
Pure entropic regularization for metrical task systems

Christian Coester
University of Oxford

James R. Lee
University of Washington

Abstract
We show that on every 𝑛-point HST metric, there is a randomized online algorithm for

metrical task systems (MTS) that is 1-competitive for service costs and 𝑂(log 𝑛)-competitive for
movement costs. In general, these refined guarantees are optimal up to the implicit constant.
While an 𝑂(log 𝑛)-competitive algorithm for MTS on HST metrics was developed in [BCLL18],
that approach could only establish an 𝑂((log 𝑛)2)-competitive ratio when the service costs are
required to be 𝑂(1)-competitive. Our algorithm can be viewed as an instantiation of online
mirror descent with the regularizer derived from a multiscale conditional entropy.

In fact, our algorithm satisfies a set of even more refined guarantees; we are able to exploit
this property to combine it with known random embedding theorems and obtain, for any
𝑛-point metric space, a randomized algorithm that is 1-competitive for service costs and
𝑂((log 𝑛)2)-competitive for movement costs.

1 Introduction

Let (𝑋, 𝑑𝑋) be a finite metric space with |𝑋 | = 𝑛 > 1. The Metrical Task Systems (MTS) problem,
introduced in [BLS92] is described as follows. The input is a sequence ⟨𝑐𝑡 : 𝑋 → ℝ+ : 𝑡 ⩾ 1⟩ of
nonnegative cost functions on the state space 𝑋. At every time 𝑡, an online algorithm maintains a
state 𝜌𝑡 ∈ 𝑋.

The corresponding cost is the sum of a service cost 𝑐𝑡(𝜌𝑡) and a movement cost 𝑑𝑋(𝜌𝑡−1 , 𝜌𝑡).
Formally, an online algorithm is a sequence of mappings 𝝆 = ⟨𝜌1 , 𝜌2 , . . . , ⟩ where, for every 𝑡 ⩾ 1,
𝜌𝑡 : (ℝ𝑋

+)𝑡 → 𝑋 maps a sequence of cost functions ⟨𝑐1 , . . . , 𝑐𝑡⟩ to a state. The initial state 𝜌0 ∈ 𝑋 is
fixed. The total cost of the algorithm 𝝆 in servicing 𝒄 = ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩ is defined as:

cost𝝆(𝒄) :=
∑︂
𝑡⩾1

[𝑐𝑡(𝜌𝑡(𝑐1 , . . . , 𝑐𝑡)) + 𝑑𝑋(𝜌𝑡−1(𝑐1 , . . . , 𝑐𝑡−1), 𝜌𝑡(𝑐1 , . . . , 𝑐𝑡))] .

The cost of the offline optimum, denoted cost∗(𝒄), is the infimum of
∑︁

𝑡⩾1[𝑐𝑡(𝜌𝑡) + 𝑑𝑋(𝜌𝑡−1 , 𝜌𝑡)] over
any sequence ⟨𝜌𝑡 : 𝑡 ⩾ 1⟩ of states. A randomized online algorithm 𝝆 is said to be 𝛼-competitive if for
every 𝜌0 ∈ 𝑋, there is a constant 𝛽 > 0 such that for all cost sequences 𝒄:

𝔼
[︁
cost𝝆(𝒄)

]︁
⩽ 𝛼 · cost∗(𝒄) + 𝛽 .

For the 𝑛-point uniform metric, a simple coupon-collector argument shows that the competitive
ratio is Ω(log 𝑛), and this is tight [BLS92]. A long-standing conjecture is that this Θ(log 𝑛) competi-
tive ratio holds for an arbitrary 𝑛-point metric space. The lower bound has almost been established
[BBM06, BLMN05]; for any 𝑛-point metric space, the competitive ratio is Ω(log 𝑛/log log 𝑛). Follow-
ing a long sequence of works (see, e.g., [Sei99, BKRS00, BBBT97, Bar96, FM03, FRT04]), an upper
bound of 𝑂((log 𝑛)2) was shown in [BCLL18].

1

Relation to adversarial multi-arm bandits. MTS is naturally related to the adversarial setting of
the classical multi-arm bandits model in sequential decision making, and provides a very general
framework for “bandits with switching costs.” Unlike in the setting of regret minimization, where
one competes against the best static strategy in hindsight (see, e.g., [BC12]), competitive analysis
compares the performance of an online algorithm to the best dynamical offline algorithm.

Thus this model emphasizes the importance of an adaptivity in the face of changing environments.
For MTS, the online algorithm has full information: access to the complete cost function 𝑐𝑡 is available
when deciding on a point 𝜌𝑡(𝑐1 , . . . , 𝑐𝑡) ∈ 𝑋 at which to play. And yet one of the fascinating
relationships between MTS and adversarial bandits is the parallel between adaptivity—being
willing to “try out” new strategies—and the classical exploration/exploitation tradeoff that occurs
in models where one only has access to partial information about the loss functions.

HST metrics. The methods of [BBN12] show that the competitive ratio for MTS is 𝑂(log 𝑛) on
weighted star metrics. Recently, the authors of [BCLL18] generalized this result by designing an
algorithm with competitive ratio𝑂(𝔇𝑇 log 𝑛)on any weighted 𝑛-point tree metric with combinatorial
depth 𝔇𝑇 . We now discuss a special class of metrics.

Let 𝑇 = (𝑉, 𝐸) be a finite tree with root 𝕣 and vertex weights {𝑤𝑢 > 0 : 𝑢 ∈ 𝑉}, let L ⊆ 𝑉 denote
the leaves of 𝑇, and suppose that the vertex weights on 𝑇 are non-increasing along root-leaf paths.
Consider the metric space (L, 𝑑𝑇), where 𝑑𝑇(ℓ , ℓ ′) is the weighted length of the path connecting ℓ

and ℓ ′ when the edge from a node 𝑢 to its parent is 𝑤𝑢 . We will use 𝔇𝑇 for the combinatorial (i.e.,
unweighted) depth of 𝑇.

(L, 𝑑𝑇) is called an HST metric (or, equivalently for finite metric spaces, an ultrametric). If, for
some 𝜏 > 1, the weights on 𝑇 satisfy the stronger inequality 𝑤𝑣 ⩽ 𝑤𝑢/𝜏 whenever 𝑣 is a child of 𝑢,
the space (L, 𝑑𝑇) is said to be a 𝜏-HST metric. Such metric spaces play a special role in MTS since
every 𝑛-point metric space can be probabilistically approximated by a distribution over such spaces
[Bar96, FRT04]. Indeed, the 𝑂((log 𝑛)2)-competitive ratio for general metric spaces established in
[BCLL18] is a consequence of their 𝑂(log 𝑛)-competitive algorithm for HSTs.

1.1 Refined guarantees

The authors of [BBN10] observe that there is a more refined way to analyze competive algorithms
for MTS. For a randomized online algorithm 𝝆 and a cost sequence 𝒄, we denote, respectively, S𝝆(𝒄)
and M𝝆(𝒄) for the (expected) service cost and movement cost, that is

S𝝆(𝒄) := 𝔼
∑︂
𝑡⩾1

𝑐𝑡(𝜌𝑡) and M𝝆(𝒄) := 𝔼
∑︂
𝑡⩾1

𝑑𝑋(𝜌𝑡−1 , 𝜌𝑡) .

If there are numbers 𝛼, 𝛼′, 𝛽, 𝛽′ > 0 such that for every cost 𝒄, it holds that

S𝝆(𝒄) ⩽ 𝛼 · cost∗(𝒄) + 𝛽

M𝝆(𝒄) ⩽ 𝛼′ · cost∗(𝒄) + 𝛽′,

one says that 𝝆 is 𝛼-competitive for service costs and 𝛼′-competitive for movement costs.
In [BBN10], it is shown that on every 𝑛-point HST metric, and for every 𝜀 > 0, there is an online

algorithm that is simultaneously (1+𝜀)-competitive for service costs and 𝑂((log(𝑛/𝜀))2)-competitive
for movement costs. The authors of [BCLL18] improve this slightly to show that actually there is an
online algorithm that is simultaneously 1-competitive for service costs and 𝑂((log 𝑛)2)-competitive
for movement costs. We obtain the optimal refined guarantees.

2

Theorem 1.1. On any 𝑛-point HST metric 𝑋, there is a randomized online algorithm that is 1-competitive
for service costs and 𝑂(log 𝑛)-competitive for movement costs.

Remark 1.2 (Optimality of the refined guarantees). Any finitely competitive algorithm for MTS
on an 𝑛-point uniform metric cannot be better than Ω(log 𝑛)-competitive for movement costs,
regardless of its competitive ratio for service costs. This is because this lower bound holds even if
the cost functions only take values 0 and ∞. Moreover, it cannot be better than 1-competitive for
service costs, regardless of its competitive ratio for movement costs. To see this, consider the case
where each cost function is the constant function 1.

Finely competitive guarantees. Suppose that for some numbers 𝛼0 , 𝛼1 , 𝛾, 𝛽, 𝛽′ > 0, a randomized
online algorithm 𝝆 satisfies, for every cost 𝒄 and every offline algorithm 𝝆∗:

S𝝆(𝒄) ⩽ 𝛼0S𝝆∗(𝒄) + 𝛼1M𝝆∗(𝒄) + 𝛽 (1.1)
M𝝆(𝒄) ⩽ 𝛾S𝝆(𝒄) + 𝛽′ . (1.2)

In this case, we say that 𝝆 is (𝛼0 , 𝛼1 , 𝛾)-finely competitive. We establish the following.

Theorem 1.3. On any 𝑛-point HST metric 𝑋, for every 𝜅 ⩾ 1, there is an online randomized algorithm 𝝆
that is

(︁
1, 1/𝜅, 𝑂(𝜅 log 𝑛)

)︁
-finely competitive. In fact, one can take 𝛽 = 0 and 𝛽′ ⩽ 𝑂(𝜅diam(𝑋)).

Combined with the random embedding from [FRT04], this yields the following consequence
for general 𝑛-point metric spaces.

Corollary 1.4. On any 𝑛-point metric space, there is an online randomized algorithm that is 1-competitive
for service costs and 𝑂((log 𝑛)2)-competitive for movement costs.

Proof. Consider an 𝑛-point metric space (𝑋, 𝑑𝑋). It is known [FRT04] that there exists a random
HST metric (𝑇, 𝑑𝑇) so that L(𝑇) = 𝑋 and for all 𝑥, 𝑦 ∈ 𝑋:

1. ℙ[𝑑𝑇(𝑥, 𝑦) ⩾ 𝑑𝑋(𝑥, 𝑦)] = 1,

2. 𝔼[𝑑𝑇(𝑥, 𝑦)] ⩽ 𝐷 · 𝑑𝑋(𝑥, 𝑦),

and 𝐷 ⩽ 𝑂(log 𝑛).
Let 𝝆𝑇 be the randomized algorithm for (𝑇, 𝑑𝑇) guaranteed by Theorem 1.3 with 𝜅 = 𝐷. Let 𝝆

denote the algorithm that results from sampling (𝑇, 𝑑𝑇) and then using 𝝆𝑇 . We use M𝑇 to denote
movement cost measured in 𝑑𝑇 and M𝑋 for movement cost measured in 𝑑𝑋 .

Then for any cost 𝒄 and any offline algorithm 𝝆∗, we have

S𝝆(𝒄) = 𝔼[S𝝆𝑇 (𝒄)] ⩽ S𝝆∗(𝒄) + 𝜅−1 𝔼[M𝑇
𝝆∗(𝒄)] + 𝑂(1)

⩽ S𝝆∗(𝒄) + 𝜅−1𝐷M𝑋
𝝆∗(𝒄) + 𝑂(1)

= S𝝆∗(𝒄) + M𝑋
𝝆∗(𝒄) + 𝑂(1) ,

and

M𝑋
𝝆 (𝒄) = 𝔼[M𝑋

𝝆𝑇 (𝒄)] ⩽ 𝔼[M𝑇
𝝆𝑇 (𝒄)] ⩽ 𝑂(𝜅 log 𝑛)𝔼[S𝝆𝑇 (𝒄)] + 𝑂(1),

completing the proof. □

3

1.2 The fractional model on trees

We will work in the following deterministic fractional setting, which is equivalent to the randomized
integral setting described earlier (see [BCLL18, §2]). The state of a fractional algorithm is given by a
point in the polytope

K𝑇 :=
⎧⎪⎪⎨⎪⎪⎩𝑥 ∈ ℝ𝑉

+ : 𝑥𝕣 = 1, 𝑥𝑢 =
∑︂

𝑣∈𝜒(𝑢)
𝑥𝑣 ∀𝑢 ∈ 𝑉 \ L

⎫⎪⎪⎬⎪⎪⎭ , (1.3)

where we use 𝜒(𝑢) for the set of children of 𝑢 in 𝑇. For 𝑢 ≠ 𝕣 , we will also write p(𝑢) for the parent
of 𝑢 in 𝑇.

A state 𝑥 ∈ K𝑇 corresponds to the situation that the state of a randomized integral algorithm
is a leaf descendant of 𝑢 with probability 𝑥𝑢 . Note that K𝑇 is simply an affine encoding of the
probability simplex on L. In the fractional setting, changing from state 𝑥 to 𝑥′ incurs movement
cost ∥𝑥 − 𝑥′∥ℓ1(𝑤), where

∥𝑧∥ℓ1(𝑤) :=
∑︂
𝑢∈𝑉

𝑤𝑢 |𝑧𝑢 |

denotes the weighted ℓ1-norm on ℝ𝑉 .

1.3 Mirror descent, metric filtrations, and regularization

Following [BCLL18], our algorithm is based on the mirror descent framework as established in
[BCL+18]. This is a method for regularized online convex optimization, an approach that was
previously explored for competitive analysis in [ABBS10, BCN14].

A central component of mirror descent is choosing the appropriate mirror map (which we will
often refer to as the “regularizer”). This is a strictly convex function Φ : K𝑇 → ℝ that endows K𝑇

with a geometric (Riemannian) structure, specifying how to perform constrained vector flow. In
other words, it specifies how one can move in a preferred direction while remaining inside K𝑇 .

The paper [BCLL18] employs the following regularizer:

Φ0(𝑥) := 1
𝜂

∑︂
𝑢∈𝑉\{𝕣 }

𝑤𝑢 (𝑥𝑢 + 𝛿𝑢) log (𝑥𝑢 + 𝛿𝑢) , (1.4)

with 𝜂 ≍ log |L| and 𝛿𝑢 = |L𝑢 |/|L|, where L𝑢 is the set of leaves in the subtree rooted at 𝑢.

1.3.1 Metric filtrations

It is straightforward that one can think of Φ0 as a type of multiscale entropy (this is the negative of
the associated Shannon entropy, since we use the analyst’s convention that the entropy is convex).
To understand this notion, let us forget momentarily the weights on 𝑇. Then the structure of 𝑇
gives a natural filtration over probability measures on the leaves L. Suppose that 𝑿 is a random
variable taking values in L and, for 𝑢 ∈ 𝑉 , denote by E𝑢 the event {𝑿 ∈ L𝑢}. Then the chain rule for
Shannon entropy yields ∑︂

ℓ∈L
ℙ[Eℓ] log 1

ℙ[Eℓ]
=

∑︂
𝑢∈𝑉\{𝕣 }

ℙ[E𝑢] log
ℙ[Ep(𝑢)]
ℙ[E𝑢]

.

4

If we now imagine that uncertainty at higher scales is more costly than uncertainty at lower
scales, then we might define an analogous weighted entropy by∑︂

𝑢∈𝑉\{𝕣 }
𝑤𝑢 ℙ[E𝑢] log

ℙ[Ep(𝑢)]
ℙ[E𝑢]

. (1.5)

Such a notion is natural in the context of “metric learning” problems.
Ignoring the {𝛿𝑢} values for a moment, consider that (1.4) is not analogous to (1.5). Indeed, it

corresponds to the quantity ∑︂
𝑢∈𝑉\{𝕣 }

𝑤𝑢 ℙ[E𝑢] log 1
ℙ[E𝑢]

, (1.6)

and now one can see a fundamental reason why the algorithm associated to (1.4) only achieves
an 𝑂(𝔇𝑇 log 𝑛) competitive ratio, where 𝔇𝑇 is the combinatorial depth of 𝑇: The quantity (1.6)
overmeasures the metric uncertainty.

Suppose that 𝑿 is a uniformly random leaf. Then
∑︁

ℓ∈Lℙ[Eℓ] log 1
ℙ[Eℓ] = log 𝑛, where 𝑛 = |L|.

But, in general, one could have
∑︁

𝑢∈𝑉 ℙ[E𝑢] log 1
ℙ[E𝑢] ⩾ Ω(𝔇𝑇 log 𝑛). Since the vertex weights are

decreasing geometrically down root-leaf paths, the quantity (1.6) is actually within an 𝑂(1) factor of
(1.5), but given the manner in which the regularizer distorts the geometry, the overlap effect occurs
as for the unweighted entropy. This fact was not lost on the authors of [BCLL18], but they bypass
the problem by combining mirror descent on stars with a recursive composition method called
“unfair gluing.”

1.3.2 Multiscale conditional entropy

We employ a regularizer that is a more faithful analog of (1.5):

Φ(𝑥) :=
∑︂

𝑢∈𝑉\{𝕣 }

𝑤𝑢

𝜂𝑢

(︁
𝑥𝑢 + 𝛿𝑢𝑥p(𝑢)

)︁
log

(︃
𝑥𝑢

𝑥p(𝑢)
+ 𝛿𝑢

)︃
, (1.7)

where p(𝑢) denotes the parent of 𝑢.
If one ignores the additional parameters {𝜂𝑢 ⩾ 1, 𝛿𝑢 > 0}, this is precisely the negative weighted

Shannon entropy written according to the chain rule. Here, we set

𝜃𝑢 := |L𝑢 |
|Lp(𝑢) |

(1.8)

𝜂𝑢 := 1 + log(1/𝜃𝑢) (1.9)
𝛿𝑢 := 𝜃𝑢/𝜂𝑢 . (1.10)

The numbers {𝜃𝑢} are the conditional probabilites of the uniform distribution on leaves. The
{𝛿𝑢} values are employed as “noise” added to the entropy calculation. Such noise is a fundamental
aspect for competitive analysis, and distinguishes it from the application of mirror descent to
regret minimization problems (see, e.g., [BC12]).1 The effect of these noise parameters appears

1One finds aspects of this “mixing with the uniform distribution” in the bandits setting as well, but used for variance
reduction, a seemingly very different purpose.

5

ubiquitously in applications of the primal-dual method to competitive analysis (see [BN07]), and
manifests itself as an additive term in the update rules (see (1.11) below). Intuitively, it ensures that
the conditional probability 𝑥𝑢

𝑥p(𝑢)
is updated fast enough even when it is close to 0.

Finally, the numbers {𝜂𝑢 : 𝑢 ∈ 𝑉} are commonly referred to as “learning rates” in the study
of online learning. They represent the rate at which information is discounted in the resulting
algorithm; for MTS, this corresponds to the relative importance of costs arriving now vs. costs that
arrived in the past.

1.3.3 The dynamics

We will derive in Section 3 the following continuous time evolution of the resulting mirror descent
algorithm (𝑥(𝑡) ∈ K𝑇 : 𝑡 ∈ [0,∞)) for a cost path 𝑐 : [0,∞) → ℝL

+ :

𝜕𝑡

(︃
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡)

)︃
=

𝜂𝑢
𝑤𝑢

(︃
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡)

+ 𝛿𝑢

)︃ (︄
𝛽p(𝑢)(𝑡) −

∑︂
ℓ∈L𝑢

𝑥ℓ (𝑡)
𝑥𝑢(𝑡)

𝑐ℓ (𝑡)
)︄

(1.11)

Here, 𝛽p(𝑢)(𝑡) is a Lagrangian multiplier that ensures conservation of conditional probability:∑︂
𝑣∈𝜒(p(𝑢))

𝜕𝑡

(︃
𝑥𝑣(𝑡)
𝑥p(𝑢)(𝑡)

)︃
= 0 .

One can see that the evolution is being driven by the expected instantaneous cost incurred
conditioned on the current state being in the subtree rooted at 𝑢.

One should interpret (1.11) only when 𝑥(𝑡) lies in the relative interior of K𝑇 . Otherwise, the
conditional probabilities are ill-defined. One way to rectify this is to prevent 𝑥(𝑡) from hitting the
relative boundary of K𝑇 at all. It is possible to adaptively modify the cost functions by a suitably
small perturbation so as to guarantee this property and, at the same time, ensure that the total
discrepancy between the modified and true service cost is a small additive constant.

Instead, we will follow a different approach, by extending the dynamics to an analogous system
of conditional probabilities {𝑞𝑢(𝑡) : 𝑢 ∈ 𝑉 \ {𝕣 }}:

𝜕𝑡𝑞𝑢(𝑡) =
𝜂𝑢
𝑤𝑢

(𝑞𝑢(𝑡) + 𝛿𝑢)
(︁
𝛽p(𝑢)(𝑡) − 𝑐𝑢(𝑡) + 𝛼𝑢(𝑡)

)︁
, (1.12)

where 𝑞𝑢(𝑡) =
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡) whenever 𝑥p(𝑢)(𝑡) > 0, 𝛼𝑢(𝑡) is a Lagrangian multiplier for the constraint

𝑞𝑢(𝑡) ⩾ 0, and 𝑐𝑢(𝑡) is the “derived” cost in the subtree rooted at 𝑢:

𝑐𝑢(𝑡) :=
∑︂
ℓ∈L𝑢

𝑞ℓ |𝑢(𝑡)𝑐ℓ (𝑡)

𝑞ℓ |𝑢(𝑡) :=
∏︂

𝑣∈𝛾𝑢,ℓ \{𝑢}
𝑞𝑣(𝑡) ,

where 𝛾𝑢,ℓ is the unique simple 𝑢-ℓ path in 𝑇.
Stated this way, the mirror descent algorithm can be envisioned as running a “weighted star”

algorithm on the conditional probabilities at every internal node of 𝑇, with the derived costs at an

6

internal node 𝑢 given by the average cost of the current strategy for playing one unit of mass in the
subtree rooted at 𝑢.

In the next section, we will implement and analyze a discretization of (1.12) using Bregman
projections. Since our regularizer Φ and convex body K𝑇 do not satisfy the assumptions underlying
the existence and uniqueness theorem of [BCL+18], we need to construct a solution to (1.12) and,
indeed, taking the discretization parameter in our algorithm to zero, one establishes a solution of
bounded variation; see Section 3.3.

The major benefit of the formulations (1.11) and (1.12) is in motivating such an algorithm and
prescribing the derived costs. In Section 3, we describe how these dynamics can be predicted from
the definition (1.7).

2 The MTS algorithm

Consider a convex polytope K0 ⊆ ℝ𝑛 , define K := K0 ∩ℝ𝑛
+, and assume that K is compact. Suppose

additionally that Φ : D → ℝ is differentiable and strictly convex in an open neighborhood D ⊇ K.
Let us write DΦ for the corresponding Bregman divergence

DΦ(𝑦 ∥ 𝑥) := Φ(𝑦) −Φ(𝑥) − ⟨∇Φ(𝑥), 𝑦 − 𝑥⟩ ,

which is non-negative due to convexity of Φ. Then for 𝑥, 𝑦, 𝑧 ∈ K, we have:

DΦ(𝑧 ∥ 𝑦) − DΦ(𝑧 ∥ 𝑥) = −Φ(𝑦) +Φ(𝑥) − ⟨∇Φ(𝑦), 𝑧 − 𝑦⟩ + ⟨∇Φ(𝑥), 𝑧 − 𝑥⟩. (2.1)

For a vector 𝑐 ∈ ℝ𝑛 and 𝑥 ∈ K, define the projection

Π𝑐
K(𝑥) := argmin {DΦ(𝑦 ∥ 𝑥) + ⟨𝑐, 𝑦⟩ : 𝑦 ∈ K} .

Since K is compact and Φ is strictly convex, there is a unique minimizer 𝑦∗ ∈ K.
For 𝑥 ∈ K, recall the definition of the normal cone at 𝑥:

NK(𝑥) = {𝑝 ∈ ℝ𝑛 : ⟨𝑝, 𝑦 − 𝑥⟩ ⩽ 0 for all 𝑦 ∈ K} .

Given a representation of K by inequality constraints, K = {𝑥 ∈ ℝ𝑛 : 𝐴𝑥 ⩽ 𝑏} for 𝐴 ∈ ℝ𝑚×𝑛 and
𝑏 ∈ ℝ𝑛 , it holds

NK(𝑥) = {𝐴𝑇𝑦 : 𝑦 ⩾ 0 and 𝑦𝑇(𝐴𝑥 − 𝑏) = 0}.

The KKT conditions yield
∇Φ(𝑦∗) = ∇Φ(𝑥) − 𝑐 − 𝜆∗ , (2.2)

where 𝜆∗ ∈ NK(𝑦∗). Since NK(𝑦∗) = NK0(𝑦∗) + Nℝ𝑛
+(𝑦∗), we can can decompose 𝜆∗ = 𝛽 − 𝛼 with

𝛽 ∈ NK0(𝑦∗) and −𝛼 ∈ Nℝ𝑛
+(𝑦∗). In particular, we have 𝛼 ⩾ 0 and 𝛼𝑖 > 0 =⇒ 𝑦∗

𝑖
= 0 for every

𝑖 = 1, . . . , 𝑛.
Substituting this into (2.1) gives

DΦ(𝑧 ∥ 𝑦∗) − DΦ(𝑧 ∥ 𝑥) = −Φ(𝑦∗) +Φ(𝑥) + ⟨∇Φ(𝑥), 𝑦∗ − 𝑥⟩ + ⟨𝑐 − 𝛼 + 𝛽, 𝑧 − 𝑦∗⟩
⩽ −DΦ(𝑦∗ ∥ 𝑥) + ⟨𝑐 − 𝛼, 𝑧 − 𝑦∗⟩,

where the inequality comes from ⟨𝛽, 𝑧 − 𝑦∗⟩ ⩽ 0 since 𝑧 ∈ K and 𝛽 ∈ NK(𝑦∗). We have proved the
following.

7

Lemma 2.1. For any 𝑥, 𝑧 ∈ K, and 𝑐 ∈ ℝ𝑛 , let 𝑦∗ = Π𝑐
K(𝑥) and 𝜆∗ be as in (2.2). Then for any 𝛼 ∈ −Nℝ+

𝑛
(𝑦∗)

such that 𝜆∗ + 𝛼 ∈ NK0(𝑦∗), it holds that

DΦ(𝑧 ∥ 𝑦∗) − DΦ(𝑧 ∥ 𝑥) ⩽ ⟨𝑐 − 𝛼, 𝑧 − 𝑦∗⟩.

2.1 Iterative Bregman projections

We describe now a discretization of the algorithm from the introduction. Fix a tree 𝑇 and recall
the definition of K𝑇 from (1.3). Let 𝑄𝑇 denote the collection of vectors 𝑞 ∈ ℝ

𝑉\{𝕣 }
+ such that for all

𝑢 ∈ 𝑉 \ L, ∑︂
𝑣∈𝜒(𝑢)

𝑞𝑣 = 1.

For 𝑞 ∈ 𝑄𝑇 and 𝑢 ∈ 𝑉 \L, we use 𝑞(𝑢) ∈ ℝ
𝜒(𝑢)
+ to denote the vector defined by 𝑞

(𝑢)
𝑣 := 𝑞𝑣 for 𝑣 ∈ 𝜒(𝑢),

and define the corresponding probability simplex 𝑄
(𝑢)
𝑇

:= {𝑞(𝑢) : 𝑞 ∈ 𝑄𝑇}. We will use Δ : 𝑄𝑇 → K𝑇

for the map which sends 𝑞 ∈ 𝑄𝑇 to the (unique) 𝑥 = Δ(𝑞) ∈ K𝑇 such that

𝑥𝑣 = 𝑥𝑢𝑞𝑣 ∀𝑢 ∈ 𝑉 \ L, 𝑣 ∈ 𝜒(𝑢).

Note that 𝑞 contains more information than 𝑥; the map Δ fails to be invertible whenever there is
some 𝑢 ∈ 𝑉 \ L with 𝑥𝑢 = 0.

Fix 𝜅 ⩾ 1. On the open domain D(𝑢) = (−min𝑣∈𝜒(𝑢) 𝛿𝑣 ,∞)𝜒(𝑢), for 𝛿𝑣 as given in (1.10), define
the strictly convex function Φ(𝑢) : D(𝑢) → ℝ by

Φ(𝑢)(𝑝) := 1
𝜅

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣
(𝑝𝑣 + 𝛿𝑣) log (𝑝𝑣 + 𝛿𝑣) .

Denote the corresponding Bregman divergence on 𝑄
(𝑢)
𝑇

by

D(𝑢)(𝑝 ∥ 𝑝′) = 1
𝜅

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣

[︃
(𝑝𝑣 + 𝛿𝑣) log

𝑝𝑣 + 𝛿𝑣
𝑝′𝑣 + 𝛿𝑣

+ 𝑝′𝑣 − 𝑝𝑣

]︃
.

We now define an algorithm that takes a point 𝑞 ∈ 𝑄𝑇 and a cost vector 𝑐 ∈ ℝL
+ and outputs a

point 𝑝 = A(𝑞, 𝑐) ∈ 𝑄𝑇 . Fix ⟨𝑢1 , 𝑢2 , . . . , 𝑢𝑁⟩ a topological ordering of 𝑉 \ L such that every child
in 𝑇 occurs before its parent. We define 𝑝 inductively as follows. Let 𝑐ℓ := 𝑐ℓ for ℓ ∈ L. For every
𝑗 = 1, 2, . . . , 𝑁 :

𝑐
(𝑢𝑗)
𝑣 := 𝑐𝑣 ∀𝑣 ∈ 𝜒(𝑢𝑗) (2.3)

𝑝(𝑢𝑗) := argmin
{︂
D(𝑢𝑗)

(︂
𝑝 ∥ 𝑞(𝑢𝑗)

)︂
+

⟨︂
𝑝, 𝑐(𝑢𝑗)

⟩︂ |︁|︁ 𝑝 ∈ 𝑄
(𝑢𝑗)
𝑇

}︂
(2.4)

𝑐𝑢𝑗
:=

∑︂
𝑣∈𝜒(𝑢𝑗)

𝑝
(𝑢𝑗)
𝑣 𝑐𝑣 (2.5)

Let 𝛼(𝑢𝑗) be the vector of Lagrange multipliers corresponding to the nonnegativity constraints in (2.4)
(recall Lemma 2.1). One should note that in this setting (a probability simplex), the nonnegativity
multipliers are unique and thus well-defined.

8

We denote 𝛼 = 𝛼𝑞,𝑐 ∈ ℝ𝑉
+ as the vector given by 𝛼𝑣 := 𝛼(p(𝑣))

𝑣 for 𝑣 ≠ 𝕣 and 𝛼𝕣 := 0. Recall the
complementary slackness conditions:

𝛼𝑣 > 0 =⇒ 𝑝𝑣 = 0. (2.6)

For 𝑣 ∈ 𝜒(𝑢), calculate (︂
∇Φ(𝑢)(𝑝)

)︂
𝑣
=

1
𝜅
𝑤𝑣

𝜂𝑣

(︁
1 + log(𝑝𝑣 + 𝛿𝑣)

)︁
.

Then using (2.2), we can write the algorithm as follows:

For 𝑗 = 1, 2, . . . , 𝑁 :
For 𝑣 ∈ 𝜒(𝑢𝑗):

𝑝
(𝑢𝑗)
𝑣 := (𝑞(𝑢𝑗)

𝑣 + 𝛿𝑣) exp
(︂
𝜅

𝜂𝑣
𝑤𝑣

(︂
𝛽𝑢𝑗

− (𝑐𝑣 − 𝛼𝑣)
)︂)︂

− 𝛿𝑣 ,

𝑐𝑢𝑗
:=

∑︁
𝑣∈𝜒(𝑢𝑗) 𝑝

(𝑢𝑗)
𝑣 𝑐𝑣 .

where 𝛽𝑢𝑗
⩾ 0 is the multiplier for the constraint

∑︁
𝑣∈𝜒(𝑢𝑗) 𝑞

(𝑢𝑗)
𝑣 ⩾ 1. There is no multiplier for the

constraint
∑︁

𝑣∈𝜒(𝑢𝑗) 𝑞
(𝑢𝑗)
𝑣 ⩽ 1 because this constraint will be satisfied automatically and is therefore

not needed in (2.4): If it were violated, decreasing some 𝑝𝑣 with 𝑝𝑣 > 𝑞
(𝑢𝑗)
𝑣 would yield a strictly

better solution to the minimization problem (2.4).

2.2 The global divergence

For 𝑧 ∈ K𝑇 and 𝑞 ∈ 𝑄𝑇 , define the global divergence function

D̃(𝑧 ∥ 𝑞) := 1
𝜅

∑︂
𝑢∉L

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣

[︄
(𝑧𝑣 + 𝛿𝑣𝑧𝑢) log

(︄
𝑧𝑣
𝑧𝑢

+ 𝛿𝑣

𝑞𝑣 + 𝛿𝑣

)︄
+ 𝑧𝑢𝑞𝑣 − 𝑧𝑣

]︄
,

with the convention that 0 log
(︁ 0

0 + 𝛿𝑣
)︁
= lim𝜀→0 𝜀 log

(︁ 0
𝜀 + 𝛿𝑣

)︁
= 0. This is the Bregman divergence

associated to (1.7) (divided by 𝜅) with 𝑥𝑣
𝑥𝑢

replaced by 𝑞𝑣 . We will use D̃ as a potential function to
prove (1.1). The next lemma shows that when the offline algorithm moves, the change in potential
is bounded by 𝑂(1/𝜅) times the offline movement cost.

Lemma 2.2. It holds that for any 𝑞 ∈ 𝑄𝑇 and 𝑧, 𝑧′ ∈ K𝑇 ,|︁|︁D̃(𝑧 ∥ 𝑞) − D̃(𝑧′ ∥ 𝑞)
|︁|︁ ⩽ 1

𝜅

(︃
2 + 4

𝜏

)︃
∥𝑧 − 𝑧′∥ℓ1(𝑤) .

Proof. Consider a differentiable map 𝑧 : [0, 1] → ℝ𝑉
++ such that

∑︁
𝑣∈𝜒(𝑢) 𝑧𝑣(𝑡) ⩽ 𝑧𝑢(𝑡) for each 𝑡 and

𝑢 ∉ L. It suffices to show that for each 𝑡 and every fixed 𝑞 ∈ 𝑄𝑇 ,

𝜅
|︁|︁𝜕𝑡D̃(𝑧(𝑡) ∥ 𝑞)|︁|︁ ⩽ (︃

2 + 4
𝜏

)︃
∥𝑧′(𝑡)∥ℓ1(𝑤) .

Moreover, it suffices to address the case when there is at most one 𝑢 ∈ 𝑉 with 𝑧′𝑢(𝑡) ≠ 0.

9

A direct calculation gives

𝜅𝜕𝑡D̃(𝑧(𝑡) ∥ 𝑞) =
𝑤𝑢

𝜂𝑢
𝑧′𝑢(𝑡) log

(︃
𝑧𝑢(𝑡)/𝑧p(𝑢)(𝑡) + 𝛿𝑢

𝑞𝑢 + 𝛿𝑢

)︃
+

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣

[︃
𝛿𝑣𝑧

′
𝑢(𝑡) log

(︃
𝑧𝑣(𝑡)/𝑧𝑢(𝑡) + 𝛿𝑣

𝑞𝑣 + 𝛿𝑣

)︃
+ 𝑧′𝑢(𝑡)

(︃
𝑞𝑣 −

𝑧𝑣(𝑡)
𝑧𝑢(𝑡)

)︃]︃
. (2.7)

Let us now use definitions (1.9) and (1.10) to observe that

1
𝜂𝑣

|︁|︁|︁|︁log
𝑝𝑣 + 𝛿𝑣
𝑞𝑣 + 𝛿𝑣

|︁|︁|︁|︁ ⩽ 1
𝜂𝑣

log 1 + 𝛿𝑣
𝛿𝑣

⩽ 2.

Using this in (2.7) yields

𝜅
|︁|︁𝜕𝑡D̃(𝑧(𝑡) ∥ 𝑞)|︁|︁ ⩽ 𝑤𝑢 |𝑧′𝑢(𝑡)|

⎛⎜⎝2 + 1
𝜏

∑︂
𝑣∈𝜒(𝑢)

(︃
2𝛿𝑣 +

|︁|︁|︁|︁𝑞𝑣 − 𝑧𝑣(𝑡)
𝑧𝑢(𝑡)

|︁|︁|︁|︁)︃⎞⎟⎠ ⩽ 𝑤𝑢 |𝑧′𝑢(𝑡)|
(︃
2 + 4

𝜏

)︃
,

where the last inequality uses
∑︁

𝑣∈𝜒(𝑢) 𝛿𝑣 ⩽
∑︁

𝑣∈𝜒(𝑢) 𝜃𝑣 ⩽ 1 and
∑︁

𝑣∈𝜒(𝑢) 𝑧𝑣(𝑡) ⩽ 𝑧𝑢(𝑡). □

We will sometimes implicitly restrict vectors 𝑥 ∈ ℝ𝑉 to the subspace spanned by {𝑒ℓ : ℓ ∈ L}. In
this case, we employ the notation

⟨𝑥, 𝑦⟩L :=
∑︂
ℓ∈L

𝑥ℓ 𝑦ℓ ,

when either vector lies in ℝ𝑉 or ℝL.
According to the following lemma, the change in potential due to movement of the online

algorithm is bounded by the difference in service cost between the offline and online algorithm.

Lemma 2.3. For any cost vector 𝑐 ∈ ℝL
+ , 𝑧 ∈ K𝑇 , and 𝑞 ∈ 𝑄𝑇 , it holds that if 𝑝 = A(𝑞, 𝑐), then

D̃(𝑧 ∥ 𝑝) − D̃(𝑧 ∥ 𝑞) ⩽ ⟨𝑐, 𝑧 − Δ(𝑝)⟩L .

Proof. Fix 𝑞 ∈ 𝑄𝑇 and 𝑐 ∈ ℝL
+ . Let 𝛼 = 𝛼𝑞,𝑐 denote the vector of multipliers defined in Section 2.1.

For 𝑢 ∈ 𝑉 \ L with 𝑧𝑢 > 0, define 𝑧(𝑢) ∈ 𝑄
(𝑢)
𝑇

by

𝑧
(𝑢)
𝑣 := 𝑧𝑣

𝑧𝑢
.

Then Lemma 2.1 gives

D(𝑢)
(︂
𝑧(𝑢) ∥ 𝑝(𝑢)

)︂
− D(𝑢)

(︂
𝑧(𝑢) ∥ 𝑞(𝑢)

)︂
⩽

⟨︂
𝑐(𝑢) − 𝛼(𝑢) , 𝑧(𝑢) − 𝑝(𝑢)

⟩︂
𝜒(𝑢)

,

where we use ⟨·, ·⟩𝜒(𝑢) for the standard inner product on ℝ𝜒(𝑢). Multiplying by 𝑧𝑢 and summing
yields

D̃(𝑧 ∥ 𝑝) − D̃(𝑧 ∥ 𝑞) ⩽
∑︂
𝑢∉L

𝑧𝑢

⟨︂
𝑐(𝑢) − 𝛼(𝑢) , 𝑧(𝑢) − 𝑝(𝑢)

⟩︂
𝜒(𝑢)

10

=
∑︂
𝑢∉L

∑︂
𝑣∈𝜒(𝑢)

(𝑐(𝑢)𝑣 − 𝛼(𝑢)
𝑣)𝑧𝑣 −

∑︂
𝑢∉L

𝑧𝑢

∑︂
𝑣∈𝜒(𝑢)

(𝑐(𝑢)𝑣 − 𝛼(𝑢)
𝑣)𝑝𝑣 .

Note that from (2.6), the latter expression is∑︂
𝑢∉L

𝑧𝑢

∑︂
𝑣∈𝜒(𝑢)

𝑐
(𝑢)
𝑣 𝑝𝑣

(2.5)
=

∑︂
𝑢∉L

𝑧𝑢𝑐𝑢 .

Noting that 𝑐𝕣 =
∑︁

ℓ∈L Δ(𝑝)ℓ 𝑐ℓ , this gives

D̃(𝑧 ∥ 𝑝) − D̃(𝑧 ∥ 𝑞) ⩽
∑︂
𝑢≠𝕣

(𝑐𝑢 − 𝛼𝑢)𝑧𝑢 −
∑︂
𝑢∉L

𝑧𝑢𝑐𝑢 ⩽ ⟨𝑐, 𝑧 − Δ(𝑝)⟩L . □

2.3 Algorithm and competitive analysis

For the proof of bound (1.2), we employ two potential functions 𝜓 and Ψ, defined as follows. For
𝑥 ∈ K𝑇 , let 𝜓(𝑥) :=

∑︁
𝑢≠𝕣 𝑤𝑢𝑥𝑢 . For 𝑞 ∈ 𝑄𝑇 , let

Ψ𝑢(𝑞) := −Δ(𝑞)𝑢 D(𝑢)
(︂
𝜃(𝑢) ∥ 𝑞(𝑢)

)︂
Ψ(𝑞) :=

∑︂
𝑢∉L

Ψ𝑢(𝑞).

The next lemma justifies that when the algorithm moves from 𝑥 to 𝑦, it suffices to bound the
positive movement cost ∥(𝑥 − 𝑦)+∥ℓ1(𝑤) rather than the actual movement cost ∥𝑥 − 𝑦∥ℓ1(𝑤). Its proof
is straightforward.

Lemma 2.4. For 𝑥, 𝑦 ∈ K𝑇 it holds that

∥𝑥 − 𝑦∥ℓ1(𝑤) = 2 ∥(𝑥 − 𝑦)+∥ℓ1(𝑤) + [𝜓(𝑦) − 𝜓(𝑥)].

In the next section, we will prove the following.

Lemma 2.5 (Movement analysis). It holds that

𝜏 − 3
𝜅𝜏

∥︁∥︁(𝑥 − 𝑦)+
∥︁∥︁
ℓ1(𝑤) ⩽ (2𝔇𝑇 + log 𝑛)⟨𝑐, 𝑥⟩L + [Ψ(𝑞) −Ψ(𝑝)] .

Define 𝑤min := min{𝑤ℓ : ℓ ∈ L} and

𝜀𝑇 := 𝑤min
2(2𝔇𝑇 + log 𝑛)

𝜏 − 3
𝜏𝜅

.

Theorem 2.6. Consider any 𝑞 ∈ 𝑄𝑇 and 𝑐 ∈ ℝL
+ . If we define 𝑝 = A(𝑞, 𝑐), 𝑥 = Δ(𝑞), 𝑦 = Δ(𝑝), then for

any 𝑧 ∈ K𝑇 :

⟨𝑐, 𝑦⟩L ⩽ ⟨𝑐, 𝑧⟩L +
[︁
D̃(𝑧 ∥ 𝑞) − D̃(𝑧 ∥ 𝑝)

]︁
(2.8)

𝜅−1 ∥𝑥 − 𝑦∥ℓ1(𝑤) ⩽ [𝜓(𝑦) − 𝜓(𝑥)] + 2𝜏
𝜏 − 3

(︁
[Ψ(𝑞) −Ψ(𝑝)] + (2𝔇𝑇 + log 𝑛)⟨𝑐, 𝑥⟩L

)︁
(2.9)

Moreover, if ∥𝑐∥∞ ⩽ 𝜀𝑇 , then

𝜅−1 ∥𝑥 − 𝑦∥ℓ1(𝑤) ⩽ [𝜓(𝑦) − 𝜓(𝑥)] + 4𝜏
𝜏 − 3

(︁
[Ψ(𝑞) −Ψ(𝑝)] + (2𝔇𝑇 + log 𝑛)⟨𝑐, 𝑦⟩L

)︁
. (2.10)

11

Proof. The bound (2.8) follows from Lemma 2.3, and (2.9) follows from Lemma 2.5 and Lemma 2.4.
To see that (2.10) follows from (2.9) and Lemma 2.5, use the fact that

⟨𝑐, 𝑥⟩L ⩽ ⟨𝑐, 𝑦⟩L + ∥𝑐∥∞
𝑤min

∥︁∥︁(𝑥 − 𝑦)+
∥︁∥︁
ℓ1(𝑤) . □

In light of Theorem 2.6, we can respond to a cost function 𝑐 ∈ ℝL
+ by splitting it into 𝑀 pieces

𝑐1 , 𝑐2 , . . . , 𝑐𝑀 where 𝑀 = ⌈∥𝑐∥∞/𝜀𝑇⌉. Now define 𝑞𝑖 := A(𝑞𝑖−1 , 𝑐/𝑀), 𝑞0 := 𝑞 and Ā(𝑞, 𝑐) := 𝑞𝑀 .

Theorem 2.7. Fix 𝜏 ⩾ 4. Consider the algorithm that begins in some configuration 𝑞0 ∈ 𝑄𝑇 . If 𝑐𝑡 ∈ ℝL
+ is

the cost function that arrives at time 𝑡, denote 𝑞𝑡 := Ā(𝑞𝑡−1 , 𝑐𝑡). Then the sequence ⟨Δ(𝑞0),Δ(𝑞1), . . .⟩ is an
online algorithm that is (1, 𝑂(1/𝜅), 𝑂(𝜅(𝔇𝑇 + log 𝑛)))-finely competitive.

We prove this momentarily. The following fact is well-known and, in conjunction with the
preceding theorem, yields the validity of Theorem 1.1 and Theorem 1.3.

Lemma 2.8. If (L, 𝑑𝑇) is an HST metric, then there is another weighted tree 𝑇′ with leaf set L such that

1. (L, 𝑑𝑇′) is a 7-HST metric.

2. 𝔇𝑇′ ⩽ log2 |L|

3. All the leaves of 𝑇′ have depth 𝔇𝑇′.

4. 𝑑𝑇(ℓ , ℓ ′) ⩽ 𝑑𝑇′(ℓ , ℓ ′) ⩽ 𝑂(𝑑𝑇(ℓ , ℓ ′)) for all ℓ , ℓ ′ ∈ L.

Proof sketch. Replace every weight 𝑤𝑣 in 𝑇 with 𝑤̂𝑣 := 7⌈log7 𝑤𝑣⌉ and iteratively contract every edge
(𝑝(𝑢), 𝑢) with 𝑤̂𝑝(𝑢) = 𝑤̂𝑢 and 𝑢 ∉ L. The resulting weighted tree 𝑇1 is a 7-HST by construction.

Now iteratively contract every edge (𝑝(𝑢), 𝑢) in 𝑇1 for which |L𝑇1
𝑢 | > 1

2 |L
𝑇1
𝑝(𝑢) |. The resulting tree

𝑇′ has depth 𝔇𝑇′ ⩽ log2 |L|. Finally, one can achieve property (3) by increasing the depth of every
root-leaf path to 𝔇𝑇′ using vertex weights that decrease by a factor of 7 along the path. □

Proof of Theorem 2.7. Consider a sequence ⟨𝑐𝑡 : 𝑡 ⩾ 1⟩ of cost functions. By splitting the costs into
smaller pieces, we may assume that ∥𝑐𝑡 ∥∞ ⩽ 𝜀𝑇 for all 𝑡 ⩾ 1.

Let {𝑧∗𝑡} denote some offline algorithm with 𝑧∗0 = Δ(𝑞0), and let {𝑥𝑡 = Δ(𝑞𝑡)} denote our online
algorithm. Then using D̃(𝑧∗0 ∥ 𝑥0) = 0 along with (2.8) and Lemma 2.2 yields, for any time 𝑡1 ⩾ 1,

𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑥𝑡⟩L ⩽
𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑧∗𝑡⟩L − D̃(𝑧∗𝑡1 ∥ 𝑞𝑡1) + 𝑂(1/𝜅)
𝑡1∑︂
𝑡=1

∥𝑧∗𝑡 − 𝑧∗𝑡−1∥ℓ1(𝑤)

⩽
𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑧∗𝑡⟩L + 𝑂(1/𝜅)
𝑡1∑︂
𝑡=1

∥𝑧∗𝑡 − 𝑧∗𝑡−1∥ℓ1(𝑤) ,

where we have used D̃(𝑧 ∥ 𝑞) ⩾ 0 for all 𝑧 ∈ K𝑇 and 𝑞 ∈ 𝑄𝑇 . This verifies (1.1) with 𝛼0 = 1,
𝛼1 = 𝑂(1/𝜅), and 𝛽 = 0. Moreover, (2.10) gives

1
𝜅

𝑡1∑︂
𝑡=1

∥𝑥𝑡 − 𝑥𝑡−1∥ℓ1(𝑤) ⩽ [𝜓(𝑥𝑡1) − 𝜓(𝑥0)] +
4𝜏

𝜏 − 3 [Ψ(𝑞0) −Ψ(𝑞𝑡1)] +
(︁
2𝔇𝑇 + log 𝑛

)︁ 𝑡1∑︂
𝑡=1

⟨𝑐𝑡 , 𝑥𝑡⟩L ,

verifying (1.2) with 𝛼1 ⩽ 𝑂(𝜅(𝔇𝑇 + log 𝑛)) and 𝛽′ ⩽ 𝑂(𝜅 max𝑣≠𝕣 𝑤𝑣) (see Lemma 2.10 below). □

12

2.4 Movement analysis

It remains to prove Lemma 2.5. The KKT conditions (cf. (2.2)) give: For every 𝑣 ∈ 𝜒(𝑢),

1
𝜅
𝑤𝑣

𝜂𝑣
log

(︃
𝑝𝑣 + 𝛿𝑣
𝑞𝑣 + 𝛿𝑣

)︃
= 𝛽𝑢 − 𝑐𝑣 + 𝛼𝑣 , (2.11)

where 𝛽𝑢 ⩾ 0 is the multiplier corresponding to the constraint
∑︁

𝑣∈𝜒(𝑢) 𝑞𝑣 ⩾ 1.

Lemma 2.9. It holds that 𝛼𝑣 ⩽ 𝑐𝑣 for all 𝑣 ∈ 𝑉 \ {𝕣 }.

Proof. Note that 𝑐𝑣 ⩾ 0 by construction. Thus if 𝛼𝑣 = 0, we are done. Otherwise, by complementary
slackness, it must be that 𝑝𝑣 = 0, and therefore log(𝑝𝑣+𝛿𝑣𝑞𝑣+𝛿𝑣) ⩽ 0. Since 𝛽p(𝑣) ⩾ 0, (2.11) implies that
𝛼𝑣 ⩽ 𝑐𝑣 . □

Define 𝜎𝑣 := log
(︂
𝑝𝑣+𝛿𝑣
𝑞𝑣+𝛿𝑣

)︂
so that

𝑞𝑣 − 𝑝𝑣 = (𝑞𝑣 + 𝛿𝑣)(1 − 𝑒𝜎𝑣). (2.12)

Recall that for 𝑣 ∈ 𝜒(𝑢), we have 𝑥𝑣 = 𝑞𝑣𝑥𝑢 and 𝑦𝑣 = 𝑝𝑣𝑦𝑢 , thus

𝑥𝑣 − 𝑦𝑣 = 𝑥𝑢(𝑞𝑣 − 𝑝𝑣) + 𝑝𝑣(𝑥𝑢 − 𝑦𝑢) = (𝑥𝑣 + 𝛿𝑣𝑥𝑢)(1 − 𝑒𝜎𝑣) + 𝑝𝑣(𝑥𝑢 − 𝑦𝑢).

In particular,

𝑤𝑣 (𝑥𝑣 − 𝑦𝑣)+ ⩽ 𝑤𝑣(𝑥𝑣 + 𝛿𝑣𝑥𝑢)(1 − 𝑒𝜎𝑣)+ + 𝑤𝑣𝑝𝑣 (𝑥𝑢 − 𝑦𝑢)+
⩽ 𝑤𝑣(𝑥𝑣 + 𝛿𝑣𝑥𝑢)(1 − 𝑒𝜎𝑣)+ + 𝑤𝑢

𝜏
𝑝𝑣 (𝑥𝑢 − 𝑦𝑢)+ .

Using
∑︁

𝑣∈𝜒(𝑢) 𝑝𝑣 = 1 and summing over all vertices yields∑︂
𝑣≠𝕣

𝑤𝑣 (𝑥𝑣 − 𝑦𝑣)+ ⩽
∑︂
𝑣≠𝕣

𝑤𝑣(𝑥𝑣 + 𝛿𝑣𝑥p(𝑣))(1 − 𝑒𝜎𝑣)+ + 1
𝜏

∑︂
𝑣≠𝕣

𝑤𝑣 (𝑥𝑣 − 𝑦𝑣)+ ,

hence ∑︂
𝑣≠𝕣

𝑤𝑣 (𝑥𝑣 − 𝑦𝑣)+ ⩽
𝜏

𝜏 − 1

∑︂
𝑣≠𝕣

𝑤𝑣(𝑥𝑣 + 𝛿𝑣𝑥p(𝑣))(1 − 𝑒𝜎𝑣)+

⩽
𝜏

𝜏 − 1

∑︂
𝑣≠𝕣

𝑤𝑣(𝑥𝑣 + 𝛿𝑣𝑥p(𝑣)) (𝜎𝑣)−

⩽
𝜅𝜏
𝜏 − 1

⎛⎜⎝
∑︂
𝑣≠𝕣

𝜂𝑣𝑥𝑣𝑐𝑣 +
∑︂
𝑢∉L

𝑥𝑢

∑︂
𝑣∈𝜒(𝑢)

𝜃𝑣(𝑐𝑣 − 𝛼𝑣)⎞⎟⎠ , (2.13)

where the last line uses Lemma 2.9 and (2.11), to bound 𝑤𝑣(𝜎𝑣)− ⩽ 𝜅𝜂𝑣 (𝑐𝑣 − 𝛼𝑣).
Note that ∑︂

𝑣≠𝕣

𝜂𝑣𝑥𝑣𝑐𝑣 ⩽
∑︂
ℓ∈L

𝑐ℓ 𝑥ℓ

∑︂
𝑣∈𝛾𝕣 ,ℓ \{𝕣 }

𝜂𝑣 ⩽ (𝔇𝑇 + log 𝑛) ⟨𝑐, 𝑥⟩ , (2.14)

13

since for any ℓ ∈ L, it holds that∑︂
𝑣∈𝛾𝕣 ,ℓ \{𝕣 }

𝜂𝑣 = 𝔇𝑇(ℓ) +
∑︂

𝑣∈𝛾𝕣 ,ℓ \{𝕣 }
log

|Lp(𝑣) |
|L𝑣 |

= 𝔇𝑇(ℓ) + log 𝑛,

where 𝔇𝑇(ℓ) is the combinatorial depth of ℓ .
The second sum in (2.13) can be interpreted as the service cost of hybrid configurations of 𝑞 and

𝜃: While
∑︁

𝑣∈𝜒(𝑢) 𝑥𝑣𝑐𝑣 is the service cost of 𝑥 in L𝑢 , the term 𝑥𝑢
∑︁

𝑣∈𝜒(𝑢) 𝜃𝑣𝑐𝑣 is the service cost in L𝑢

of the modification of 𝑥 whose conditional probabilities at the children of 𝑢 are given by 𝜃(𝑢) rather
than 𝑞(𝑢). To bound this hybrid service cost, we will employ the auxiliary potential Ψ.

2.4.1 The hybrid cost

We require the following elementary estimate.

Lemma 2.10. For 𝑢 ∉ L it holds that

max
{︂
D(𝑢)(𝑟 ∥ 𝑝) : 𝑟, 𝑝 ∈ 𝑄

(𝑢)
𝑇

}︂
⩽

2
𝜅
𝑤𝑢

𝜏
.

Proof. Define 𝜙𝑣 : (−𝛿𝑣 ,∞) → ℝ by

𝜙𝑣(𝑝) := 1
𝜂𝑣

(𝑝𝑣 + 𝛿𝑣) log(𝑝𝑣 + 𝛿𝑣),

and let
D𝜙𝑣 (𝑞𝑣 ∥ 𝑝𝑣) =

1
𝜂𝑣

[︃
(𝑞𝑣 + 𝛿𝑣) log

𝑞𝑣 + 𝛿𝑣
𝑝𝑣 + 𝛿𝑣

+ (𝑝𝑣 − 𝑞𝑣)
]︃

denote the corresponding Bregman divergence. Then for 𝑞𝑣 , 𝑝𝑣 ⩾ 0, it holds that D𝜙𝑣 (𝑞𝑣 ∥ 𝑝𝑣) ⩾ 0
since 𝜙𝑣 is convex on ℝ+. Employing the 𝜏-HST property of 𝑇, this implies that

D(𝑢)(𝑟 ∥ 𝑝) = 1
𝜅

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣D𝜙𝑣 (𝑟𝑣 ∥ 𝑝𝑣) ⩽
𝑤𝑢

𝜅𝜏

∑︂
𝑣∈𝜒(𝑢)

D𝜙𝑣 (𝑟𝑣 ∥ 𝑝𝑣).

Define 𝐹 : 𝑄(𝑢)
𝑇

×𝑄
(𝑢)
𝑇

→ ℝ+ by 𝐹(𝑟, 𝑝) :=
∑︁

𝑣∈𝜒(𝑢) D𝜙𝑣 (𝑟𝑣 ∥ 𝑝𝑣). The map 𝑟 ↦→ 𝐹(𝑟, 𝑝) is convex in
general (for any Bregman divergence). The map 𝑝 ↦→ 𝐹(𝑟, 𝑝) is convex as well, as this holds for each
map 𝑝𝑣 ↦→ D𝜙𝑣 (𝑞𝑣 ∥ 𝑝𝑣) since − log(𝑥) is convex on ℝ++. Since the maximum of a convex function
on the a polytope is achieved at an extreme point, we have

max
{︂
𝐹(𝑟, 𝑝) : 𝑟, 𝑝 ∈ 𝑄

(𝑢)
𝑇

}︂
⩽ max

𝑣,𝑣′∈𝜒(𝑢)
𝑣≠𝑣′

[︃
1
𝜂𝑣

(︃
(1 + 𝛿𝑣) log 1 + 𝛿𝑣

𝛿𝑣
− 1

)︃
+ 1
𝜂𝑣′

(︃
𝛿𝑣′ log 𝛿𝑣′

1 + 𝛿𝑣′
+ 1

)︃]︃
⩽ 2. □

The next lemma is crucial: It relates the service cost (with respect to the reduced cost 𝑐 − 𝛼) of
the hybrid configurations to the service cost of the actual configuration and the movement cost.

14

Lemma 2.11. For any 𝑢 ∉ L, it holds that

Ψ𝑢(𝑝) −Ψ𝑢(𝑞) ⩽
2
𝜅
𝑤𝑢

𝜏
(𝑥𝑢 − 𝑦𝑢)+ +

∑︂
𝑣∈𝜒(𝑢)

(𝑐𝑣 − 𝛼𝑣) [𝑥𝑣 − 𝜃𝑣𝑥𝑢] . (2.15)

Proof. Write

Ψ𝑢(𝑝) −Ψ𝑢(𝑞) = 𝑥𝑢D(𝑢)
(︂
𝜃(𝑢) ∥ 𝑞(𝑢)

)︂
− 𝑦𝑢D(𝑢)

(︂
𝜃(𝑢) ∥ 𝑝(𝑢)

)︂
= (𝑥𝑢 − 𝑦𝑢)D(𝑢)(𝜃(𝑢) ∥ 𝑝(𝑢)) + 𝑥𝑢

[︂
D(𝑢)(𝜃(𝑢) ∥ 𝑞(𝑢)) − D(𝑢)(𝜃(𝑢) ∥ 𝑝(𝑢))

]︂
.

Using Lemma 2.10, the first term is bounded by 2
𝜅
𝑤𝑢

𝜏 (𝑥𝑢 − 𝑦𝑢)+.
Let us now bound the second term. Using 1 + 𝑡 ⩽ 𝑒 𝑡 , we have

𝜅𝑥𝑢
[︂
D(𝑢)(𝜃(𝑢) ∥ 𝑞(𝑢)) − D(𝑢)(𝜃(𝑢) ∥ 𝑝(𝑢))

]︂
= 𝑥𝑢

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣

[︃
(𝜃𝑣 + 𝛿𝑣) log

𝑝𝑣 + 𝛿𝑣
𝑞𝑣 + 𝛿𝑣

+ 𝑞𝑣 − 𝑝𝑣

]︃
(2.12)
= 𝑥𝑢

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣
[(𝜃𝑣 + 𝛿𝑣)𝜎𝑣 + (𝑞𝑣 + 𝛿𝑣)(1 − 𝑒𝜎𝑣)]

⩽ 𝑥𝑢

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣
𝜎𝑣(𝜃𝑣 − 𝑞𝑣)

=
∑︂

𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣
𝜎𝑣 [𝜃𝑣𝑥𝑢 − 𝑥𝑣] .

To finish the proof, observe that from (2.11),∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣
𝜎𝑣 [𝜃𝑣𝑥𝑢 − 𝑥𝑣] = 𝜅

∑︂
𝑣∈𝜒(𝑢)

(𝛽𝑢 − 𝑐𝑣 + 𝛼𝑣) [𝜃𝑣𝑥𝑢 − 𝑥𝑣] = 𝜅
∑︂

𝑣∈𝜒(𝑢)
(𝛼𝑣 − 𝑐𝑣) [𝜃𝑣𝑥𝑢 − 𝑥𝑣] ,

where the last equality uses
∑︁

𝑣∈𝜒(𝑢) 𝑥𝑣 = 𝑥𝑢 and
∑︁

𝑣∈𝜒(𝑢) 𝜃𝑣 = 1 (from (1.8)). □

Using the lemma gives∑︂
𝑢∉L

𝑥𝑢

∑︂
𝑣∈𝜒(𝑢)

𝜃𝑣(𝑐𝑣 − 𝛼𝑣)
(2.15)
⩽ [Ψ(𝑞) −Ψ(𝑝)] + 2

𝜅𝜏

∥︁∥︁(Δ(𝑞) − Δ(𝑝))+
∥︁∥︁
ℓ1(𝑤) +

∑︂
𝑣≠𝕣

𝑐𝑣𝑥𝑣

⩽ [Ψ(𝑞) −Ψ(𝑝)] + 2
𝜅𝜏

∥︁∥︁(Δ(𝑞) − Δ(𝑝))+
∥︁∥︁
ℓ1(𝑤) +𝔇𝑇 ⟨𝑐, 𝑥⟩L.

Combining this inequality with (2.13) and (2.14) gives

𝜅−1 ∥︁∥︁(𝑥 − 𝑦)+
∥︁∥︁
ℓ1(𝑤) ⩽

𝜏
𝜏 − 1

[︃ (︁
2𝔇𝑇 + log 𝑛

)︁
⟨𝑐, 𝑥⟩L + (Ψ(𝑞) −Ψ(𝑝)) + 2

𝜅𝜏

∥︁∥︁(𝑥 − 𝑦)+
∥︁∥︁
ℓ1(𝑤)

]︃
, (2.16)

completing the verification of Lemma 2.5.

15

3 Derivation of the dynamics and derived costs

For the sake of motivating the dynamics (1.11), we review the continuous-time mirror descent
framework of [BCL+18]. Suppose that K ⊆ ℝ𝑁 is a convex set. We recall again the definition of the
normal cone to K at 𝑥 ∈ K which is given by

𝑁K(𝑥) := (K − 𝑥)◦ =
{︁
𝑝 ∈ ℝ𝑁 : ⟨𝑝, 𝑦 − 𝑥⟩ ⩽ 0 for all 𝑦 ∈ K

}︁
.

Suppose additionally that Φ : D → ℝ is C2 and strictly convex on an open neighborhood D ⊇ K
so that the Hessian ∇2Φ(𝑥) is well-defined and positive definite on D. Given a control function
𝐹 : [0,∞) × K → ℝ𝑁 and an initial point 𝑥0 ∈ K, we will be concerned with absolutely continuous
solutions 𝑥 : [0,∞) → K to the differential inclusion

𝑥(0) = 𝑥0 ,

∇2Φ(𝑥(𝑡))𝑥′(𝑡) ∈ 𝐹(𝑡 , 𝑥(𝑡)) − 𝑁K(𝑥(𝑡)) .

In other words, a trajectory that satisfies 𝑥(0) = 𝑥0 and for almost every 𝑡 ⩾ 0:

𝑥′(𝑡) = ∇2Φ(𝑥(𝑡))−1 (𝐹(𝑡 , 𝑥(𝑡)) − 𝛾(𝑡)) , (3.1)

with 𝛾(𝑡) ∈ 𝑁K(𝑥(𝑡)).
Under suitably strong conditions on Φ and 𝐹, there is a unique absolutely continuous solution

to (3.1) [BCL+18]. In our setup, these conditions are actually not satisfied unless we prevent the path
𝑥 from hitting the relative boundary of K. Nevertheless, the formal calculation is elucidating and
motivates the algorithm of Section 2. For simplicity, we assume 𝜅 := 1 in this section.

3.1 Hessian computation

Let us take Φ as in (1.7) and calculate ∇2Φ(𝑥) for 𝑥 ∈ ℝ𝑉
++. Fix 𝑢 ≠ 𝕣 . Then we have

𝜕𝑢Φ(𝑥) =
𝑤𝑢

𝜂𝑢

(︃
log

(︃
𝑥𝑢

𝑥p(𝑢)
+ 𝛿𝑢

)︃
+ 1

)︃
+

∑︂
𝑣∈𝜒(𝑢)

𝑤𝑣

𝜂𝑣

(︃
𝛿𝑣 log

(︃
𝑥𝑣

𝑥𝑢
+ 𝛿𝑣

)︃
− 𝑥𝑣

𝑥𝑢

)︃
. (3.2)

Moreover, 𝜕𝑢𝑣Φ(𝑥) = 0 unless 𝑢 = 𝑣, 𝑢 ∈ 𝜒(𝑣), or 𝑣 ∈ 𝜒(𝑢), and in this case,

𝜕𝑢𝑢Φ(𝑥) =
𝑤𝑢

𝜂𝑢(𝑥𝑢 + 𝛿𝑢𝑥p(𝑢))
+

∑︂
𝑣∈𝜒(𝑢)

(︃
𝑥𝑣

𝑥𝑢

)︃2
𝑤𝑣

𝜂𝑣(𝑥𝑣 + 𝛿𝑣𝑥𝑢)

𝜕𝑢,p(𝑢)Φ(𝑥) = 𝜕p(𝑢),𝑢Φ(𝑥) = − 𝑥𝑢

𝑥p(𝑢)

𝑤𝑢

𝜂𝑢(𝑥𝑢 + 𝛿𝑢𝑥p(𝑢))
.

3.2 Explicit dynamics

We are now in a position to calculate the formal dynamics. Let us define the control by 𝐹(·, 𝑡) := −𝑐(𝑡).
We claim that for 𝑢 ≠ 𝕣 ,

𝜕𝑡

(︃
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡)

)︃
=

𝜂𝑢
𝑤𝑢

(︃
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡)

+ 𝛿𝑢

)︃ (︄
𝛽p(𝑢)(𝑡) −

∑︂
ℓ∈L𝑢

𝑥ℓ (𝑡)
𝑥𝑢(𝑡)

𝑐ℓ

)︄
, (3.3)

16

where 𝛽𝑢(𝑡) ⩾ 0 denotes the Lagrange multiplier corresponding to the constraint 𝑥𝑢 =
∑︁

𝑣∈𝜒(𝑢) 𝑥𝑣 .
To verify (3.3), let us define, for 𝑢 ≠ 𝕣 ,

E(𝑢) := 𝑤𝑢

𝜂𝑢

𝑥p(𝑢)(𝑡)
𝑥𝑢(𝑡) + 𝛿𝑢𝑥p(𝑢)(𝑡)

𝜕𝑡

(︃
𝑥𝑢(𝑡)
𝑥p(𝑢)(𝑡)

)︃
.

Then (3.3) is equivalent to the assertion that

E(𝑢) = 𝛽p(𝑢)(𝑡) −
∑︂
ℓ∈L𝑢

𝑥ℓ (𝑡)
𝑥𝑢(𝑡)

𝑐ℓ (𝑡). (3.4)

Recalling (3.1), the equality
(︁
∇2Φ(𝑥(𝑡))𝑥′(𝑡)

)︁
𝑢
= (𝐹(𝑡 , 𝑥(𝑡)) − 𝛾(𝑡))𝑢 is equivalent to

E(ℓ) = 𝛽p(ℓ)(𝑡) − 𝑐ℓ (𝑡), ℓ ∈ L, (3.5)

E(𝑢) −
∑︂

𝑣∈𝜒(𝑢)

𝑥𝑣(𝑡)
𝑥𝑢(𝑡)

E(𝑣) = 𝛽p(𝑢)(𝑡) − 𝛽𝑢(𝑡) , 𝑢 ∈ 𝑉 \ (L ∪ {𝕣 }). (3.6)

Clearly (3.5) already confirms (3.4) for ℓ ∈ L.
Let us conclude by verifying (3.4) for all 𝑢 ∉ 𝕣 by (reverse) induction on the depth. Employing

(3.6) along with the validity of (3.4) for {E(𝑣) : 𝑣 ∈ 𝜒(𝑢)} yields

E(𝑢) = 𝛽p(𝑢)(𝑡) − 𝛽𝑢(𝑡) +
∑︂

𝑣∈𝜒(𝑢)

𝑥𝑣(𝑡)
𝑥𝑢(𝑡)

(︄
𝛽𝑢(𝑡) −

∑︂
ℓ∈L𝑢

𝑥ℓ (𝑡)
𝑥𝑢(𝑡)

𝑐ℓ (𝑡)
)︄

= 𝛽p(𝑢)(𝑡) −
∑︂
ℓ∈L𝑢

𝑥ℓ (𝑡)
𝑥𝑢(𝑡)

𝑐ℓ (𝑡),

where we used the fact that 𝑥𝑢 =
∑︁

𝑣∈𝜒(𝑢) 𝑥𝑣 for 𝑥 ∈ K𝑇 .

3.3 Relationship between discrete and continuous dynamics

Recall the setup from Section 1.3.3. We consider a system of variables {𝑞𝑢(𝑡) : 𝑢 ∈ 𝑉 \ {𝕣 }} satisfying
the differential equations

𝜕𝑡𝑞𝑢(𝑡) =
𝜂𝑢
𝑤𝑢

(𝑞𝑢(𝑡) + 𝛿𝑢)
(︁
𝛽p(𝑢)(𝑡) − 𝑐𝑢(𝑡) + 𝛼𝑢(𝑡)

)︁
, (3.7)

where 𝛼𝑢(𝑡) is a Lagrangian multiplier for the constraint 𝑞𝑢(𝑡) ⩾ 0, and 𝑐𝑢(𝑡) is the “derived” cost in
the subtree rooted at 𝑢:

𝑐𝑢(𝑡) :=
∑︂
ℓ∈L𝑢

𝑞ℓ |𝑢(𝑡)𝑐ℓ (𝑡)

𝑞ℓ |𝑢(𝑡) :=
∏︂

𝑣∈𝛾𝑢,ℓ \{𝑢}
𝑞𝑣(𝑡) ,

where 𝛾𝑢,ℓ is the unique simple 𝑢-ℓ path in 𝑇. Now the values 𝑞ℓ |𝕣 give a probability distribution on
the leaves.

17

Let us argue that when the discretization parameter of the algorithm presented in Section 2
goes to zero, one arrives at a solution to (3.7). Recall that in Section 2.3, we split each cost function
𝑐 ∈ ℝL

+ into 𝑀 pieces 𝑀−1𝑐 and computed a sequence of configurations 𝑞0 , . . . , 𝑞𝑀 ∈ 𝑄𝑇 . Define
the piecewise-linear function 𝑞(𝑀) : [0, 1] → 𝑄𝑇 by

𝑞(𝑀)

(︃
𝑗 + 𝛿

𝑀

)︃
:= (1 − 𝛿)𝑞 𝑗 + 𝛿𝑞 𝑗+1 , 𝛿 ∈ [0, 1], 𝑗 ∈ {0, . . . , 𝑀 − 1}.

Recalling Section 2.1, we have

𝑞
(𝑢)
𝑗

:= argmin
{︂
D(𝑢)

(︂
𝑝 ∥ 𝑞(𝑢)

𝑗−1

)︂
+

⟨︂
𝑝, 𝑀−1𝑐

(𝑢)
𝑗

⟩︂ |︁|︁|︁ 𝑝 ∈ 𝑄
(𝑢)
𝑇

}︂
, (3.8)

where
𝑐
(𝑢)
𝑗

=
∑︂
ℓ∈L𝑣

(𝑞 𝑗)ℓ |𝑢𝑐ℓ .

Thus for 𝑣 ∈ 𝜒(𝑢) and 𝑗 ⩾ 1,(︂
𝑞
(𝑢)
𝑗

)︂
𝑣
=

[︂(︂
𝑞
(𝑢)
𝑗−1

)︂
𝑣
+ 𝛿𝑣

]︂
exp

(︃
𝜂𝑣
𝑤𝑣

(︂
𝛽𝑢 − (𝑀−1(𝑐(𝑢)

𝑗
)𝑣 − 𝛼𝑣)

)︂)︃
− 𝛿𝑣 .

One can now verify that there is a constant 𝐿 = 𝐿(𝑐, 𝑇) such that|︁|︁ (︁𝑞 𝑗)︁𝑣 − (︁
𝑞 𝑗−1

)︁
𝑣

|︁|︁ ⩽ 𝐿

𝑀
, 𝑗 ∈ {1, . . . , 𝑀}, 𝑣 ∈ 𝑉 \ {𝕣 }.

In particular, we see that 𝑞′(𝑀) ∈ 𝐿∞([0, 1],ℝ𝑉\{𝕣 }) for every 𝑀 ⩾ 1 and, moreover,

sup
𝑀⩾1

∥︁∥︁∥︁𝑞′(𝑀)

∥︁∥︁∥︁
𝐿∞

< ∞. (3.9)

Therefore by Arzelà-Ascoli, there is a subsequence {𝑀𝑘} such that 𝑞(𝑀𝑘) converges uniformly to a
function 𝑞 : [0, 1] → 𝑄𝑇 .

Since the unit ball of 𝐿∞([0, 1],ℝ𝑉\{𝕣 }) is weakly compact (by the sequential Banach-Alaoglu
Theorem), we can pass to a further subsequence {𝑀′

𝑘
} along which 𝑞′(𝑀′

𝑘
) converges weakly to

some ℎ ∈ 𝐿∞([0, 1],ℝ𝑉\{𝕣 }). Moreover, since 𝑞(𝑀)(𝑏) − 𝑞(𝑀)(𝑎) =
∫ 𝑏

𝑎
𝑞′(𝑀)(𝑡) 𝑑𝑡 for all 0 ⩽ 𝑎 < 𝑏 ⩽ 1,

it follows that 𝑞(𝑏) − 𝑞(𝑎) =
∫ 𝑏

𝑎
ℎ(𝑡) 𝑑𝑡 as well, and therefore for almost all 𝑡 ∈ [0, 1], we have

𝑞′(𝑡) = ℎ(𝑡).
If we similarly linearly interpolate the cost function to 𝑐(𝑀) : [0, 1] → ℝ

𝑉\{𝕣 }
+ , then 𝑐(𝑀𝑘) → 𝑐

along this sequence as well, and
𝑐(𝑢)(𝑡) =

∑︂
ℓ∈L𝑣

𝑞ℓ |𝑢(𝑡)𝑐ℓ .

Now the KKT conditions for optimality in (3.8) give

∇Φ(𝑢)
(︂
𝑞
(𝑢)
𝑗

)︂
− ∇Φ(𝑢)

(︂
𝑞
(𝑢)
𝑗−1

)︂
+ 𝑀−1𝑐

(𝑢)
𝑗

∈ −N
𝑄

(𝑢)
𝑇

(︂
𝑞
(𝑢)
𝑗

)︂
,

18

or equivalently,
∇Φ(𝑢)

(︂
𝑞
(𝑢)
𝑗

)︂
− ∇Φ(𝑢)

(︂
𝑞
(𝑢)
𝑗−1

)︂
𝑀−1 ∈ −𝑐(𝑢)

𝑗
− N

𝑄
(𝑢)
𝑇

(︂
𝑞
(𝑢)
𝑗

)︂
.

By standard results in differential inclusion theory (e.g., the Convergence Theorem [AC84, Thm.
1.4.1]), we conclude that 𝑞 : [0, 1] → 𝑄𝑇 solves the differential inclusion

∇2Φ(𝑢)
(︂
𝑞(𝑢)(𝑡)

)︂
𝜕𝑡𝑞

(𝑢)(𝑡) ∈ −𝑐(𝑢)(𝑡) − N
𝑄

(𝑢)
𝑇

(𝑞(𝑢)(𝑡)).

Calculating the Hessian ∇2Φ(𝑢) reveals that 𝑞(𝑡) is a solution to (3.7).

Acknowledgments

Part of this work was carried out while C. Coester was visiting University of Washington, hosted
by J. R. Lee. C. Coester was partially supported by EPSRC Award 1652110. J. R. Lee was partially
supported by NSF grants CCF-1616297 and CCF-1407779 and a Simons Investigator Award.

References

[ABBS10] Jacob Abernethy, Peter Bartlett, Niv Buchbinder, and Isabelle Stanton. A regularization
approach to metrical task systems. In Algorithmic Learning Theory, ALT 2010. Springer,
2010.

[AC84] Jean Pierre Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability
Theory. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1984.

[Bar96] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193, 1996.

[BBBT97] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive
algorithm for metrical task systems. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’97, pages 711–719, New York, NY, USA, 1997.
ACM.

[BBM06] Yair Bartal, Béla Bollobás, and Manor Mendel. Ramsey-type theorems for metric spaces
with applications to online problems. J. Comput. System Sci., 72(5):890–921, 2006.

[BBN10] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Metrical task systems and the k-server
problem on HSTs. In Proceedings of the 37th International Colloquium Conference on
Automata, Languages and Programming, ICALP’10, pages 287–298, Berlin, Heidelberg,
2010. Springer-Verlag.

[BBN12] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm
for weighted paging. J. ACM, 59(4):Art. 19, 24, 2012.

19

[BC12] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122,
2012.

[BCL+18] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
𝑘-server via multiscale entropic regularization. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 3–16, 2018.

[BCLL18] Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin-Tat Lee. Metrical task
systems on trees via mirror descent and unfair gluing. 2018.

[BCN14] Niv Buchbinder, Shahar Chen, and Joseph (Seffi) Naor. Competitive analysis via
regularization. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’14, pages 436–444, Philadelphia, PA, USA, 2014. Society for
Industrial and Applied Mathematics.

[BKRS00] Avrim Blum, Howard Karloff, Yuval Rabani, and Michael Saks. A decomposition
theorem for task systems and bounds for randomized server problems. SIAM J. Comput.,
30(5):1624–1661, 2000.

[BLMN05] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-type
phenomena. Ann. of Math. (2), 162(2):643–709, 2005.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for
metrical task system. J. ACM, 39(4):745–763, October 1992.

[BN07] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via
a primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):front matter, 93–263
(2009), 2007.

[FM03] Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[Sei99] Steve Seiden. Unfair problems and randomized algorithms for metrical task systems.
Inf. Comput., 148(2):219–240, February 1999.

20

	Introduction
	Refined guarantees
	The fractional model on trees
	Mirror descent, metric filtrations, and regularization
	Metric filtrations
	Multiscale conditional entropy
	The dynamics

	The MTS algorithm
	Iterative Bregman projections
	The global divergence
	Algorithm and competitive analysis
	Movement analysis
	The hybrid cost

	Derivation of the dynamics and derived costs
	Hessian computation
	Explicit dynamics
	Relationship between discrete and continuous dynamics

