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Abstract

For reversible random networks, we exhibit a relationship between the almost sure spectral
dimension and the Euclidean growth exponent, which is the smallest asymptotic rate of volume
growth over all embeddings of the network into a Hilbert space. Using metric embedding theory,
it is then shown that the Euclidean growth exponent coincides with the metric growth exponent.
This simplifies and generalizes a powerful tool for bounding the spectral dimension in random
networks.
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1 Introduction

Let 𝐺 be a locally-finite, connected graph and denote by {𝑋𝑛} the simple random walk on 𝐺. For
vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) and 𝑛 ⩾ 1, denote the discrete-time heat kernel by

p𝑛(𝑥, 𝑦) := ℙ[𝑋𝑛 = 𝑦 | 𝑋0 = 𝑥] .

The spectral dimension of 𝐺 is equal to 𝑑𝑠 if it holds that for some vertex 𝑣0 ∈ 𝑉(𝐺),

𝑑𝑠 = lim
𝑛→∞

−2 log p𝑛(𝑣0 , 𝑣0)
log 𝑛 .

One can check that the choice of 𝑣0 ∈ 𝑉(𝐺) does not affect the limit (assuming it exists).
Consider now a discrete metric space (𝑋, 𝔡), and define the asymptotic growth exponent

𝑑̄ 𝑓 (𝑋, 𝔡) := lim sup
𝑅→∞

log |𝐵𝔡(𝑥0 , 𝑅)|
log𝑅 , (1.1)

where
𝐵𝔡(𝑥, 𝑅) := {𝑦 ∈ 𝑋 : 𝔡(𝑥, 𝑦) ⩽ 𝑅},
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and again the choice of 𝑥0 ∈ 𝑋 is irrelevant.
The present work explores a general setting of random rooted graphs (𝐺, 𝜌) where the almost

sure spectral dimension of 𝐺 coincides with the smallest asymptotic growth exponent over a natural
class of metrics on 𝑉(𝐺). This provides a powerful set of tools for understanding the spectral
dimension of these graphs via the construction of discrete metric spaces on their vertex set.

Our main analytic tools are K. Ball’s notion of Markov type [Bal92] and the extension to maximal
Markov type appearing in [NPSS06], as well as Bourgain’s metric embedding theorem [Bou85].
Both tools have been previously applied fruitfully in contexts outside the non-linear geometry of
Banach spaces; see, e.g., [LMN02] and [LLR95], respectively.

Reversible random networks. Consider a random rooted network (𝐺, 𝜌, 𝜅, 𝜉) where 𝐺 is a locally-
finite, connected graph, 𝜌 ∈ 𝑉(𝐺), and {𝜅𝑢𝑣 ⩾ 0 : {𝑢, 𝑣} ∈ 𝐸(𝐺)} are edge conductances (where
𝜅𝑢𝑣 = 𝜅𝑣𝑢 for {𝑢, 𝑣} ∈ 𝐸(𝐺)). We allow 𝐸(𝐺) to contain self-loops {𝑣, 𝑣} for 𝑣 ∈ 𝑉(𝐺). Here,
𝜉 : 𝑉(𝐺) ∪ 𝐸(𝐺) → Ξ is an auxiliary marking, where Ξ is some Polish mark space.

We will sometimes use the notation (𝐺, 𝜌, 𝜉1 , 𝜉2 , . . . , 𝜉𝑘) to reference a random rooted network
with marks 𝜉𝑖 : 𝑉(𝐺) ∪ 𝐸(𝐺) → Ξ𝑖 , which we intend as shorthand for (𝐺, 𝜌, (𝜉1 , 𝜉2 , . . . , 𝜉𝑘)), where
the mark space is the Cartesian product Ξ1 × · · · ×Ξ𝑘 . We usually allow the conductances to remain
implicit, writing simply (𝐺, 𝜌, 𝜉).

The random walk {𝑋𝑛} (conditioned on (𝐺, 𝜌, 𝜉)) is defined by the transition kernel

p1(𝑢, 𝑣) := ℙ [𝑋1 = 𝑣 | 𝑋0 = 𝑢] := 𝜅𝑢𝑣
𝜅𝑢

, (1.2)

where we denote 𝜅𝑢 :=
∑︁
𝑣:{𝑢,𝑣}∈𝐸(𝐺) 𝜅𝑢𝑣 . Let us also define, for 𝑆 ⊆ 𝑉(𝐺), the volume vol(𝑆) :=∑︁

𝑢∈𝑆 𝜅𝑢 .

Definition 1.1. Say that (𝐺, 𝜌, 𝜉) is a reversible random network if (𝐺, 𝑋0 , 𝑋1 , 𝜉) and (𝐺, 𝑋1 , 𝑋0 , 𝜉)
have the same law.

Reversible random networks are closely related to unimodular random networks by a change of
measure. This connection is laid out in [BC12], and one can find a detailed explanation in [Lee21b,
§1.1]. One can also consult [AL07] for an extensive reference on unimodular random networks.

Euclidean embeddings. Suppose (𝐺, 𝜌) is a reversible random network and fix a separable Hilbert
space ℋ . A proper Euclidean embedding of (𝐺, 𝜌) is a random mapping Ψ : 𝑉(𝐺) → ℋ such that
(𝐺, 𝜌,Ψ) is a reversible random network with 𝔼 ∥Ψ(𝑋0) − Ψ(𝑋1)∥2

ℋ < ∞. Such an embedding
induces a distance 𝔡Ψ(𝑢, 𝑣) := ∥Ψ(𝑢) −Ψ(𝑣)∥ℋ on 𝑉(𝐺).

Definition 1.2 (Euclidean growth exponent). The Euclidean growth exponent 𝑑★euc of (𝐺, 𝜌) is the
infimal value 𝑑 such that almost surely the asymptotic growth exponent of (𝑉(𝐺), 𝔡Ψ) is at most 𝑑,
where the infimum is taken over all proper Euclidean embeddings Ψ : 𝑉(𝐺) → ℋ . Equivalently, it
is the infimal value 𝑑 such that almost surely

lim sup
𝑅→∞

log vol
(︁
Ψ−1 (𝐵ℋ (0, 𝑅))

)︁
log𝑅 ⩽ 𝑑,

where 𝐵ℋ (0, 𝑅) := {𝑥 ∈ ℋ : ∥𝑥∥ℋ ⩽ 𝑅}.
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Let us also define the (upper) spectral dimension 𝑑̄𝑠 of (𝐺, 𝜌) as the infimal value 𝑑 such that almost
surely

lim sup
𝑛→∞

−2 log p2𝑛(𝜌, 𝜌)
log 𝑛 ⩽ 𝑑 .

Our first result bounds the spectral dimension by the Euclidean growth exponent.

Theorem 1.3. If (𝐺, 𝜌) is a reversible random network, then 𝑑̄𝑠 ⩽ 𝑑★euc.

This result is proved in Section 2 by extending basic results in Markov type theory to the setting
of reversible random networks. There have been numerous applications of Markov type to random
networks in recent years [GLP17, GH20, Lee21a, GL22, Lee21b]. These methods are applied in
the “invariantly amenable” setting were the network can be written as a suitable limit of finite
subgraphs. The approach of Section 2 is somewhat cleaner, generalizing the notion of Markov type
from finite-state Markov chains to reversible random walks on random networks.

Spectral concentration. There are known examples (see [AHNR18] and Section 3.3) where 𝑑̄𝑠 is
finite, while 𝑑★euc = ∞, so this inequality cannot be reversed in general. We now present an upper
bound that holds whenever the return probabilities p2𝑛(𝜌, 𝜌) are sufficiently concentrated.

Definition 1.4 (Annealed spectral dimension). The (lower) annealed spectral dimension
¯
𝑑𝒜𝑠 of (𝐺, 𝜌) is

given by

¯
𝑑𝒜𝑠 := lim inf

𝑛→∞

−2 log𝔼[p2𝑛(𝜌, 𝜌)]
log 𝑛 .

Note that, by concavity of the logarithm, we have
¯
𝑑𝒜𝑠 ⩽ 𝑑̄𝑠 . If

¯
𝑑𝒜𝑠 = 𝑑̄𝑠 , then the inequality in

Theorem 1.3 can be reversed.

Theorem 1.5. Suppose (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝜅𝜌] < ∞. Then,

𝑑★euc ⩽
𝑑̄𝑠(︂

1 + (
¯
𝑑𝒜𝑠 − 𝑑̄𝑠)/2

)︂
+

.

This is proved in Section 3, where an appropriate Euclidean metric is constructed from the
discrete-time heat flow on 𝐺. Note that the theorem is vacuous unless 𝑑̄𝑠 < ¯

𝑑𝒜𝑠 +2. In Section 3.3, we
present examples where the reverse inequality 𝑑★euc ⩽ 𝑑̄𝑠 fails to hold (in particular, these examples
satisfy 𝑑̄𝑠 > ¯

𝑑𝒜𝑠 + 2).

The next conclusion follows from the conjunction of Theorem 1.3 and Theorem 1.5.

Corollary 1.6. If (𝐺, 𝜌) is a reversible random network with 𝔼[1/𝜅𝜌] < ∞ and 𝑑̄𝑠 = ¯
𝑑𝒜𝑠 , then the spectral

dimension of 𝐺 is almost surely equal to 𝑑★euc.

Note that 𝔼[1/𝜅𝜌] < ∞ is automatically satisfied, for instance, when (𝐺, 𝜌) is a reversible random
graph (i.e., almost surely a network with unit conductances on the edges).

The Euclidean and metric growth exponents coincide. If (𝐺, 𝜌) is a reversible random network,
then an 𝐿2 change of metric on (𝐺, 𝜌) is a random metric 𝔡 : 𝑉(𝐺) ×𝑉(𝐺) → [0,∞) such that (𝐺, 𝜌, 𝔡)
is a reversible random network with 𝔼 𝔡(𝑋0 , 𝑋1)2 < ∞.
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Definition 1.7 (Metric growth exponent). The metric growth exponent 𝑑★
𝑓

of (𝐺, 𝜌) is the infimal value
𝑑 such that almost surely 𝑑̄ 𝑓 (𝑉(𝐺), 𝔡) ⩽ 𝑑 (recall (1.1)), where the infimum is taken over all 𝐿2

changes of metric on (𝐺, 𝜌).

Theorem 1.8 (Euclidean vs. metric growth exponent). If (𝐺, 𝜌) is a reversible random network satisfying
𝔼[1/𝜅𝜌] < ∞, then

𝑑★euc = 𝑑★
𝑓
.

This result is proved in Section 4 using Bourgain’s embedding method [Bou85] to construct
embeddings of 𝐺 into a Hilbert space. The following corollary of Theorem 1.3 and Theorem 1.8 has
so far had the most utility in studying concrete models.

Corollary 1.9. If (𝐺, 𝜌) is a reversible random network satisfying 𝔼[1/𝜅𝜌] < ∞, then 𝑑̄𝑠 ⩽ 𝑑★𝑓 . If, moreover,
𝑑̄𝑠 = ¯

𝑑𝒜𝑠 , then almost surely the spectral dimension of 𝐺 is 𝑑★
𝑓
.

Indeed, a weaker version of the first half of Corollary 1.9 appears in [Lee21a], where it is stated
for unimodular random graphs.

If (𝐺, 𝜌) is a unimodular random graph with 𝔼[deg𝐺(𝜌)] < ∞, then there is a random rooted
graph (𝐺̃, 𝜌̃) whose law is absolutely continuous with respect to that of (𝐺, 𝜌) and such that (𝐺̃, 𝜌̃)
is a reversible random graph (see [BC12] and [Lee21b, §1.1]). Thus Corollary 1.9 is is somewhat
stronger the results of [Lee21a] which requires the law of deg𝐺(𝜌) to have tails that decrease faster
than any inverse polynomial. Moreover, our definition of 𝑑★

𝑓
only requires almost sure asymptotic

control on the volume of balls around the root, while [Lee21a] requires almost sure control at all
scales.

While the added generality is a benefit, certainly the main advantage of our probabilistic proof
of Corollary 1.9 is that it is substantially simpler and more elegant than the spectral graph-theoretic
arguments in [Lee21a].

Applications of Corollary 1.9. Suppose {𝐺𝑛} is a sequence of finite random networks and
𝜌𝑛 ∈ 𝑉(𝐺𝑛) has the law of the stationary measure on 𝐺𝑛 . It is not difficult to check that each
(𝐺𝑛 , 𝜌𝑛) is a reversible random network (indeed, (𝐺𝑛 , 𝑋0 , 𝑋1) and (𝐺𝑛 , 𝑋1 , 𝑋0) have the same law
conditioned on 𝐺𝑛).

For 𝑅 ⩾ 0, denote 𝐵𝐺𝑛 (𝜌𝑛 , 𝑅) := {𝑣 ∈ 𝑉(𝐺𝑛) : dist𝐺𝑛 (𝜌𝑛 , 𝑣) ⩽ 𝑅}, where dist denotes the path
distance in 𝐺𝑛 . One says that a random rooted network (𝐺, 𝜌) is the distributional limit of {(𝐺𝑛 , 𝜌𝑛})
if the law of (𝐵𝐺𝑛 (𝜌𝑛 , 𝑅), 𝜌𝑛) (considered as a rooted network, up to rooted network isomorphism)
converges to the law of 𝐵𝐺(𝜌, 𝑅) for every 𝑅 ⩾ 0. Let us write {(𝐺𝑛 , 𝜌𝑛)} ⇒ (𝐺, 𝜌) to denote such
convergence.

If (𝐺, 𝜌) is the distributional limit of {(𝐺𝑛 , 𝜌𝑛)}, then (𝐺, 𝜌) is a reversible random network. One
can consult [AL07] and [BS01] in the unimodular setting, and [BC12] for the connection between
unimodular and reversible random graphs. Thus distributional limits of finite networks provide a
rich family of reversible random networks.

Using Corollary 1.9, the following theorems offer an interesting interplay between probability
and geometry.

Theorem 1.10 ([Lee21a]). Suppose {(𝐺𝑛 , 𝜌𝑛)} is a sequence of reversible random networks, where each 𝐺𝑛
is almost surely a finite planar graph. If {(𝐺𝑛 , 𝜌𝑛)} ⇒ (𝐺, 𝜌), then the metric growth exponent of (𝐺, 𝜌)
satisifes 𝑑★

𝑓
⩽ 2.
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This theorem shows that many well-studied models of random planar maps have spectral
dimension at most 2. For instance, it applies to the uniform infinite planar triangulation (UIPT)
[AS03]. This upper bound was established in [Lee21a] and [GM21] later showed that the spectral
dimension is almost surely equal to 2. For the uniform infinite planar quadrangulation (UIPQ) (see,
e.g., [Kri08]), it implies that the spectral dimension is almost surely at most 2 (if the a.s. limit exists),
but presently a matching lower bound remains elusive.

Theorem 1.10 can be generalized in two ways: To broader notions of 2-dimensional graphs, or
to higher dimensions.

Theorem 1.11 (Exclued minors, [Lee21a]). Let𝐻 be a fixed finite graph. Suppose {(𝐺𝑛 , 𝜌𝑛)} is a sequence
of reversible random networks, where each 𝐺𝑛 is almost surely a finite graph excluding 𝐻 as a graph minor. If
{(𝐺𝑛 , 𝜌𝑛)} ⇒ (𝐺, 𝜌), then the metric growth exponent of (𝐺, 𝜌) satisifes 𝑑★

𝑓
⩽ 2.

Say that 𝐺 sphere packs in ℝ𝑑 if 𝐺 is the intersection graph of interior-disjoint closed balls in ℝ𝑑.

Theorem 1.12 ([Lee18]). Suppose {(𝐺𝑛 , 𝜌𝑛)} is a sequence of reversible random networks, where each
𝐺𝑛 almost surely sphere-packs in ℝ𝑑. If {(𝐺𝑛 , 𝜌𝑛)} ⇒ (𝐺, 𝜌), then the metric growth exponent of (𝐺, 𝜌)
satisifes 𝑑★

𝑓
⩽ 𝑑.

This extends substantially to the much more general setting of “quasi-packings” of graphs in
any Ahlfors 𝑑-regular metric measure space [Lee18].

2 Spectral dimension and Euclidean growth

In order to prove Theorem 1.3, we will extend K. Ball’s notion of Markov type 2 [Bal92] from finite
state spaces to reversible random networks.

Theorem 2.1. Suppose that (𝐺, 𝜌) is a reversible random network and Ψ : 𝑉(𝐺) → ℋ is a proper Euclidean
embedding of (𝐺, 𝜌). Then it holds that

𝔼 max
0⩽𝑡⩽𝑛

∥Ψ(𝑋𝑛) −Ψ(𝑋0)∥2
ℋ ⩽ 128𝑛 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ .

This theorem is proved in Section 2.1. For now, we record a corollary and then use it to establish
Theorem 1.3.

Corollary 2.2. Suppose (𝐺, 𝜌) is a reversible random network and Ψ : 𝑉(𝐺) → ℋ is a proper Euclidean
embedding of (𝐺, 𝜌). Then almost surely it holds that

Ψ(𝑋0),Ψ(𝑋1), . . . ,Ψ(𝑋𝑛) ∈ 𝐵ℋ
(︂
Ψ(𝑋0),

√
𝑛 log 𝑛

)︂
for all but finitely many 𝑛.

Proof. Consider the reversible random network (𝐺, 𝜌,Ψ). Define 𝐾 := 𝔼 ∥Ψ(𝑋0) − Ψ(𝑋1)∥2
ℋ ,

and recall that 𝐾 < ∞ since Ψ is a proper Euclidean embedding. By Theorem 2.1, we have
𝔼max0⩽𝑡⩽𝑛 ∥Ψ(𝑋𝑛) −Ψ(𝑋0)∥2

ℋ ⩽ 128𝐾𝑛 for 𝑛 ⩾ 1.
For 𝑛 ⩾ 1, denote the events

ℰ𝑛 :=
{︂
Ψ(𝑋0),Ψ(𝑋1), . . . ,Ψ(𝑋𝑛) ∈ 𝐵ℋ

(︂
Ψ(𝑋0),

√︁
𝑛/2 log(𝑛/2)

)︂}︂
.
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For 𝑛 sufficiently large, it holds that

¬ℰ𝑛 =⇒ max
0⩽𝑡⩽𝑛

∥Ψ(𝑋𝑛) −Ψ(𝑋0)∥2
ℋ > 1

4𝑛(log 𝑛)2 ,

and then Markov’s inequality gives

ℙ(¬ℰ𝑛) ⩽
512𝐾

(log 𝑛)2 .

Therefore, by the Borel-Cantelli Lemma, it holds that almost surely ℰ2𝑘 occurs for all but finitely
many 𝑘, yielding the desired claim. □

Lemma 2.3. Suppose (𝐺, 𝜌,𝒮) is a reversible random network, where 𝒮 : 𝑉(𝐺) → 2𝑉(𝐺) is such that 𝒮(𝜌)
is almost surely a finite subset of vertices. Then almost surely, for any 𝑛 ⩾ 0,

p2𝑛(𝜌, 𝜌)
𝜅𝜌

⩾
(ℙ[𝑋𝑛 ∈ 𝒮(𝜌) | (𝐺, 𝜌,𝒮)])2

vol(𝒮(𝜌)) .

Proof. Using reversibility of the random walk (conditioned on (𝐺, 𝜌,𝒮)), we have 𝜅𝜌p𝑛(𝜌, 𝑥) =
𝜅𝑥p𝑛(𝑥, 𝜌), and this gives

p2𝑛(𝜌, 𝜌) ⩾
∑︂
𝑥∈𝒮(𝜌)

p𝑛(𝜌, 𝑥)p𝑛(𝑥, 𝜌) = 𝜅𝜌

∑︂
𝑥∈𝒮(𝜌)

p𝑛(𝜌, 𝑥)2
𝜅𝑥

⩾ 𝜅𝜌

(︂∑︁
𝑥∈𝒮(𝜌) p𝑛(𝜌, 𝑥)

)︂2

vol(𝒮(𝜌))

= 𝜅𝜌
(ℙ[𝑋𝑛 ∈ 𝒮(𝜌) | (𝐺, 𝜌,𝒮)]) 2

vol(𝒮(𝜌)) ,

where the second inequality is an application of Cauchy-Schwarz. □

The next result implies Theorem 1.3.

Corollary 2.4. Suppose (𝐺, 𝜌) is a reversible random network and Ψ : 𝑉(𝐺) → ℋ is a proper Euclidean
embedding of (𝐺, 𝜌). Then almost surely,

lim sup
𝑛→∞

−2 log p2𝑛(𝜌, 𝜌)
log 𝑛 ⩽ lim sup

𝑅→∞

log vol
(︁
Ψ−1(𝐵ℋ (0, 𝑅))

)︁
log𝑅 . (2.1)

Proof. Define 𝒮𝑛(𝑣) := Ψ−1 (︁𝐵ℋ (Ψ(𝑣),
√
𝑛 log 𝑛)

)︁
. By Corollary 2.2, it holds that almost surely, for 𝑛

sufficiently large, 𝑋𝑛 ∈ 𝒮𝑛(𝑋0). Applying Lemma 2.3 to (𝐺, 𝜌,𝒮2𝑛) gives that almost surely, for 𝑛
sufficiently large, p2𝑛(𝜌, 𝜌) ⩾ 𝜅𝜌/vol(𝒮2𝑛(𝜌)), and therefore, almost surely

lim sup
𝑛→∞

−2 log p2𝑛(𝜌, 𝜌)
log 𝑛 ⩽ lim sup

𝑛→∞

2 log vol
(︂
Ψ−1

(︂
𝐵ℋ (Ψ(𝑋0),

√
2𝑛 log(2𝑛))

)︂)︂
log 𝑛

⩽ lim sup
𝑅→∞

log vol
(︁
Ψ−1 (𝐵ℋ (Ψ(𝑋0), 𝑅))

)︁
log𝑅

= lim sup
𝑅→∞

log vol
(︁
Ψ−1 (𝐵ℋ (0, 𝑅))

)︁
log𝑅 . □
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2.1 Maximal Markov type and reversible random graphs

Our goal now is to prove Theorem 2.1. Consider a reversible random network (𝐺, 𝜌, 𝜉), and recall
that {𝑋𝑡} is the random walk on 𝐺 with 𝑋0 = 𝜌. Fix a time 𝑛 ⩾ 0, and denote the reversed walk
𝑋̃𝑡 := 𝑋𝑛−𝑡 for 0 ⩽ 𝑡 ⩽ 𝑛. The next lemma follows from reversibility, since (𝐺, 𝑋0 , 𝑋1 , . . . , 𝑋𝑛 , 𝜉)
and (𝐺, 𝑋̃0 , 𝑋̃1 , . . . , 𝑋̃𝑛 , 𝜉) have the same law.

Lemma 2.5. For 𝑠 ∈ {1, . . . , 𝑛 − 1}, the law of 𝑋𝑠+1 conditioned on {(𝐺, 𝑋0 , 𝜉), 𝑋𝑠 = 𝑤, 𝑋0 = 𝑢, 𝑋𝑛 = 𝑣}
is equal to the law of 𝑋̃𝑛−(𝑠+1) conditioned on {(𝐺, 𝑋̃0 , 𝜉), 𝑋̃𝑛−𝑠 = 𝑤, 𝑋̃0 = 𝑣, 𝑋̃𝑛 = 𝑢}.

We now adapt the forward-backward martingale decomposition from [NPSS06] to our setting.

Lemma 2.6. Let 𝔛 be a normed space and let (𝐺, 𝜌,Ψ) be a reversible random network with Ψ : 𝑉(𝐺) → 𝔛.
Then for every 𝑛 ⩾ 0, there are two 𝔛-valued processes {𝐴𝑡 : 𝑡 = 0, 1, . . . , 𝑛} and {𝐵𝑡 : 𝑡 = 0, 1, . . . , 𝑛}
with the following properties:

1. Almost surely, conditioned on (𝐺, 𝑋0 , 𝑋𝑛 ,Ψ), both {𝐴𝑡} and {𝐵𝑡} are martingales.

2. It holds that almost surely, for all 𝑡 ∈ {0, 1, . . . , 𝑛},

Ψ(𝑋2𝑡) −Ψ(𝑋0) = 𝐴𝑡 − 𝐵𝑡 .

3. For every 1 ⩽ 𝑡 ⩽ 𝑛 and 𝑞 ⩾ 1,

max
{︁
𝔼 ∥𝐴𝑡 − 𝐴𝑡−1∥𝑞𝔛 ,𝔼 ∥𝐵𝑡 − 𝐵𝑡−1∥𝑞𝔛

}︁
⩽ 2𝑞 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥𝑞𝔛 .

Proof. Fix 𝑛 ⩾ 0 and let us condition on (𝐺, 𝑋0 , 𝑋2𝑛 ,Ψ). We write 𝔼(𝐺,𝑢,𝑣,Ψ) for the expectation
conditioned on {(𝐺, 𝑢,Ψ), 𝑋0 = 𝑢, 𝑋2𝑛 = 𝑣}. Define the reversed walk by 𝑋̃𝑡 := 𝑋2𝑛−𝑡 for
𝑡 = 0, 1, . . . , 2𝑛.

Define 𝑀0 := Ψ(𝑋0) and 𝑁0 := Ψ(𝑋̃0), and for 0 ⩽ 𝑠 ⩽ 2𝑛 − 1,

𝑀𝑠+1 −𝑀𝑠 := Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠) − 𝔼(𝐺,𝑋0 ,𝑋2𝑛 ,Ψ)[Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠) | 𝑋𝑠] (2.2)
𝑁𝑠+1 − 𝑁𝑠 := Ψ(𝑋̃𝑠+1) −Ψ(𝑋̃𝑠) − 𝔼(𝐺,𝑋̃0 ,𝑋̃2𝑛 ,Ψ)[Ψ(𝑋̃𝑠+1) −Ψ(𝑋̃𝑠) | 𝑋̃𝑠] . (2.3)

Observe that, conditioned on (𝐺, 𝑋0 , 𝑋2𝑛 ,Ψ), it holds that {𝑀𝑠} is a martingale with respect to
the filtration induced on {𝑋0 , 𝑋1 , . . . , 𝑋2𝑛}, and {𝑁𝑠} is a martingale with respect to the filtration
induced on {𝑋̃0 , 𝑋̃1 , . . . , 𝑋̃2𝑛}.

Observing that 𝑋𝑠 = 𝑋̃2𝑛−𝑠 , by Lemma 2.5, it holds that

𝔼(𝐺,𝑋0 ,𝑋2𝑛 ,Ψ)[Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠) | 𝑋𝑠] = 𝔼(𝐺,𝑋̃0 ,𝑋̃2𝑛 ,Ψ)
[︁
Ψ(𝑋̃2𝑛−(𝑠+1)) −Ψ(𝑋̃2𝑛−𝑠) | 𝑋̃2𝑛−𝑠

]︁
,

and therefore

Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠−1) = Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠) − 𝔼(𝐺,𝑋0 ,𝑋2𝑛 ,Ψ)[Ψ(𝑋𝑠+1) −Ψ(𝑋𝑠) | 𝑋𝑠]

−
(︂
Ψ(𝑋̃2𝑛−𝑠−1) −Ψ(𝑋̃2𝑛−𝑠) − 𝔼(𝐺,𝑋̃0 ,𝑋̃2𝑛 ,Ψ)[Ψ(𝑋̃2𝑛−𝑠−1) −Ψ(𝑋̃2𝑛−𝑠) | 𝑋̃2𝑛−𝑠]

)︂
= (𝑀𝑠+1 −𝑀𝑠) − (𝑁2𝑛−𝑠+1 − 𝑁2𝑛−𝑠). (2.4)
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Define the processes {𝐴𝑡 : 𝑡 = 0, 1, . . . , 𝑛} and {𝐵𝑡 : 𝑡 = 0, 1, . . . , 𝑛} by

𝐴𝑡 :=
𝑡∑︂
𝑠=1

𝑀2𝑠 −𝑀2𝑠−1

𝐵𝑡 :=
𝑡∑︂
𝑠=1

𝑁2𝑛−𝑠+1 − 𝑁2𝑛−𝑠 ,

and observe that almost surely, conditioned on (𝐺, 𝑋0 , 𝑋2𝑛 ,Ψ), {𝐴𝑡} and {𝐵𝑡} are also martingales
with respect to the forward and backward filtrations, respectively. Summing (2.4) over odd values
𝑠 = 1, 2, . . . , 2𝑡 − 1 gives claim (2) of the lemma.

For claim (3), note that 𝐴𝑡 − 𝐴𝑡−1 = 𝑀2𝑡 −𝑀2𝑡−1, and then employ (2.2). An identical argument
holds for 𝐵𝑡 − 𝐵𝑡−1 using (2.3). □

Let us now use this to prove Theorem 2.1.

Proof of Theorem 2.1. Note that if {𝑀𝑡} is a martingale in some normed space 𝔛, then {∥𝑀𝑡 ∥𝔛} is a
submartingale, and Doob’s 𝐿2 maximal inequality yields

𝔼 max
0⩽𝑡⩽𝑛

∥𝑀𝑡 ∥2
𝔛
⩽ 4𝔼 ∥𝑀𝑛 ∥2

𝔛
.

Therefore applying Lemma 2.6(2) gives

𝔼 max
0⩽𝑡⩽𝑛

∥Ψ(𝑋2𝑡) −Ψ(𝑋0)∥2
ℓ2 ⩽ 2𝔼 max

0⩽𝑡⩽𝑛
(∥𝐴𝑡 ∥2

ℋ + ∥𝐵𝑡 ∥2
ℋ ) ⩽ 8

(︂
𝔼 ∥𝐴𝑛 ∥2

ℋ + 𝔼 ∥𝐵𝑛 ∥2
ℋ

)︂
.

Now using orthogonality of martingale difference sequences, we have

𝔼 ∥𝐴𝑛 ∥2
ℋ ⩽

𝑛∑︂
𝑡=1

𝔼 ∥𝐴𝑡 − 𝐴𝑡−1∥2
ℋ ⩽ 4𝑛 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ ,

where the last inequality uses Lemma 2.6(3). Applying the same reasoning to {𝐵𝑡} then gives us

𝔼 max
0⩽𝑡⩽𝑛

∥Ψ(𝑋2𝑡) −Ψ(𝑋0)∥2
ℓ2 ⩽ 64𝑛 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ .

Finally, to handle odd times, one notes that

∥Ψ(𝑋2𝑛+1) −Ψ(𝑋0)∥ℋ ⩽ ∥Ψ(𝑋2𝑛+1) −Ψ(𝑋2𝑛)∥ℋ + ∥Ψ(𝑋2𝑛) −Ψ(𝑋0)∥ℋ ,

and therefore

𝔼 ∥Ψ(𝑋2𝑛+1) −Ψ(𝑋0)∥2
ℋ ⩽ 128𝑛

(︂
𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ + 𝔼 ∥Ψ(𝑋2𝑛+1) −Ψ(𝑋2𝑛)∥2
ℋ

)︂
= 256𝑛 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ ,

where the last equality uses that (𝐺, 𝑋2𝑛 ,Ψ) and (𝐺, 𝑋2𝑛+1 ,Ψ) have the same law since (𝐺, 𝜌,Ψ) is
reversible. □
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3 Change of metric via heat flow

Our objective is now to prove Theorem 1.5. First, we need to review some basics of spectral theory
on infinite graphs.

3.1 Spectral theory on locally-finite networks

Fix a network𝐺with conductances𝜅, and write ℓ 2(𝐺) for the Hilbert space of functions 𝑓 : 𝑉(𝐺) → ℝ

equipped with the inner product

⟨ 𝑓 , 𝑔⟩ℓ2(𝐺) :=
∑︂

𝑢∈𝑉(𝐺)
𝜅𝑢 𝑓 (𝑢)𝑔(𝑢).

Define the averaging operator 𝑃 : ℓ 2(𝐺) → ℓ 2(𝐺) by

𝑃𝜓(𝑢) :=
∑︂

𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
𝜅𝑢

𝜓(𝑣) .

Observe that 𝑃 is self-adjoint with respect to the ℓ 2(𝐺) inner product:

⟨𝜑, 𝑃𝜓⟩ℓ2(𝐺) =
∑︂

𝑥∈𝑉(𝐺)
𝜅𝑥𝜑(𝑥)

∑︂
𝑦:{𝑥,𝑦}∈𝐸(𝐺)

𝜅𝑥𝑦
𝜅𝑥

𝜓(𝑦) = 2
∑︂

{𝑥,𝑦}∈𝐸(𝐺)
𝜅𝑥𝑦𝜑(𝑥)𝜓(𝑦).

Since 𝑃 is an averaging operator, it is also bounded, and therefore the spectral theorem yields a
resolution of the identity 𝐼𝑃 so that 𝑃 =

∫ 1
−1 𝜆 𝑑𝐼𝑃(𝜆).

Given a vertex 𝑣 ∈ 𝑉(𝐺), one defines the associated spectral measure 𝜇𝑣
𝐺

at 𝑣 by

𝜇𝑣𝐺 ((−∞,𝜆)) :=
⟨𝟙𝑣 , 𝐼𝑃((−∞,𝜆))𝟙𝑣⟩ℓ2(𝐺)

𝜅𝑣
.

This is the unique probability measure 𝜇𝑣
𝐺

on [−1, 1] such that for all integers 𝑛 ⩾ 1,

𝜅𝑣

∫
[−1,1]

𝜆𝑛𝑑𝜇𝑣𝐺(𝜆) = ⟨𝟙𝑣 , 𝑃𝑛𝟙𝑣⟩ℓ2(𝐺) . (3.1)

Note that for any 𝑢, 𝑣 ∈ 𝑉(𝐺) and 𝑛 ⩾ 0, we have

⟨𝑃𝑛𝟙𝑢 , 𝑃𝑛𝟙𝑣⟩ℓ2(𝐺) =
⟨︁
𝟙𝑢 , 𝑃

2𝑛𝟙𝑣
⟩︁
ℓ2(𝐺) = 𝜅𝑢p𝐺2𝑛(𝑢, 𝑣). (3.2)

Note also that 𝑃𝟙𝑢 =
∑︁
𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
𝜅𝑣

𝟙𝑣 , and therefore

∥𝑃𝑛𝟙𝑢 ∥2
ℓ2(𝐺) −

∑︂
𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
⟨𝑃𝑛𝟙𝑢 , 𝑃𝑛𝟙𝑣⟩ℓ2(𝐺)

𝜅𝑣
=

⟨︁
𝟙𝑢 , (𝐼 − 𝑃)𝑃2𝑛𝟙𝑢

⟩︁
ℓ2(𝐺)

= 𝜅𝑢

∫
[−1,1]

(1 − 𝜆)𝜆2𝑛𝑑𝜇𝑢𝐺(𝜆). (3.3)
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Define the map Φ𝑛 : 𝑉(𝐺) → ℓ 2(𝐺) by Φ𝑛(𝑣) := 𝑃𝑛𝟙𝑣
𝜅𝑣

. Then for any 𝑢 ∈ 𝑉(𝐺),∑︂
𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣 ∥Φ𝑛(𝑢) −Φ𝑛(𝑣)∥2
ℓ2(𝐺)

=
∥𝑃𝑛𝟙𝑢 ∥2

ℓ2(𝐺)
𝜅𝑢

+
∑︂

𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
𝜅2
𝑣

∥𝑃𝑛𝟙𝑣 ∥2
ℓ2(𝐺) − 2

∑︂
𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
𝜅𝑢𝜅𝑣

⟨𝑃𝑛𝟙𝑢 , 𝑃𝑛𝟙𝑣⟩ℓ2(𝐺)

(3.3)
= 2

∫
[−1,1]

(1 − 𝜆)𝜆2𝑛𝑑𝜇𝑢𝐺(𝜆) +
⎛⎜⎝

∑︂
𝑣:{𝑢,𝑣}∈𝐸(𝐺)

𝜅𝑢𝑣
𝜅2
𝑣

∥𝑃𝑛𝟙𝑣 ∥2
ℓ2(𝐺) −

∥𝑃𝑛𝟙𝑢 ∥2
ℓ2(𝐺)

𝜅𝑢

⎞⎟⎠ . (3.4)

Volume of spectral balls. For 𝑢 ∈ 𝑉(𝐺), define the set

𝒮𝑛(𝑢) :=
{︃
𝑣 ∈ 𝑉(𝐺) : ∥Φ𝑛(𝑢) −Φ𝑛(𝑣)∥2

ℓ2(𝐺) ⩽
1
2 ∥Φ𝑛(𝑢)∥2

ℓ2(𝐺)

}︃
.

Lemma 3.1. If 𝑣 ∈ 𝒮𝑛(𝑢), then p2𝑛(𝑣, 𝑢) ⩾ 1
4p𝑛(𝑢, 𝑢).

Proof. Note that ⟨𝑥, 𝑦⟩ = 1
2
(︁
∥𝑥∥2 + ∥𝑦∥2 − ∥𝑥 − 𝑦∥2)︁ ⩾ 1

4 ∥𝑥∥2 whenever ∥𝑥 − 𝑦∥2 ⩽ 1
2 ∥𝑥∥2, hence

𝑣 ∈ 𝒮𝑛(𝑢) implies that

⟨Φ𝑛(𝑢),Φ𝑛(𝑣)⟩ℓ2(𝐺) ⩾
1
4 ∥Φ𝑛(𝑢)∥2

ℓ2(𝐺) .

By definition, this gives
⟨𝑃𝑛𝟙𝑢 , 𝑃𝑛𝟙𝑣⟩ℓ2(𝐺)

𝜅𝑣
⩾

1
4
∥𝑃𝑛𝟙𝑢 ∥2

ℓ2(𝐺)
𝜅𝑢

,

and by (3.2), this is precisely the inequality

p2𝑛(𝑣, 𝑢) ⩾
1
4p2𝑛(𝑢, 𝑢) . □

Lemma 3.2. For any 𝑢 ∈ 𝑉(𝐺), it holds that

vol (𝒮𝑛(𝑢)) ⩽ 16𝜅𝑢
p4𝑛(𝑢, 𝑢)
p2𝑛(𝑢, 𝑢)2

⩽
16𝜅𝑢

p2𝑛(𝑢, 𝑢)
.

Proof. Using 𝜅𝑢p𝑛(𝑢, 𝑣) = 𝜅𝑣p𝑛(𝑣, 𝑢), we have

p4𝑛(𝑢, 𝑢) ⩾
∑︂

𝑣∈𝒮𝑛(𝑢)
p2𝑛(𝑢, 𝑣)p2𝑛(𝑣, 𝑢) =

∑︂
𝑣∈𝒮𝑛(𝑢)

𝜅𝑣
𝜅𝑢

p2𝑛(𝑣, 𝑢)2 ⩾
vol(𝒮𝑛(𝑢))

16
p2𝑛(𝑢, 𝑢)2

𝜅𝑢
,

where the last inequality follows from Lemma 3.1. This yields the first claimed inequality, and the
second follows from monotonicity of the even return times: p2𝑛(𝑢, 𝑢) ⩾ p4𝑛(𝑢, 𝑢). □
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3.2 Construction of the metric

Note that in proving Theorem 1.5, we may assume that 𝜅𝑢𝑢
𝜅𝑢
⩾ 1

2 for all 𝑢 ∈ 𝑉(𝐺). This does not
affect the spectral dimension of 𝐺, and it only affects the volume of sets by a constant factor. This
assumption ensures that 𝑃 is a nonnegative operator, and therefore the spectral measures 𝜇𝑣

𝐺
are

supported on [0, 1].
Consider now a reversible random network (𝐺, 𝜌) with 𝔼[1/𝜅𝜌] < ∞ and define the measure

𝜇 := 𝔼
[︁
𝜇
𝜌
𝐺
/𝜅𝜌

]︁
.

Lemma 3.3. It holds that, for any 𝑑 ⩾ 1 and 𝑛 ⩾ 1,

1
2 𝔼

[︂
∥Φ𝑛(𝑋0) −Φ𝑛(𝑋1)∥2

ℓ2(𝐺)

]︂
⩽ 𝑛−𝑑 +

𝑑 log 𝑛
𝑛

𝔼 [p2𝑛(𝜌, 𝜌)] .

Proof. Dividing (3.4) by 𝜅𝑢 , setting 𝑢 = 𝑋0, and taking expectations gives

1
2 𝔼

[︂
∥Φ𝑛(𝑋0) −Φ𝑛(𝑋1)∥2

ℓ2(𝐺)

]︂
=

∫
[0,1]

(1 − 𝜆)𝜆2𝑛𝑑𝜇(𝜆) + 1
2 𝔼

[︄
∥𝑃𝑛𝟙𝑋1 ∥2

ℓ2(𝐺)

𝜅2
𝑋1

−
∥𝑃𝑛𝟙𝑋0 ∥2

ℓ2(𝐺)

𝜅2
𝑋0

]︄
.

Note that, from (3.2), it holds that
∥𝑃𝑛𝟙𝜌∥2

ℓ2(𝐺)
𝜅2
𝜌

=
p2𝑛(𝜌,𝜌)

𝜅𝜌
. Therefore since 𝔼[1/𝜅𝜌] < ∞, the latter

expectation is bounded and is, in fact, equal to 0 since (𝐺, 𝑋0) and (𝐺, 𝑋1) have the same law.
To finish, split the integral into two pieces depending on whether 𝜆 ⩽ 1 − 𝑑 log 𝑛

𝑛 :∫
[0,1]

(1 − 𝜆)𝜆2𝑛𝑑𝜇(𝜆) ⩽
(︃
1 −

𝑑 log 𝑛
𝑛

)︃2𝑛
+
𝑑 log 𝑛
𝑛

∫
[0,1]

𝜆2𝑛𝑑𝜇(𝜆)

(3.1)
⩽ 𝑛−𝑑 +

𝑑 log 𝑛
𝑛

𝔼[p2𝑛(𝜌, 𝜌)] . □

For an integer 𝑘 ⩾ 1, define

𝔡𝑘(𝑥, 𝑦) := ∥Φ2𝑘 (𝑥) −Φ2𝑘 (𝑦)∥ℓ2(𝐺)

𝑊𝑘 := 𝔼[𝔡𝑘(𝑋0 , 𝑋1)2],

and then

𝔡(𝑥, 𝑦) :=
√︄∑︂

𝑘⩾1

1
𝑘2𝑊𝑘

𝔡𝑘(𝑥, 𝑦)2 .

By construction we have 𝔼[𝔡(𝑋0 , 𝑋1)2] ⩽
∑︁
𝑘⩾1 𝑘

−2 < ∞, hence 𝔡 is an 𝐿2 change of metric. The next
result implies Theorem 1.5.

Theorem 3.4. If 𝑑̄𝑠 − ¯
𝑑𝒜𝑠 < 2, then

lim sup
𝑅→∞

log vol(𝐵𝔡(𝜌, 𝑅))
log𝑅 ⩽

𝑑̄𝑠

1 + (
¯
𝑑𝒜𝑠 − 𝑑̄𝑠)/2

.
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Proof. By Lemma 3.3, for any 𝑑 ⩾ 1, we have

𝑊𝑘 ⩽ 2−𝑘𝑑 + 𝑑𝑘2−𝑘 𝔼[p2𝑘+1(𝜌, 𝜌)] .

Choosing 𝑑 := 2
¯
𝑑𝒜𝑠 , by definition of

¯
𝑑𝒜𝑠 , this implies that

𝑊𝑘 ⩽ 2−𝑘2−𝑘(¯𝑑
𝒜
𝑠 −𝑜(1))/2 , 𝑘 → ∞. (3.5)

By construction, it holds that

𝔡(𝜌, 𝑥)2 ⩾ 1
𝑘2𝑊𝑘

∥Φ2𝑘 (𝜌) −Φ2𝑘 (𝑥)∥2
ℓ2(𝐺) .

Therefore for any 𝜀 > 0,

𝑥 ∈ 𝐵𝔡
(︃
𝜌, 𝜀

2𝑘/2

𝑘

)︃
=⇒ ∥Φ2𝑘 (𝜌) −Φ2𝑘 (𝑥)∥2

ℓ2(𝐺) ⩽ 𝜀22𝑘𝑊𝑘 .

Choosing

𝜀𝑘 := 2−(𝑘+1)/2
∥Φ2𝑘 (𝜌)∥ℓ2(𝐺)√

𝑊𝑘

gives 𝑥 ∈ 𝐵𝔡
(︂
𝜌, 𝜀𝑘

2𝑘/2

𝑘

)︂
=⇒ ∥Φ2𝑘 (𝜌) −Φ2𝑘 (𝑥)∥2

ℓ2(𝐺) ⩽
1
2 ∥Φ2𝑘 (𝜌)∥2

ℓ2(𝐺) and then Lemma 3.2 implies
that

vol
(︃
𝐵𝔡

(︃
𝜌, 𝜀𝑘

2𝑘/2

𝑘

)︃)︃
⩽ vol(𝒮2𝑘 (𝜌)) ⩽

16𝜅𝜌

p2𝑘+1(𝜌, 𝜌) .

By definition of 𝑑̄𝑠 , it holds that almost surely

p2𝑘 (𝜌, 𝜌)
𝜅𝜌

⩾ 2−𝑘𝑑̄𝑠/2−𝑜(1) , 𝑘 → ∞,

which implies that almost surely

vol
(︃
𝐵𝔡

(︃
𝜌, 𝜀𝑘

2𝑘/2

𝑘

)︃)︃
⩽ 2𝑘𝑑̄𝑠/2+𝑜(1) , 𝑘 → ∞. (3.6)

Moreover, using ∥Φ2𝑘 (𝜌)∥2
ℓ2(𝐺) = p2𝑘+1(𝜌, 𝜌)/𝜅𝜌 (cf. (3.2)) and (3.5), we have that almost surely

𝜀𝑘 ⩾ 2𝑘(¯𝑑
𝒜
𝑠 −𝑑̄𝑠−𝑜(1))/4 , 𝑘 → ∞. (3.7)

When 𝑑̄𝑠 − ¯
𝑑𝒜𝑠 < 2, then 𝜀𝑘

2𝑘/2

𝑘
→ ∞ and combining (3.6) and (3.7) gives

lim sup
𝑅→∞

log vol(𝐵𝔡(𝜌, 𝑅))
log𝑅 ⩽

𝑑̄𝑠

1 + (
¯
𝑑𝒜𝑠 − 𝑑̄𝑠)/2

. □
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3.3 Lower bound examples

We review constructions based on a technique from [AHNR18], where the authors add random
tails to the vertices of a 3-regular tree. These show that, without the assumption

¯
𝑑𝒜𝑠 = 𝑑̄𝑠 , the

reverse inequality 𝑑★euc ⩽ 𝑑̄𝑠 can fail (recall Theorem 1.3).
Let {𝑝ℓ : ℓ ⩾ 1} denote a probability distribution on positive integers with bounded first moment:∑︁

ℓ⩾1 𝑝ℓ · ℓ < ∞. Define the probability distribution {𝑝̃ℓ : ℓ ⩾ 1} by

𝑝̃ℓ =
𝑝ℓ (ℓ + 1)∑︁
𝑘⩾1 𝑝𝑘(𝑘 + 1) .

Consider a connected, locally-finite, vertex-transitive graph 𝐻 and fix a vertex 𝑣0 ∈ 𝑉(𝐻). Let
{𝐿𝑣 : 𝑣 ∈ 𝑉(𝐻)} denote an independent family of random variables where 𝐿𝑣 has law 𝑝 for 𝑣 ≠ 𝑣0
and 𝐿𝑣0 has law 𝑝̃.

Definition 3.5 (Adding tails). Let 𝐻̃ be the random graph that results from attaching a path 𝑃𝑣 of
length 𝐿𝑣 to every 𝑣 ∈ 𝑉(𝐻), and let 𝜌 ∈ 𝑉(𝑃𝑣0) be a random vertex with law

ℙ[𝜌 = 𝑣] =
deg𝐻̃(𝑣)∑︁

𝑢∈𝑉(𝑃𝑣0 ) deg𝐻̃(𝑢)
.

The next lemma is a straightforward exercise; see [Lee21a, §4.4] where 𝐻 is a complete 3-ary
tree.

Lemma 3.6. If (𝐻, 𝑣0) is the distributional limit of a sequence of finite reversible random graphs, then (𝐻̃, 𝜌)
is a reversible random graph.

We will also consider 𝐻 = ℤ𝑑 for some 𝑑 ⩾ 3. Note that since 𝐻 is amenable, one can take a
Følner sequence {𝑆𝑛 ⊆ 𝑉(𝐻)}. Let 𝜌𝑛 ∈ 𝑆𝑛 have the law of the stationary measure on the induced
graph 𝐻[𝑆𝑛], and then {(𝐻[𝑆𝑛], 𝜌𝑛)} ⇒ (𝐻, 0).

Let us define
𝑝ℓ := 𝑐ℓ−2(log(ℓ + 1))−2 , ℓ ⩾ 1, (3.8)

where the constant 𝑐 > 0 is chosen so that 𝑝 is a probability.

Lemma 3.7. There is a constant 𝐶 > 0 such that when 𝐻 is the infinite 3-regular tree or 𝐻 = ℤ𝑑 for 𝑑 ⩾ 1,
the spectral dimension of (𝐻̃, 𝜌) satisfies 𝑑̄𝑠 ⩽ 𝐶.

Proof sketch. From the definition of 𝑝, we see that if |𝐵𝐻(𝑣0 , 𝑅)| ≫ 𝑛, then there is likely some
𝑣∗ ∈ 𝐵𝐻(𝑣0 , 𝑅) with 𝐿𝑣∗ ⩾ 𝑛1/2−𝑜(1). And in such a tail, the random walk has constant probability to
get trapped for at least 𝐿𝑣∗ steps. In the 3-regular tree, a ball of radius 𝑂(log 𝑛) likely contains a
vertex 𝑣∗ whose tail has length at least

√
𝑛. The random walk goes to 𝑣∗, remains in the tail for time

≈ 𝑛 and then returns to 𝑣0, all with probability at least 𝑛−𝐾 for some (large) constant 𝐾 > 0 (because
dist𝐻(𝑣0 , 𝑣

∗) ⩽ 𝑂(log 𝑛)).
For 𝐻 = ℤ𝑑, standard estimates of the Green function show that when 𝑅 ≫ 𝑛1/𝑑, there is likely

some 𝑣∗ ∈ 𝐵𝐻(0, 𝑅) with 𝐿𝑣∗ ⩾
√
𝑛, and the probability for the random walk on 𝐻 to start at 0, visit

𝑣∗, and then return to 0 is roughly 𝑅−2(𝑑−2) ⩾ 𝑛−2−𝑜(1), yielding a uniform upper bound on 𝑑̄𝑠 . □

On the other hand, we have the following.
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Lemma 3.8. When 𝐻 is the infinite 3-regular tree, then (𝐻̃, 𝜌) satisfies 𝑑★euc = ∞. When 𝐻 = ℤ𝑑 for 𝑑 ⩾ 1,
then (𝐻̃, 𝜌) satisfies 𝑑★euc = 𝑑.

Since 𝑑★euc < ∞ entails amenability, the result for the 3-regular tree follows. For 𝐻 = ℤ𝑑, one can
use the following.

Lemma 3.9. If 𝐻 = ℤ𝑑 for 𝑑 ⩾ 1, then the Euclidean growth exponent of (𝐻̃, 𝜌) satisfies 𝑑★euc = 𝑑.

Proof. Note that for an integer 𝑅 ⩾ 1, the law of |𝐵𝐻̃(𝜌, 𝑅)| is equal to the law of

𝐿0 +
𝑁∑︂
𝑗=1

𝐿 𝑗 ,

where {𝐿 𝑗} are independent random variables where 𝐿0 has law 𝑝̃ and 𝐿 𝑗 has law 𝑝 for 𝑗 ⩾ 1, and
𝑁 = |𝐵𝐻(0, 𝑅)|. Since 𝑝 has bounded first moments, by the strong law of large numbers, almost
surely

lim
𝑅→∞

log |𝐵𝐻̃(𝜌, 𝑅)|
log𝑅 = 𝑑 .

It follows that 𝑑★euc ⩽ 𝑑 can be obtained from the mapping Ψ : 𝑉(𝐻̃) → ℝ𝑑 given by Ψ(𝑣) = 𝑣̂.
To establish that 𝑑★euc ⩾ 𝑑, it suffices to prove the same for the rooted subgraph (𝐻, 0). Consider

a proper Euclidean embedding Ψ : ℤ𝑑 → ℋ , where ℋ is a separable Hilbert space. Let (Ω, 𝜇)
be probability space underlying (𝐻, 0,Ψ) and denote by ℋ̄ the Hilbert space of measurable
functions 𝑓 : Ω → ℋ with norm ∥ 𝑓 ∥ℋ̄ :=

√︂∫
∥ 𝑓 (𝑥)∥2

ℋ 𝑑𝜇(𝑥). Since (Ω, 𝜇,Ψ) is reversible and
𝔼 ∥Ψ(𝑋0) − (𝑋1)∥2

ℋ < ∞, it holds that the map 𝐹 : ℤ𝑑 → ℋ̄ given by (𝐹(𝑥))(𝜔) = (Ψ(𝜔))(𝑥) satisfies

𝔼
[︂
∥𝐹(𝑋0) − 𝐹(𝑋1)∥2

ℋ̄ | 𝑋0 = 𝑥
]︂
= 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2

ℋ , (3.9)

and

lim sup
𝑅→∞

log
|︁|︁Ψ−1 (𝐵ℋ (0, 𝑅))

|︁|︁
log𝑅 = lim sup

𝑅→∞

log
|︁|︁𝐹−1 (︁

𝐵ℋ̄ (0, 𝑅)
)︁ |︁|︁

log𝑅 . (3.10)

Define 𝐶 := max{𝑢,0}∈𝐸(𝐻) ∥𝐹(𝑢) − 𝐹(0)∥ℋ̄ and note that 𝐶 < ∞ follows from (3.9). Moreover, the
triangle inequality in ℋ̄ implies the path metric on ℤ𝑑 satisfies

distℤ𝑑 (𝑢, 𝑣) ⩾ 𝐶−1∥𝐹(𝑢) − 𝐹(𝑣)∥ℋ̄ ,

and therefore (3.10) is at least 𝑑 (the growth rate for the path metric on ℤ𝑑). □

4 Euclidean embeddings and the metric growth exponent

Let us now prove Theorem 1.8.
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4.1 The Mass-Transport Principle

Let G• denote the collection of isomorphism classes of rooted, connected, locally-finite networks,
and let G•• denote the collection of isomorphism classes of doubly-rooted, connected, locally-finite
networks. We will consider functionals 𝐹 : G•• → [0,∞). Equivalently, these are functionals
𝐹(𝐺0 , 𝑥0 , 𝑦0 , 𝜉0) that are invariant under automorphisms 𝜓 of 𝐺0 in the sense that 𝐹(𝐺0 , 𝑥0 , 𝑦0 , 𝜉0) =
𝐹(𝜓(𝐺0),𝜓(𝑥0),𝜓(𝑦0), 𝜉0 ◦ 𝜓−1).

The mass-transport principle (MTP) for a random rooted network (𝐺, 𝜌, 𝜉) asserts that for any
nonnegative Borel 𝐹 : G•• → [0,∞), it holds that

𝔼

⎡⎢⎢⎢⎢⎣
∑︂

𝑥∈𝑉(𝐺)
𝐹(𝐺, 𝜌, 𝑥, 𝜉)

⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣
∑︂

𝑥∈𝑉(𝐺)
𝐹(𝐺, 𝑥, 𝜌, 𝜉)

⎤⎥⎥⎥⎥⎦ .
Unimodular random networks are precisely those that satisfy the MTP (see [AL07]).

Using the fact that biasing the law of a reversible random network (𝐺, 𝜌, 𝜉) with 𝔼[1/𝜅𝜌] < ∞
by 1/𝜅𝜌 (see [BC12, Prop. 2.5]) yields a unimodular random network, one arrives at the following
biased MTP.

Lemma 4.1. If (𝐺, 𝜌, 𝜉) is a reversible random network with 𝔼[1/𝜅𝜌] < ∞, then for any nonnegative Borel
functional 𝐹 : G•• → [0,∞), it holds that

𝔼

⎡⎢⎢⎢⎢⎣ 1
𝜅𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑥, 𝜉)
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝜅𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝑥, 𝜌, 𝜉)
⎤⎥⎥⎥⎥⎦ . (4.1)

We use the mass-transport principle to relate the cardinality of balls to their volume.

Lemma 4.2. Suppose (𝐺, 𝜌, 𝔡) is a reversible random network with 𝔼[1/𝜅𝜌] < ∞. Then,

lim sup
𝑅→∞

log |𝐵𝔡(𝜌, 𝑅)|
log𝑅 ⩽ lim sup

𝑅→∞

log vol(𝐵𝔡(𝜌, 𝑅))
log𝑅 .

Proof. Define the mass transportation

𝐹(𝐺, 𝑥, 𝑦, 𝔡) := 𝜅𝑥
𝟙{𝔡(𝑥,𝑦)⩽𝑅}

vol(𝐵𝔡(𝑦, 𝑅))
.

Then the mass transport principle (Lemma 4.1) gives

𝔼

[︃ |𝐵𝔡(𝜌, 𝑅)|
vol(𝐵𝔡(𝜌, 2𝑅))

]︃
⩽ 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝜅𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝜌, 𝑥, 𝔡)
⎤⎥⎥⎥⎥⎦ = 𝔼

⎡⎢⎢⎢⎢⎣ 1
𝜅𝜌

∑︂
𝑥∈𝑉(𝐺)

𝐹(𝐺, 𝑥, 𝜌, 𝔡)
⎤⎥⎥⎥⎥⎦ = 𝔼[1/𝜅𝜌].

Using Markov’s inequality and the Borel-Cantelli lemma shows that almost surely |𝐵𝔡(𝜌, 2𝑘)| ⩽
𝑘2 vol(𝐵𝔡(𝜌, 2𝑘+1)) holds for all but finitely many 𝑘, completing the proof. □
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4.2 Choice of a separable Hilbert space

For a rooted graph (𝐺, 𝜌), let us write [𝐺, 𝜌] ∈ G• for its correpsonding rooted isomorphism class.
As shown in [AL07, §2], there is a continuous map 𝐹 from G• to the space of networks on vertex set
ℕ with root 0 such that (𝐺, 𝜌) and (𝐹([𝐺, 𝜌]) , 0) are isomorphic. We may assume therefore that if
(𝐺, 𝜌) is a random reversible network, then 𝑉(𝐺) = ℕ and 𝜌 = 0.

Let 𝒰 := {𝑼𝑣 : 𝑣 ∈ ℕ} be a family of i.i.d. uniform [0, 1] random variables, and let (Ω, 𝜇) denote
the underlying probability space. Define the Hilbert space ℋ of measurable mappings 𝑓 : Ω → ℓ2
with norm ∥ 𝑓 ∥2

ℋ :=
∫
∥ 𝑓 (𝜔)∥2

ℓ2
𝑑𝜇(𝜔). Equivalently, we may envision ℋ as the Hilbert space of

ℓ2-valued random variables on (Ω, 𝜇) with ∥𝑿 ∥2
ℋ := 𝔼 ∥𝑿 ∥2

ℓ2
.

4.3 Construction of the embedding

The next result implies that there is a proper Euclidean embedding Ψ : 𝑉(𝐺) → ℋ such that almost
surely

lim sup
𝑅→∞

log vol
(︁
Ψ−1(𝐵ℓ2(0, 𝑅))

)︁
log𝑅 ⩽ lim sup

𝑅→∞

log |𝐵𝔡(𝜌, 𝑅)|
log𝑅 ,

and combined with Lemma 4.2, this completes the proof of Theorem 1.8.

Theorem 4.3 (Euclidean embedding theorem). Suppose (𝐺, 𝜌, 𝔡) is a reversible random network with
𝔼 𝔡(𝑋0 , 𝑋1)2 < ∞. Then there is a proper Euclidean embedding Ψ : 𝑉(𝐺) → ℋ such that almost surely, for
all 𝑅 ⩾ 0,

∥Ψ(𝜌) −Ψ(𝑥)∥ℋ ⩾
𝔡(𝜌, 𝑥)

(log |𝐵𝔡(𝜌, 2𝑅)|)3/2
, ∀𝑥 ∈ 𝐵𝔡(𝜌, 𝑅).

Proof. As discussed in Section 4.2, let us assume that 𝑉(𝐺) = ℕ and 𝜌 = 0. For each integer 𝑡 ⩾ 1,
define the random set

𝑽𝑡 := {𝑣 ∈ ℕ : 𝑼𝑣 ⩽ 2−𝑡} ,
and define the random map 𝝍𝑡 : ℕ → ℝ by

𝝍𝑡(𝑥) := 𝔡(𝑥,𝑽𝑡)
𝑡

.

Finally, define Ψ : 𝑉(𝐺) → ℋ by

Ψ(𝑣) := (𝝍1(𝑣),𝝍2(𝑣), . . .) .

Note that for any 𝑢, 𝑣 ∈ 𝑉(𝐺),

∥Ψ(𝑢) −Ψ(𝑣)∥2
ℋ =

∑︂
𝑡⩾1

𝑡−2 𝔼 |𝝍𝑡(𝑢) −𝝍𝑡(𝑣)|2 ⩽
∑︂
𝑡⩽1

𝑡−2𝔡(𝑢, 𝑣)2 ⩽ 𝜋2

6 𝔡(𝑢, 𝑣)2.

Therefore 𝔼 ∥Ψ(𝑋0) −Ψ(𝑋1)∥2
ℋ ⩽

𝜋2

6 𝔼 𝔡(𝑋0 , 𝑋1)2 < ∞, and Ψ : 𝑉(𝐺) → ℋ is a proper Euclidean
embedding.

Consider now 𝑥 ∈ 𝐵𝔡(𝜌, 𝑅). For convenience, let us define the open ball

𝐵◦
𝔡
(𝑥, 𝑅) := {𝑦 ∈ 𝑉(𝐺) : 𝔡(𝑥, 𝑦) < 𝑅}.
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For 𝑡 ⩾ 1, let 𝑟𝑡 be the smallest radius such that max{|𝐵𝔡(𝜌, 𝑟𝑡)|, |𝐵𝔡(𝑥, 𝑟𝑡)|} ⩾ 2𝑡 . Let 𝑡∗ be the
smallest value of 𝑡 such that 𝑟𝑡 ⩾ 𝔡(𝜌, 𝑥)/4, and reassign 𝑟𝑡∗ := 𝔡(𝜌, 𝑥)/4. Denote 𝑟0 := 0. Then by
construction,

𝔡(𝜌, 𝑥)
4 = (𝑟1 − 𝑟0) + (𝑟2 − 𝑟1) + (𝑟3 − 𝑟2) + · · · + (𝑟𝑡∗ − 𝑟𝑡∗−1) . (4.2)

Consider now some 𝑡 ∈ {1, 2, . . . , 𝑡∗}. Note that, by definition of 𝑟𝑡 , it holds that |𝐵𝔡(𝜌, 𝑟𝑡−1)| ⩾
2𝑡−1 or |𝐵𝔡(𝑥, 𝑟𝑡−1)| ⩾ 2𝑡−1. Without loss of generality, assume this is achieved by 𝜌. It is also true
that |𝐵◦

𝔡
(𝑥, 𝑟𝑡)| < 2𝑡 , and therefore since 𝐵𝔡(𝑥, 𝑟𝑡) and 𝐵𝔡(𝜌, 𝑟𝑡−1) are disjoint, there is some (universal)

constant 𝑞 > 0 such that

ℙ
[︁
𝑽𝑡 ∩ 𝐵𝔡(𝜌, 𝑟𝑡−1) ≠ ∅ ∧ 𝑽𝑡 ∩ 𝐵◦

𝔡
(𝑥, 𝑟𝑡) = ∅ | (𝐺, 𝜌, 𝔡)

]︁
⩾ 𝑞.

In particular, we have

𝔼
[︁
|𝝍𝑡(𝜌) −𝝍𝑡(𝑥)|2 | (𝐺, 𝜌, 𝔡)

]︁
⩾
𝑞

𝑡2
(𝑟𝑡 − 𝑟𝑡−1)2 ,

and therefore almost surely,

∥Ψ(𝜌) −Ψ(𝑥)∥2
ℋ ⩾

𝑞

(𝑡∗)2
𝑡∗∑︂
𝑡=1

(𝑟𝑡 − 𝑟𝑡−1)2 ⩾
𝑞

(𝑡∗)3

(︄
𝑡∗∑︂
𝑡=1

(𝑟𝑡 − 𝑟𝑡−1)
)︄2

(4.2)
=

𝑞

16(𝑡∗)3 𝔡(𝜌, 𝑥)
2 ,

where the second inequality is an application of Cauchy-Schwarz. Since 𝑡∗ ⩽ log2 |𝐵𝔡(𝜌, 2𝑅)|, the
desired result follows. (After rescaling Ψ by a universal constant.) □
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