Spectral hypergraph sparsification via chaining

James R. Lee*

Abstract

In a hypergraph on n vertices where D is the maximum size of a hyperedge, there is a
weighted hypergraph spectral ¢-sparsifier with at most O(¢72log(D) - n log n) hyperedges.
This improves over the bound of Kapralov, Krauthgamer, Tardos and Yoshida (2021) who
achieve O(e™*n(logn)?), as well as the bound O(e72D%nlogn) obtained by Bansal, Svensson,
and Trevisan (2019). The same sparsification result was obtained independently by Jambulapati,
Liu, and Sidford (2022).
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1 Introduction

Consider a weighted hypergraph H = (V, E, w) with w € RE and the corresponding energy: For
xeRY,

Qmu(x) := Z w, max (x; — xv)z

e€E {”’U}e(g)

The problem of minimizing the energy Qp over various convex bodies occurs in many applied
contexts, especially in machine learning; we refer to the discussion in [ I
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In the graph case—when all the hyperedges have cardinality 2—this corresponds to the quadratic
form associated to the weighted Laplacian and carries a physical interpretation as the potential
energy of a family of springs indexed by {u, v} € E whose respective endpoints are pinned at x,
and x,. Let us mention the appealing analog for hypergraphs: If we stretch a rubber band around
vertices pinned at locations {x, : u € e}, then max {u,0}(}) (x4 — x,)? is proportional to its potential
energy. Here the weight w, represents the elasticity of the band.

For hypergraphs, the edge set E could have cardinality as large 2!"!, and one can ask if there
is a substantially smaller hypergraph that approximates the energy for every configuration of
vertices. Soma and Yoshida [ ] formalized the following notion of spectral sparsification
for hypergraphs, generalizing the well-studied notion for graphs [ ]. Say that a weighted
hypergraph H = (V, E, @) is a spectral e-sparsifier for H if E C E, and

IQu(x) - Qp(x)] < eQulx),  VxeRY. (1.1)

We will use n := |V| throughout. The authors [ ] showed that one can always find a spectral
e-sparsifier H with |E| < O(n3/&?). In| ], the authors established a bound of O(¢72D3n log n),
where D := max{|e| : e € E} is often called the rank of H, and subsequently the authors of [ ]

achieved an upper bound of nD(e~'logn)°W.

Finally, in a recent and remarkable breakthrough, the authors of [ ] show that one can
obtain a spectral sparsifier with at most O(n(log n)?/¢*) hyperedges, bypassing the polynomial
dependence on the rank, and coming within poly(¢~!logn) factors of the optimal bound. By
refining their approach via Talagrand’s powerful generic chaining theory, we obtain the following
improvement.

Theorem 1.1. For any n-vertex weighted hypergraph H = (V, E, w) and & > 0, there is a spectral e-sparsifier
H = (V,E, o) for H with
- log D
|E| < O( 2 nlogn) ,

where D 1= maXecE |e].

As in many prior works, Theorem 1.1 is proved by defining a distribution on E and then sampling
edges independently from this distribution. For approaches based on independent sampling, the
bound of Theorem 1.1 is tight up to a constant factor for every fixed D. In particular, this generalizes
the analysis of independent random sampling for graph sparsifiers [ ] where D = 2.

It should be noted that for cut sparsifiers, the log D factor can be removed |[ ]. This
corresponds to the weaker notion where we only require that (1.1) holds for x € {-1,1}". Whether
the log D factor can be removed in general remains an intriguing open question.

Our proof of Theorem 1.1 entails an algorithm for constructing the sparsifier H whose running
time is polynomial in the size of the input. But our sampling analysis can also be applied directly to
the faster algorithm presented in [ ] whose running time is |E|D poly(log |E|) + poly(n).

Theorem 1.1 was proved independently and concurrently by Jambulapati, Liu, and Sidford
[ ], via a closely related approach. While their main chaining result is somewhat less general
than the one proved here (see (1.5) below), they also present a near-linear time algorithm for
generating suitable sampling probabilities {u, : e € E}. This improves the running time to
|E|D poly(log |E|).



1.1 The random selector method and chaining for subgaussian processes

Suppose we have a probability distribution y € (0, 1]F on hyperedges in H. We sample hyperedges
E ={ei, e, ..., em} independently according to y, and define the random weighted hypergraph
H = (V,E,®) so that

1 10 We
Q) = 37 ) 7+ Qux).
k=1

where we define

Qe(x) = {Zn]n}i?)(xz - xj)?,

and the edge weights
#{ke[M]:ex=e} we
M te

W, =

In particular, this gives, for all x € R",
w€1 w6
EQn(0] = E | 52001 = 3 e 22Qu(1) = 3Qu) = Quo)
€1 ecE e€eE

Now in order to find a spectral e-sparsifier, we want to choose M sufficiently large so that

E_max |QH(x) = Qp(x)| <

To control concentration of Qp(x) around its mean, it suffices to bound the average maximal
fluctuations. Thus by a standard sort of reduction (see Section 3.1 and also [ ,Lem 9.1.11] for a
general formulation), it suffices to prove that

M
w
E| max § er—= Qe (x)| < O(eM), (1.3)
H EM x:Qn(x)<1 P Hey

where ¢1,...,em € {-1,1} areii.d. random signs.
Thus our task is now to control the quantity in brackets in (1.3) for a fixed choice of hyperedges
e1,...,em. If we define the random variable

M w
Z EkV_Eerk(x) 7

k=1 €k

then {Vy : x € R"} is a subgaussian process (defined in (2.1)) with respect to the (semi)metric

M

5 1/2
wek A
d(x, %) :=(§ (_ue ) |Qek(x)_Qek(x)|2) :

k=1

There are well-developed tools for studying quantities like E max{Vy : Qu(x) < 1}, but they rely
on an understanding of the geometry of the space (R", d), and a correct choice of distribution u is
essential for making this geometry well-behaved.

3



Importance sampling. For spectral graph sparsification, one chooses the sampling probability .
to be proportional to the effective resistance across e [ ]. In order to extend this to hypergraphs,
the authors of [ ] define sampling probabilities {1, : ¢ € E} derived from the graph G = (V, F),
where F := | J,c (5) is a union of cliques on every hyperedge. They take

He & :E: Ruov ,
{uo}e(y)

where R, denotes the effective resistance between a pair of vertices u, v in G.
To remove the polynomial dependence on D, the authors of [ | choose a weighted graph
G = (V,F,c) and define
Lle o W, Max {Ruv {u,v} e (S)} .
Now Ry, is the effective resistance in G, where edges {u, v} € F have conductance c,.
Let Lg denote the corresponding (weighted) graph Laplacian, and use L{. to denote its pseu-

doinverse. Define T := {v € R" : QH(LE/ 20) < 1}. This construction of the sampling probabilities

allows us to write
M

E max V,=Emax » & max (v, y:)?, (1.4)

Qu(x)<1 veT P {i,j}eex 1

for a family of vectors {yl.e]?‘} that depends on our choice of edge conductances c € RE in G.

A central component of this approach is the existence of conductances that ensure two key
properties:

1. TCB) :={x eR":||x]| <1},
2. ||yfjk|| < O(n)forallk =1,...,Mand {i, ]} € (%).

We return to a discussion of these properties in a moment.

Chaining bounds. Note that the right-hand side of (1.4) can be written as

M
E max exNk(v)?,
veT e

where Ny is an ¢, norm on a subset of the coordinates of Av, and A is a matrix whose rows are the
vectors {yfjf‘ }. Thus in Section 2, we apply aspects of the generic chaining theory (see the extensive

reference [ ]) to the analysis of such expected maxima.

For readers familiar with the theory, let us note that a bound of |E| < O(¢72n(logn)?) in
Theorem 1.1 follows from applying Dudley’s entropy bound (cf. (2.4)) in a straightforward way. A
bound of |E| < O(¢72n(log n)?) follows from a deeper inequality of Talagrand (see Theorem 2.2
and Section 2.2) that exploits property (1) above, that T' is a subset of the Euclidean unit ball.

Finally, in order to achieve |E| < O(¢72log(D) - n log 1), we need to exploit further structure of
the norms {Ny} in a novel way. Our approach is modeled after Rudelson’s geometric argument
[ ] which, roughly speaking, handles the case where each Ny is a 1-dimensional norm, as
well as Talagrand’s method of chaining via growth functionals (see Section 2.3 and Section 2.4).



To state this bound, let us consider arbitrary norms Nj, ..., Ny on R". Define:

x := Emax N ,
ke[M] k(g)

A E[Ni(9)? i
—]{2[%( [ k(g)]) ,

where g is a standard n-dimensional Gaussian. In Section 2.4, we prove that for any T C BY,

1/2

M M M 1/2
E sup Z exNk(x)? < sup Z Nj(x)4 + ()\ logn + K) - sup Z Ni(x)? (1.5)
xe€T k=1 xeT ]:1 xe€T k=1

When M = m, each N is a 1-dimensional norm Ni(x) := |[(x, ax)| for some a; € R", and

T = Bg, this lemma recovers Rudelson’s concentration bound for Bernoulli sums of rank-1 matrices

[ ] (as mentioned there, the inequality we state next is a consequence of the noncommutative
Khintchine inequalities [ D.

Observe that Ni(x)? = (x, ax)? = (x, aga;x), and using || - |op to denote the operator norm, the

preceding bound asserts that

m
Z ExAkay
k=1

where we use A < O(1) maxjepy |lax|l and x < O(Vlog m) maxiey llaxl-
When applying (1.5) to hypergraph sparsification, one picks up an additional /log D factor
because each Ny is an ¢, norm on a subset of at most D coordinates.

1/2
E

4

= Emax <x, (Z ekaka;) x> < O(Ylog(m + n)) km[évj llakll -
€lm

eB!
¥e52 k=1

m
2,05
k=1

op op

Remark 1.2. As far as we know, it is an open problem to replicate consequences of the noncom-
mutative Khintchine bound for higher-rank matrices using chaining, i.e., in the setting where
Ni(x) = ||Axx|| for matrices A1, ..., Apm.

Choosing good conductances. In order to satisfy properties (1) and (2) above, one chooses
nonnegative numbers

{cg. >0:{i,j} € (9, ee E}
for which
Z cfj =w,, Ve € E. (1.6)
tijye(s)
Define the edge conductances cijj := X cr.(;, hea) cf].. As argued in Section 3.2, any such choice
satisfies property (1).
Let R;; denote the effective resistance between {i, j} € F in the weighted graph G = (V, F, c).
To satisfy property (2), it suffices that for all hyperedges e € E, the effective resistances R;; are the
same for all pairs {7, j} € (5) with ¢¢, > 0. (This continues to hold even if the resistances are only

)
comparable up to universal constant factors.)



Let | denote the all-ones matrix and consider maximizing the quantity
log det(Lg +])

over all choices of (cfj) satisfying (1.6). This quantity is a concave function of the conductances
(cf].) and the KKT conditions for the maximizer establish the desired property for the effective
resistances. See Section 3.3.

This is essentially a reformulation and simplification of the method used in [ ] for
establishing the existence of nice conductances ¢ : F — R.. It is also reminiscent of Barthe’s
method for analyzing the Gaussian maximizers of the Brascamp-Lieb (and reverse Brascamp-Lieb)
inequalities [ ] (see also the treatment in [ D).

1.2 Notation

For two expressions A and B, we will use the equivalent notations A < B and A < O(B) to denote
that there is a constant C > 0 such that A < CB. If A and B depend on some parameters a1, ay, . ..,
we use the notation A <, ,a,,.. B to denote that there is a number C = C(ay, a, ...) such that
A < CB. We use A < B to denote the conjunction of A < Band B < A.

A number of vector and matrix norms will appear in what follows. When x € R" is a vector,
||x|| will always refer to the standard Euclidean norm of x. For a positive integer M > 1, we will
sometimes use the notation [M] :={1,2,..., M}.

2 Extrema of random processes

2.1 Background on generic chaining

A space (T, d) is called a K-quasimetric if satisfies
1. d(x,y) =d(y,x) forallx,y e T.
2. d(x,x)=0forallx eT.
3. There is a constant K > 0 such that

d(x,y) <K(d(x,2) +d(z,y), Vx,y,zeT.

Say that (T, d) is a quasimetric space if (T, d) is a K-quasimetric for some K > 0.
Consider a distance d on T. A random process {V, : x € T} is said to be subgaussian with respect
to d if there is a number a > 0 such that

tZ

P (le - Vyl > t) < exp (—Oéd(Ty)z

), t>0. 2.1)

The generic chaining functional. For a quasimetric space (T, d), let us recall Talagrand’s generic
chaining functional [ , Def. 2.2.19]. Define Ny, := 22" Then

[Se]

y2(T,d) := inf sup Z 2"2diamy(Ap(x)), (2.2)
hy xeT h=0
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where the infimum runs over all sequences {Aj, : h > 0} of partitions of T satisfying |Aj| < N,
for each I > 0. Note that we use the notation Aj(x) for the unique set of A, that contains x, and
diamy(S) := sup, ,es d(x, y) for S C T. The next theorem constitutes the generic chaining upper
bound; see [ , Thm 2.2.18].

Theorem 2.1. If {V, : x € T} is a centered subgaussian process satisfying (2.1) with respect to a
K-quasimetric (T, d), then
Esup Vy Sk,a 72(T, d) . (2.3)

xeT

Define the entropy numbers ej,(T, d) := inf{sup, . d(t,T;) : T, C T,|T;,| < 22}1}. This is the
infimum of numbers r > 0 such that T can be covered by at most 22" balls of radius 7. A classical
way of controlling y>(T, d) is given by Dudley’s entropy bound (see, e.g., [ , Prop 2.2.10]):

ya(T,d) s ) 2" Pe(T, d). (24)
h>0

But often additional structure of the space (T, 4) allows one to improve on (2.4). The next lemma
is a consequence of [ , Thm 4.1.11 & (4.23)]. It actually holds whenever T is the unit ball of a
uniformly 2-convex Banach space and d is induced by some (possibly different) norm.

Theorem 2.2. Suppose that T = B is the unit Euclidean ball in R™ and || - ||x is a norm on R". Then,

12
y2(T, |- llx) (Z (Zh/zeh(T, Il - ”X))2) :

h=0

In order to bound the entropy numbers ej,(By, || - ||x), we will use the following classical fact;
see, e.g., [ , (3.15)].

Lemma 2.3 (Dual Sudakov inequality). Let B} denote the unit Euclidean ball, and suppose that || - || x is a
norm on R™. Then

en(BY, Il - lIx) < 27" E ||gllx,

where g is a standard n-dimensional Gaussian.

Corollary 2.4. If || - ||x is a norm on R", then

72(By, |l - lIx) < diam(By, || - [Ix) + viog n E [lgllx ,
where g is a standard n-dimensional Gaussian.

Proof. A straightforward volume argument shows that any set of 6-separated points in (B}, || - ||)
must have cardinality at most (4/0)", and therefore

en(T, || ) < 4- N " =427,
Taking L := diam(B}, || - ||x), we have (B}, || - ||x) < L-en(B5, || - |), and therefore

en(BY, || - I1x) < 4L - (272'/m).



Denote S := sup,,. 212e(T, || - |I%)- Applying Theorem 2.2 yields, for any ho > 0,

1/2
Z (zh/zz—zh/n)z) _

h>hy

vo(T, d) < S\ho +4L

Choosing hg > 21log n bounds the latter sum by O(1), yielding
y2(T,d) < Sy/logn + L.

To conclude, use Lemma 2.3 to bound S. m]

2.2 Warm up

The next lemma will allow us to establish the existence of hypergraph spectral sparsifiers with at
most O(e?n(logn)?) hyperedges. It also provides a nice warm up for the more delicate arguments
in Section 2.4.

Let A : R" — R™ denote a linear operator. We use the notation

|All2500 := max [|Ax||co -
[lx[I<1

This is equal to the maximum ¢, norm of a row of A. Define the norm
llx|la = |Ax|le ,
and let us observe the following.

Lemma 2.5. If g is a standard n-dimensional Gaussian, it holds that

Ellglla < lAll2—c0logm .

In particular, Lemma 2.3 gives

en(By, 1| - 1) < 27" log m||All2—co -

Proof. If ay,...,ay are the rows of A and g is an n-dimensional Gaussian, then
EllAglle = [Er,g[a>§|<9,ai>l S max llaillvlogm = ||All2—eylogm . 0
elm elm

Additionally, let @1, @2, ..., om : R" — R be arbitrary functions.

Lemma 2.6. For any subset T C B, it holds that

1/2
M M
Esup ) ¢jpj(Ax)? < Viogmlogn | Al - sup  lpj(2) = @;(2)] -sup| > @j(Ax?|
xeT j:1 jE[M], xeT j=1
2=zl

where €1, ..., ey are i.i.d. Bernoulli +1 random variables.



Proof. Define

a:=max sup |@i(z)—@iz)], (2.5)

jelM] ||z—z’||I:<1 i Vi
o 1/2

B:=sup| > pj(Ax)*| (2.6)
x€T ]:1
M

Vy = (g]-(pj(Ax)2 ,

=1

and note that {V, : x € R"} is a subgaussian process with respect to the distance
v i 1/2
d(x, %)= | > lgj(Ax)? = @;(A2)|
j=1

Thus in light of (2.3), it suffices to prove that

y2(T,d) < ylogmlogn||All2—w - af . (2.7)

Note that forx, X € T,

M
d(x, £ = 3" (9j(A%) - 9;(A2))* (9;(Ax) + 9;(A2))*
=1
M
<2 (pj(Ax) — (%)) (ij(AX)2 + (Pj(AJ?)Z)
=1
M

25) X X
<202 A= DI Y (@)(Ax7 + 9,(AD7)
j=1
2.6)
< 4B lx - 2|15 - (2.8)
In particular, we have
y2(T, d) <2aB - yo(T, || - la) < 2aB - y2(By, || - [la), (2.9)

where the last inequality uses T C Bj.
Noting that diam(B7, || - [|4) < 2[|All2—, we can thus apply Lemma 2.5 and Corollary 2.4 with

Il - llx = || - || 4 to conclude that
v2(By, |l - lla) S |All2—wylogmlogn .
Combining this with (2.9) completes our verification of (2.7). O

In Section 2.4, we will obtain an improved bound by using convexity in a stronger way. In
particular, we will assume that each of the functions ¢; in Lemma 2.6 is a norm on R™.
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2.3 Growth functionals

Talagrand introduced a powerful way to control y»(T, d) via the existence of certain growth
functionals. For x € T and p > 0, define the ball

Ba(x,p):={y eT:d(x,y) < p}. (2.10)

Definition 2.7 (Separated sets). Let (T, d) denote a metric space and consider numbers a > 0,r > 4.
Say that subsets Hy, ..., H,, € T are (a, r)-separated if

Hy C By(xg,a/r), €=1,...,m,
where x1, ..., x, € T are points satisfying
a<d(xe,xp)<ar, YL+ (2.11)

Definition 2.8 (The growth condition). Consider nonnegative functionals {Fj, : 1 > 0} defined on
subsets of a metric space (T, d) and which satisfy the following two conditions for every i > 0:

Fiu(S
Fh+1(5

Fu(S"), VScS'cT,

) <

) < Fu(9), VSCT.

Say that such functionals satisfy the growth condition with parameters r > 4 and c¢* > 0 if for any
integer h > 0 and a > 0, the following holds true with m = Nj1: For each collection of subsets
Hi,...,Hy C T that are (a, r)-separated, we have

Fy (U Hg) > c'a2? + r(p<inr11 Fr1(Hy). (2.12)

i<m

Theorem 2.9 ([ , Thm 2.3.16]). Let (T, d) be a K-quasimetric space and consider a sequence of
functionals {F),} satisfying the growth condition (cf. Definition 2.8) with parameters r > 4 and ¢* > 0.
Then,

(T, d) <k %FO(T) + 7 - diamg(T).

Remark 2.10 (Packing/covering duality). For the reader encountering Definition 2.8 and Theorem 2.9
for the first time, the role of the functionals {Fj } might appear mysterious. Some intuition can be
gained by considering the duality between covering and packing: A set S in some metric space
can be covered by m balls of radius r > 0 if it is impossible to find m points in S that are pairwise
separated by distance 7.

The quantity y2(T, d) (cf. (2.2)) is a sort of multiscale covering functional. The growth functionals
{Fn} measure the “size” of packings of various cardinalities, and (2.12) asserts a form of packing
impossibility. This makes Theorem 2.9 a multiscale analog of the simple packing/covering argument
recalled above.

Those familiar with convex optimization and duality may find the approach of [ ]
instructive in this regard. It is shown that the corresponding fractional multiscale covering and
packing values are equal by convex duality, and then a rounding argument establishes that the
integral versions are equivalent up to constant factors.
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We will use the following corollary of Theorem 2.9 that simplifies the construction of functionals
if we have a bound on the growth rate of nets in (T, d).

Corollary 2.11. Let (T, d) be a K-quasimetric and assume there are numbers k, L > 1 and r > 4 such that
that for every a > 0,

k
L
Hiy,...,Hy C T are(a,r)-separated = m < (E) . (2.13)

Let hg be the largest integer h > 0 such that
22" < (2L)K=D/2 (2.14)

Consider a sequence of functionals {Fo, F1, ..., Fy,} satisfying the growth condition (2.12) with parameters
rand ¢* > 0. Then,

(T, d) <k %FO(T) + 7 - diamy(T) (2.15)
Proof. Define the numbers

¢j 1= c'L - 272 /kli=0/2

[0e]

Co:= Z i,

j=h0+1

and note that Cy < ¢*, since (2.14) is Violgted for every h > ho + 1.
Define a new family of functionals {F, : 1 > 0} so that for every S C T,

Fi(S) := Fx(S) + Co, h=0,1,..., ho,
h
Fu(S):=Fy(S)+Co— > ¢j,  h>ho.
j=ho+1

By construction, these satisfy the growth condition Definition 2.8 since for h > ho,if Hy,...,H;, €T
are (a, r)-separated sets with m = 2211”, then

i U H¢| > cpi1 + Fa U H| > cpi1 + minFy (Hy) > c*a2? + min F), (Hy),

o 0 {<m {<m

where the last inequality uses the fact that a < L272""'/¥ from (2.13). Moreover, we have
Fo(T) = Fo(T) + Co < Fo(T) + O(c),

and therefore we can apply Theorem 2.9 to {F,} to complete the proof. m]

2.4 Further exploiting convexity

We will now use the growth functional approach (cf. Section 2.3) to prove a more elaborate upper
bound under the additional assumption that our summands are derived from norms. This will

log D
2

allow us in Section 3 to find spectral e-sparsifiers with O( nlog n) hyperedges.
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Let N1, N>, ..., Ny be norms on R" and define

=E N;
K max N; i),

A= max (E[N(97])
T A

where g is a standard n-dimensional Gaussian.
Lemma 2.12. Forany T C BY, it holds that

1/2 1/2

[EsuszjN](x) <sup Z:N](x)4 ()\ logn+1<) sup ZN](X)Z ,

] =1 ] 1 xeT ] 1
where €1, ..., eym are i.i.d. Bernoulli +1 random variables.

Before proving the lemma, let us illustrate a corollary that we will use to construct hypergraph
sparsifiers. Consider a linear operator A : R" — R, and suppose that each N; is a (weighted) {w
norm on some subset S; C [m] of the coordinates:

Ni(z) = m%ijl(Az)]| w e [0,1]%. (2.16)

Let ay, ..., a, denote the rows of A, and observe that (Ag); = (a;, g) is a normal random variable
with variance ||a; ||, and therefore

E[Ni(9)F? = Emaxw?|(a;, ) < max|a;|*- \[log |Si|.
jES; JES;
Similarly, we have

K= [Emaxmaxw]|<a],g>| E max [(a;, 7)| < ||All2—cvlogm,
lE[M] el 16[1’11]

and
M M
DN < AR, D Nj()?,
j=1 j=1
yielding the following.

Corollary 2.13. If the norms Ny, ..., Ny are of the form (2.16) for some A : R" — R™ and subsets
S1,...,S5m S [m] with max;em) |Si| < D, then for any T C B, it holds that

1/2
[EsupZ:é]N](x)2 ||A||2_>oo\/log(m +n)log D - sup Z}N](x)2 ,

xeT i=1 xeT \\Z

where €1, ..., eym are i.i.d. Bernoulli +1 random variables.
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The proof of Lemma 2.12 is modeled after arguments of Rudelson [ ] and Talagrand;
see [ , §16.7] and the historical notes in [ , §16.10]. A version of the latter argument

first appeared in [ ], as a simplification of Rudelson’s original construction of an explicit
majorizing measure. In the proof of [ , Prop 16.7.4], one encounters growth functionals of the
form F(S) = 1 — inf{||ul| : u € conv(S)}, where || - || is a uniformly 2-convex norm. We recall this
definition.

Definition 2.14 (Uniform p-convexity). A Banach space Z is called uniformly p-convex if there is a
number 7 > 0 such that for all x, y € Z with ||x||z, |lyllz < 1,

xX+y P
|7, <1 -mx-uit.

We remark that the statement of Lemma 2.12 actually holds when T is a subset of the unit ball
of any uniformly 2-convex norm on R" (with an implicit constant that depends on 7).
We will instead employ functionals of the form

M
F(S)=2—inf{ |lul*+ Z N]'(u)2 :u € conv(S)
j=1

1/2
Problematically, the norm u (||u |17 + Zfﬁl N j(u)z) is potentially very far from uniformly

2-convex, thus we have to be careful in using only 2-convexity of the Euclidean norm, along
with 2-convexity of the “outer” £, norm of the N;’s. This requires application of the inequality
INj(x) = N;(£)| < Nj(x —X) only at judiciously chosen points in the argument. We offer some further
explanation in Remark 2.21 after the proof.

Proof of Lemma 2.12. For aset S C R", let conv(S) denote the closed convex hull of S. Note that by

convexity,
1/2 1/2

M M

sup| > NixP| = sup |} Njx)?

x€eT =1 xeconv(T) =1

Therefore we may replace T by conv(T) and henceforth assume that T is compact and convex.
By scaling {N;}, we may assume that

M
sup Z Ni(x)? =1. (2.17)
x€T =1

Define V, = Z]-Ail ¢iN j(x)z. Then {V, : x € R"} is a subgaussian process with respect to the

metric
1/2

M
d(x,£):=| D INj(x)? = N;®)*P|
i=1
therefore from (2.3), we have ~
Esup Vy < 72T, d). (2.18)
xeT
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Passing to a nicer distance. Define the related distance
1/2

M
dx, %) = | Y Njlx - 27 (N,‘(x)2 + Nj(;e)z) ,
j=1

and note that for all x, x € R”,
~ M 2 2
d(x,%)? = Z (Nj(x) = Nj(2))* (Nj(x) + Nj(2))
j=1

M
<23 Njx - )2 (N]'(x)z 4 Nj(;e)z) = 2d(x, %),
j=1

We will observe momentarily that
d(x,%) <2V2(d(x,y) +d(y,%)),  Vx,%yeR".
Since d < V2d and d is a quasimetric, (2.3) gives

Esup Vy < 92(T,4d),

xeT

and thus our goal is to establish that

y2(T,d) < Aylogn + x + diamy(T) .

Indeed, note that

1/2
M
diamy(T) < sup Z Nj(x)4 ,
xeT ]:1
and therefore (2.20) yields our main claim.

Lemma 2.15. For any metric space (X, D) and xo € X, it holds that the distance
D(x, %) := D(x, £) (D(x, xo) + D(%, x0))
is a 2-quasimetric.

Proof. Define i(x) := D(x, x9) and consider x, £, y € X. Then,

(D(x,y) + D(%, y)) (¢(x) + (X))
D(x,y) (¥ (x) +¥(y) + D(%,y)) + DX, y) (Y (%) + ¢(y) + D(x, y))
D(x,y) + D(%,y) +2D(x, y)D(, y) .

D(x, %)

NN

N

Now use 2D(x, y)D(%,y) < D(x, y)> + D(&,y)*> < D(x,y) + D(%, y), completing the proof.

14
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Applying the preceding lemma with D(x, £) = N;(x — ) and xo = 0 shows that the distance
(x,%) = Nj(x — £)(N;(x) + Nj(a?)z)l/z isa 2\/§—quasimetric foreachj=1,..., M, and therefore d is
a 2V2-quasimetric on R”, verifying (2.19).

Balls in (R", d) are approximately convex. Recall the definition of the balls B;(x, p) from (2.10).
Lemma 2.16. For any x € R" and p > 0, it holds that

conv(By(x, p)) € Ba(x,4p).

Proof. For y € By(x, p), we have

M 1/2
(Z Nj(x — y)ZNj(x)z) <p, (2.21)
j=1
as well as
1/4 1/4
M 1 M
VP > dx,y)'? = (Z Nj(x = y)* (Nf(x)2 + Nj(y)2)) > (5 D Njx - y)4) N 7))
j=1 j=1

where the final inequality uses Nj(x — y) < Nj(x) + N;(y). Since the left-hand side of (2.21) and
the right-hand side of (2.22) are both convex functions of y, these inequalities remain true for all

y € conv(By(x, p)).
In particular, for any y € conv(By(x, p)), we can use a® + b* < 4a” + 2(a — b)? to write

y 1/2
d(x,y) < (Z Nj(x - y)® (41\7]‘(%)2 +2(Nj(x) - Nj(y))z))

=1
] y 1/2 u 1/2
< Z(Z Nj(x—y)zNj(x)z) +\/§(Z N]-(x—y)4) <4p. m|
j=1 j=1

Covering estimates. Define now the following norms on R":

llx|l; := max Nj(x),
jeM]

1/2
M
lxllew) = (Z Nj(x)zNj(u)z) , ueR".

=1

Lemma 2.17. Forall x,x,u € R",

M M
d(x, )% < 2|lx — 2113, (Z (Nj(x) = Nj)* + > (Nj(#) - Nj(u))z) +4llx =212, -
j=1 j=1

15



Proof. Use the inequalities
Nj(x)* < 2(Nj(x) — Nj(u))* + 2Nj(u)*,  x,u € R"

to write

M
(N;(x) = Nj(u))* +2 Z Ni(x = £)2Nj(u)?
j=1

M
Z Nj(x — 22N;(x)? < 2||x - 2|2,
j=1

D= 1=

A 2 &
=2[|x = 2I1%, ), (Nj(0) = Nj(w))” +2llx - 2l - .

-
1l
—_

Lemma 2.18. It holds that

en(By, Il - lIn) s 27",
en(BY, |- llewy) S 2724, VueT.

Proof. Both inequalities follow readily from Lemma 2.3: If g is a standard n-dimensional Gaussian,
then
en(By, Il llv) < 272 E llgliy =272k,

by the definition of k. For the second inequality,
enB, N - ley) < 27" Ellgllsw) -
Now use convexity of the square to bound
) M
(Ellgllew)” < Ellglig,, = > Nj)?E[N;(g/] < A2,
j=1
where the final line uses the definition of A and Z]-Aﬁ N ]-(u)2 < 1by (2.17), because u € T. O

We also need a basic estimate that we will use to apply Corollary 2.11. Observe that for x, £ € T,

(2.17)
dx, %) < V2llx = 2y < V2(llxlln + 121Iv) < 2V2, (2.23)
where the last inequality uses ||x||x < (Zj]\il N]-(x)z)l/2 < lforx € T, by (2.17).
Lemma 2.19. Forany a >0, if x1,...,xx € T satisfy d(x;, x;) > a for i # j, then, K < (g)n.

Proof. As noted above, we have ||x||y < 1for x € T, and (2.23) gives ||x; — x;[|x; > a/V2 fori # j.
Therefore by a simple volume argument (valid for any norm on R"):

K<(1+2aﬁ)n<(é)n,

a

where the last inequality follows because if K > 2, then (2.23) implies a < 2V2. m]
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The growth functionals. Define a norm on R" by
1/2

M
el s={ Hlull? + " Nj@)? | (224)

=1

Denote r := 64. Let hg be the largest integer so that 22" < (12)"(0=1/2  and note that oy < O(logn).
Define

max(hg+1—-h,0)

. 2,
Fy(S) =2 —inf {|[|u[|* : u € conv(S)} + logn

, h=0,1,...,h. (2.25)

Recall that T C B7 and, along with (2.17), this gives maxyer |||u|||2 < 2. Since hy < O(log 1), we have
Fo(T) < O(1).
From Lemma 2.19, it holds that the packing assumption (2.13) is satisfied with L = 6 and

k = n. Therefore if we can verify that our functionals satisfy the growth conditions (2.12) for
h=0,1,...,hpy, then we will conclude from (2.15) that

2T, d) < % + diamy(T) . (2.26)

Consideration of (a, r)-separated sets. Define K := Nj,,; and consider points {x1,...,xx} € T
such that d(xy, x) > a whenever ¢ # {’, along with sets Hy C T N By(x¢,a/r)for{ =1,...,K.

Let zo be a minimizer of |||u|||* over u € conv(lJ 1<k He), and note that zg € T since T is closed
and convex. Define 6 := |||zo|||2 and

— ; 2,
0:= max min {|||u||| TS ConV(Hg)} ,
and for each ¢ € [K], let z; € conv(Hy) be such that |z¢||* < 6.
Note that conv(Hy) C conv(B;(x¢,a/r)) C Bi(x¢,4a/r), where the latter inclusion follows from

Lemma 2.16. Since z; € conv(Hy), we have d(xy, z¢) < 4a/r forall ¢ € {1,...,K}. In particular for
0,0’ €{1,...,K} with £ # {’, we can use the quasimetric inequalities (2.19) to write

a < d(xp, xp) <2V2(d(xe, 2¢) + d(ze, x0))
<2V2 4751 +8(d(z¢, zp) + d(zp, xp)) < (8+ 2\/5)4711 +8d(zy, zp).
Using our choice r = 64, we conclude that that for ¢ # ¢’,

a
d(ze, zp) 2 TR (2.27)

Observe that

. 1
Fy, (U He) —r&l?th(He) =(2-00)-2-0)+ fogn ~ 0 —0p +

logn’
<K &

17



thus to verify that the growth condition Definition 2.8 holds for {F}}, our goal is to show that

1 2h/24

> . h=0,1,...,h. (2.28)
logn ™ i 4+ A\/logn

-1
This will confirm the growth condition with ¢* =< ()\ logn + K) , and therefore (2.26) yields our
desired goal (2.20).

The next lemma exploits 2-uniform convexity of the ¢, distance. Note that the claimed inequality
would fail (in general) if the left-hand side were replaced by the larger quantity |[|zo — z, 12, as [l
is not necessarily 2-convex.

Lemma 2.20. Forevery { =1,...,K, it holds that
< 2
llzo = zell” + Y (Nj(z0) = Nj(ze)* < 4(0 - 6y).
j=1

Proof. Let us use

a->b 2—1a2+1b2— a+b\’
2 2 2 2 :

to write

M 2 M M
Zo— 2y 2 N](ZO)_N](Zf) _ 1 2 ) 2 1 2 ) 2
| H+;( -imm+;wm>+§mm+;M%>

2 2

_ Hzo er zeHZ ~ i (Nj(Zo) ; Nj(Ze))Z‘

2072t), so the preceding identity gives

By convexity of the norm N, we have %(Nj(zo) +Nj(z¢)) = Nj(

HMHZ N i (Nj(zo) - Nj(Ze))2

1 1
- . < 5 MzellP + 3 lzoll? - 2

2 2
< llzel® = 225
<0-0,
. . 2 .
where the inequality |||¥”| > 6 follows from 2= € conv(|Jy<x Hy), since zg € conv({U,<x He)
and z; € conv(Hy). m|

Define p := 0 — 0p. One consequence of Lemma 2.20 is that
Z1,---,2K € Zo+2\/ﬁBg .

We can cover zp +2+/pB} by Nj, sets that have || - || y-diameter bounded by 2e;,(24/pB, || - [|»)- Since
we have K = Nj;1 = Ni points z1, ..., zk, at least Nj, of them z;,, ..., Zjy, must lie in the same set

18



of the cover. And by definition, these points cannot all have pairwise || - [|g(,,) distance greater than
en(24/pB}, || - ll6(zy))- Therefore we must have at least two points zy and zy with £ # £’ and ¢, {" > 1,
and such that

lIze = zellv < 2en2vPB3, 1| - lIn) < 27" kP,
lze =z llecz) < enVPBY, Il - le@) S 272Ap,

where the latter two estimates follow from Lemma 2.5 and Lemma 2.18, respectively.
Let us also note a second consequence of Lemma 2.20, that

M M
2 2
(Nj(z0) = Nj(z0))* + > (Nj(z0) = Nj(ze))” < 4p.
j=1 j=1
Using the three preceding inequalities in Lemma 2.17 yields
2 22 2 - 2.2 n—h 2 12 2 ol y2
a” < d(ze,ze)” <27"p K" +27"pA <max(2 K°p*,2 /\p).

This implies
2M2q 2hg?
p 2 min (—'_AZ ) .

Since it holds that

2h g2 1 2h/2,
>

+ 2 ,
Az logn = A\flogn

. (Zh/Za Zh/zll ) 2h/2a
2 min >4
A

we conclude that

+ 7 :
§ logn K Aylogn vlogn +x
Recalling that p = 0 — 0y, we have established (2.28), completing the proof. m]

Remark 2.21 (Discussion of the implicit partitioning). It is often more intuitive to think about
bounding y»(T, d) by explicitly constructing the sequence of partitions { Ay} (recall (2.2)). Thisis a
technical process that is aided significantly by Theorem 2.9, whose proof involves the construction
of partitions from growth functionals.

Recall the norm |||-||| from (2.24) and for a subset S C B/, define the quantity

@(S) := 2 —min {|||x|||2 tX € conV(S)} .
Then ¢(S) can be considered as an approximate measure of the “size” of S, where sets of larger

@(S) value tend to have a larger Esup,.¢ Zj]\fl ¢jNj(x)? value.

Recall that r := 64. Consider a ball B;(xo, 1), and let zg € B4(xo, 4n) be such that ¢(B4(xo, 1)) =
2 - |||zo|||2. Let us think of zy as the “analytic center” of the ball B;(xo,n). (We have to take
zo € B4(xo,4n) because the ball B;(xg, ) is only approximately convex.)

Define the distance

1/2

M
Ak y) =[x =ylP+ D (N -Niw)? |, xyeR".
j=1
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For x € By(xo,n), let £ € By(x,4n/r?) denote a point satisfying ¢(B4(x,n/r?)) = 2 - |||9?|||2. Then
Lemma 2.20 gives

AGzo, 9 5 @ (BaCxo, m) = ¢ (Ba(x,n/r%) 229)

In other words, either the p-value of B4(x, 17/7?) is significantly smaller than that of B;(xo, 17), or £
is close (in the distance A) to the analytic center zo.

The second part of the argument involves bounding the number of centers that can be within a
certain distance of zg. Consider now any points x1, ..., xp € Ba(xo, n) with d(x;, x;) > n/r fori # j.
Lemma 2.17 and the covering estimates on e, (B, || - [|g(z,)) and en (B}, || - || &) together give that for
some constant C > 0,

# {i >1: A(zo,a?i)z < p} < exp (% (K2p2 + AZp)) . (2.30)
n
Now (2.29) and (2.30) imply that for any 6 > 0,

# {i >1:¢ (Bd(xi,n/rz)) > @ (Ba(xo,1m)) — 6} < exp (% (K252 + )\26)) . (2.31)

This is the key tradeoff occuring in the argument: A bound on the number of pairwise separated
“children” B4(x;,n/r*) of B4(xo,n) that do not experience a significant reduction in their g-value.

Employing this bound repeatedly, in a sufficiently careful manner, allows one to construct a
sequence of partitions { Ay, } that yields the desired upper bound on (T, d). The role of Theorem 2.9
is to automate this process.

3 Hypergraph sparsification

Suppose H = (V, E, w) is a weighted hypergraph and denote n := |V|. For a single hyperedge e € E,
let us recall the definitions

Qe(x):= max (x, — xv)2 ,
{u,v}e(5

as well as the energy

Qu(x) = " weQe(x).

eeE

3.1 Sampling

Suppose we have a probability distribution y1 € (0, 1]E on hyperedgesin H. Let us sample hyperedges
E = {e1,e2,...,em} independently according to u. The weighted hypergraph H = (V,E, @) is
defined so that

1 & w,
Q) = 37 2, 7 Qu(®),
k=1 F%

In particular, E[Q7(x)] = Qu(x) for all x € R. Recall that the hyperedge weights in H are given by
(1.2). To help us choose the distribution p, we now introduce a Laplacian on an auxiliary graph.
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An auxiliary Laplacian. Define the edge set F := |J,¢ (3), and let G = (V, F, ¢) be a weighted
graph, where we will choose the edge conductances ¢ € RE later. Denote by Lg : RV — RV the
weighted Laplacian
Lg:= Z cij(xi = x))(xi = x;)°, 3.1)
{i,j}eF
where x1, ..., X is the standard basis of R". Let LE denote its Moore-Penrose pseudoinverse and
define

= ILg* e = IR, {i,jyeF,
Rmax(€) := max {Rij {i,j} e (;)} , ecE,
Z = Z weRmax(e) ’
e€E
e = WeRmax(e) e eE. (3.2)
Z
Lemma 3.1. Suppose it holds that

ker(Lg) = span{(1,1,...,1)}, (3.3)
IxI? < Qu(LE?x),  VxeR". (3.4)

Then for any € € (0, 1), there is a number

My <

log D
)
such that for M > My, with probability at least 1/2, the hypergraph H is a spectral e-sparsifier for H.

Proof. We may assume that w, > 0 for each ¢ € E, as otherwise the corresponding edge can
be removed from H. Note that R;; > 0 for all {7,j} € F by (3.3) and the fact that x; — x; ¢
span{(1,1,...,1)}. In particular, the sampling probabilities {y. : e € E} defined in (3.2) are strictly
positive.

By convexity,

E max [Qu(v)-Qp()| < E  max |Qp(v)-Qpz(0)l, (3.5)

Hv:Qu(v)<1 H,A v:Qu(v)<1

where H is an independent copy of H.
The latter quantity can be written as

1 M We 1 M ws
E = L0 -—= > 20, (v
E 5 [ W1 2 Q) g 27, )
1 M W wWp
=EFE — ) =205 w) - =2Q;.(v 3.6
€80 52?27)):1 MZZ1 l(#EiQel() Ue; o )) (36)
1 M w
<2EE — - —0,.(0)], 3.7
EE dnax M;é’u@ Qe (v) (3.7)
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where €1, ..., ey are i.i.d. Bernoulli +1 random variables. Note that we can introduce signs in (3.6)
because the dlstrlbutlon of Qel (v) — ei Q@l (v) is symmetric.

Fore € Eand {i,j} € (5 ) defme the Vectors

Yij = L (Xz
yl] V yl] V ax(e) yZ]
Then we have
w€ +/2 e 2 _ 2
—Q (LY "x) = — max |(L ’x, Xi— xp)” = max (x,y;)". (3:8)
e ~° He {i,j}e(5) - {i.jte(z) I
Define the values
Sij = max ||%e]|| ’ {l/]} € F/

ecE{i,j}e(5)
and the linear map A : R" — RF by (Ax)(; j; := Sij(x, vij/llyijID)-
For k =1,..., M, define the weighted {., norms

IIylkII o
Nk(z) = max |(AZ){1',]'}| {l ]} € ( ) Sl']' >0p.

It holds that

so from (3.8), we have

M
1

Qu(Lx) = 57 ) Nilx)?, (3.9)

i=1

wgl +/2 _ 1 ) ) 2
i Z it QL ™) = M;elNz(x) . (3.10)
Thus we can write the quantity (3.7) as
| M
Z[E[E max — ) & Ni(x)?| < 4|E[E max — Y &Ni(x)?,
xQH(L+/2x)<1 M ; e € v:0n (L+/2x)<1 Z

Define T := {x € R" : QH(Lg/zx) < 1} and note that from (3.4), we have T C BJ. Now apply
Corollary 2.13 to bound

1
E max i eiN;(x)*

11
¢ xel : M1/2 (3.11)

1/2
M | All2—c0y/log 1 logD )
Z Ni(x)?| .
xeT
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Note also that

1< 1 172 \?
— Y Ni(x)? = — >N (L) = -(0v).
max g LN = max 7 2 Ni(Lge) = max Q@)
where the first equality follows from the fact that Qp(x) = Qu(X) when x — £ € ker(Lg), and the

second inequality uses this and an application of (3.9) with x = Lé/ %p.

Recalling our starting point (3.5), it follows that for some universal constant C > 0,

|A]l2—c0y/log 11 log D . (
A

1/2
7:=E max |QH(ZJ) - QH(U)| <C max QH(U))

Hv:Qy(v)<1 M1/2 v:Qn(v)<1
|All2—e0+/l0g 11 log D 1/2
<C E max Qp(v)| ,
M1/2 H v:Qu(v)<1
where the last inequality is by concavity of the square root.
Observe that
7(v) < - Qp(v)| + <1+ - Qp(v)|,
pdhax Qp(v) JJhax | (|Qu(v) = Qp(v)| + Qu(v)) gnax |Qu(v) — Qg (v)]
and therefore we have
Al|z—cr/lognlog D
T < C|| l M1/zg 8 (1+1)2.

It follows that if M > (2C[|All2c0y/I0g 1 10g D)?, then 7 < 4C 1A= Vo807
For 0 < ¢ <1, choosing
3 4C%log D

M : =

1A log
gives

E max |QH(T)) - QH(U)| =7T<E.
A v:Qu(v)<1

The proof is complete once we observe that

i

Al3_. = max $> = max ¢||>=Z max <Z.
” ||2—>oo {i,j}eF ij eEE,{i,j}e(E) ”yz]” {1,]}6(5) Rmax(e)
3.2 Choosing conductances

We are therefore left to find edge conductances in the graph G = (V, F, ¢) so that (3.3) and (3.4) hold
and Z is small. To this end, let us choose nonnegative numbers

{cfj >0:{i,j} € (;),e € E}

such that
Z ¢ =w,, VeckE. (3.12)
{i.jte(z)
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For {i, j} € F, we then define our edge conductance

D YRS (3.13)

eeE:{i,j}e(5)

In this case,

1/2
L0l = (0, Lovy = D" cijloi - v))?
{i,j)eF
=% 5 oy
e<E {ij}e(5)
< ¢, max (v; —v;)?
;j Z T
{i.jre(3)

(3.12) 5
< we max (v; —v;)” = Qu(v).
o e

Taking v = Lg/ %x gives
IxlI” < Qu(Lg %),
verifying (3.4).

Lemma 3.2 (Foster’s Network Theorem). It holds that }.¢; iyer cijRij < n —1.

Proof. Recall that Ri; = (xi — xj, LE(xi — xj)) and Lc = Xy jyer cij(xi — xj)(xi — xj)"- 1t follows that

Z cijRij = Z tr(cij(xi — x))(xi = Xj)'LE) = tr(LgLE) < m -1,

{i,j}eF {i,j}eF
since rank(Lg) < n — 1. m]
Define R
K := max max max(€) Tiees0) (3.14)
e€E {i,j}e(g) Ri]' 1j
so that

Z = Z WeRmax(e) = Z Z cijmaX(e) < KZ Z ciji]- <K(n-1),

e€E e€E {i,j}e(g) ecE {i,]‘}e(s)
where the last inequality uses (3.13) and Lemma 3.2. In conjunction with Lemma 3.1, we have
proved the following.

Lemma 3.3. Suppose there is a choice of conductances so that (3.12) holds and ker(Lg) = span{(1,...,1)}.

Then for any € > O, there is a spectral e-sparsifier for H with at most O(K losz n log n) hyperedges, where K
is defined in (3.14).
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3.3 Balanced effective resistances

We will exhibit conductances satisfying (3.3), (3.12), and (3.14) with K < 1. To this end, we may
assume that the weighted hypergraph H = (V, E, w) has strictly positive edge weights and that the
(unweighted) graph Gy = (V, F) is connected.

Define F := {(e, {i,j}): e € E,{i,]} € (5)}, and consider vectors (cfj ceeE, {i,j} e (;)) € Rf.

Define the convex set

K::Rfﬂ Z ci.=w,:e€E
{ije(3)
We use S} and S, for the cones of positive semidefinite (resp., positive definite) n X n matrices.
Define ¢;; := }.,. (i,jYe(?) cfj and denote the linear function Lg : R — S” by

Le ((cij)) = Z cij(xi — xp)(xi = xj)"-
{i,j}eF

Let | be the all-ones matrix and consider the objective
@ ((cij)) := —logdet (Lg ((cij)) +]) -

Note that X — —log det(X) is a convex function on the cone S} of n X n positive semidefinite
matrices (see, e.g., [ , §3.1]) and takes the value +co on S} \ 8}, . Consider finally the convex
optimization problem:

min {cp ((c) = (cf)) K} . (3.15)
Since Gy is connected, it holds that if (c;j) € R%,, then ker(L¢) is the span of (1,1,...,1), and
therefore L¢ ((cij)) + ] € S/, Therefore @ is finite on the strictly positive orthant R} .

Lemma 3.4. The value of (3.15) is finite and there is a feasible point in the relative interior of K.

Proof. It is straightforward to check that the maximum of eigenvalue of Lg is bounded by
23 (ijye(®) Cii = 2 ) .cg We, hence the value of (3.15) is finite. Moreover, the vector defined by

e

cjj 1= ﬁwe is feasible and lies in R, since the weights w, are strictly positive. O
2

Note that © ((cij)) is only finite if ker(Lg + J) = {0}, i.e., if ker(Lg) = span{(1,...,1)}. Therefore
an optimal solution to (3.15) automatically satisfies (3.3).
Let us write the corresponding Lagrangian as

g ((cfj);a,ﬁ) = —logdet (Lg ((cij)) +]) + Z @, Z cf; = We | = Z Z Biict;
ecE {i,j}e(g) ecE {i,j}e(s)

Lemma 3.4 allows one to conclude that there are vectors (61?].), d,ﬁ with ﬁ > 0 and such that the
KKT conditions hold; see [ , Thm 28.2]. In particular, forall e € E and {7, j} € (;), we have

2 9((65); 0, 8) =0, (3.16)
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By the rank-one update formula for the determinant, we have
dee logdet(Lg + ) = (xi = xj, (Le + )7 (xi = X))

Define L := L¢ ((¢i)). Define If{i]- = (Xi = Xj, ffé()(i - X;))- Taking the derivative of g with respect
to each ij and using (3.16) gives

» r - A he .o e
Ry = (xi— 1, (Co + 7 - ) = e — B, Ve eE {i,j}e (2)

where the first equality uses the fact that the eigenvectors of Lg and ] are orthogonal and
Xi—Xj € ker].
Note that since § > 0 coordinate-wise, this implies that
ﬁmax(e) = max If{z-j < Ae.
{i.jye(3)
Moreover, if 61?]. > 0, then ﬁf] =0 (cf. (3.17)), and in that case Ifiz-j =a, = If{max(e).

We conclude that the edge conductances 6fj yield K < 1in (3.14), and therefore Lemma 3.3 gives
log D
&2

a sparsifier with O( nlogn) edges, completing the proof of Theorem 1.1.
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