Spectral dimension, Euclidean embeddings,
and the metric growth exponent

James R. Lee

Abstract

For reversible random networks, we exhibit a relationship between the almost sure spectral
dimension and the Euclidean growth exponent, which is the smallest asymptotic rate of volume
growth over all embeddings of the network into a Hilbert space. Using metric embedding theory,
it is then shown that the Euclidean growth exponent coincides with the metric growth exponent.
This simplifies and generalizes a powerful tool for bounding the spectral dimension in random

networks.
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1 Introduction

Let G be a locally-finite, connected graph and denote by {X, } the simple random walk on G. For
vertices 1, v € V(G) and n > 1, denote the discrete-time heat kernel by

Pu(x,y) :=P[Xy = y | Xo = x].
The spectral dimension of G is equal to d; if it holds that for some vertex vy € V(G),

—2log pu(vo, vo)
logn '

ds = lim
n—00

One can check that the choice of vy € V(G) does not affect the limit (assuming it exists).
Consider now a discrete metric space (X, d), and define the asymptotic growth exponent

log |By(xo, R)|

c_if(X, D) := limsup log R

R—

, (1.1)

where
By(x,R) :={y € X : d(x, y) <R},



and again the choice of xy € X is irrelevant.

The present work explores a general setting of random rooted graphs (G, p) where the almost
sure spectral dimension of G coincides with the smallest asymptotic growth exponent over a natural
class of metrics on V(G). This provides a powerful set of tools for understanding the spectral
dimension of these graphs via the construction of discrete metric spaces on their vertex set.

Our main analytic tools are K. Ball’s notion of Markov type [ ] and the extension to maximal
Markov type appearing in [ ], as well as Bourgain’s metric embedding theorem [ I
Both tools have been previously applied fruitfully in contexts outside the non-linear geometry of
Banach spaces; see, e.g., [ ]and [ ], respectively.

Reversible random networks. Consider a random rooted network (G, p, k, &) where G is a locally-
finite, connected graph, p € V(G), and {x,, > 0: {u,v} € E(G)} are edge conductances (where
Kup = Koy for {u,v} € E(G)). We allow E(G) to contain self-loops {v,v} for v € V(G). Here,
& : V(G) U E(G) — Eis an auxiliary marking, where E is some Polish mark space.

We will sometimes use the notation (G, p, &1, &2, . . ., &k) to reference a random rooted network
with marks &; : V(G) U E(G) — E;, which we intend as shorthand for (G, p, (&1, &2, . .., £k)), where
the mark space is the Cartesian product Z1 X - - - X E¢. We usually allow the conductances to remain
implicit, writing simply (G, p, &).

The random walk {X,,} (conditioned on (G, p, £)) is defined by the transition kernel

K
pi(u,v) =P[X1=v | Xo=u] := %, (1.2)
u

where we denote «y = X ;.1 o}er(G) Kuo- Let us also define, for S C V(G), the volume vol(S) :=
ZMES Ky

Definition 1.1. Say that (G, p, &) is a reversible random network if (G, Xo, X1, &) and (G, X1, Xo, &)
have the same law.

Reversible random networks are closely related to unimodular random networks by a change of
measure. This connection is laid out in [ ], and one can find a detailed explanation in [ ,
§1.1]. One can also consult [ ] for an extensive reference on unimodular random networks.

Euclidean embeddings. Suppose (G, p) is a reversible random network and fix a separable Hilbert
space H. A proper Euclidean embedding of (G, p) is a random mapping V¥ : V(G) — H such that
(G, p, VW) is a reversible random network with E ||W(Xo) — W(Xl)”%{ < o0. Such an embedding
induces a distance dy(u, v) := ||W(u) — W(v)||r on V(G).

Definition 1.2 (Euclidean growth exponent). The Euclidean growth exponent d},. of (G, p) is the
infimal value d such that almost surely the asymptotic growth exponent of (V(G), dy) is at most d,
where the infimum is taken over all proper Euclidean embeddings W : V(G) — H. Equivalently, it
is the infimal value 4 such that almost surely

1 1 (W1 (Bg(0,R
imaup S OOR)

R—oo0

where B4(0,R) := {x € H : ||x||l < R}.



Let us also define the (upper) spectral dimension ds of (G, p) as the infimal value d such that almost
surely

-21 ,
lim sup O?OZZ(F) p) <d.

Our first result bounds the spectral dimension by the Euclidean growth exponent.

Theorem 1.3. If (G, p) is a reversible random network, then ds < d%,..

This result is proved in Section 2 by extending basic results in Markov type theory to the setting
of reversible random networks. There have been numerous applications of Markov type to random
networks in recent years [ , ; , , ]. These methods are applied in
the “invariantly amenable” setting were the network can be written as a suitable limit of finite
subgraphs. The approach of Section 2 is somewhat cleaner, generalizing the notion of Markov type
from finite-state Markov chains to reversible random walks on random networks.

Spectral concentration. There are known examples (see [ ] and Section 3.3) where d; is
finite, while d},. = oo, so this inequality cannot be reversed in general. We now present an upper

bound that holds whenever the return probabilities py,(p, p) are sufficiently concentrated.

Definition 1.4 (Annealed spectral dimension). The (lower) annealed spectral dimension dJ* of (G, p) is
given by

—2log E[p2,(p,
n—00 logn

Note that, by concavity of the logarithm, we have d7' < d;. If dJ' = d, then the inequality in
Theorem 1.3 can be reversed.

Theorem 1.5. Suppose (G, p) is a reversible random network satisfying E[1/x,] < co. Then,

. 2
" r@r-ayn)

This is proved in Section 3, where an appropriate Euclidean metric is constructed from the
discrete-time heat flow on G. Note that the theorem is vacuous unless ds < dZ'+2. In Section 3.3, we
present examples where the reverse inequality d},. < d; fails to hold (in particular, these examples

satisfy ds > d' +2).

The next conclusion follows from the conjunction of Theorem 1.3 and Theorem 1.5.

Corollary 1.6. If (G, p) is a reversible random network with E[1/x,] < co and ds = d7%, then the spectral

dimension of G is almost surely equal to d},..

Note that E[1/x,] < oo is automatically satisfied, for instance, when (G, p) is a reversible random
graph (i.e., almost surely a network with unit conductances on the edges).

The Euclidean and metric growth exponents coincide. If (G, p) is a reversible random network,
then an L? change of metric on (G, p) is a random metric d : V(G) x V(G) — [0, o) such that (G, p, )
is a reversible random network with E d(Xp, X;)? < oo.



Definition 1.7 (Metric growth exponent). The metric growth exponent d}‘ of (G, p) is the infimal value

d such that almost surely d #(V(G),d) < d (recall (1.1)), where the infimum is taken over all L2
changes of metric on (G, p).

Theorem 1.8 (Euclidean vs. metric growth exponent). If (G, p) is a reversible random network satisfying
E[1/x,] < oo, then

Al = d}‘ :
This result is proved in Section 4 using Bourgain’s embedding method [ ] to construct

embeddings of G into a Hilbert space. The following corollary of Theorem 1.3 and Theorem 1.8 has
so far had the most utility in studying concrete models.

Corollary 1.9. If (G, p) is a reversible random network satisfying E[1/x,] < oo, then ds < d}‘. If, moreover,
ds = d2%, then almost surely the spectral dimension of G is d;.

Indeed, a weaker version of the first half of Corollary 1.9 appears in [ ], where it is stated
for unimodular random graphs.

It (G~, p) is a unimodular random graph with E[deg;(p)] < oo, then there is a random rooted
graph (G, p) whose law is absolutely continuous with respect to that of (G, p) and such that (G, p)
is a reversible random graph (see [ ]and [ , §1.1]). Thus Corollary 1.9 is is somewhat
stronger the results of [ ] which requires the law of deg(p) to have tails that decrease faster

than any inverse polynomial. Moreover, our definition of d; only requires almost sure asymptotic

control on the volume of balls around the root, while [ ] requires almost sure control at all
scales.

While the added generality is a benefit, certainly the main advantage of our probabilistic proof
of Corollary 1.9 is that it is substantially simpler and more elegant than the spectral graph-theoretic
arguments in [ ].

Applications of Corollary 1.9. Suppose {G,} is a sequence of finite random networks and
pn € V(G,) has the law of the stationary measure on G,. It is not difficult to check that each
(Gn, pn) is a reversible random network (indeed, (G, Xo, X1) and (G, X1, Xo) have the same law
conditioned on G,).

For R > 0, denote B®(p,,, R) := {v € V(G,,) : distg, (pn,v) < R}, where dist denotes the path
distance in G,,. One says that a random rooted network (G, p) is the distributional limit of {(G,, pn})
if the law of (B¢ (p,, R), pn) (considered as a rooted network, up to rooted network isomorphism)
converges to the law of B¢(p, R) for every R > 0. Let us write {(G, px)} = (G, p) to denote such
convergence.

If (G, p) is the distributional limit of {(G,, p»)}, then (G, p) is a reversible random network. One
can consult [ ]Jand [ ] in the unimodular setting, and [ ] for the connection between
unimodular and reversible random graphs. Thus distributional limits of finite networks provide a
rich family of reversible random networks.

Using Corollary 1.9, the following theorems offer an interesting interplay between probability
and geometry.

Theorem 1.10 ([ 1). Suppose {(Gn, pn)} is a sequence of reversible random networks, where each G,
is almost surely a finite planar graph. If {(Gn, pn)} = (G, p), then the metric growth exponent of (G, p)

satisifes d}‘ <2



This theorem shows that many well-studied models of random planar maps have spectral
dimension at most 2. For instance, it applies to the uniform infinite planar triangulation (UIPT)
[ ]. This upper bound was established in [ ]land [ ] later showed that the spectral
dimension is almost surely equal to 2. For the uniform infinite planar quadrangulation (UIPQ) (see,
eg. [ 1), it implies that the spectral dimension is almost surely at most 2 (if the a.s. limit exists),
but presently a matching lower bound remains elusive.

Theorem 1.10 can be generalized in two ways: To broader notions of 2-dimensional graphs, or
to higher dimensions.

Theorem 1.11 (Exclued minors, [ 1). Let H be a fixed finite graph. Suppose {(G,, pn)} is a sequence
of reversible random networks, where each G, is almost surely a finite graph excluding H as a graph minor. If
{(Gu, pn)} = (G, p), then the metric growth exponent of (G, p) satisifes djf <2

Say that G sphere packs in R? if G is the intersection graph of interior-disjoint closed balls in R.

Theorem 1.12 ([ 1). Suppose {(Gy, pn)} is a sequence of reversible random networks, where each
G, almost surely sphere-packs in R, If {(G, pn)} = (G, p), then the metric growth exponent of (G, p)

satisifes d}‘ <d.

This extends substantially to the much more general setting of “quasi-packings” of graphs in
any Ahlfors d-regular metric measure space [ I

2 Spectral dimension and Euclidean growth

In order to prove Theorem 1.3, we will extend K. Ball’s notion of Markov type 2 [ ] from finite
state spaces to reversible random networks.

Theorem 2.1. Suppose that (G, p) is a reversible random network and WV : V(G) — H is a proper Euclidean
embedding of (G, p). Then it holds that

E max [[V(X,) = W(Xo) 3, < 1280 E [W(Xo) ~ WX,

This theorem is proved in Section 2.1. For now, we record a corollary and then use it to establish
Theorem 1.3.

Corollary 2.2. Suppose (G, p) is a reversible random network and ¥ : V(G) — H is a proper Euclidean
embedding of (G, p). Then almost surely it holds that

W(Xo), W(X1), ..., ¥(Xy) € By (\P(XO), Vi log n)

for all but finitely many n.

Proof. Consider the reversible random network (G, p, W). Define K := E||W(Xo) — W(X1)|1,,
and recall that K < oo since W is a proper Euclidean embedding. By Theorem 2.1, we have
E maxo<t<n [[W(Xn) = W(Xo)[I7, < 128Kn for n > 1.

For n > 1, denote the events

En 1= {\y(xo),\y(xl), oo W(X,) € By (\y(xo), Vi/2log(n /2))} .

5



For n sufficiently large, it holds that

B 2 1 2
En = orgti); IW(Xx) \P(XO)”(H > 4Tl(10gl’l) ’

and then Markov’s inequality gives

512K
P(-&n) < —— .
Therefore, by the Borel-Cantelli Lemma, it holds that almost surely E,« occurs for all but finitely
many k, yielding the desired claim. m]

Lemma 2.3. Suppose (G, p, S) is a reversible random network, where S : V(G) — 2V(C) js such that S (p)
is almost surely a finite subset of vertices. Then almost surely, for any n > 0,

ponlp.p)  (PLX0 € S(p) | (G, p, S

=z

Kp vol(S(p))

Proof. Using reversibility of the random walk (conditioned on (G, p, S)), we have «,p.(p, x) =
KxPn(x, p), and this gives

n(p, X)?
P2n(p, p) > Z Pu(p, X)Pu(x, p) = Kp Z p(z—)
x€3(p) xeSp)
2
(erS(p) Pu(p, x))

> T el S ()
_ (PIX, € S() | (G,p, )2
- vol(S(p)) ’

where the second inequality is an application of Cauchy-Schwarz. m]

The next result implies Theorem 1.3.

Corollary 2.4. Suppose (G, p) is a reversible random network and \V : V(G) — H is a proper Euclidean
embedding of (G, p). Then almost surely,

-21 , 1 1 (W-1(By(0,R
lim sup 08 P21 (p. ) < limsup og vol (¥ (By(0, R)
00 logn Resoo log R
Proof. Define S, (v) := W1 (Bgy(W(v), Vnlogn)). By Corollary 2.2, it holds that almost surely, for n

sufficiently large, X, € S,,(Xo). Applying Lemma 2.3 to (G, p, S2,,) gives that almost surely, for n
sufficiently large, p2.(p, p) > «,/vol(S2.(p)), and therefore, almost surely

. 2.1)

2logvol (\If‘l (BqL((\I’(Xo), @108(2”))))

-21 ,
lim sup O(I%OPZn (. p) < lim sup I
n—o0 gn n—o0 ogn

. log vol (W~ (By(W(Xo), R)))

< lim sup

Reso0 log R

) log vol (\If_1 (B#(0, R)))

= limsup . m]
R—c0 IOg R



2.1 Maximal Markov type and reversible random graphs

Our goal now is to prove Theorem 2.1. Consider a reversible random network (G, p, &), and recall
that {X;} is the random walk on G with Xy = p. Fix a time n > 0, and denote the reversed walk
X; := X,_ for 0 < t < n. The next lemma follows from reversibility, since (G, Xo, X1, ..., Xy, &)
and (G, Xo, X1, . .., Xu, &) have the same law.

Lemma 2.5. Fors € L{l' ..., n—1}, the law 0fXS+1 conditjoned on {(Q, Xo, cfz, Xs=w,Xo=u,X, =0}
is equal to the law of X,,_(s4+1) conditioned on {(G, Xo, &), Xy—s = w, Xo = v, X;y = u}.

We now adapt the forward-backward martingale decomposition from [ ] to our setting.

Lemma 2.6. Let X be a normed space and let (G, p, V) be a reversible random network with ¥V : V(G) — X.
Then for every n > 0, there are two X-valued processes {A; : t =0,1,...,n}yand {B; : t =0,1,...,n}
with the following properties:

1. Almost surely, conditioned on (G, Xo, X, V), both {A+} and {B;} are martingales.

2. It holds that almost surely, forall t € {0,1,...,n},

\I/(XZt) - \I](XO) =A; — B;.

3. Foreveryl <t <mnandq>1,

max {E [|A; — At} E 1B = Beoall3} < 29 E [[W(Xo) = W(X0)|[] -

Proof. Fix n > 0 and let us condition on (G, Xo, X2,, ¥). We write E(; ,,,,,w) for the expectation

conditioned on {(G,u,V¥),Xo = u,Xo, = v}. Define the reversed walk by X; = Xppy for
t=0,1,...,2n. 5

Define My := W(Xp) and Ny := W(Xj), and for0 < s < 2n —1,

M;si1 — M;s = \P(XSH) - ‘I](Xs) - [E(G,XO,XZH,\IJ) [\I](Xsﬂ) - W(Xs) | Xs] (2-2)

No1 = Ns := W(Xe11) = W(Xs) = Eg gz, 5, 0) [P (Xss1) = W(X) | X (2.3)

Observe that, conditioned on (G, Xo, X2,,, V), it holds that {M;} is a martingale with respect to

the filtration induced on {Xy, X1, ..., X2, }, and {Ns} is a martingale with respect to the filtration

induced on {5(0, Xy,..., ):(2,1}.
Observing that Xs = X5,_s, by Lemma 2.5, it holds that

IE(G,XQ,in,\I/)[\I](XS+1) - \I](Xs) | Xs] = [E(G,f(o,f(z",\y) [\I[(XZn—(sH)) - \II(XZn—s) | >~<211—5] ’
and therefore
W(Xs11) = W(Xs-1) = W(Xsr1) — W(Xs) — EG, %0, X0, 9) [V (Xs11) — P(Xs) | Xi]

- (\P(XZn—s—l) - \P(XZn—s) - [E(G,XO,XZ,,,‘I/) [\I](XZn—s—l) - \II(XZn—s) | XZn—s])
= (Ms+1 - Ms) - (NZn—s+1 - NZn—s)- (2.4)



Define the processes {A; :t =0,1,...,n}and {B; : t =0,1,...,n} by

¢
Ap = ZMZS - Mpsq
s=1

t
B; = Z Noy-s+1 — Noy—s ,

s=1

and observe that almost surely, conditioned on (G, Xy, X2,, V), {A+} and {B;} are also martingales
with respect to the forward and backward filtrations, respectively. Summing (2.4) over odd values
s=1,2,...,2t — 1 gives claim (2) of the lemma.

For claim (3), note that A; — A;_1 = My — M>;_1, and then employ (2.2). An identical argument
holds for B; — B;—1 using (2.3). ]

Let us now use this to prove Theorem 2.1.

Proof of Theorem 2.1. Note that if {M;} is a martingale in some normed space X, then {||M;||x} isa
submartingale, and Doob’s L?> maximal inequality yields

E max [|M;[l; < 4E [[My]3.
St<n
Therefore applying Lemma 2.6(2) gives
2 2 2 2 2
E(%as); ”\I](XZt) - \I](XO)”gz <2 [Eorgi);(”At”W + ||Bt||(H) <8 ([E ”An ||7-( +E ”Bn”q.{) :

Now using orthogonality of martingale difference sequences, we have
n
E A2, < > ENA = Arall}, < 4nE [W(Xo) - W(X0)I2,,
t=1
where the last inequality uses Lemma 2.6(3). Applying the same reasoning to {B;} then gives us

E max ||¥(X2) - W(Xo)ll7, < 64n E [[W(Xo) = W(X1)II7, -

Finally, to handle odd times, one notes that
IW(Xan+1) = V(Xo)llw < [P (X2n+1) — W(Xan)llw + W (Xan) — W (Xo)|lw,

and therefore

E [|W(Xan41) — W(Xo)lI7, < 128n ([E W(Xo) = W(X)IIZ, + E [W(Xous1) — ‘I’(in)“gﬂ)

= 2561 E || ¥(Xo) — W(X1)II2,,

where the last equality uses that (G, X, V) and (G, X241, V) have the same law since (G, p, V) is
reversible. O



3 Change of metric via heat flow
Our objective is now to prove Theorem 1.5. First, we need to review some basics of spectral theory

on infinite graphs.

3.1 Spectral theory on locally-finite networks

Fix a network G with conductances x, and write £2(G) for the Hilbert space of functions f : V(G) — R
equipped with the inner product

e = ), xufg).

ueV(G)

Define the averaging operator P : {*(G) — {*(G) by

PY)= Y B0 (0).

v:{u,v}€E(G) Ku

Observe that P is self-adjoint with respect to the £2(G) inner product:

Kxy
@ PYee= ), el D M =2 ) @y
xeV(G) y:{x,y}€E(G) {x,y}eE(G)
Since P is an averaging operator, it is also bounded, and therefore the spectral theorem yields a

resolution of the identity Ip so that P = f_ 11 AdIp(A).
Given a vertex v € V(G), one defines the associated spectral measure uf. at v by

(To, Ip((=00, M) Vo) 2
Ko '

‘uzé ((=o0, 1)) =

This is the unique probability measure uf. on [-1, 1] such that for all integers n > 1,

Kv/ )\”d[fé(/\) = <ﬂv,Pn“v>gZ(G) . (31)
[_1/1]

Note that for any u, v € V(G) and n > 0, we have
(P"1u, P"1o) gy = (Vs PP To) o ) = KuPS, (1, 0). (3:2)
Note also that P1y, = 3.4 01er(c) 2 10, and therefore

P*1,,P"1
Z Kuv( u 'U>[2(G) — <—Hu,(I_P)P2n‘“u>

2
||P”ﬂu||g2(c) - o

2(G)
v:{u,v}€E(G)

=Ky 1= DAy (A). 3.3
x /[_m( Py () (3.3)



Define the map @, : V(G) — (%(G) by @, (v) := le]”. Then for any u € V(G),

D Ko 19u() = 0 (0)72(6,

v:{u,v}€E(G)

IP" 11726,

K K
= 9. D Kuv P Vol -2 Y. = (P, P" o) )
" v:{u,v}€E(G) v:{u,0}€E(G) U

2
33 K IP" Vol o
) / Q- DA+ Y e ||P”1] Py~ ———2 . (34)
[-1,1] , Ku
v:{u,v}€E(G)

Volume of spectral balls. For u € V(G), define the set
Su) = {v EV(G): 194(1) = Ba(0)|Pag) < 5 I, (u)np(c)}

Lemma 3.1. Ifv € S,(u), then py, (v, u) > i n(u, u).

Proof. Note that (x,y) = 1 (IIx]I> + [lylI*> = lx = y||*) > }lIx||> whenever ||x — y||* < 3||x]||?>, hence
v € S8, (1) implies that

1
(@u(u), Pu(@) ) > 7 1Pn ()l -

By definition, this gives

(P"1,,P" “v>£2(c) 1 ||Pnﬂu||(%2(c)
Ko 4_1 Ky ’
and by (3.2), this is precisely the inequality

p2u (v, u) > pzn(u u). O

Lemma 3.2. Forany u € V(G), it holds that

p4n(u/u) < 16Ku

1(Sn(u)) < 16x, b '
VO ( (M)) pZn(u/u)z pZn(ul M)

Proof. Using x,pu(u,v) = kupu(v, 1), we have

Pan(tt, 1) > > pou(t, 0)p2n(v,u) = Y z—”pzn(v,u)2>VOI(S”(”))Pzn(M/u)Z,

16 Ky
veS, (1) veS, (1)

where the last inequality follows from Lemma 3.1. This yields the first claimed inequality, and the
second follows from monotonicity of the even return times: po, (1, 1) > pan(u, 1t). O

10



3.2 Construction of the metric

Note that in proving Theorem 1.5, we may assume that £ > 1 for all u € V(G). This does not
affect the spectral dimension of G, and it only affects the Volume of sets by a constant factor. This
assumption ensures that P is a nonnegative operator, and therefore the spectral measures p. are
supported on [0, 1].

Consider now a reversible random network (G, p) with E[1/x,] < co and define the measure

wi=E [pg/r]-
Lemma 3.3. It holds that, forany d > 1and n > 1,

1

dlogn
S {190 %0) = @0 (Xl )| < 77 + 228

E [p2:(p, p)] -

Proof. Dividing (3.4) by x,, setting u = Xy, and taking expectations gives

2 n 2
L [IP Tl 1P I
L 100 - @) = [ -0y + S | T e
[01] X o

P,
Note that, from (3.2), it holds that I }SZHIZ(G) = pz”g #) " Therefore since E[1/x,] < oo, the latter
P
expectation is bounded and is, in fact, equal to 0 since (G, Xp) and (G, X1) have the same law.

.. . . . . . dlogn
To finish, split the integral into two pieces depending on whether A <1 — —>=:

dl 41
(1- DA% du() < [1-2287) L 2O8T / A2 ()
n n [0’1]

3.1) dlogn
< 0l B Elpa(p, p)l. 0

[0,1]

For an integer k > 1, define

d(x, y) = [| Do (x) - (Dzk(]/)”gz(c)
Wi := E[d(Xo, X1)*],

and then

“%W=JZWWW@W2

k>1

By construction we have E[d(Xo, X1)*] < Yjs1 k72 < o0, hence D is an L? change of metric. The next
result implies Theorem 1.5.

Theorem 3.4. If ds — (_if‘ < 2, then

1 1(Bs(p, R d,
lim sup og vol(Balp, R)) < i = .
R—00 ]OgR 1+ (Elgﬂ - ds)/z

11



Proof. By Lemma 3.3, for any d > 1, we have
Wi < 278 4 dk27F E[pyra(p, p)] .
Choosing d := 24!, by definition of d{!, this implies that
W < 2 koK@ -2 § o, (3.5)

By construction, it holds that

1
2 2
o, 2 > gy I102:() = @20l
Therefore for any ¢ > 0,
2t O (p) — e < €22KW,
X €By|p, e k = || 2"(.0) Zk(x)”gZ(G) S ¢ k-
Choosing
gy 1= 2~ (kD)2 1Da¢ (p) 2,

VWi

gives x € By (p, ek¥) = || Dy (p) - ®2k(x)||§2(c) <3 ||CI)2k(p)||?2(G) and then Lemma 3.2 implies

that
k/2

2 16%,
vol (BD (p, skT)) < vol(Sy(p)) <

par1(p, p)’
By definition of ds, it holds that almost surely

Pox(p, p) > Z—kas/z—o(l) k
Kp !

— 00,

which implies that almost surely

k/2

vol (BD (p, ssz)) < 2k35/2+0(1), k — oo. (3.6)

Moreover, using || Dy« (p)||?2(c) = para(p, p)/xp (cf. (3.2)) and (3.5), we have that almost surely
ex > K@ ~damo/4 | f o, (3.7)

When ds — d' < 2, then £k$ — oo and combining (3.6) and (3.7) gives

log vol(Bs(p, R .
lim sup og vol(Bo(p, R)) < i —.
R—soo log R 1+ @ —dy)/2
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3.3 Lower bound examples

We review constructions based on a technique from [ ], where the authors add random
tails to the vertices of a 3-regular tree. These show that, without the assumption glf‘ = d,, the
reverse inequality d%,. < ds can fail (recall Theorem 1.3).

Let {p¢ : £ > 1} denote a probability distribution on positive integers with bounded first moment:

2ues1 Pt - £ < oo, Define the probability distribution {fi; : ¢ > 1} by

iy = pe(£+1)
Zis1pelk+1)°
Consider a connected, locally-finite, vertex-transitive graph H and fix a vertex vy € V(H). Let

{L, : v € V(H)} denote an independent family of random variables where L, has law p for v # vy
and L, has law p.

Definition 3.5 (Adding tails). Let H be the random graph that results from attaching a path P, of
length L, to every v € V(H), and let p € V(Py,) be a random vertex with law

degp(v)
ZueV(PvO) eg(u)
The next lemma is a straightforward exercise; see [ , §4.4] where H is a complete 3-ary

tree.

Lemma 3.6. If (H, vp) is the distributional limit of a sequence of finite reversible random graphs, then (H, p)
is a reversible random graph.

We will also consider H = Z% for some d > 3. Note that since H is amenable, one can take a
Folner sequence {S, € V(H)}. Let p, € S, have the law of the stationary measure on the induced
graph H[S,], and then {(H[S,], p»)} = (H,0).

Let us define

pei=cl(logt +1)2, £>1, (3.8)

where the constant ¢ > 0 is chosen so that p is a probability.

Lemma 3.7. There is a constant C > 0 such that when H is the infinite 3-regular tree or H = Z% ford > 1,
the spectral dimension of (H, p) satisfies ds < C.

Proof sketch. From the definition of p, we see that if |BH (vg, R)| > n, then there is likely some
v* € BH(vg, R) with Ly > n/ 2-0() " And in such a tail, the random walk has constant probability to
get trapped for at least L.~ steps. In the 3-regular tree, a ball of radius O(log 1) likely contains a
vertex v* whose tail has length at least . The random walk goes to v*, remains in the tail for time
~ n and then returns to vy, all with probability at least 77X for some (large) constant K > 0 (because
disty(vo, v*) < O(logn)).

For H = Z%, standard estimates of the Green function show that when R > n!/4, there is likely
some v* € B (0, R) with Ly« > /n, and the probability for the random walk on H to start at 0, visit
v*, and then return to 0 is roughly R=2(-2) > =2-°() yielding a uniform upper bound ond;. O

1/d

On the other hand, we have the following.
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Lemma 3.8. When H is the infinite 3-regular tree, then (H, p) satisfies d%,. = co. When H = Z° for d > 1,
then (H, p) satisfies d3,. = d.

Since d,. < oo entails amenability, the result for the 3-regular tree follows. For H = Z%, one can

use the following.

Lemma 3.9. If H = Z9 for d > 1, then the Euclidean growth exponent of (H, p) satisfies d%,. = d.

euc

Proof. Note that for an integer R > 1, the law of |BH (p, R)| is equal to the law of

N
Lo+ > L,
j=1

where {L;} are independent random variables where Ly has law f and L; has law p for j > 1, and
N = |BH(0, R)|. Since p has bounded first moments, by the strong law of large numbers, almost
surely i
log |BH(p, R
L log[Bf(p, R)|

R—oco log R d.

It follows that d*,. < d can be obtained from the mapping W : V(H) — R? given by W(v) = 9.
To establish that d},. > d, it suffices to prove the same for the rooted subgraph (H, 0). Consider
a proper Euclidean embedding W : Z? — H, where H is a separable Hilbert space. Let (Q, 1)

be probability space underlying (H,0, W) and denote by H the Hilbert space of measurable
functions f : Q — H with norm ||f||z := \/f ||f(x)||${_dy(x). Since (Q, u, V) is reversible and
E [|W(Xo) — (X1)||EH < 0, it holds that the map F : Z¢ — H given by (F(x))(w) = (W(w))(x) satisfies

E [IF(X0) = FCDIZ, | Xo = x| = EI(X0) - WCXDIE,, (39)
e [ (B0, R)) [F (B (0,R)|
_ log |W~" (B#(0, R)) _ log |[F~* (B#(0,R
hgzn _iljp log R = 11? _i)lj Tog R . (3.10)

Define C := maXx(y 0}eE(H) |F(u) — F(0)||7 and note that C < co follows from (3.9). Moreover, the
triangle inequality in { implies the path metric on Z¢ satisfies

distza(u,v) > CH|F(u) - F(0)|l g,

and therefore (3.10) is at least d (the growth rate for the path metric on Z%). O

4 Euclidean embeddings and the metric growth exponent

Let us now prove Theorem 1.8.
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4.1 The Mass-Transport Principle

Let ¢4, denote the collection of isomorphism classes of rooted, connected, locally-finite networks,
and let %,, denote the collection of isomorphism classes of doubly-rooted, connected, locally-finite
networks. We will consider functionals F : 4, — [0, o). Equivalently, these are functionals
F(Go, x0, Yo, &) that are invariant under automorphisms i of Gy in the sense that F(Go, xo, Yo, &0) =
F((Go), P(x0), P(yo), &0 0 p71).

The mass-transport principle (MTP) for a random rooted network (G, p, £) asserts that for any
nonnegative Borel F : 4, — [0, ©0), it holds that

E Z F(G,p,x,&)| =E Z F(G,x,p,&)].

xeV(G) xeV(G)

Unimodular random networks are precisely those that satisfy the MTP (see [ 1.

Using the fact that biasing the law of a reversible random network (G, p, &) with E[1/x,] < oo
by 1/x, (see [ , Prop. 2.5]) yields a unimodular random network, one arrives at the following
biased MTP.

Lemma 4.1. If (G, p, &) is a reversible random network with E[1/x,] < oo, then for any nonnegative Borel

functional F : Gee — [0, 00), it holds that

el L Z F(G,p,x,&)| =E Ki Z F(G,x,p,&)|. (4.1)

Kp v &vic) P xev(G)

We use the mass-transport principle to relate the cardinality of balls to their volume.

Lemma 4.2. Suppose (G, p, d) is a reversible random network with E[1/x,] < co. Then,

log |By(p, R 1 1(By(p, R
lirnsup—ogl o(p R)| < lim sup og vol(Bu(p )).

R—o0 log R R—o0 IOg R

Proof. Define the mass transportation

o, p)<R}

F(G,x,y, b) = me.

Then the mass transport principle (Lemma 4.1) gives

|Ba(p, R)| ] 1 1
— | < E|— F(G,p,x,d)| =E|— F(G,x,p,d)| = E[1/x,].
[vol(Bb(p,ZR» Kp xg(:@( pr%.0) pr;@( pro)| = Ell/xpl

Using Markov’s inequality and the Borel-Cantelli lemma shows that almost surely |By(p, 2¥)| <
k2 vol(By(p, 2%+1)) holds for all but finitely many k, completing the proof. O
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4.2 Choice of a separable Hilbert space

For a rooted graph (G, p), let us write [G, p] € ¥, for its correpsonding rooted isomorphism class.
As shown in [ , §2], there is a continuous map F from %, to the space of networks on vertex set
N with root 0 such that (G, p) and (F([G, p]) , 0) are isomorphic. We may assume therefore that if
(G, p) is a random reversible network, then V(G) = N and p = 0.

Let U := {U, : v € N} be a family of i.i.d. uniform [0, 1] random variables, and let (€, i) denote
the underlying probability space. Define the Hilbert space H of measurable mappings f : Q — £,
with norm || f ||3¥ = / Il f (w)ll?zdy(a)). Equivalently, we may envision H as the Hilbert space of

fr-valued random variables on (Q, u) with ||X ”‘2H =E|X ||%2.

4.3 Construction of the embedding

The next result implies that there is a proper Euclidean embedding W : V(G) — H such that almost

surely

log vol (\I/'l (B, (0, R)))
log R

=X

log |By(p, R
limsup—Ogl o(p R

1i
im sup log R

R—>

7
R—

and combined with Lemma 4.2, this completes the proof of Theorem 1.8.

Theorem 4.3 (Euclidean embedding theorem). Suppose (G, p, d) is a reversible random network with
E d(Xo, X1)? < 0. Then there is a proper Euclidean embedding W : V(G) — H such that almost surely, for

allR >0,
2(p, x)

IW(p) = W)l > G e

Vx € By(p, R).

Proof. As discussed in Section 4.2, let us assume that V(G) = N and p = 0. For each integer t > 1,
define the random set
Vi={veN:U, <27},

and define the random map ¢; : N — R by

o(x, Vi)

Pi(x) := P

Finally, define ¥ : V(G) — H by

Y(v) = (P1(v), P2(v),...) .
Note that for any u, v € V(G),
) -, = 3 2E i) - o) < 3 2,0 < S, o
t>1 t<1

Therefore E ||V (Xp) — \I/(X1)||3_{ < %2 Ed(Xp, X1)?> < o0, and ¥ : V(G) — H is a proper Euclidean
embedding.
Consider now x € By(p, R). For convenience, let us define the open ball

By (x,R) :={y € V(G) : d(x, y) < R}.
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For t > 1, let r; be the smallest radius such that max{|By(p, 71)|, |Ba(x, 7)|} > 2!. Let t* be the
smallest value of t such that r; > d(p, x)/4, and reassign 4 := d(p, x)/4. Denote ry := 0. Then by
construction,

d(p, x)

4

Consider now some f € {1,2,...,t}. Note that, by definition of r;, it holds that |By(p, r¢-1)| >

2171 or |By(x, 74-1)| > 2!~1. Without loss of generality, assume this is achieved by p. It is also true

that |B§(x, r¢)| < 2f, and therefore since By(x, r;) and By(p, r¢-1) are disjoint, there is some (universal)
constant g > 0 such that

=(r1—ro)+(ra—r)+(r3—r2) + -+ (rp —rp_1). (4.2)

P [‘/t N Bb(p/ rt—l) #0A ‘/f N Bg(xr Tt) =0 | (Gr P, b)] > q.
In particular, we have
E[11(p) = eI | (G, p, )] > (s =i,

and therefore almost surely,

q
()

o 2
0 (Z}m : rH)) = e
t=

where the second inequality is an application of Cauchy-Schwarz. Since t* < log, |By(p, 2R)|, the
desired result follows. (After rescaling W by a universal constant.) m]

.
IW(p) = W, > ity (= ria) >
t=1
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