
When is Reading More Effective than Tutoring? An
Analysis Through the Lens of Students’ Self-Efficacy

among Novices in Computer Science

Priti Oli
University of Memphis

Memphis, TN, USA
poli@memphis.edu

Rabin Banjade
University of Memphis

Memphis, TN, USA
rbanjade1@memphis.edu

Arun Balajiee Lekshmi
Narayanan

University of Pittsburgh
Pittsburgh, PA, USA
arl122@pitt.edu

Peter Brusilovsky
University of Pittsburgh

Pittsburgh, PA, USA
peterb@pitt.edu

Vasile Rus
University of Memphis

Memphis, TN, USA
vrus@memphis.edu

ABSTRACT
Self-efficacy, or the belief in one’s ability to accomplish a task
or achieve a goal, can significantly influence the effectiveness
of various instructional methods to induce learning gains.
The importance of self-efficacy is particularly pronounced
in complex subjects like Computer Science, where students
with high self-efficacy are more likely to feel confident in
their ability to learn and succeed. Conversely, those with low
self-efficacy may become discouraged and consider abandon-
ing the field. The work presented here examines the relation-
ship between self-efficacy and students learning computer
programming concepts. For this purpose, we conducted a
randomized control trial experiment with university-level
students who were randomly assigned into two groups: a
control group where participants read Java programs ac-
companied by explanatory texts (a passive strategy) and an
experimental group where participants self-explain while in-
teracting through dialogue with an intelligent tutoring sys-
tem (an interactive strategy). We report here the findings
of this experiment with a focus on self-efficacy, its relation
to students’ learning gains (to evaluate the effectiveness, we
measure pre/post-test), and other important factors such
as prior knowledge or experimental condition/instructional
strategies as well as interaction effects.

Keywords
tutoring, self-explanation, self-efficacy, reading, novices

1. INTRODUCTION
Self-efficacy plays a key role in determining the effectiveness
of instructional methods for inducing learning gains, espe-
cially in complex subjects like Computer Science. Students

with high self-efficacy are more likely to be confident in their
ability to learn and succeed, which can lead to better aca-
demic performance and a successful professional career. On
the other hand, low self-efficacy may lead to discouragement
and even the decision to abandon the field.

Indeed, Computer Science is a complex subject matter. Ac-
cording to Morrison et al., [18], using textual languages to
identify variables and maintain track of their values while
also comprehending and managing an external agent (the
computer) entails a degree of complexity not found in sci-
ence, math, or engineering. The difficulty of Computer Sci-
ence topics is well documented. Several researchers [17, 12,
7] have reported that students often perceive computer pro-
gramming courses as being among the most challenging due
to the difficulty of learning how to program compared to
other subjects. Another testament to this is the high attri-
tion rates in introductory CS courses (e.g., CS1 and CS2) [5],
which is quite often due to frustrations students develop to-
wards programming concepts resulting in a negative per-
ception of Computer Science as a discipline [25]. Our work
presented here and our larger goal of developing adaptive
instructional technologies to help students in CS1 and CS2
courses is meant to address those challenges, help students
learn, and improve retention. One adaptive aspect of the
underlying computer-based intervention is to tailor instruc-
tion to students based on their self-efficacy level and other
factors such as prior knowledge. For instance, low-efficacy
students may need more support in the form of hints while
self-explaining code as well as more encouragement in the
form of positive feedback and engaging and motivational el-
ements such as an open social learner model displaying the
performance of aspirational peers in the form of virtual peers
who impersonate a role model. It is beyond the scope of
this paper to address all those elements of our more exten-
sive project. Instead, we focus on self-efficacy and its role
in mediating code comprehension and learning.

Self-efficacy was defined by Bandura as “people’s judgments
of their capability to organize and execute courses of ac-
tion required to attain designated types of performance” [3].

Proceedings of the 7th Educational Data Mining in Computer 
Science Education (CSEDM) Workshop, March 2023



The relationship between self-efficacy and performance is
straightforward. Students with high self-efficacy are more
confident in their ability to learn and succeed, which pos-
itively affects their motivation and engagement and, ulti-
mately, their overall performance. Such students may need
fewer scaffolding of their code comprehension and learning.
The rate of progress and overall performance is mediated
by other factors such as prior knowledge and instructional
strategy. For instance, students with higher prior knowledge
will more likely perform well early on, e.g., early success-
ful steps on whatever instructional tasks they are working
on, and make steady progress towards their learning goal,
which will have a positive effect on their satisfaction, moti-
vation, and self-efficacy thus leading to a self-fulfilling pos-
itive feedback loop. On the other hand, students with low
self-efficacy and low prior knowledge may benefit more from
personalized and supportive approaches, like scaffolded self-
explanations through one-on-one tutoring. The role of the
human or computer-based tutor would be to monitor stu-
dents’ comprehension and learning processes and intervene
with supporting feedback and hints to help students achieve
early successes in various learning tasks and thus provide
satisfaction and increase their motivation and self-efficacy.
Such support is much needed until they gain a critical mass
of knowledge and a level of self-efficacy that will enable them
to continue successfully toward their learning and long-term
career goals. Other factors are important as well, such as
task-level adaptation of instruction. For instance, select-
ing too difficult instructional tasks, even for students with
higher prior knowledge and high self-efficacy, may negatively
affect self-efficacy. In such cases, more support from the hu-
man or computer-based tutor could overcome the mismatch
between the task’s difficulty and the student’s knowledge
and self-efficacy.

Our work presented here is part of our larger goal of un-
derstanding the relationship between factors such as self-
efficacy and prior knowledge, students’ majors, instructional
strategies such as scaffolded self-explanations, and outcomes
such as comprehension, learning, and retention. Specifically,
this paper presents a study that examines the relationship
between self-efficacy and student learning for students in
intro-to-programming classes. Even more specifically, we fo-
cus on scaffolding students’ code comprehension, which can
positively impact their learning and overall performance and
retention. There are two solid reasons for concentrating on
code comprehension to improve students’ learning and self-
efficacy. First, source code comprehension is critical for both
learners and professionals. Students learning computer pro-
gramming spend a significant portion of their time reading
or reviewing someone else’s code (e.g., source code exam-
ples from a textbook or provided by the instructor). Fur-
thermore, it has been estimated that software professionals
spend at least half of their time analyzing software artifacts
to comprehend computer source code. Reading code is the
most time-consuming activity during software maintenance,
consuming 70% of the total lifecycle cost of a software prod-
uct [6]. O’Brien notes that source code comprehension is
required when a programmer maintains, reuses, migrates,
reengineers, or enhances software systems [20]. Therefore,
offering support to improve learners’ source code compre-
hension skills will have lasting positive effects on their aca-
demic success and future professional careers.

Second, learning to program is perceived as difficult because
of too much and too soon emphasizes writing code rather
than reading and understanding code. Indeed, this could
lead to a lack of foundational conceptual understanding,
making it more challenging for students to effectively learn
and apply programming concepts [15]. Therefore, reading
and tracing first before writing code is an approach that is
gaining more attention and is being explored by many re-
searchers and educators. To prepare students for writing
code, activities like code tracing and code reading should
be used because they allow beginners to develop a concep-
tual understanding of basic programming skills with a lower
cognitive load than writing code itself. This will positively
impact their learning and overall retention rates in Com-
puter Science courses.

Another challenge in Computer Science education, and in
particular, for intro-to-programming courses, is the need for
scale as more and more Computer Science and non Com-
puter Science students enroll in such courses. One way to
address the scalability issue is to use learning technologies
that can serve many students. The most advanced learning
technologies are intelligent tutoring systems that can provide
tailored, one-on-one instruction to every student. It is well
documented that one-on-one instruction, i.e., tutoring, is
among the most effective instructional methods. When cou-
pled with scalable, computer-based technologies, it results
in scalable, effective adaptive instructional systems, which
is our focus.

To this end, the study presented here investigates the ef-
fectiveness of scaffolded self-explanation through tutoring
as a strategy for code comprehension and learning of pro-
gramming concepts and compares it to a self-guided reading
strategy while accounting for other factors such as students’
prior knowledge and self-efficacy.

More specifically, we experiment with a novel teaching and
learning environment for Computer Science education in the
form of an Intelligent Tutoring System (ITS) called Deep-
CodeTutor designed to help learners develop code compre-
hension skills and master programming concepts via scaf-
folded self-explanations. The proposed DeepCodeTutor has
been built on strong theoretical foundations such as self-
explanation theories [8] and the Socratic method of instruc-
tion in which a sequence of guiding questions scaffold stu-
dents’ code comprehension and learning processes.

The rest of the paper is organized as in the following. Next,
related, most relevant work is briefly presented. The main
instructional tasks and the targeted computer science con-
cepts, such as loops and arrays, are presented. The de-
scription of the experimental system follows, and then the
experimental design is presented. Results, Conclusions, and
Future Work are the last sections of the paper.

2. RELATED WORK
We briefly highlight prior work on scaffolded self-explanation
as a learning strategy as well as comparative studies on the
effectiveness of this approach compared to reading worked-
out examples. We also discuss prior studies on the role of
self-efficacy in learning.



Self-explanation is explaining learning material to oneself
through speaking or writing [16]. Self-explanation is an ef-
fective strategy to assist students in learning, understanding,
and comprehending the target material [8]. Studies with un-
dergraduate [21] and high school students [1] have found that
those who applied self-explanation techniques while study-
ing worked-out examples performed better on programming
tasks in Visual Basic compared to those who did not use
these strategies. In two other studies, [29, 19], a strong cor-
relation between the ability to trace programs and explain
code in plain English and the ability to write code on paper
in exam settings has been reported. Additionally, using self-
explanation strategies has shown improvement in compre-
hension of programming concepts in introductory computer
science courses [24]. In a comparative study, [24] found that
the Socratic method of guided self-explanation is more ef-
fective than free self-explanation in teaching novices code
comprehension.

Although prior research suggests that increased student in-
teraction, i.e., a more interactive learning/teaching strategy
as in one-on-one tutoring, leads to improved learning out-
comes [28], it is possible that other factors, such as moti-
vation or verbal fluency, could be influencing both the stu-
dent’s interaction, e.g., during tutoring, and their learning
gains. Our work will help better understand the role of in-
teractive learning and its relation and interaction with those
factors such as motivation, self-efficacy, and prior knowledge
and their impact on various student outcomes.

Cronbach and Snow [10] found that highly competent stu-
dents typically learn effectively using a range of instructional
methods, while students with lower levels of competence
may benefit more from more structured or scaffolded in-
struction. VanLehn and colleagues [28] compared the ef-
fectiveness of different forms of instruction, which included
human tutoring (spoken and computer-mediated), natural
language-based computer tutoring, and text-based control
conditions, and found tutorial dialogue to be more benefi-
cial for novices studying content written for intermediates.
However, when novices studied material written for novices
or intermediates studied material written for intermediaries,
the tutorial dialogue was not consistently more effective than
text-based control conditions, which is confirmed by our
study presented here. This suggests that the effectiveness
of tutorial dialogue may depend on the level of preparation
of the student and the match between the student’s prepa-
ration and the content of the instruction [11].

According to Bandura, [3], an individual’s efficacy percep-
tions and beliefs about a course of action affect an individ-
ual’s decision to pursue or continue a task, level of effort
put forth on the task, tenacity in the face of task challenges,
and overall task performance. Bandura further suggests that
individuals with high domain self-efficacy are more likely
to decide to take on complex work, put up more effort to
complete it, and continue when the activity becomes more
difficult. According to a review published in 2016 [4], self-
efficacy is the key factor in predicting the academic success
of university students. Lewis et al. [13] conducted a study
in which they interviewed students to understand the fac-
tors that influence student’s decision to major in computer
science. The study found that students’ self-assessment of

their programming ability is important for their persistence
in the field and that this assessment is based on their per-
ceived prior experience, the speed at completing program-
ming tasks, and grades in computer science courses.

This paper builds on this prior work and explores the role of
self-efficacy in students’ learning of programming concepts
and its interaction with instructional strategies such as scaf-
folding self-explanations.

3. CONTENT: INTRO-TO-PROGRAMMING
TASKS

For the main tasks in our experiment, we used a selection of
Java code examples from the DeepCode codeset [22]. The
DeepCode codeset is a collection of Java code examples that
have been annotated with explanations and can be used for
various purposes, including code comprehension and learn-
ing tasks for students in introductory programming courses.
The DeepCode codeset was chosen for its strong theoretical
foundations, which are based on various theories, including
code comprehension and self-explanation theories and the
ICAP framework [27, 9]. It was also explicitly designed to
be used to develop Intelligent Tutoring Systems that scaffold
students’ code comprehension processes. These two factors
make it an ideal choice for the code comprehension tasks
in our study. The code examples in the DeepCode codeset
include most topics in introductory programming courses,
such as operators, loops, arrays, methods, and classes.

It should be noted that the explanations of the Java code
examples are divided into two major types: logical step and
logical step details. These correspond to the domain and
program models, respectively, of major code comprehension
theories. The logical step details comments also link the
domain model with the program model, thus, correspond-
ing to the integrated model in code comprehension theories.
The code examples were designed to minimize the domain
knowledge needed for full understanding and center around
relatable, world knowledge tasks or contexts, such as deter-
mining if a given year is a leap year. There is another type of
explanation called statement-level explanations, which focus
on the new concept introduced in each example. The code
examples are sequenced such that each introduces only one
new concept and only relies on previously mastered con-
cepts.

Additionally, the DeepCode codeset also includes scaffold-
ing questions logical and statement-level expert explana-
tions, which human or computer-based instructors can use
as hints to scaffold students’ comprehension and learning
based on the socio-constructivist theory of learning. These
hints in the form of questions are progressive, starting with
vague hints and becoming more informative, eventually pro-
viding fill-in-the-blank type hints. This socio-constructivist
approach allows the student to construct their knowledge by
themselves as much as possible, providing help in the right
dosage through hints only the student is floundering.

4. SYSTEM DESCRIPTION
For the experiment, we used an online experimental system
with two main tracks. On one track, the experimental sys-
tem shows students Java code examples with expert expla-



nations. For the other track, the online experimental system
activates a conversational ITS called DeepCodeTutor. Deep-
CodeTutor presents students with one Java code example at
a time, along with its overall goal, i.e., what the code ex-
amples are supposed to achieve (what ’business’ problem is
being solved), and asks them to self-explain the code. The
student’s initial self-explanation is then automatically eval-
uated using automated semantic similarity methods, which
compares the student’s explanation to expert-provided ex-
planations, e.g., the expert explanations in the DeepCode
code examples. The semantic similarity is calculated at the
sentence and paragraph level by comparing a variety of fea-
tures, including an alignment score based on the optimal
alignment of the sentences using chunks and a branch-and-
bound solution to the quadratic assignment problem, word
embeddings, Unigram overlap with synonym check, bigram
overlap and BLEU score [23]. If the similarity score is 0.5 or
higher, the student’s explanation is correct, and they pro-
ceed to the next task. If the similarity score is between 0.4
and 0.5, the student’s explanation is partially correct, and
scaffolding is provided for the incorrect parts. The threshold
value was selected based on previous studies [14].

The goal of DeepCodeTutor is to help students comprehend
and explain the logical step and logical step details of a given
code. If a student provides a correct and complete expla-
nation, they will receive positive feedback and a summary
explanation of what the code does. If the student is missing
important aspects or has misconceptions, DeepCodeTutor
will use scaffolding questions to guide their comprehension
and learning. The number of hints provided may vary de-
pending on the student’s needs, understanding, and articu-
lation. The system will assert the explanation if the student
cannot give a correct and complete explanation even after
scaffolding.

The user interface of TutorApp consists of the following com-
ponents. The goal description for the Java code example is
displayed in the top left corner of the app and is highlighted
in red for immediate attention and easy visibility for stu-
dents (Fig. 1, A). The interactive code editor (Fig. 1, B)
displays the target code example the student should read
in order to understand, comprehend, and articulate. The
code example is divided into logical blocks/chunks sepa-
rated by empty lines. When a question is asked about a
specific block/line of code, as shown in the figure, the tar-
get block is highlighted in yellow. On the right side of the
interface (Fig. 1, C), is a display box that shows the entire
dialogue history displaying the student’s response in blue on
the right, while the tutor’s response is in green on the left.
The student input box is at the bottom right corner of the
interface(Fig. 1, D). It is beyond the scope of this paper to
present all the details of DeepCodeTutor’s design.

5. EXPERIMENT DESIGN
A randomized controlled trial experiment was conducted to
explore the effectiveness of the scaffolded self-explanation
strategies delivered through an online conversational tutor-
ing system called TutorApp. A control experimental con-
dition involved reading code examples from the DeepCode
codeset, annotated with explanations by experts. Students
were randomly assigned to one of the two experimental con-
ditions. The two groups were given the same Java code

examples. That is, the two groups were exposed to equiva-
lent content. Participants in both groups were tested with
respect to their mastery of the targeted concepts. The pre-
and post-tests consisted of predicting the output of five Java
code examples which were aligned in content with the four
main comprehension tasks of the experiment. Students’ per-
formance on those tests was used to compute the main out-
come variable: normalized learning gains. The experimental
group was asked to self-explain the code and received scaf-
folding as needed, while the control group read the anno-
tated code examples. For the experimental group, the first
main task after the pre-test served as a modeling task, i.e.,
it illustrated what explanations of code should look like.

5.1 Protocol
The overall experiment protocol was as follows. First, stu-
dents were debriefed about the experiment, given a chance
to ask questions, and then asked to sign a consent form if
they agreed to proceed. Then, they completed a background
questionnaire about their primary language of communica-
tion, programming experience, and current major. This was
followed by a self-efficacy questionnaire and a pretest, which
assessed students’ prior knowledge of the targeted program-
ming concepts that would be covered in the main task. The
main task refers to the five main code-reading tasks. The
tasks targeted the following programming concepts: vari-
ables and operator precedence, nested if-else statements,
loops, arrays, and creating objects and using their methods.
After completing the main task, the students took a post-
test targeting the same concepts that were covered in the
pretest and main task. Finally, the students completed an
evaluation survey to provide their perceptions of TutorApp.
The system logged all student inputs and tracked the time
associated with each action.

5.2 Participants
We recruited 90 students from an introductory Java Pro-
gramming class in an undergraduate Computer Science pro-
gram at a large public university in the United States. The
study was conducted online. The participants were compen-
sated with gift cards and extra credit for their participation.

The study was conducted by providing clear instructions
for accessing and navigating through the system. Students
were asked to share their screens to ensure that they fol-
lowed the instructions correctly. A graduate student was
also available to answer questions during the experiment.
The participants were randomly assigned to the control and
experimental group. Out of all the participants, 14 identified
themselves as non-native English speakers. The participants
were enrolled in different majors, including Computer Sci-
ence, Data Science, Computational Biology, Physics, Statis-
tics, Engineering, Computational Social Science, Economics,
and Statistics. Out of the 90 participants, 89 completed the
task, with 47 randomly assigned to the control group and
42 to the experimental group.

5.3 Instrumentation of Self-Efficacy
In our study, we assess students’ self-efficacy using a self-
reporting survey. This survey focuses on students’ abil-
ity to learn and perform well in computer science courses,
specifically their problem-solving confidence, debugging con-
fidence, confidence in mastery, and confidence in receiving a



Figure 1: A screenshot of the TutorApp Interface: It includes (A) The goal description for each task, (B) an interactive Java code editor
that shows the current Java code example, and (C) a dialogue history of the interaction between the tutor and learners, and (D) an
input box for the learner to type their responses.

good grade (i.e., success in the course) and are adapted from
Askar and Davenport’s computer programming self-efficacy
scale [2]. The student’s response was recorded on a 5-point
Likert scale: (1) Strongly disagree; (2) Disagree; (3) Neither
agree nor disagree; (4) Agree; (5) Strongly agree for differ-
ent questions. All questions were formulated with positive
wordings. The questions that were used in the self-efficacy
survey can be found in Table 2.

The Cronbach’s Alpha for the ten items among all partic-
ipants was found to be 0.85, which indicates that response
values for each participant across all the items are consis-
tent. To calculate the average self-efficacy score for each
participant, the average of the responses to all questions
was taken.

5.4 Evaluation
Normalized learning gain (LG) [26] was used as the main
outcome metric to assess the effectiveness of two different
learning strategies (among 5 pretest/posttest questions), which
was calculated as follows:

LG =


posttest−pretest

5−pretest
if posttest > pretest

posttest−pretest
pretest

if posttest < pretest

discard if posttest = pretest = 5 or 0

0 if posttest = pretest

6. RESULTS
We start the Results section with an analysis of participants’
self-efficacy. Table 1 provides an overview of students’ re-
sponses to the self-efficacy questionnaire. Overall, the aver-
age self-efficacy score is relatively high, indicating our sam-
ple is biased toward high self-efficacy students. The average

for the experimental condition is lower than for the control
condition but not significantly lower.

Group N Average S.D Median
Overall 89 3.96 0.48 4
Experiment 42 3.92 0.48 4
Control 47 4.01 0.47 4.1

Table 1: An overview of Average, Standard Deviation (S.D)
and Median of Self-Efficacy for different Groups

The average scores across all participants for all the self-
efficacy questions are shown in Table 2. The control group
scores are higher for all questions except the last one.

Participants demonstrated the highest levels of self-efficacy
in their ability to understand Java conditional expressions
and trace well-defined iterative statements in Java. Con-
versely, the participants reported the lowest levels of self-
efficacy with respect to their mastery of Java programming
concepts and their ability to achieve an excellent grade in a
Java programming class. For the targeted concepts in our
main experimental tasks (variables and operator precedence,
nested if-else statements, loops, arrays, and creating objects
and using their methods), self-efficacy scores are quite high
(around 4.0 or above).

Self-efficacy versus Prior Knowledge
Students’ level of expertise, which is approximated in our
case by their prior knowledge as measured by the pre-test,
should have a significant impact on their self-efficacy. Table
3 shows the average self-efficacy score for each level of pre-
test score.



Item
Overall
Avg(S.D)

Control
Avg
(S.D)

Exp.
Avg
(S.D)

I believe I will receive an
excellent grade in Java pro-
gramming class.

3.7
(0.88)

3.74
(0.93)

3.66
(0.83)

I have mastered the concepts
taught in the Java program-
ming class.

3.49
(0.8)

3.57
(0.81)

3.4
(0.78)

I can read Java programs
and make changes to them
according to some specified
requirements.

4 (0.7)
4.10
(0.75)

3.88
(0.62)

I can write Java programs if
given a specified set of re-
quirements.

4.07
(0.7)

4.14
(0.68)

4
(0.72)

I can mentally trace through
the execution of a long, com-
plex Java program given to
me.

3.47
(0.79)

3.55
(0.67)

3.38
(0.89)

I can understand Java’s
conditional expressions (e.g.
if...else.. ).

4.56
(0.53)

4.57
(0.53)

4.54
(0.54)

I can mentally trace well-
defined iterative statements
in Java (e.g. for loop and
while loop).

4.23
(0.68)

4.29
(0.61)

4.16
(0.75)

I can understand the con-
cepts of objects and classes
in Java, given a well-defined
declaration of a Java class.

3.94
(0.67)

3.95
(0.68)

3.92
(0.66)

I understand how the array
data structure works in Java
and how to use it when cod-
ing.

4.21
(0.79)

4.29
(0.61)

4.11
(0.95)

I can debug(correct the er-
rors) a long and complex
program that I had written
and make it work.

3.92
(0.76)

3.91
(0.79)

3.92
(0.73)

Table 2: Average and standard deviation (in parentheses) of
self-efficacy per item.

Pretest
Score

N Avg S.D

5 36 4.13 0.4
4 23 4.02 0.31
3 16 3.95 0.59
2 3 3.46 0.12
1 7 3.45 0.49
0 4 3.37 3.29

Table 3: Average and Standard Deviation(S.D) of self-efficacy
grouped according to pretest score.

Overall, the pre-test measured a moderate positive Pearson’s
correlation of 0.47 between self-efficacy and prior knowledge.
We also asked students to self-report their years of program-
ming experience, which can be viewed as a proxy for their
prior knowledge. The correlation between self-efficacy and

programming experience was found to be 0.45. Those results
suggest that students are relatively good at self-reporting
their prior knowledge.

CS versus non-CS majors: Self-efficacy and Prior Knowledge
Differences
Since our student pool included CS and non-CS majors, we
analyzed those two groups’ self-efficacy and prior knowledge.
Table 4 shows summary statistics for the self-efficacy of those
two groups. The difference in self-efficacy is significant. Ta-
ble 5 shows the average pre-test score for CS and non-CS
majors. We observe a significant difference in prior knowl-
edge based on the t-test value.

Major N Mean S.D t-val Sig.
CS 56 4.05 0.44 2.33 0.01
Non-CS 33 3.80 0.52

Table 4: Self-Efficacy Comparison on CS Major Vs Non-CS
Major

Major N Mean S.D t-val Sig.
CS 56 4.01 1.3 2.28 0.01
Non-CS 33 3.27 1.58

Table 5: Pretest Comparison on CS Major Vs Non CS Major

Self-Efficacy and Learning Gains
Students’ learning is measured by the normalized learning
gains metric mentioned earlier. Furthermore, we charac-
terize their performance by their post-test score. In this
section, we look at the impact of self-efficacy on learning
gains and post-test scores. A Pearson correlation of 0.19
was found between self-efficacy and learning gains. While
this is a modest correlation, we should consider the bias to-
ward high self-efficacy students in our sample. We plan to
further investigate with correlation with larger, less biased
samples. The correlation between self-efficacy and post-test
was 0.56, which shows a considerable positive correlation,
and, importantly, it improved relative to the correlation be-
tween self-efficacy and pre-test.

The role of the intervention/strategies (reading versus scaf-
folding self-explanation) and their interaction with self-efficacy,
and their cumulated impact on learning will be explored
next.

What is the impact of the intervention on learning gains?

For the learning gain (normalized learning gain) analysis,
data from 21 participants in the control group and 11 par-
ticipants in the experimental group were excluded because
they had perfect pretest and posttest scores. Similarly, One
participant’s data was omitted from the analysis of learn-
ing gain because they scored 0 on both the pretest and the
posttest. After eliminating these participants, the remain-
ing participants in the study had an average pretest score
of 3 (N=26, S.D = 1.23) in the control group and around
2.9 (N=30, S.D=1.41) in the experimental group. A t-test
indicated that the two groups had similar levels of prior
knowledge and that the necessary assumptions for the test



(such as a continuous scale for the dependent variable and a
normal distribution) were met. The results of the t-test can
be found in Table 6. To better understand the effect size
of DeepCodeTutor in the null result, we calculated Cohen’s
d for the learning gain, which was found to be a small ef-
fect size of 0.19 in favor of scaffolded self-explanation using
DeepCodeTutor.

Similarly, Table 7 shows the average self-efficacy for each
group and indicates no significant difference between the
average self-efficacy of the two groups.

Group N Mean S.D t-val Sig.
Experimental Group 30 3.0 1.41 -0.8 0.21
Control Group 26 3.19 1.23

Table 6: Independent sample t-test for pretest between ex-
perimental and control group.

Group N Mean S.D t-val Sig.
Experimental Group 30 3.87 0.49 -0.39 0.35
Control Group 26 3.93 0.51

Table 7: Independent sample t-test for difference in average
self-efficacy between experimental and control conditions.

Group N Mean S.D t-val Sig.
Low S.E 26 0.23 0.46 -0.51 0.3
High S.E 27 0.30 0.48

Table 8: Learning Gain Comparison on Low Self-Efficacy
(S.E) Vs High Self-Efficacy (S.E) Split on Median

Our results indicated that there was no significant difference
in learning gain between the control group and the exper-
imental group. However, both groups of students demon-
strated learning gains when using the content from the Deep-
Code codeset, whether through reading the commented code
examples or through scaffolded self-explanation, as shown in
Table 9. The results of the t-test shown in the table indicate
no significant difference in learning between the two groups.
An ANCOVA analysis with learning gains as an indepen-
dent variable, the condition as the grouping variable, and
self-efficacy as a covariate found no statistically significant
difference in learning gains between the two states when ad-
justed for self-efficacy (p = 0.68).

One possible reason for the non-significant difference in learn-
ing gains may be the relatively low difficulty of the main
tasks compared to students’ mastery levels. Indeed, most
students’ pre-test scores were quite high (4 or 5 out of a
perfect score of 5), which means our sample was biased to-
wards the high-knowledge, high-self-efficacy students. This
may be the case that we recruited the students at the end
of the semester after an entire semester of an opportunity
to master the intro-to-programming concepts. That is, the
majority of the students in our sample are not novices any-
more but rather intermediaries. Furthermore, students’ self-
reported perception task difficulty indicates that they didn’t
find them difficult. As shown in Figure 2, which shows the

perception of the difficulty of questions in the pre/post-test
and main task, both groups of students reported that the
questions were at or below their level. Previous research by
VanLehn [28] suggests that when intermediate learners are
given intermediate-difficulty tasks and novice learners are
given tasks at their difficulty level, their learning in an in-
teractive condition is similar to that of reading. This could
have contributed to the lack of difference in learning gain
between the two groups in our study.

There may have been several factors that impacted students’
learning, such as their self-efficacy. We later examine self-
efficacy’s role in learning and post-test performance after
reporting learning gains for CS and non-CS majors.

Group N Mean S.D t-val Sig.
Experimental Group 30 0.26 0.40 0.34 0.33
Control Group 26 0.22 0.54

Table 9: Independent sample t-test for Learning Gain

(a)

(b)

Figure 2: A diverging plot illustrating the responses of students
to the difficulty of questions in a pre/post-test and main task,
with the left side representing negative responses and the right
side representing positive responses for a)Control group b) Ex-
periment group

CS vs Non-CS Majors: Learning Gains

Major N Mean S.D t-val Sig.
CS 31 0.30 0.51 1.06 0.14
Non-CS 25 0.17 0.41

Table 10: Learning Gain Comparison on CS Major Vs Non
CS Major

Table 10 indicates no statistically significant difference be-
tween CS and non-CS majors regarding learning gains. The
mean learning gains for CS majors are almost twice as that
for non-CS majors. The difference is not significant when
accounting for the experimental condition, as shown in Ta-
bles 11. For non-CS majors, the learning gains are larger
in the experimental condition, whereas in the control con-
dition, the average learning gain for non-CS majors is quite
low. While inconclusive, those findings may suggest that
non-CS majors benefit much more from the interactive strat-
egy. Further studies with a larger and less biased sample is
needed for a more concluding result.



Group Major N Mean S.D t-val Sig.

Experimental
CS 14 0.33 0.48 0.76 0.22
Non-CS 16 0.21 0.33

Control
CS 17 0.28 0.55 0.8 0.21
Non-CS 9 0.10 0.53

Table 11: Learning Gain Comparison on CS Major Vs Non
CS Major Control

How does a student’s self-efficacy influence their learning when
using different learning strategies, explicitly reading versus
scaffolded self-explanation?

We divided students in each condition into two subgroups
based on their self-efficacy scores: the low-self-efficacy and
high-self-efficacy subgroups. The threshold for determin-
ing which subgroup a student belonged to was the median
self-efficacy score, which was 3.9 for both groups (this me-
dian value was obtained after discarding data for normalized
learning gain analysis). This split resulted in significant dif-
ferences in pretest scores between the subgroups (p-value
= 0.0009 in the control group and p-value = 0.007 in the
experimental group), supporting our decision to divide the
groups based on self-efficacy.

Group
Self-
Efficacy

N Mean S.D
t-
val

Sig.

Experimental
Low 14 0.30 0.54 0.46 0.46
High 14 0.31 0.55

Control
Low 11 0.16 0.5 0.9 0.37
High 11 0.36 0.53

Table 12: Learning gain of high and low self-efficacy students
in experimental versus control groups.

Table 12 shows no significant difference in learning between
students with low and high self-efficacy in the experimen-
tal group, suggesting that scaffolded self-explanation is uni-
formly effective for all students. That is, the scaffolded
self-explanation leads to similar learning gains for the low-
efficacy students as for the high-self-efficacy students. Inter-
estingly, high-efficacy students have similar mean learning
gains in the two conditions. Importantly, table 12 also shows
that students with high self-efficacy had twice the learning
gain of those with low self-efficacy when just reading expla-
nations of code examples, although this difference was not
statistically significant. This may imply that the interactive
strategy helps the low-efficacy students twice as much as the
more passive strategy of reading experts’ code explanations.
The difference in learning, while large, is not significant and
may be the result of the small sample size. This is some-
thing we will need to explore with a bigger sample size in
the future.

7. CONCLUSION AND FUTURE WORK
In this study, we examined the relationship between self-
efficacy, instructional strategies, learning and other factors,
such as prior knowledge of the domain of computer program-
ming while students engage in code comprehension tasks.
The results of the experiment show a strong relationship

between self-efficacy and prior knowledge which means stu-
dents with low prior knowledge typically have low self-efficacy
which in turn, for instructional purposes, it means they will
need more support in the form of hints and feedback as
well as motivational support and instructional tasks that are
closer to their level of mastery. Furthermore, the interactive
instructional strategy of scaffolded self-explanations helped
equally students with low and high self-efficacy, whereas the
more passive strategy of just reading seemed to benefit more
the high-knowledge students although the results were not
significant probably due to the small sample size.

Our results suggest that self-efficacy does not significantly
impact students’ learning. For future work, we plan to inves-
tigate further the impact of various aspects of self-efficacy
on learning gain with a larger sample of students. Further-
more, since our participant group was biased towards higher
self-efficacy, we plan to either change the timing of our ex-
periment, e.g., in the middle of the semester before students
had too many opportunities to master the target concepts,
or a better selection of code examples, i.e., selecting tasks
that are more challenging given students’ level of mastery
at the end of the semester (intermediate level content for
novices and advanced content for intermediaries).

In addition to learning gain, we also aim to examine the
relationship between various aspects of the self-explanation-
based tutoring strategy and self-efficacy, such as differences
in the self-explanation of code examples between students
with high self-efficacy and those with low self-efficacy. While
our study was based on tasks that were completed in a single
session, a more comprehensive study in a classroom setting
over a semester could provide further insights into the rela-
tionship between self-efficacy and learning gain. We plan to
continue our research in this direction.

ACKNOWLEDGMENTS
This work has been supported by the following grants awarded
to Dr. Vasile Rus: the Learner Data Institute (NSF award
1934745); CSEdPad: Investigating and Scaffolding Students’
Mental Models during Computer Programming Tasks to Im-
prove Learning, Engagement, and Retention (NSF award
1822816), and Department of Education, Institute for Ed-
ucation Sciences (IES award R305A220385). The opinions,
findings, and results are solely the authors’ and do not reflect
those of NSF or IES.

8. REFERENCES
[1] R. Alhassan. The effect of employing self-explanation

strategy with worked examples on acquiring computer
programing skills. Journal of Education and Practice,
8(6):186–196, 2017.

[2] P. Askar and D. Davenport. An investigation of factors
related to self-efficacy for java programming among
engineering students. Online Submission, 8(1), 2009.

[3] A. Bandura. Social foundations of thought and action.
Englewood Cliffs, NJ, 1986(23-28), 1986.

[4] K. Bartimote-Aufflick, A. Bridgeman, R. Walker,
M. Sharma, and L. Smith. The study, evaluation, and
improvement of university student self-efficacy. Studies
in Higher Education, 41(11):1918–1942, 2016.

[5] J. Bennedsen and M. E. Caspersen. Failure rates in



introductory programming: 12 years later. ACM
inroads, 10(2):30–36, 2019.

[6] B. Boehm and V. R. Basili. Top 10 list [software
development]. Computer, 34(1):135–137, 2001.

[7] M. E. Caspersen and M. Kolling. Stream: A first
programming process. ACM Transactions on
Computing Education (TOCE), 9(1):1–29, 2009.

[8] M. T. Chi, N. De Leeuw, M.-H. Chiu, and
C. LaVancher. Eliciting self-explanations improves
understanding. Cognitive science, 18(3):439–477, 1994.

[9] M. T. Chi and R. Wylie. The icap framework: Linking
cognitive engagement to active learning outcomes.
Educational psychologist, 49(4):219–243, 2014.

[10] L. J. Cronbach and R. E. Snow. Aptitudes and
instructional methods: A handbook for research on
interactions. Irvington, 1977.

[11] X. Fang. Application of the participatory method to
the computer fundamentals course. In Affective
Computing and Intelligent Interaction, pages 185–189.
Springer, 2012.

[12] Ö. Korkmaz and H. Altun. Adapting computer
programming self-efficacy scale and engineering
students’ self-efficacy perceptions. Participatory
Educational Research, 1(1):20–31, 2014.

[13] C. M. Lewis, K. Yasuhara, and R. E. Anderson.
Deciding to major in computer science: a grounded
theory of students’ self-assessment of ability. In
Proceedings of the seventh international workshop on
Computing education research, pages 3–10, 2011.

[14] M. C. Lintean and V. Rus. Measuring semantic
similarity in short texts through greedy pairing and
word semantics. In Flairs conference, pages 244–249,
2012.

[15] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year cs students. In
Working group reports from ITiCSE on Innovation
and technology in computer science education, pages
125–180. 2001.

[16] D. S. McNamara and J. P. Magliano. Self-explanation
and metacognition: The dynamics of reading. In
Handbook of metacognition in education, pages 60–81.
Routledge, 2009.

[17] S. Mollaoglu-Korkmaz, L. Swarup, and D. Riley.
Delivering sustainable, high-performance buildings:
Influence of project delivery methods on integration
and project outcomes. Journal of management in
engineering, 29(1):71–78, 2013.

[18] B. B. Morrison, L. E. Margulieux, and M. Guzdial.
Subgoals, context, and worked examples in learning
computing problem solving. In Proceedings of the
eleventh annual international conference on
international computing education research, pages
21–29, 2015.

[19] L. Murphy, S. Fitzgerald, R. Lister, and R. McCauley.
Ability to’explain in plain english’linked to proficiency
in computer-based programming. In Proceedings of the
ninth annual international conference on International
computing education research, pages 111–118, 2012.

[20] M. P. O’brien. Software comprehension–a review &

research direction. Department of Computer Science &
Information Systems University of Limerick, Ireland,
Technical Report, 2003.

[21] E. S. Rezel. The effect of training subjects in
self-explanation strategies on problem solving success
in computer programming. 2003.

[22] V. Rus, P. Brusilovsky, L. J. Tamang,
K. Akhuseyinoglu, and S. Fleming. Deepcode: An
annotated set of instructional code examples to foster
deep code comprehension and learning. In
International Conference on Intelligent Tutoring
Systems, pages 36–50. Springer, 2022.

[23] V. Rus, S. D’Mello, X. Hu, and A. Graesser. Recent
advances in conversational intelligent tutoring
systems. AI magazine, 34(3):42–54, 2013.

[24] L. J. Tamang, Z. Alshaikh, N. A. Khayi, P. Oli, and
V. Rus. A comparative study of free self-explanations
and socratic tutoring explanations for source code
comprehension. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education,
pages 219–225, 2021.

[25] P.-H. Tan, C.-Y. Ting, and S.-W. Ling. Learning
difficulties in programming courses: undergraduates’
perspective and perception. In 2009 International
Conference on Computer Technology and
Development, volume 1, pages 42–46. IEEE, 2009.

[26] R. K. Thornton, D. Kuhl, K. Cummings, and J. Marx.
Comparing the force and motion conceptual
evaluation and the force concept inventory. Physical
review special topics-Physics education research,
5(1):010105, 2009.

[27] K. VanLehn. The behavior of tutoring systems.
International journal of artificial intelligence in
education, 16(3):227–265, 2006.

[28] K. VanLehn, A. C. Graesser, G. T. Jackson,
P. Jordan, A. Olney, and C. P. Rosé. When are
tutorial dialogues more effective than reading?
Cognitive science, 31(1):3–62, 2007.

[29] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the
novice programmer. In Proceedings of the fifth
international workshop on Computing education
research workshop, pages 117–128, 2009.


