(𝑤, 𝜏−(𝑘+1)/3)|

. (3.4)

Claim 3.4. It holds that ∑︂
𝑤:(𝑢,𝑤)∈𝐴𝑘

|𝐵𝑋(𝑤, 𝜏−(𝑘+1)/3)| ⩽ |𝐵𝑋(𝑢, 6𝜏−𝑘)| .

Proof. Since the elements of 𝑈𝑘+1 form a 𝜏−(𝑘+1)-net, the balls
{︁
𝐵𝑋(𝑤, 𝜏−(𝑘+1)/3) : (𝑢, 𝑤) ∈ 𝐴𝑘

}︁
are

pairwise disjoint. Furthermore, by Observation 3.2, every such ball is contained in

𝐵𝑋(𝑢, 5𝜏−𝑘 + 𝜏−(𝑘+1)/3) ⊆ 𝐵𝑋(𝑢, 6𝜏−𝑘). □

Lemma 3.5. It holds that Δ𝐼(𝒟) ⩽ 3 log 𝑛, i.e., for every path 𝛾 ∈ 𝒫𝒟 ,∑︂
𝑢𝑣∈𝛾

log(1/𝜃𝑢,𝑣) ⩽ 3 log 𝑛.

Proof. Consider a path 𝛾 = ⟨(𝑢0 , 0), (𝑢1 , 1), . . . , (𝑢𝐾 , 𝐾)⟩. From the definition (3.4) and Claim 3.4, it
holds that

𝐾−1∑︂
𝑘=0

log
(︁
1/𝜃(𝑢𝑘 ,𝑘)(𝑢𝑘+1 ,𝑘+1)

)︁
⩽

𝐾−1∑︂
𝑘=0

log |𝐵𝑋(𝑢𝑘 , 6𝜏−𝑘)|
|𝐵𝑋(𝑢𝑘+1 , 𝜏−(𝑘+1)/3)|

. (3.5)

Let us denote ℓ := 𝑢𝐾 . By Observation 3.2, it holds that 𝑑(ℓ , 𝑢𝑘) ⩽ 6𝜏−𝑘 for 0 ⩽ 𝑘 ⩽ 𝐾. Therefore,

𝐵𝑋(𝑢𝑘 , 6𝜏−𝑘) ⊆ 𝐵𝑋(ℓ , 12𝜏−𝑘). (3.6)

Furthermore since (𝑢𝑘 , 𝑢𝑘+1) ∈ 𝐴𝑘 , by (3.2), we have

|𝐵𝑋(𝑢𝑘 , 𝜏−𝑘/3)| ⩾ max
{︂
|𝐵𝑋(𝑤, 𝜏−𝑘/3)| : 𝑤 ∈ 𝐵𝑋(𝑢𝑘+1 , 6𝜏−(𝑘+1))

}︂
⩾ |𝐵𝑋(ℓ , 𝜏−𝑘/3)|, (3.7)

since 𝑑(ℓ , 𝑢𝑘+1) ⩽ 6𝜏−(𝑘+1).
By combining (3.5)–(3.7), we obtain

𝐾−1∑︂
𝑘=0

log
(︁
1/𝜃(𝑢𝑘 ,𝑘)(𝑢𝑘+1 ,𝑘+1)

)︁
⩽

𝐾−1∑︂
𝑘=0

log |𝐵𝑋(ℓ , 12𝜏−𝑘)|
|𝐵𝑋(ℓ , 𝜏−(𝑘+1)/3)|

⩽
𝐾−1∑︂
𝑘=0

log |𝐵𝑋(ℓ , 𝜏−(𝑘−1))|
|𝐵𝑋(ℓ , 𝜏−(𝑘+2))|

⩽ 3 log 𝑛,

where we used 𝜏 = 12 in the penultimate inequality. □

The above result together with (2.6) yield the following.

Corollary 3.6. It holds that |𝒫𝒟 | ⩽ 𝑛3.

9

3.2 Distortion analysis

Lemma 3.7. It holds that 𝒟̂ is 1-expanding with respect to (𝑋, 𝑑).

Proof. Suppose that 𝛾1 , 𝛾2 ∈ 𝒫𝒟 and let 𝑢 ∈ 𝑉 be the first vertex for which 𝑢𝑣1 ∈ 𝛾1 and 𝑢𝑣2 ∈ 𝛾2
with 𝑣1 ≠ 𝑣2. If 𝑢 = (𝑥, 𝑘), then 𝜔𝑢𝑣1 = 𝜔𝑢𝑣2 = 10𝜏−𝑘 and so dist𝒟̂(𝛾1 , 𝛾2) = 10𝜏−𝑘 . Moreover, by
Observation 3.2 we have

𝑑(𝛾̄1 , 𝛾̄2) ⩽ 𝑑(𝛾̄1 , 𝑥) + 𝑑(𝛾̄2 , 𝑥) ⩽ 10𝜏−𝑘 ,

completing the proof. □

For a partition 𝑃 of 𝑋 and 𝑥 ∈ 𝑋, we let 𝑃(𝑥) denote the unique set in 𝑃 containing 𝑋. We will
require the following well-known random partitioning lemma.

Theorem 3.8 ([CKR01]). For any finite metric space (𝑋, 𝑑) and value Δ > 0, there is a random partition 𝑃
of 𝑋 such that:

1. diam𝑋(𝑆) ⩽ Δ for every 𝑆 ∈ 𝑃.

2. For all 𝑥, 𝑦 ∈ 𝑋, it holds that

ℙ [𝑃(𝑥) ≠ 𝑃(𝑦)] ⩽ 8
𝑑(𝑥, 𝑦)

Δ
log |𝐵(𝑥,Δ)|

|𝐵(𝑥,Δ/8)| .

For each 𝑘 ∈ {0, 1, . . . , 𝐾}, let 𝑃𝑘 be a random partition of 𝑋 satisfying the conclusion of
Theorem 3.8 with Δ = 𝜏−𝑘 . Define a random map 𝜓𝑘 : 𝑋 → 𝑈𝑘 as follows:

𝜓𝑘(𝑥) := 𝜑𝑘(𝐵𝑋(𝑃𝑘(𝑥), 𝜏−𝑘/2)),

where 𝜑𝑘 is the map defined in (3.3).

Lemma 3.9. For every 𝑥 ∈ 𝑋, it holds that ⟨(𝜓0(𝑥), 0), (𝜓1(𝑥), 1), . . . , (𝜓𝐾(𝑥), 𝐾)⟩ is a path in 𝒟.

Proof. It suffices to show that for any 𝑘 ∈ {0, 1, . . . , 𝐾 − 1}, we have (𝜓𝑘(𝑥),𝜓𝑘+1(𝑥)) ∈ 𝐴𝑘 . Define
𝑢′ = 𝜓𝑘+1(𝑥) and 𝑆 := 𝐵𝑋(𝑃𝑘(𝑥), 𝜏−𝑘/2). Then diam𝑋(𝑆) ⩽ 2𝜏−𝑘 and

𝑑(𝑥, 𝑢′) = 𝑑(𝑥,𝜓𝑘+1(𝑥)) ⩽ 2𝜏−(𝑘+1) + diam𝑋(𝐵𝑋(𝑃𝑘+1(𝑥), 𝜏−(𝑘+1)/2)) ⩽ 4𝜏−(𝑘+1) < 𝜏−𝑘/2,

where the last inequality follows from 𝜏 = 12. Hence 𝑢′ ∈ 𝑆 ∩ 𝑈𝑘+1. We can therefore apply
Lemma 3.3 to conclude that (𝜓𝑘(𝑥), 𝑢′) = (𝜑𝑘(𝑆), 𝑢′) ∈ 𝐴𝑘 , completing the proof. □

For 𝑥 ∈ 𝑋, define Ψ(𝑥) := ⟨(𝜓0(𝑥), 0), (𝜓1(𝑥), 1), . . . , (𝜓𝐾(𝑥), 𝐾)⟩. From the preceding lemma,
we know that Ψ : 𝑋 → 𝒫𝒟 .

Lemma 3.10. For any 𝑥, 𝑦 ∈ 𝑋, it holds that

𝔼
[︁
dist𝒟̂(Ψ(𝑥),Ψ(𝑦))

]︁
⩽ 𝑂(log 𝑛) 𝑑(𝑥, 𝑦).

10

Proof. From Theorem 3.8, we have

𝔼
[︁
dist𝒟̂(Ψ(𝑥),Ψ(𝑦))

]︁
⩽

𝐾∑︂
𝑘=0

ℙ[𝑃𝑘(𝑥) ≠ 𝑃𝑘(𝑦)] · 10𝜏−𝑘

⩽ 80 𝑑(𝑥, 𝑦)
𝐾∑︂
𝑘=0

log |𝐵(𝑥, 𝜏−𝑘)|
|𝐵(𝑥, 𝜏−𝑘/8)|

⩽ 80 log(𝑛) 𝑑(𝑥, 𝑦),

where in the last line we used 𝜏 = 12 ⩾ 8. □

Corollary 3.11. It holds that 𝒟̂ is 𝑂(log 𝑛)-Lipschitz with respect to (𝑋, 𝑑).

Proof. Consider any sequence 𝑥1 , . . . , 𝑥𝑚 , and let us map it to the random sequenceΨ(𝑥1), . . . ,Ψ(𝑥𝑚).
Then from Lemma 3.10, we conclude

𝑚−1∑︂
𝑗=1

𝔼
[︁
dist𝒟̂(Ψ(𝑥 𝑗),Ψ(𝑥 𝑗+1))

]︁
⩽ 𝑂(log 𝑛)

𝑚−1∑︂
𝑗=1

𝑑(𝑥 𝑗 , 𝑥 𝑗+1).

Hence there is a mapping 𝑓 : 𝑋 → 𝒫𝒟 (that depends on the sequence 𝑥1 , . . . , 𝑥𝑚) such that∑︁𝑚−1
𝑗=1 𝑑(𝑓 (𝑥 𝑗), 𝑓 (𝑥 𝑗+1)) ⩽ 𝑂(log 𝑛)∑︁𝑚−1

𝑗=1 𝑑(𝑥 𝑗 , 𝑥 𝑗+1), completing the proof. □

3.3 Compression

Let 𝒟̂ = (𝒟 , 𝜔, 𝜃) be the 𝜏-geometric marked DAG constructed in Section 3.1. For a point 𝑢 ∈ 𝑉 ,
we let 𝜎(𝑢) denote the number of paths in 𝒟 that start at 𝑢 and end in a point of 𝑋.

Observation 3.12. For 𝑢 ∈ 𝑉 \ 𝑋, it holds that

𝜎(𝑢) =
∑︂

𝑣:𝑢𝑣∈𝐴
𝜎(𝑣). (3.8)

Say an edge 𝑢𝑣 ∈ 𝐴 is heavy if 𝑣 ∉ 𝑋 and 𝜎(𝑣) > 𝜎(𝑢)/2; otherwise we say that 𝑢𝑣 is
light. Moreover, we say a path 𝛾 = ⟨𝑢1𝑢2 , 𝑢2𝑢3 , . . . , 𝑢𝑚−1𝑢𝑚⟩ in 𝒟 is heavy-light if all the edges
𝑢1𝑢2 , 𝑢2𝑢3 , . . . , 𝑢𝑚−2𝑢𝑚−1 are heavy and 𝑢𝑚−1𝑢𝑚 is light. The next lemma is straightforward and
follows from (3.8).

Lemma 3.13. For every 𝑢 ∈ 𝑉 , there is at most one heavy edge in 𝒟 leaving 𝑢.

Now we construct the marked DAG 𝒟̃ = (𝒟′, 𝜔′, 𝜃′) with 𝒟′ = (𝑉, 𝐴′) as follows. We
connect 𝑢𝑖 = (𝑥𝑖 , 𝑖) ∈ 𝑉 to 𝑢𝑗 = (𝑥 𝑗 , 𝑗) ∈ 𝑉 for 1 ⩽ 𝑖 < 𝑗 ⩽ 𝐾 in 𝒟′ if there is a heavy-light path
𝛾 = ⟨𝑢𝑖𝑢𝑖+1 , 𝑢𝑖+1𝑢𝑖+2 , . . . , 𝑢𝑗−1𝑢𝑗⟩ from 𝑢𝑖 to 𝑢𝑗 in 𝒟. Note that by Lemma 3.13, at most one such
path can exist. We further set

𝜔′
𝑢𝑖𝑢𝑗

:= 10𝜏−𝑗+1 ,

𝜃′
𝑢𝑖𝑢𝑗

:=
𝑗−1∏︂
𝑘=𝑖

𝜃𝑢𝑘𝑢𝑘+1 .

11

Lemma 3.14. For 𝑢𝑣 ∈ 𝐴′ with 𝑣 ∉ 𝑋 it holds that

𝜎(𝑣) ⩽ 𝜎(𝑢)/2.

Proof. Since 𝑢𝑣 ∈ 𝐴′, there must be a heavy-light path 𝛾 = ⟨𝑤1𝑤2 , . . . , 𝑤𝑚−1𝑤𝑚⟩ in 𝒟 with 𝑤1 = 𝑢

and 𝑤𝑚 = 𝑣. Clearly the values of 𝜎(·) are non-increasing along the (directed) paths in 𝒟, hence we
have

𝜎(𝑢) ⩾ 𝜎(𝑤2) ⩾ · · · ⩾ 𝜎(𝑤𝑚−1).
Furthermore, as 𝑤𝑚−1𝑣 is a light edge and 𝑣 ∉ 𝑋, it follows that

𝜎(𝑣) ⩽ 𝜎(𝑤𝑚−1)/2 ⩽ 𝜎(𝑢)/2,

as desired. □

Lemma 3.15. It holds that Δ0(𝒟′) ⩽ 𝑂(log |𝒫𝒟 |).

Proof. We will argue that for every 𝛾 ∈ 𝒫𝒟′ , one has |𝛾 | = 𝑂(log |𝒫𝒟 |). Let 𝛾 = ⟨𝑢1𝑢2 , . . . , 𝑢𝑚−1𝑢𝑚⟩.
Lemma 3.14 implies that for 1 ⩽ 𝑖 ⩽ 𝑚 − 2 we have 𝜎(𝑢𝑖+1) ⩽ 𝜎(𝑢𝑖)/2. Further note that we have
𝜎(𝑢1) = |𝒫𝒟 |, and also clearly 𝜎(𝑢𝑚−1) ⩾ 1. Therefore,

𝑚 − 2 ⩽ log2(|𝒫𝒟 |),

completing the proof. □

We now define the map 𝑓 : 𝒫𝒟 → 𝒫𝒟′ as follows. For a path 𝛾 ∈ 𝒫𝒟 , let 𝑓 (𝛾) denote the path
obtained by contracting all the heavy edges in 𝛾. More precisely, for 𝛾 = ⟨𝑢1𝑢2 , 𝑢2𝑢3 , . . . , 𝑢𝑚−1𝑢𝑚⟩,
we define 𝑓 (𝛾) as follows. Denote 𝑖0 := 1, and for 𝑗 = 1, 2, . . . , 𝑚′, let 𝑖 𝑗 denote the 𝑗th index for
which 𝑢𝑖 𝑗−1𝑢𝑖 𝑗 is a light edge. We then denote

𝑓 (𝛾) := ⟨𝑢𝑖0𝑢𝑖1 , 𝑢𝑖1𝑢𝑖2 , . . . , 𝑢𝑖𝑚′−1𝑢𝑖𝑚′ ⟩.

Lemma 3.16. It holds that Δ𝐼(𝐷̃) ⩽ Δ𝐼(𝐷̂).

Proof. As all the edges in 𝒟′ correspond to a path in 𝒟, 𝑓 is a surjective map. Furthermore, for
𝛾 ∈ 𝒫𝒟 , one has 𝜃(𝛾) = 𝜃′(𝑓 (𝛾)), for 𝜃(·) defined as in (2.5) and 𝜃′(·) defined analogously, and thus
we have

Δ𝐼(𝒟̃) = max
𝛾′∈𝒫𝒟′

log(1/𝜃′(𝛾′)) = max
𝛾∈𝒫𝒟

log(1/𝜃′(𝑓 (𝛾))) ⩽ max
𝛾∈𝒫𝒟

log(1/𝜃(𝛾)) = Δ𝐼(𝐷̂),

completing the proof. □

Lemma 3.17. For all 𝛾, 𝛾′ ∈ 𝒫𝒟 it holds that

dist𝒟̂(𝛾, 𝛾′) = dist𝒟̃(𝑓 (𝛾), 𝑓 (𝛾′)).

12

Proof. Denote 𝛾 = ⟨𝑢1𝑢2 , . . . , 𝑢𝑚−1𝑢𝑚⟩ and 𝛾′ = ⟨𝑢′1𝑢
′
2 , . . . , 𝑢

′
𝑚−1𝑢

′
𝑚⟩, and let 𝑢𝑖 = 𝑢′

𝑖
be the first

vertex at which 𝛾 and 𝛾′ diverge so that we have

dist𝒟̂(𝑃, 𝑃′) = max(𝜔𝑢𝑖𝑢𝑖+1 , 𝜔𝑢𝑖𝑢′𝑖+1
) = 10𝜏−𝑖 .

By Lemma 3.13, at most one of 𝑢𝑖𝑢𝑖+1 and 𝑢𝑖𝑢′𝑖+1 can be heavy. Suppose that 𝑢𝑖𝑢𝑖+1 is light. Take
𝑗 := 1 when 𝑖 = 1, and otherwise let 𝑗 ⩽ 𝑖 be the maximum index for which 𝑢𝑗−1𝑢𝑗 is light. Further
let 𝑘 ⩾ 𝑖 be the minimum index for which 𝑢′

𝑘
𝑢′
𝑘+1 is a light edge. Note that 𝑘 is well-defined because

𝑢′
𝑚−1𝑢

′
𝑚 is light. Now we have

dist𝒟̃(𝑓 (𝛾), 𝑓 (𝛾′)) = max(𝜔′
𝑢𝑗𝑢𝑖+1 , 𝜔

′
𝑢𝑗𝑢

′
𝑘+1

)

= max(𝜔𝑢𝑖𝑢𝑖+1 , 𝜔𝑢′𝑘𝑢
′
𝑘+1

) = max(10𝜏−𝑖 , 10𝜏−𝑘) = 10𝜏−𝑖 ,

as desired. □

Lemma 3.18. The 𝐷̃ is a marked DAG that is also 𝜏-geometric.

Proof. We first establish the 𝜏-geometric property. Consider 𝑢, 𝑣, 𝑤 ∈ 𝑉 with 𝑢𝑣, 𝑣𝑤 ∈ 𝐴′. Denote
𝑣 = (𝑥, 𝑖) for some 1 ⩽ 𝑖 ⩽ 𝐾. Then by construction, we have 𝜔′

𝑢𝑣 ⩾ 10𝜏−𝑖+1 and 𝜔′
𝑣𝑤 ⩽ 10𝜏−𝑖 ,

completing the proof.
Next, we show that 𝐷̃ is a properly-constructed marked DAG. We need to establish that for

𝑢 ∈ 𝑉 \ 𝑋 it holds that ∑︂
𝑣:𝑢𝑣∈𝐴′

𝜃′
𝑢𝑣 = 1. (3.9)

Let 𝑣0 := 𝑢 and let 𝛾 = ⟨𝑢𝑣1 , 𝑣1𝑣2 , . . . , 𝑣𝑘−1𝑣𝑘⟩ be the maximal heavy path going out of 𝑢 for some
𝑘 ⩾ 0, meaning that all the edges 𝑣𝑖𝑣𝑖+1 are heavy for 0 ⩽ 𝑖 ⩽ 𝑘 − 1. Lemma 3.13 implies that the
choice of 𝛾 is unique.

Now using (3.9), write

∑︂
𝑣 : 𝑢𝑣∈𝐴′

𝜃′
𝑢𝑣 =

𝑘−1∑︂
𝑗=0

∑︂
𝑦≠𝑣 𝑗+1:
𝑣 𝑗 𝑦∈𝐴

𝜃𝑣 𝑗 𝑦 ·
𝑗−1∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1 +
𝑘−1∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1 ·
⎛⎜⎝

∑︂
𝑦 : 𝑣𝑘 𝑦∈𝐴

𝜃𝑣𝑘 𝑦
⎞⎟⎠

=

𝑘−1∑︂
𝑗=0

∑︂
𝑦≠𝑣 𝑗+1:
𝑣 𝑗 𝑦∈𝐴

𝜃𝑣 𝑗 𝑦 ·
𝑗−1∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1 +
𝑘−1∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1

=

𝑘−2∑︂
𝑗=0

∑︂
𝑦≠𝑣 𝑗+1:
𝑣 𝑗 𝑦∈𝐴

𝜃𝑣 𝑗 𝑦 ·
𝑗−1∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1 +
𝑘−2∏︂
ℓ=0

𝜃𝑣ℓ 𝑣ℓ+1 ·
⎛⎜⎝

∑︂
𝑦 : 𝑣𝑘−1𝑦∈𝐴

𝜃𝑣𝑘−1𝑦
⎞⎟⎠

...

=
∑︂
𝑦≠𝑣1:
𝑣0𝑦∈𝐴

𝜃𝑣0𝑦 + 𝜃𝑣0𝑣1 ·
⎛⎜⎝

∑︂
𝑦 : 𝑣1𝑦∈𝐴

𝜃𝑣1𝑦
⎞⎟⎠

13

=
∑︂

𝑦 : 𝑣0𝑦∈𝐴
𝜃𝑣0𝑦

= 1,

as desired. □

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let us show that 𝒟̃ satisfies the requirements of the theorem. Lemma 3.18
shows that 𝒟̃ is a 12-geometric marked DAG.

Now note that for 𝛾 ∈ 𝒫𝒟 we have 𝑓 (𝛾) = 𝛾̄, and thus Lemma 3.17 in conjunction with
Lemma 3.7 and Corollary 3.11 implies that 𝐷̃ is 1-expanding and 𝑂(log 𝑛)-Lipschitz. Moreover,
Lemma 3.16 together with Lemma 3.5 bounds the information depth of 𝐷̃. Finally, a bound on the
combinatorial depth follows from Lemma 3.15 and Corollary 3.6. □

4 Algorithm and competitive analysis

4.1 Discrete-time algorithm

Let 𝒟̂ = (𝒟 , 𝑤, 𝜃) be a marked DAG on 𝑋 with 𝒟 = (𝑉, 𝐴). We now describe a generalization of
the discrete-time dynamics of [CL19] on 𝒟̂ in response to a sequence of costs ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩, where
𝑐𝑡 ∈ ℝ𝑋

+ . Define

𝒬𝒟 :=

{︄
𝑝 ∈ ℝ𝐴

+
|︁|︁ ∀𝑢 ∈ 𝑉 \ 𝑋 :

∑︂
𝑣 : 𝑢𝑣∈𝐴

𝑝𝑢𝑣 = 1

}︄
.

For 𝑞 ∈ 𝑄𝒟 and 𝑢 ∈ 𝑉 \ 𝑋, we use 𝑞(𝑢) to denote the restriction of 𝑞 to the subspace spanned
by subset of standard basis vectors {𝑒𝑢𝑣 : 𝑢𝑣 ∈ 𝐴}, and we define the corresponding probability
simplex 𝑄(𝑢)

𝒟 := {𝑞(𝑢) : 𝑞 ∈ 𝑄𝒟}. For convenience, we use 𝑞(𝑢)𝑣 for 𝑞(𝑢)𝑢𝑣 .
Let 𝜅 > 0 be a normalization parameter, and let the values 𝜂𝑢𝑣 and 𝛿𝑢𝑣 be defined as in (2.3) and

(2.4). For 𝑢 ∈ 𝑉 \ 𝑋 and 𝑝 ∈ 𝒬(𝑢)
𝒟 , define

Φ(𝑢)(𝑝) := 1
𝜅

∑︂
𝑣 : 𝑢𝑣∈𝐴

𝜔𝑢𝑣
𝜂𝑢𝑣

(𝑝𝑢𝑣 + 𝛿𝑢𝑣) log(𝑝𝑢𝑣 + 𝛿𝑢𝑣),

and for 𝑝′ ∈ 𝒬(𝑢)
𝒟 , denote

𝔻(𝑢)(𝑝 ∥ 𝑝′) := 𝔻Φ(𝑢)(𝑝 ∥ 𝑝′) = 1
𝜅

∑︂
𝑣 : 𝑢𝑣∈𝐴

𝜔𝑢𝑣
𝜂𝑢𝑣

[︃
(𝑝𝑢𝑣 + 𝛿𝑢𝑣) log

𝑝𝑢𝑣 + 𝛿𝑢𝑣
𝑝′𝑢𝑣 + 𝛿𝑢𝑣

+ 𝑝′𝑢𝑣 − 𝑝𝑢𝑣
]︃
.

We now define an algorithm that takes a point 𝑞 ∈ 𝑄𝒟 and a cost vector 𝑐 ∈ ℝ𝑋
+ and outputs

a point 𝑝 = 𝒜(𝑞, 𝑐) ∈ 𝑄𝒟 . Fix a topological ordering ⟨𝑢1 , 𝑢2 , . . . , 𝑢𝑁⟩ of 𝑉 \ 𝑋 in 𝒟. We define 𝑝
inductively as follows. Denote 𝑐̂𝑥 := 𝑐𝑥 for 𝑥 ∈ 𝑋, and for each 𝑗 = 1, 2, . . . , 𝑁 :

𝑐̂
(𝑢𝑗)
𝑣 := 𝑐̂𝑣 ∀𝑣 : (𝑢𝑗 , 𝑣) ∈ 𝐴 (4.1)

14

𝑝(𝑢𝑗) := argmin
{︂
𝔻(𝑢𝑗)

(︂
𝑝 ∥ 𝑞(𝑢𝑗)

)︂
+

⟨︂
𝑝, 𝑐̂(𝑢𝑗)

⟩︂ |︁|︁ 𝑝 ∈ 𝑄(𝑢𝑗)
𝒟

}︂
(4.2)

𝑐̂𝑢𝑗 :=
∑︂

𝑣 : 𝑢𝑗𝑣∈𝐴
𝑝
(𝑢𝑗)
𝑣 𝑐̂𝑣 (4.3)

We will use Λ𝒟 : 𝑄𝒟 → ℱ𝒟 for the map which sends 𝑞 ∈ 𝑄𝒟 to the (unique) 𝐹 = Λ𝒟(𝑞) ∈ ℱ𝒟
such that

𝐹𝑢𝑣 = 𝐹𝑢𝑞𝑢𝑣 ∀𝑢𝑣 ∈ 𝐴.
Note that 𝑞 contains more information than 𝐹; the map Λ𝒟 fails to be invertible at 𝐹 ∈ ℱ𝒟 whenever
there is some 𝑢 ∈ 𝑉 \ 𝑋 with 𝐹𝑢 = 0. We will drop the superscript 𝒟 from Λ𝒟 whenever it is clear
from context.

Now let 𝑝0 be an arbitrary point in 𝑄𝒟 . Given the cost sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩, for 𝑡 = 1, 2, . . . we
define

𝑝𝑡 := 𝒜(𝑝𝑡−1 , 𝑐𝑡), (4.4)

and the associated MTS algorithm plays the distribution Λ𝒟(𝑝𝑡)|𝑋 , i.e., at every 𝑥 ∈ 𝑋 (recall that
these are precisely the sinks in 𝒟), the algorithm places probability mass equal to the flow in
Λ𝒟(𝑝𝑡) entering 𝑥.

For 𝑐 ∈ ℝ𝑋
+ and 𝐹 ∈ ℱ𝒟 we define

⟨𝑐, 𝐹⟩𝑋 :=
∑︂
𝑣∈𝑋

𝑐𝑣𝐹𝑣 =
∑︂

𝑢𝑣∈𝐴 : 𝑣∈𝑋
𝑐𝑣𝐹𝑢𝑣 .

So the service cost of the algorithm until time 𝑡 ⩾ 1 is given by

𝑡∑︂
𝑠=1

⟨︁
𝑐,Λ𝒟(𝑝𝑠)

⟩︁
𝑋
,

and the movement cost is given by

𝑡∑︂
𝑠=1

𝕎1
𝐷̂

(︂
Λ𝒟(𝑝𝑠−1),Λ𝒟(𝑝𝑠)

)︂
,

where we recall the 𝐿1 transportation distance defined in Section 2.2.

4.2 Analysis via unfolding to an ultrametric

Let 𝒟̂ = (𝒟 , 𝜔, 𝜃) be a 𝜏-geometric marked DAG. As in Section 3.3, for a point 𝑢 ∈ 𝑉 , we define
𝜎(𝑢) to denote the number of paths in 𝒟 that start at 𝑢 and end at 𝑋. Then if 𝒟 is a tree and
furthermore, for 𝑢𝑣 ∈ 𝐴, one defines

𝜃𝑢𝑣 := 𝜎(𝑣)
𝜎(𝑢) , (4.5)

then the algorithm of the preceding section is exactly the same as the one for HSTs introduced in
[CL19], as 𝜎(𝑢) is precisely the number of leaves in the subtree rooted at 𝑢. The next result is a
restatement of [CL19, Thm. 2.7].

15

Theorem 4.1 ([CL19]). Let 𝒟̂ = (𝒟 , 𝜔, 𝜃) be a 𝜏-geometric marked DAG over 𝑋, for some 𝜏 ⩾ 4, and
such that 𝒟 is a tree. If 𝜃 is defined as in (4.5), and 𝒟̂ is 1-expanding and 𝐿-Lipschitz, then there is
some value 𝜅 ≍ 𝐿 and a number 𝜀 = 𝜀(𝒟̂) > 0 so that for any sequence of cost vectors ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩
satisfying ∥𝑐𝑡 ∥∞ ⩽ 𝜀, the MTS algorithm specified in Section 4.1 is 1-competitive for service costs and
𝑂

(︁
𝐿

(︁
Δ0(𝒟) + log |𝑋 |)

)︁)︁
-competitive for movement costs.

Note that the condition on the ℓ∞ norm of the cost vectors in the above theorem is not restrictive,
since as noted in [CL19], we can always split arbitrary cost vectors into smaller pieces with each
satisfying the desired ℓ∞ bound.

Our goal now is to show that if 𝜃 is defined as in (4.5), then similar guarantees as in Theorem 4.1
hold for the algorithm on 𝒟̂, even when 𝒟 is not a tree.

Theorem 4.2. Let 𝒟̂ be a 𝜏-geometric marked DAG over 𝑋, for some 𝜏 ⩾ 4, and such that 𝜃 is given by
(4.5). If 𝒟̂ is 1-expanding and 𝐿-Lipschitz, then there is some value 𝜅 ≍ 𝐿 and a number 𝜀 = 𝜀(𝒟̂) > 0
so that for any sequence of cost vectors ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩ satisfying ∥𝑐𝑡 ∥∞ ⩽ 𝜀, the MTS algorithm specified in
Section 4.1 is 1-competitive for service costs and 𝑂

(︁
𝐿

(︁
Δ0(𝒟) + log |𝑋 |)

)︁)︁
-competitive for movement costs.

Note that from (2.6) it follows that

Δ0(𝒟) + log |𝒫𝒟 | ⩽ Δ0(𝒟) + Δ𝐼(𝒟̂),

and hence the above theorem together with Theorem 2.2 already gives a competitive algorithm
with our desired bounds, though only for the specific choice of 𝜃 given by (4.5). In Section 4.3, we
address the case of general 𝜃.

We prove Theorem 4.2 via a simple reduction to Theorem 4.1. Consider a 𝜏-geometric marked
DAG 𝒟̂ = (𝒟 , 𝑤, 𝜃) on 𝑋 with 𝒟 = (𝑉, 𝐴). Note that 𝑑𝒟̂ defines an ultrametric on 𝒫𝒟 . We
show that the dynamics on 𝒟̂ are “equivalent” to the dynamics on the HST corresponding to the
ultrametric (𝒫𝒟 , 𝑑𝒟̂). More precisely, let us construct the 𝜏-geometric marked tree 𝒟̃ = (𝒟′, 𝑤′, 𝜃′)
with 𝒟′ = (𝑉′, 𝐴′) as follows. We define 𝑉′ as the set of (directed) paths is 𝒟 originating from the
root. Furthermore, we connect 𝛾 ∈ 𝑉′ to 𝛾′ ∈ 𝑉′ whenever 𝛾′ is formed by adding the edge 𝛾′¯ to 𝛾,
and set

𝜔𝛾𝛾′ := 𝜔𝛾′¯ , 𝜃𝛾𝛾′ := 𝜃𝛾′¯ .

One can verify that 𝒟̃ is a 𝜏-geometric marked tree over 𝒫𝒟 . Moreover, since 𝒟′ is a tree, there is a
natural identification between the elements of 𝒫𝒟 and 𝒫𝒟′ so that for 𝛾, 𝛾′ ∈ 𝒫𝒟 it holds that

𝑑𝒟̂(𝛾, 𝛾′) = 𝑑𝒟̃(𝛾, 𝛾′). (4.6)

Now for 𝑝 ∈ 𝒬𝒟 , define 𝑝̃ ∈ 𝑄𝒟′ to be the natural extension of 𝑝 in 𝒟′ so that for 𝛾𝛾′ ∈ 𝐴′ one has
𝑝̃𝛾𝛾′ = 𝑝𝛾′¯ . Furthermore, for a cost sequence 𝑐 ∈ ℝ𝑋

+ define its extension 𝑐̃ ∈ ℝ𝒫𝒟 as the vector with
𝑐̃𝛾 = 𝑐𝛾̄ for 𝛾 ∈ 𝒫𝒟 . Finally, let 𝒜 denote the single-step discrete dynamics on 𝒟̂ as defined in
Section 4.1, and similarly let 𝒜′ denote the discrete dynamics on 𝒟̃. Then the following lemma is
straightforward.

Lemma 4.3. Let 𝑝 ∈ 𝒬𝒟 , 𝑐 ∈ ℝ𝑋
+ . Then it holds that

⟨Λ(𝒟)(𝑝), 𝑐⟩𝑋 = ⟨Λ(𝒟′)(𝑝̃), 𝑐̃⟩𝒫𝒟 . (4.7)

Furthermore, for 𝑞 = 𝒜(𝑝, 𝑐) we have
𝒜′(𝑝̃ , 𝑐̃) = 𝑞̃. (4.8)

16

We are now ready to prove the main result of this section.

Proof of Theorem 4.2. Let 𝑝0 ∈ 𝒬𝒟 and 𝑞0 ∈ 𝑄𝒟′ with 𝑞0 = 𝑝0̃. Given the cost sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩,
for 𝑡 ⩾ 1 let

𝑝𝑡 = 𝒜(𝑝𝑡−1 , 𝑐𝑡)
and

𝑞𝑡 = 𝒜′(𝑞𝑡−1 , 𝑐̃𝑡).
Then by repeatedly applying (4.8) we get that for 𝑡 ⩾ 1 we have 𝑞𝑡 = 𝑝 𝑡̃ . Therefore from (4.7) and
(4.6) it follows that the service and movement costs of the dynamics on 𝒟̂ and 𝒟̃ are equal. Hence
the competitiveness guarantees for the dynamics on 𝒟̂ follow from an application of Theorem 4.1
to the dynamics on 𝒟̃, completing the proof. □

4.3 Analysis of the general case

We now prove Theorem 2.1 via a relatively straightforward generalization of the analysis in [CL19].
Let 𝒟̂ = (𝒟 , 𝑤, 𝜃) be a 𝜏-geometric marked DAG with 𝜏 ⩾ 4, and consider the mirror descent
dynamics on 𝒟̂ described in Section 4.1.

For a unit flow 𝐹 ∈ ℱ𝒟 and 𝑞 ∈ 𝒬𝒟 , define the global divergence function

𝔻(𝐹 ∥ 𝑞) := 1
𝜅

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣
𝜂𝑢𝑣

[︄
(𝐹𝑢𝑣 + 𝐹𝑢𝛿𝑢𝑣) log

𝐹𝑢𝑣
𝐹𝑢

+ 𝛿𝑢𝑣

𝑞𝑢𝑣 + 𝛿𝑢𝑣
+ 𝐹𝑢𝑞𝑢𝑣 − 𝐹𝑢𝑣

]︄
,

with the convention that 0 log
(︁ 0

0 + 𝛿𝑣
)︁
= lim𝜀→0 𝜀 log

(︁ 0
𝜀 + 𝛿𝑣

)︁
= 0. We further define the norm

ℓ1(𝜔) as
∥𝐹∥ℓ1(𝜔) =

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣 |𝐹𝑢𝑣 |.

Observation 4.4. For 𝐹, 𝐹′ ∈ ℱ𝒟 it holds that

1
2 ∥𝐹 − 𝐹′∥ℓ1(𝜔) ⩽ 𝕎1

𝒟̂(𝐹, 𝐹′) ⩽ ∥𝐹 − 𝐹′∥ℓ1(𝜔).

The next lemma lets us bound the amount of change of the global divergence when the offline
algorithm makes a movement.

Lemma 4.5 ([CL19, Lemma 2.2]). For flows 𝐹, 𝐹′ ∈ ℱ𝒟 and 𝑞 ∈ 𝒬𝒟 we have

|𝔻(𝐹 ∥ 𝑞) −𝔻(𝐹′ ∥ 𝑞)| ⩽ 1
𝜅
(2 + 4

𝜏
)∥𝐹 − 𝐹′∥ℓ1(𝜔)

Suppose 𝑞 ∈ 𝒬𝒟 , 𝑝 = 𝒜(𝑞, 𝑐), and further let 𝑄 = 𝜇(𝑞), 𝑃 = 𝜇(𝑝). The KKT conditions for (4.2)
give: For every 𝑢𝑣 ∈ 𝐴,

1
𝜅
𝜔𝑢𝑣
𝜂𝑢𝑣

log
(︃
𝑝𝑢𝑣 + 𝛿𝑢𝑣
𝑞𝑢𝑣 + 𝛿𝑢𝑣

)︃
= 𝛽𝑢 − 𝑐̂𝑣 + 𝛼𝑢𝑣 , (4.9)

where 𝛼𝑢𝑣 is the Lagrange multipliers corresponding to the nonnegativity constraints in (4.2),
𝛽𝑢 ⩾ 0 is the multiplier corresponding to the constraint

∑︁
𝑣:𝑢𝑣∈𝐴 𝑞𝑢𝑣 ⩾ 1, and 𝑐̂ is defined as in (4.3).

17

Note that as in [CL19] the nonnegativity multipliers are unique and thus well-defined here. The
complementary slackness conditions give us

𝛼𝑢𝑣 > 0 =⇒ 𝑝𝑢𝑣 = 0. (4.10)

We use 𝛼(𝑢) to denote the restriction of 𝛼 to the subspace spanned by {𝑒𝑢𝑣 : 𝑢𝑣 ∈ 𝐴}.
The following two lemmas, which allow us to bound the service cost and the movement cost of

the algorithm, respectively, are the main ingredients in the proof of Theorem 2.2.

Lemma 4.6. It holds that
𝔻(𝐹 ∥ 𝑝) −𝔻(𝐹 ∥ 𝑞) ⩽ ⟨𝑐, 𝐹 − 𝑃⟩𝑋 .

Define 𝜔min := min𝑢𝑣∈𝐴{𝜔𝑢𝑣} and

𝜀𝒟 := 𝜔min

2(2Δ0(𝒟) + Δ𝐼(𝒟̂))
𝜏 − 3
𝜏𝜅

.

Furthermore, for 𝐹 ∈ 𝒫𝒟 and 𝑟 ∈ 𝒬𝒟 define

𝜓(𝐹) :=
∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣𝐹𝑢𝑣

and

Ψ𝑢(𝑟) := −Λ𝒟(𝑟)𝑢 𝔻(𝑢)
(︂
𝜃(𝑢) ∥ 𝑟(𝑢)

)︂
Ψ(𝑟) :=

∑︂
𝑢∈𝑉\𝑋

Ψ𝑢(𝑟).

Lemma 4.7. For any 𝑍 ∈ ℱ𝒟 :

𝜅−1 ∥𝑄 − 𝑃∥ℓ1(𝜔) ⩽ [𝜓(𝑌) − 𝜓(𝑋)] + 2𝜏
𝜏 − 3

(︂
[Ψ(𝑞) −Ψ(𝑝)] + (2Δ0(𝒟) + Δ𝐼(𝒟̂))⟨𝑐, 𝑄⟩𝑋

)︂
. (4.11)

Moreover, if ∥𝑐∥∞ ⩽ 𝜀𝒟 , then

𝜅−1 ∥𝑄 − 𝑃∥ℓ1(𝜔) ⩽ [𝜓(𝑌) − 𝜓(𝑋)] + 4𝜏
𝜏 − 3

(︂
[Ψ(𝑞) −Ψ(𝑝)] + (2Δ0(𝒟) + Δ𝐼(𝒟̂))⟨𝑐, 𝑃⟩𝑋

)︂
. (4.12)

We prove Lemma 4.6 and Lemma 4.7 in Section 4.4 and Section 4.5, respectively. Now given
these results, let us prove Theorem 2.2.

Proof of Theorem 2.2. Consider a sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩ of cost functions. By splitting the costs into
smaller pieces, we may assume that ∥𝑐𝑡 ∥∞ ⩽ 𝜀𝒟 for all 𝑡 ⩾ 1.

Let 𝑡1 ⩾ 1, and let 𝑟∗0 , 𝑟
∗
1 , . . . , 𝑟

∗
𝑡1
∈ 𝑋 denote the path taken by an (optimal) offline algorithm in

response to the cost sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩. The 𝐿-Lipschitzness property of 𝒟̂ implies that there
exists a sequence 𝑅∗

0 , 𝑅
∗
1 , . . . 𝑅

∗
𝑡1
∈ ℱ𝒟 such that 𝑅∗

𝑖
is a unit flow to 𝑟𝑖 , and furthermore

𝑡1∑︂
𝑖=1

𝕎1
𝒟̂(𝑅∗

𝑖−1 , 𝑅
∗
𝑖) ⩽ 𝐿

𝑡1∑︂
𝑖=1

𝑑(𝑟∗𝑖−1 , 𝑟
∗
𝑖). (4.13)

18

Let 𝑞0 , . . . , 𝑞𝑡1 ∈ 𝒬𝒟 denote the trajectory of the discrete mirror descent dynamics with 𝜅 = 6𝐿
on 𝒟̂ in response to the cost sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩. Further let {𝑄𝑡 = 𝜇(𝑞𝑡)}, and suppose 𝑅∗

0 = 𝑄∗
0.

Then using 𝔻(𝑅∗
0 ∥ 𝑞0) = 0 along with Lemma 4.6 and Lemma 4.5 yields, for any time 𝑡1 ⩾ 1,

𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑄𝑡⟩𝑋 ⩽
𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑍∗
𝑡⟩𝑋 −𝔻(𝑅∗

𝑡1
∥ 𝑞𝑡1) +

3
𝜅

𝑡1∑︂
𝑡=1

∥𝑅∗
𝑡 − 𝑅∗

𝑡−1∥ℓ1(𝜔)

⩽
𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑅∗
𝑡⟩𝑋 + 3

𝜅

𝑡1∑︂
𝑡=1

∥𝑅∗
𝑡 − 𝑅∗

𝑡−1∥ℓ1(𝜔)

⩽
𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑅∗
𝑡⟩𝑋 + 6𝐿

𝜅

𝑡1∑︂
𝑡=1

𝑑(𝑟∗𝑡−1 , 𝑟
∗
𝑡),

where in the second line we have used 𝔻(𝑅 ∥ 𝑞) ⩾ 0 for all 𝑅 ∈ ℱ𝒟 and 𝑞 ∈ 𝒬𝒟 , and the last
line follows from Observation 4.4 and (4.13). This confirms that the mirror descent dynamics is
1-competitive for the service costs. Now we can write

𝜀
𝜅

𝑡1∑︂
𝑡=1

𝕎1
𝑋(𝑄𝑡−1 , 𝑄𝑡) ⩽

1
𝜅

𝑡1∑︂
𝑡=1

𝕎1
𝒟̂(𝑄𝑡−1 , 𝑄𝑡) (𝒟̂ is 𝜀-expanding)

⩽
1
𝜀

𝑡1∑︂
𝑡=1

∥𝑄𝑡 −𝑄𝑡−1∥ℓ1(𝜔) (Observation 4.4)

⩽ [𝜓(𝑄𝑡1) − 𝜓(𝑄0)] +
4𝜏

𝜏 − 3

(︄
[Ψ(𝑞0) −Ψ(𝑞𝑡1)] +

(︂
2Δ0(𝒟) + Δ𝐼(𝒟̂)

)︂ 𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑄𝑡⟩𝑋

)︄
,

where in the last line we used (4.12). This implies that the mirror descent dynamics is (96𝐿/𝜀) ·(︂
2Δ0(𝒟) + Δ𝐼(𝒟̂)

)︂
-competitive in the movement cost, completing the proof. □

4.4 Bounding the service cost

In this section we prove Lemma 4.6. Let 𝐹 ∈ ℱ𝒟 , and for 𝑢 ∈ 𝑉 \ 𝑋 with 𝐹𝑢 > 0, define 𝐹(𝑢) ∈ 𝑄(𝑢)
𝒟

by

𝐹
(𝑢)
𝑣 := 𝐹𝑢𝑣

𝐹𝑢
.

The next lemma is a consequence of [CL19, Lemma 2.1].

Lemma 4.8. For 𝑢 ∈ 𝑉 \ 𝑋 we have

𝔻(𝑢)
(︂
𝐹(𝑢) ∥ 𝑝(𝑢)

)︂
−𝔻(𝑢)

(︂
𝐹(𝑢) ∥ 𝑞(𝑢)

)︂
⩽

⟨︂
𝑐̂(𝑢) − 𝛼(𝑢) , 𝐹(𝑢) − 𝑝(𝑢)

⟩︂
. (4.14)

Proof of Lemma 4.6. Multiplying both sides of (4.14) by 𝐹𝑢 and summing over all 𝑢 ∈ 𝑉 \ 𝑋 yields

𝔻(𝐹 ∥ 𝑝) −𝔻(𝐹 ∥ 𝑞) ⩽
∑︂

𝑢∈𝑉\𝑋
𝐹𝑢

⟨︂
𝑐̂(𝑢) − 𝛼(𝑢) , 𝐹(𝑢) − 𝑝(𝑢)

⟩︂
19

=
∑︂
𝑢𝑣∈𝐴

𝐹𝑢𝑣(𝑐̂(𝑢)𝑣 − 𝛼(𝑢)
𝑣) −

∑︂
𝑢𝑣∈𝐴

𝐹𝑢𝑝𝑢𝑣(𝑐̂(𝑢)𝑣 − 𝛼(𝑢)
𝑣)

⩽
∑︂
𝑢𝑣∈𝐴

𝐹𝑢𝑣 𝑐̂
(𝑢)
𝑣 −

∑︂
𝑢𝑣∈𝐴

𝐹𝑢𝑝𝑢𝑣(𝑐̂(𝑢)𝑣 − 𝛼(𝑢)
𝑣).‘ (𝛼(𝑢)

𝑣 ⩾ 0)

Note that from (4.10) the latter expression is∑︂
𝑢∉𝑋

𝐹𝑢

∑︂
𝑣:𝑢𝑣∈𝐴

𝑐̂
(𝑢)
𝑣 𝑝𝑣 =

∑︂
𝑢∉𝑋

𝐹𝑢 𝑐̂𝑢 .

Noting that 𝑐̂𝕣 =
∑︁
𝑢∈𝑋 𝜇(𝑝)𝑢𝑐𝑢 , this gives

𝔻(𝐹 ∥ 𝑝) −𝔻(𝐹 ∥ 𝑞) ⩽
∑︂
𝑢≠𝕣

𝑐̂𝑢𝐹𝑢 −
∑︂

𝑢∈𝑉\𝑋
𝐹𝑢 𝑐̂𝑢 ⩽ ⟨𝑐, 𝐹 − 𝑃⟩𝑋 . □

4.5 Bounding the the movement cost

In this section we prove Lemma 4.7. The next lemma shows that when the algorithm moves from 𝑄

to 𝑃 it suffices for us to bound the positive movement movement cost ∥(𝑃 −𝑄)+∥ℓ1(𝜔).

Lemma 4.9 ([CL19, Lemma 2.4]). For 𝐹, 𝐹′ ∈ ℱ𝒟 it holds that

∥𝐹 − 𝐹′∥ℓ1(𝜔) = 2 ∥(𝐹 − 𝐹′)+∥ℓ1(𝜔) + [𝜓(𝐹′) − 𝜓(𝐹)].

Lemma 4.10 ([CL19, Lemma 2.9]). It holds that 𝛼𝑢𝑣 ⩽ 𝑐̂𝑣 for all 𝑢𝑣 ∈ 𝐴.

Define 𝜌𝑢𝑣 := log
(︂
𝑝𝑢𝑣+𝛿𝑢𝑣
𝑞𝑢𝑣+𝛿𝑢𝑣

)︂
so that

𝑞𝑢𝑣 − 𝑝𝑢𝑣 = (𝑞𝑢𝑣 + 𝛿𝑢𝑣)(1 − 𝑒𝜌𝑢𝑣). (4.15)

Recall that for 𝑢𝑣 ∈ 𝐴, we have 𝑄𝑢𝑣 = 𝑞𝑢𝑣𝑄𝑢 and 𝑃𝑢𝑣 = 𝑝𝑢𝑣𝑃𝑢 , thus

𝑄𝑢𝑣 − 𝑃𝑢𝑣 = 𝑄𝑢(𝑞𝑢𝑣 − 𝑝𝑢𝑣) + 𝑝𝑢𝑣(𝑄𝑢 − 𝑃𝑢) = (𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣) + 𝑝𝑢𝑣(𝑄𝑢 − 𝑃𝑢).

In particular,

𝜔𝑢𝑣 (𝑄𝑢𝑣 − 𝑃𝑢𝑣)+ ⩽ 𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣)+ + 𝜔𝑢𝑣𝑝𝑢𝑣 (𝑄𝑢 − 𝑃𝑢)+
⩽ 𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣)+ +

∑︂
𝑤:𝑤𝑢∈𝐴

𝜔𝑢𝑣𝑝𝑢𝑣 (𝑄𝑤𝑢 − 𝑃𝑤𝑢)+

⩽ 𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣)+ +
∑︂

𝑤:𝑤𝑢∈𝐴

𝜔𝑤𝑢
𝜏
𝑝𝑢𝑣 (𝑄𝑤𝑢 − 𝑃𝑤𝑢)+ .

Using
∑︁
𝑣:𝑢𝑣∈𝐴 𝑝𝑢𝑣 = 1 and summing over all edges yields∑︂

𝑢𝑣∈𝐴
𝜔𝑢𝑣 (𝑄𝑢𝑣 − 𝑃𝑢𝑣)+ ⩽

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣)+ + 1
𝜏

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣 (𝑄𝑢𝑣 − 𝑃𝑢𝑣)+ ,

20

hence ∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣 (𝑄𝑢𝑣 − 𝑃𝑢𝑣)+ ⩽
𝜏

𝜏 − 1

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(1 − 𝑒𝜌𝑢𝑣)+

⩽
𝜏

𝜏 − 1

∑︂
𝑢𝑣∈𝐴

𝜔𝑢𝑣(𝑄𝑢𝑣 + 𝛿𝑢𝑣𝑄𝑢)(𝜌𝑢𝑣)−

⩽
𝜅𝜏
𝜏 − 1

(︄ ∑︂
𝑢𝑣∈𝐴

𝜂𝑢𝑣𝑄𝑢𝑣 𝑐̂𝑣 +
∑︂
𝑢𝑣∈𝐴

𝑄𝑢𝜃𝑢𝑣(𝑐̂𝑣 − 𝛼𝑢𝑣)
)︄
, (4.16)

where the last line uses Lemma 4.10 and (4.9), to bound 𝜔𝑢𝑣(𝜌𝑢𝑣)− ⩽ 𝜅𝜂𝑢𝑣 (𝑐̂𝑣 − 𝛼𝑢𝑣).

Lemma 4.11. It holds that ∑︂
𝑢𝑣∈𝐴

𝜂𝑢𝑣𝑄𝑢𝑣 𝑐̂𝑣 ⩽ (Δ0(𝒟) + Δ𝐼(𝒟̂)) ⟨𝑐, 𝑄⟩𝑋 .

Proof. Consider a decomposition of 𝑄 into flows on single source-sink paths. More precisely, let
𝜒 : 𝒫𝒟 → ℝ+ be so that

𝑄 =
∑︂
𝛾∈𝒫𝒟

𝜒(𝛾)𝟙𝛾 .

Note that the existence of such a decomposition is guaranteed by (2.1). Now we have∑︂
𝑢𝑣∈𝐴

𝜂𝑢𝑣𝑄𝑢𝑣 𝑐̂𝑣 ⩽
∑︂
𝛾∈𝒫𝒟

𝑐𝛾̄𝑄𝛾̄𝜒(𝛾)
∑︂
𝑢𝑣∈𝛾

𝜂𝑢𝑣 ⩽ (Δ0(𝒟) + Δ𝐼(𝒟̂)) ⟨𝑐, 𝑄⟩𝑋 ,

since for any 𝛾 ∈ 𝒫𝒟 , we have∑︂
𝑢𝑣∈𝛾

𝜂𝑢𝑣 = |𝛾 | + log(1/𝜃(𝛾)) ⩽ Δ0(𝒟) + Δ𝐼(𝒟̂). □

It only remains to bound the latter term in (4.16). In order to do so, we would need the following
result from [CL19].

Lemma 4.12 ([CL19, Lemma 2.11]). For any 𝑢 ∈ 𝑉 \ 𝑋, it holds that

Ψ𝑢(𝑝) −Ψ𝑢(𝑞) ⩽
2
𝜅
(𝑄𝑢 − 𝑃𝑢)+ · max

𝑣:𝑢𝑣∈𝐴
𝜔𝑢𝑣 +

∑︂
𝑣:𝑢𝑣∈𝐴

(𝑐̂𝑣 − 𝛼𝑢𝑣) [𝑄𝑢𝑣 − 𝜃𝑢𝑣𝑄𝑢] . (4.17)

We omit a proof of the lemma as it is essentially identical to that of [CL19, Lem. 2.11]. In [CL19],
for a fixed 𝑢, the probability distirbution specified by ⟨𝜃𝑢𝑣 : 𝑢𝑣 ∈ 𝐴⟩ is uniform, but the argument
works verbatim for any probability.

Lemma 4.13. It holds that

𝜏 − 3
𝜅𝜏

∥(𝑄 − 𝑃)+∥ℓ1(𝜔) ⩽ (2Δ0(𝒟) + Δ𝐼(𝒟̂))⟨𝑐, 𝑄⟩𝑋 + [Ψ(𝑞) −Ψ(𝑝)] .

21

Proof. Using Lemma 4.12 gives∑︂
𝑢𝑣∈𝐴

𝑄𝑢𝜃𝑢𝑣(𝑐̂𝑣 − 𝛼𝑢𝑣)
(4.17)
⩽ [Ψ(𝑞) −Ψ(𝑝)] + 2

𝜅𝜏
∥(𝑄 − 𝑃)+∥ℓ1(𝜔) +

∑︂
𝑢𝑣∈𝐴

𝑄𝑢𝑣 𝑐̂𝑣

⩽ [Ψ(𝑞) −Ψ(𝑝)] + 2
𝜅𝜏

∥(𝑄 − 𝑃)+∥ℓ1(𝜔) + Δ0(𝒟)⟨𝑐, 𝑄⟩𝑋 .

Combining this inequality with (4.16) and Lemma 4.11 gives

𝜅−1 ∥(𝑄 − 𝑃)+∥ℓ1(𝜔) ⩽
𝜏

𝜏 − 1

[︃(︂
2Δ0(𝒟) + Δ𝐼(𝒟̂)

)︂
⟨𝑐, 𝑄⟩𝑋 + (Ψ(𝑞) −Ψ(𝑝)) + 2

𝜅𝜏
∥(𝑄 − 𝑃)+∥ℓ1(𝜔)

]︃
,

completing the proof. □

Proof of Lemma 4.7. (4.11) follows from Lemma 4.13 and Lemma 4.9. To see that (4.12) follows from
(4.11) and Lemma 4.13, use the fact that

⟨𝑐, 𝑄⟩𝑋 ⩽ ⟨𝑐, 𝑃⟩𝑋 + ∥𝑐∥∞
𝜔min

∥(𝑄 − 𝑃)+∥ℓ1(𝜔) . □

Acknowledgements

We thank the anonymous referees for their helpful comments. This research was partially supported
by NSF CCF-2007079 and a Simons Investigator Award.

References

[ABBS10] Jacob Abernethy, Peter Bartlett, Niv Buchbinder, and Isabelle Stanton. A regularization
approach to metrical task systems. In Algorithmic Learning Theory, ALT 2010. Springer,
2010.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193, 1996.

[BBBT97] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive
algorithm for metrical task systems. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 711–719, New York, NY, USA, 1997.
ACM.

[BBM06] Yair Bartal, Béla Bollobás, and Manor Mendel. Ramsey-type theorems for metric spaces
with applications to online problems. J. Comput. System Sci., 72(5):890–921, 2006.

[BCL+18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
𝑘-server via multiscale entropic regularization. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 3–16, 2018.

22

[BCLL21] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task
systems on trees via mirror descent and unfair gluing. SIAM J. Comput., 50(3):909–923,
2021.

[BCN14] Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor. Competitive analysis via
regularization. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’14, pages 436–444, Philadelphia, PA, USA, 2014. Society for
Industrial and Applied Mathematics.

[BKRS00] Avrim Blum, Howard Karloff, Yuval Rabani, and Michael Saks. A decomposition
theorem for task systems and bounds for randomized server problems. SIAM J. Comput.,
30(5):1624–1661, 2000.

[BLMN05] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-type
phenomena. Ann. of Math. (2), 162(2):643–709, 2005.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, October 1992.

[CKR01] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for
the 0-extension problem. In Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 8–16, 2001.

[CL19] Christian Coester and James R. Lee. Pure entropic regularization for metrical task
systems. In Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA,
pages 835–848, 2019.

[FM03] Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[Sei99] Steve Seiden. Unfair problems and randomized algorithms for metrical task systems.
Inf. Comput., 148(2):219–240, February 1999.

23

	Introduction
	The multiscale noisy metric entropy
	Mirror descent dynamics
	Metric compatibility

	Construction of a compatible DAG over (X,d)
	Hierarchical nets
	Distortion analysis
	Compression

	Algorithm and competitive analysis
	Discrete-time algorithm
	Analysis via unfolding to an ultrametric
	Analysis of the general case
	Bounding the service cost
	Bounding the the movement cost

