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Abstract

We present an algorithmic framework for quantum-inspired classical algorithms on close-to-
low-rank matrices, generalizing the series of results started by Tang’s breakthrough quantum-
inspired algorithm for recommendation systems [STOC’19]. Motivated by quantum linear algebra
algorithms and the quantum singular value transformation (SVT) framework of Gilyén, Su, Low,
and Wiebe [STOC’19], we develop classical algorithms for SVT that run in time independent
of input dimension, under suitable quantum-inspired sampling assumptions. Our results give
compelling evidence that in the corresponding QRAM data structure input model, quantum SVT
does not yield exponential quantum speedups. Since the quantum SVT framework generalizes
essentially all known techniques for quantum linear algebra, our results, combined with sampling
lemmas from previous work, suffice to generalize all prior results about dequantizing quantum
machine learning algorithms. In particular, our classical SVT framework recovers and often
improves the dequantization results on recommendation systems, principal component analysis,
supervised clustering, support vector machines, low-rank regression, and semidefinite program
solving. We also give additional dequantization results on low-rank Hamiltonian simulation
and discriminant analysis. Our improvements come from identifying the key feature of the
quantum-inspired input model that is at the core of all prior quantum-inspired results: ℓ2-norm
sampling can approximate matrix products in time independent of their dimension. We reduce
all our main results to this fact, making our exposition concise, self-contained, and intuitive.
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†Alfréd Rényi Institute of Mathematics. Formerly at the Institute for Quantum Information and Matter, California
Institute of Technology. Funding provided by Samsung Electronics Co., Ltd., for the project “The Computational
Power of Sampling on Quantum Computers”, and by the Institute for Quantum Information and Matter, an NSF
Physics Frontiers Center (NSF Grant PHY-1733907), as well as by the EU’s Horizon 2020 Marie Sklodowska-Curie
program 891889-QuantOrder. Email: gilyen@renyi.hu

‡Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum
Information and Computer Science, University of Maryland. Research supported by IBM PhD Fellowship, QISE-NET
Triplet Award (NSF DMR-1747426), and the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Quantum Algorithms Teams program. Email: tongyang@cs.umd.edu

§University of Washington. This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1762114. Email: ewint@cs.washington.edu

1



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Applications: dequantizing QML & more . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 14
2.1 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Sampling and query access oracles 15

4 Matrix sketches 21
4.1 Approximation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Singular value transformation 27

6 Applying the framework to dequantizing QML algorithms 30
6.1 Dequantizing QSVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Recommendation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Supervised clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Matrix inversion and principal component regression . . . . . . . . . . . . . . . . . . 41
6.6 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Hamiltonian simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.8 Semidefinite program solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.9 Discriminant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 More singular value transformation 56

A Proof sketch for Remark 6.4 68

B Deferred proofs 69

2



1 Introduction

1.1 Motivation

Quantum machine learning (QML) is a field of study with a rapidly growing number of proposals for
how quantum computers could significantly speed up machine learning tasks [DW20, CHI+18]. If any
of these proposals yield substantial practical speedups, it could be the killer application motivating
the development of scalable quantum computers [Pre18]. At first glance, many applications of QML
seem to admit exponential speedups. However, these exponential speedups are less likely to manifest
in practice compared to, say, Shor’s algorithm for factoring [Sho97], because unlike their classical
counterparts, QML algorithms must make strong input assumptions and learn relatively little from
their output [Aar15]. These caveats arise because both loading input data into a quantum computer
and extracting amplitude data from an output quantum state are hard in their most generic forms.

A recent line of research analyzes the speedups of QML algorithms by developing classical
counterparts that carefully exploit these restrictive input and output assumptions. This began
with a breakthrough 2018 paper by Tang [Tan19] showing that the quantum recommendation
systems algorithm [KP17], previously believed to be one of the strongest candidates for a practical
exponential speedup in QML, does not give an exponential speedup. Specifically, Tang describes a
“dequantized” algorithm that solves the same problem as the quantum algorithm and only suffers
a polynomial slowdown. Tang’s algorithm crucially exploits the input data structure assumed by
the quantum algorithm, which is used for efficiently preparing states. Subsequent work relies on
similar techniques to dequantize a wide range of QML algorithms, including those for principal
component analysis and supervised clustering [Tan21], low-rank linear system solving [CGL+20],
low-rank semidefinite program solving [CLLW20], support vector machines [DBH21], nonnegative
matrix factorization [CLS+19], and minimal conical hull [DHLT20]. These results show that the
advertised exponential speedups of many QML algorithms disappear when compared to classical
algorithms with input assumptions analogous to the state preparation assumptions of the quantum
algorithms, drastically changing our understanding of the landscape of potential QML algorithm
speedups.

A recent line of work in quantum algorithms has worked to unify many quantum algorithms
ranging from quantum walks to QML, under a quantum linear algebra framework called quantum
singular value transformation (QSVT) [LC17, CGJ19, GSLW19]. Since this framework captures
essentially all known linear algebraic QML techniques [MRTC21], including all prior dequantized
QML algorithms (up to minor technical details), a natural question is whether this framework can
be dequantized. One cannot hope to dequantize all of QSVT, because with sparse block-encodings
of input data, QSVT can simulate Harrow, Hassidim, and Lloyd’s pioneering poly-logarithmic time
algorithm (HHL) for the BQP-complete problem of sampling from the solution of a sparse system
of linear equations [HHL09]. However, one could hope to dequantize QSVT provided that the input
data comes in the state preparation data structure used commonly for quantum linear algebra. This
data structure allows for efficient QML when the input is close-to-low-rank, but as dequantized
algorithms show, it also gives significant power to classical algorithms. Prior work [Tan21, CGL+20]
has made similar speculations that these techniques could feasibly dequantize wide swathes of
quantum linear algebra. In this work, we give evidence for these hopes by presenting a classical
analogue of the QSVT framework and applying it to dequantize QML algorithms.

1.2 Results

We describe a simple framework for quantum-inspired classical algorithms with wide applicability,
grasping the capabilities and limitations of these techniques. We use this framework to dequantize
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many quantum linear algebra algorithms. We also prove QSVT-like extensibility properties of our
framework, giving evidence that it can dequantize any QSVT algorithms in the QRAM input model.

Input model: Oversampling and query access. Our framework assumes a specific input
model called oversampling and query access, which can be thought of as a classical analogue to
quantum state preparation assumptions, i.e., the ability to prepare a quantum state |v⟩ proportional
to some input vector v. Our conceptual contribution is to define this generalization of sampling and
query access, because it has better closure properties.

We have sampling and query access to a vector v ∈ Cn, denoted SQ(v), if we can efficiently make
the following kinds of queries (Definition 3.2): (1) given an index i ∈ [n], output the corresponding
entry v(i); (2) sample an index j ∈ [n] with probability |v(j)|2/∥v∥2; and (3) output the vector’s
ℓ2-norm ∥v∥. We have sampling and query access to a matrix A ∈ Cm×n, denoted SQ(A), if
we have SQ(A(i, ·)) for all rows of A, A(i, ·), and also SQ(a) for a the vector of row norms (i.e.,
a(i) := ∥A(i, ·)∥). We have ϕ-oversampling and query access to a vector v, denoted SQϕ(v), if (1)
we can query for entries of v and (2) we have sampling and query access to an “entry-wise upper
bound” vector ṽ satisfying ∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)| ≥ |v(i)| for all indices i; the definition for a
matrix is analogous (Definition 3.4).

The parameter ϕ should be seen as a form of overhead that comes out in the runtime of
algorithms: through rejection sampling, SQϕ(v) can do approximate versions of all the queries of
SQ(v) with a factor ϕ of overhead (Lemma 3.5). In this paper, we most often think of ϕ as being
independent of input size.

To motivate this definition, we make the following observations about this input model. First,
as far as we know, if input data is given classically,1 classical algorithms in the sampling and query
model can be run whenever the corresponding algorithms in the quantum model can (Remark 3.11).
For example, if input is loaded in the QRAM data structure, as commonly assumed in QML in
order to satisfy state preparation assumptions [Pra14, CHI+18], then we have log-time sampling and
query access to it. So, a fast classical algorithm for a problem in this classical model implies lack of
quantum speedup for the problem, at least in the usual settings explored in the QML literature. In
particular, a polynomial-time classical algorithm in this model implies lack of exponential quantum
speedup. Second, oversampling and query access has many similarities to the notion of quantum
block-encodings in quantum singular value transformation [GSLW19]. The commonly used data-
structures that enable oversampling and query access to a matrix A also enable implementing an
efficient quantum circuit whose unitary is a block-encoding of A. Further, in both input models one
can perform efficient matrix arithmetic.

Matrix arithmetic. The thrust of our main results is to demonstrate that oversampling and
query access is approximately closed under arithmetic operations. We argue that the essential power
of quantum-inspired algorithms lies in their ability to leverage sampling and query access of the
input matrices to provide oversampling and query access to complex arithmetic expressions as output
(possibly with some approximation error), without paying the (at least) linear time necessary to
compute such expressions in conventional ways. While the proven closure properties are important
from a complexity theoretic point of view, some of them don’t explicitly come into play in the
demonstrated applications of our framework for dequantizing QML, since they often come with
undesirable polynomial overhead. This is in contrast with quantum block-encodings, which generally
compose with minimal overhead.

1This assumption is important. When input data is quantum (say, it is coming directly from a quantum system), a
classical computer has little hope of performing linear algebra on it efficiently, see for example [ACQ22, HKP21].
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We now list the closure properties that we show, along with the corresponding closure properties
proven for block-encodings in [GSLW19]. For all of these, the query time for access to the output
is just polynomial in the query times for access to the input, so in particular, these procedures
run in time independent of input dimension. More specifically, we will compare what we call
(sub)normalization “overhead” between the two, which is the value ϕ in the classical setting and
what [GSLW19] denotes as α in the quantum setting. The two quantities are analogous, and roughly
correspond to overheads in rejection sampling and post-selection, inducing a multiplicative factor in
sampling times for both.

• Given access to a constant number of vectors v1, . . . , vτ , we have access to linear combinations∑︁τ
t=1 λtvt, and analogously with linear combinations of matrices (Lemmas 3.6 and 3.9). This

is a classical analogue to the “linear combinations of unitaries” technique for block-encodings
[GSLW19, Lemma 52]. In the quantum setting, there is less overhead,2 allowing for efficient
block encodings for linear combinations of arbitrarily many matrices in certain settings.

• Given access to two matrices A,B with Frobenius norm at most one, we have access to a
matrix Z ε-close to the product A†B in Frobenius norm (Lemma 4.6 and Remark 4.7). In the
quantum setting, closure of block-encodings under products is almost immediate [GSLW19,
Lemma 53] and is not approximate. In both cases the individual input overheads of A and
B are multiplied. With the same overheads one can also form Kronecker products A ⊗ B
exactly—this is immediate both in the classical and quantum case [CVB20]. In particular,
given access to two vectors u and v, we have access to their outer product uv† (Lemma 3.8).

• Given access to a matrix A with Frobenius norm at most one and a Lipschitz function f ,
we have access to a matrix Z ε-close to f(A†A) in Frobenius norm (Theorem 5.1)3. In the
quantum setting, block-encodings are closed under even and odd polynomial singular value
transformations [GSLW19, Lemmas 8, 10] without approximation, provided the polynomial is
low-degree and bounded. This block-encoding closure property can be viewed as a corollary of
the above two properties, but can also be achieved directly with some more efficient technical
machinery.

An even polynomial singular value transformation of A is precisely f(A†A) for f a low-degree
polynomial (which means f is Lipschitz), and odd polynomials can be decomposed into a
product of an even polynomial with A, so our closure property is as strong as the quantum
one. The full details are derived in Section 6.1.

To summarize, every arithmetic operation of matrices with block-encodings in [GSLW19] (with the
possible exception of long linear combinations) can be mimicked by matrices with oversampling
and query access, up to Frobenius norm error, provided that an input matrix in a block-encoding
corresponds to having4 SQ(A) and SQ(A†). The “linear combinations of vectors” and “outer
products” classical closure properties have been used in prior work [Tan19, CGL+20]. However,
without our new definition of oversampling and query access, it was not clear that these algorithms
could be chained indefinitely as we show with these closure properties.

2In fact, already
√
ϕ ≥ α/

⃦⃦∑︁τ
t=1 λtvt

⃦⃦
which can be seen using that the root mean-square is at least the average.

3For a Hermitian matrix H and a function f : R ↦→ C, f(H) denotes applying f to the eigenvalues of H. That is,
f(H) :=

∑︁n
i=1 f(λi)viv

†
i , for λi and vi the eigenvalues and eigenvectors of H.

4We take some care here to distinguish whether we have oversampling and query access to A or A†. We don’t need
to: we show that having either one of them implies having the other, up to approximation (Remark 6.4). However, the
accesses assumed in our closure properties are in some sense the most natural choices and require the least overhead.
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Implications for quantum singular value transformation. Our results give compelling
evidence that there is indeed no exponential speedup for QRAM-based QSVT, and show that
oversampling and query access can be thought of as a classical analogue to block-encodings in
the bounded Frobenius norm regime. Nevertheless, we do not rule out the possibility for large
polynomial speedups, as the classical runtimes tend to have impractically large polynomial exponents.
To elaborate more on this connection, we now recall the QSVT framework in more detail.

The QSVT framework of Gilyén, Su, Low, and Wiebe [GSLW19] assumes that the input matrix
A is given by a block-encoding, which is a quantum circuit implementing a unitary transformation
whose top-left block contains (up to scaling) A itself [LC17]. Given a block-encoding of A, one
can apply it to a quantum state or form block-encodings of other expressions using the closure
properties mentioned above. One can get a block-encoding of an input matrix A through various
methods. If A is s-sparse with efficiently computable elements and ∥A∥ ≤ 1, then one can directly
get a block-encoding of A/s [GSLW19, Lemma 48]. If A is in the QRAM data structure (used for
efficient state preparation for QML algorithms [Pra14]), one can directly get a block-encoding of
A/∥A∥F [GSLW19, Lemma 50]. We will use the term QRAM-based QSVT to refer to the family of
quantum algorithms possible in the QSVT framework when all input matrices & vectors are given
in the QRAM data structure.

The normalization in QRAM-based QSVT means that it has an implicit dependence on the
Frobenius norm ∥A∥F. Since ∥A∥F is also the key parameter in the complexity of our corresponding
classical algorithms, this suggests that QRAM-based QSVT does not give inherent exponential quan-
tum speedups (though, if input preparation/output analysis protocols have no classical analogues,
they can act as a subroutine in an algorithm that does give an exponential quantum speedup). Our
closure results confirm this: if input matrices and vectors are given in QRAM data structure, then
on one (quantum) hand we can construct block-encodings of these matrices normalized to have
Frobenius norm one and on the other (classical) hand we have sampling and query access to the
input. The conclusion is that, up to some controllable approximation error, an algorithm using the
block-encoding framework has a classical analogue in the oversampling and query access model. The
classical algorithm’s runtime is only polynomially slower than the corresponding quantum algorithm,
except in the ε parameter.5 One can argue similarly that there should be no exponential speedup for
QSVT for block-encodings derived from (purifications of) density operators [GSLW19, Lemma 45]
that come from some well-structured classical data (see Section 6.1). This stands in contrast to,
for example, block-encodings that come from sparsity assumptions [GSLW19, Lemma 48], where
the matrix in the block-encoding can have Frobenius norm as large as

√
sn (where we take A to be

n× n), and so the classical techniques cannot be applied without incurring dependence on n in the
runtime.

1.3 Technical overview

We now illustrate the flavor of the algorithmic ideas underlying our main results, by showing why
the “oversampling” input model is closed under approximate matrix products. Suppose we are given
sampling and query access to two matrices A ∈ Cm×n and B ∈ Cm×p, and desire (over)sampling
and query access to A†B. A†B is a sum of outer products of rows of A with rows of B (that is,
A†B =

∑︁m
i=1A(i, ·)†B(i, ·)), so a natural idea is to use the outer product closure property to get

access to each outer product individually, and then use the linear combination closure property to
get access to their sum, which is A†B as desired. However, there are m terms in the sum, which is

5The QML algorithms we discuss generally only incur polylog( 1
ε
) terms, but need to eventually pay poly(1/ε) to

extract information from output quantum states. So, we believe this exponential speedup is artificial. See the open
questions section for more discussion of this error parameter.
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too large: we can’t even compute entries of A†B in time independent of m. So, we use sampling to
approximate this sum of m terms by a linear combination over far fewer terms, allowing us to get
access to Z for Z ≈ A†B. This type of matrix product approximation is well-known in the classical
literature [DKM06]. Given SQ(A), we can pull samples i1, . . . , is according to the row norms of A, a
distribution we will denote p (so p(i) = ∥A(i, ·)∥2/∥A∥2F). Consider Z := 1

s

∑︁s
k=1

1
p(ik)

A(ik, ·)†B(ik, ·).

Z is an unbiased estimator of A†B: E[Z] = 1
s

∑︁s
k=1

∑︁m
ℓ=1 p(ℓ)

A(ℓ,·)†B(ℓ,·)
p(ℓ) =

∑︁m
ℓ=1A(ℓ, ·)†B(ℓ, ·) =

A†B. Further, the variance of this estimator is small. In the following computation, we consider
s = 1, because the variance for general s decreases as 1/s.

E[∥A†B − Z∥2F] ≤
∑︂
i,j

E[|Z(i, j)|2] =
∑︂
i,j

∑︂
ℓ

p(ℓ)
1

p(ℓ)2
|A(ℓ, i)|2|B(ℓ, j)|2

=
∑︂
ℓ

1

p(ℓ)
∥A(ℓ, ·)∥2∥B(ℓ, ·)∥2 =

∑︂
ℓ

∥A∥2F∥B(ℓ, ·)∥2 = ∥A∥2F∥B∥2F.

By Chebyshev’s inequality, we can choose s = O
(︁

1
ε2

)︁
to get that ∥Z −A†B∥F < ε∥A∥F∥B∥F with

probability 0.99. Since Z is a linear combination of s outer products, this gives us oversampling
and query access to Z as desired. In our applications we would keep Z as an outer product A′†B′

for convenience. We have just sketched the proof of our key lemma: an approximate matrix product
protocol.

Key lemma [DKM06] (informal version of Lemma 4.6). Suppose we are given SQ(X) ∈ Cm×n and
SQ(Y ) ∈ Cm×p. Then we can find normalized submatrices of X and Y , X ′ ∈ Cs×n and Y ′ ∈ Cs×p,
in O(s) time for s = Θ( 1

ε2
log 1

δ ), such that

Pr
[︂
∥X ′†Y ′ −X†Y ∥F ≤ ε∥X∥F∥Y ∥F

]︂
> 1− δ.

We subsequently have O(s)-time SQ(X ′),SQ(X ′†), SQ(Y ′),SQ(Y ′†).

Prior quantum-inspired algorithms [Tan19, Tan21, CLW18, CLLW20] indirectly used this lemma
by using [FKV04], which finds a low-rank approximation to the input matrix in the form of an
approximate low-rank SVD and relies heavily on this lemma in the analysis.

One of our main results, mentioned earlier as our singular value transformation closure property,
is that, given SQ(A) ∈ Cm×n, in time independent of m and n, we can access an approximation of
f(A†A) for a Lipschitz-function f that, without loss of generality, satisfies f(0) = 0 (Theorem 5.1).
One could use [FKV04] to give a classical algorithm for SVT, but a more efficient approach is to
directly apply the key lemma twice to get an approximate decomposition of f(A†A):

f(A†A) ≈ f(R†R) by key lemma, with R ∈ Cr×n normalized rows of A

= R†f̄(RR†)R by computation, where f̄(x) := f(x)/x)

≈ R†f̄(CC†)R by key lemma, with C ∈ Cr×c normalized columns of R

We call R†f̄(CC†)R an RUR decomposition because R ∈ Cr×n is a subset of rows of the input
matrix and U is a matrix with size independent of input dimension (R corresponds to the ‘R’ of
the RUR decomposition, and f̄(CC†) ∈ Cr×r corresponds to the ‘U’). In other words, an RUR
decomposition expresses a desired matrix as a linear combination of r2 outer products of rows of
the input matrix (

∑︁
i,j [f̄(CC

†)](i, j)R(i, ·)†R(j, ·), for example).6 We want our output in the form

6This is the relevant variant of the notion of a CUR decomposition from the randomized numerical linear algebra
and theoretical computer science communities [DMM08].
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of an RUR decomposition, since we can describe such a decomposition implicitly just as a list of
row indices and some additional coefficients, which avoids picking up a dependence on m or n in
our runtimes. Further, having SQ(A) gives us SQϕ(R

†UR) via closure properties, enabling efficient

access to matrix-vector expressions like R†URb.
More general results follow as corollaries of our main result on even SVT (Theorems 7.1 and 7.2).

However, using only our main theorem about even SVT, we can directly recover most existing
quantum-inspired machine learning algorithms without using these general results, yielding faster
dequantization for QML algorithms. We now outline our results recovering such applications.

1.4 Applications: dequantizing QML & more

We use the results above to recover existing quantum-inspired algorithms for recommendation
systems [Tan19], principal component analysis [Tan21], supervised clustering [Tan21], support
vector machines [DBH21], low-rank matrix inversion [CGL+20], and semidefinite program solving
[CLLW20]. We also propose new quantum-inspired algorithms for low-rank Hamiltonian simulation
and discriminant analysis (dequantizing the quantum algorithm of Cong & Duan [CD16]).

Fig. 1 has a summary of our results, along with a comparison of runtimes to the corresponding
quantum algorithms and prior quantum-inspired work, where it exists. All our results match or
improve on prior dequantized algorithms apart from that for matrix inversion, where prior work
gives an incomparable runtime that only holds for strictly low-rank matrices of rank k. Our results
for matrix inversion and semidefinite program solving solve the problem in greater generality than
prior work, without the restriction that the input matrices are strictly rank-k.7

We do not claim any meaningful breakthroughs for these problems in the classical literature: the
problems that these QML algorithms solve differ substantially from their usual classical counterparts.
For example, the quantum recommendation systems algorithm of Kerenidis and Prakash [KP17]
performs sampling from a low-rank approximation of the input instead of low-rank matrix completion,
which is the typical formalization of the recommendation systems problem [Tan19]. Evaluating
these quantum algorithms’ justifications for their versions of problems is outside the scope of
this work: instead, we argue that these algorithms would likely not give exponential speedups
when implemented, regardless of whether such implementations would be useful. The goal of our
framework is to demonstrate what can be done classically and establish a classical frontier for
quantum algorithms to push past.

The proofs for these dequantization results follow the same general structure: consider the
quantum algorithm and formulate the problem that this algorithm solves, and in particular, the linear
algebra expression that the quantum algorithm computes. From there, repeatedly use the SVT result
and key lemma to approximate this expression by something like an RUR decomposition. Finally,
use closure properties to gain oversampling and query access to that output decomposition. This
procedure is relatively straightfoward and flexible. Also, unlike previous work [CGL+20, CLLW20],
our results need not assume that the input is strictly low-rank. Instead, following [Tan19, GSLW19],
our algorithms work on close-to-low-rank matrices by doing SVTs that smoothly threshold to
effectively only operate on large-enough singular values.

1.5 Related work

Quantum-inspired algorithms. Our approach and analysis is much simpler than that of Frieze,
Kannan, and Vempala [FKV04], while it also gives improved results in our applications, and has
several other advantages. For example, the reduction to [FKV04] first given by Tang to get an

7For semidefinite program solving, ∥A(·)∥F ≤
√
k, which makes the runtimes comparable.
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Hamiltonian simulation

[GSLW19], §6.7
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semidefinite program solving

[vAG19], [CLLW20], §6.8
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√
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+
∥W∥6F∥W∥10

ε6σ16

Figure 1: The time complexity for our algorithms, the quantum algorithms they are based on,
and prior quantum-inspired algorithms (where they exist). We assume our sampling and query
accesses to the input takes O(1) time. There are data structures that can support such queries
(Remark 3.11), and if the input is in QRAM, the runtime only increases by at most a factor of log
of input size.

We list the runtime of the algorithm, not including the time it takes to access the output (denoted
with ˜︂sq). The runtimes as listed ignore polylog terms, particularly those in error parameters (ε and
δ) and dimension parameters (m and n). The matrices and vectors referenced in these runtimes
are always the input, σ refers to a singular value threshold of the input matrices, λ refers to an
eigenvalue threshold (which can be thought of here as σ2), and η > ε is a (dimensionless) gap
parameter.

(♣) indicates that the error analyses of the corresponding results are incomplete; we list the runtime
they achieve for completeness.

(♢) indicates that the corresponding results only hold in the restricted setting where the input
matrices are strictly rank k. For the quantum algorithms with this tag, they allow for general
matrices, but only have an informal error analysis arguing that singular values outside the range
considered don’t affect the final result.
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SVT-based low-rank approximation bound from the standard notion of low-rank approximation
[Tan19, Theorem 4.7] induces a quadratic loss in precision, which appears to be only an artifact of
the analysis. Also, [FKV04] gives Frobenius norm error bounds, though for applications we often
only need spectral norm bounds; our main theorem can get improved runtimes by taking advantage
of the weaker spectral norm bounds. Finally, we take a reduced number of rows compared to
columns, whereas [FKV04] approximates the input by taking the same number of rows and columns.

Randomized numerical linear algebra. All of the results presented here are more or less
randomized linear algebra algorithms [Mah11, Woo14]. The kind of sampling we get from sampling
and query access is called importance sampling or length-square sampling in that body of work: see the
survey by Kannan and Vempala [KV17] for more on importance sampling. Importance sampling, and
specifically, its approximate matrix product property, is the core primitive of this work. In addition
to the low-rank approximation algorithms [FKV04] used in the quantum-inspired literature, others
have used importance sampling for, e.g., orthogonal tensor decomposition [DM07, MMD08, SWZ16]
(generalizing low-rank approximation [FKV04]) and support vector machines [HKS11].

The fundamental difference between quantum-inspired algorithms and traditional sketching
algorithms is that we assume “we can perform quantum measurements” of states corresponding
to input in time independent of input dimension (that is, we have efficient sampling and query
access to input), and in exchange want algorithms that run in time independent of dimension and
provide only (over)sampling and query access to the output. This quantum-inspired model is weaker
than the standard sketching algorithm model (Remark 3.11): an algorithm taking T time in the
quantum-inspired model for an input matrix A can be converted to a standard algorithm that runs
in time O(nnz(A) + T ), where nnz(A) is the number of nonzero entries of A. So, we can also think
about an O(T )-time quantum-inspired algorithm as an O(nnz(A) + T )-time sketching algorithm,
where the nnz(A) portion of the runtime can only be used to facilitate importance sampling.8 This
restriction makes for algorithms that may perform worse in generic sketching settings, but work
in more settings, and so demonstrate lack of exponential quantum speedup for a wider range of
problems.

A natural question is whether more modern sketching techniques can be used in our model. After
all, importance sampling is only one of many sketching techniques studied in the large literature
on sketching algorithms. Notably, though, other types of sketches seem to fail in the input regimes
where quantum machine learning succeeds : assuming sampling and query access to input, importance
sampling takes time independent of dimension, whereas other randomized linear algebra methods
such as Count-Sketch and Johnson-Lindenstrauss still take time linear in input-sparsity.

Subsequent work by Chepurko, Clarkson, Horesh, Lin, and Woodruff [CCH+22] notes that
importance sampling oversamples leverage score sampling, so usual analyses for leverage score
sampling also hold for importance sampling, up to some small overhead. It is reasonable to suspect
that this connection could lead to significant improvements over the results presented here. However,
exploiting this connection for improved runtimes seems nontrivial, since most approaches using
leverage score sampling requires performing O(nnz(A))-time pre-processing operations, even if one
has SQ(A). As a simple example, for low-rank approximation of an input matrix A, if we wish
to adapt the algorithm of Clarkson and Woodruff [CW17, Woo14], importance sampling of A can
replace CountSketch for one of the sketches [Woo14, Lemma 4.2], but importance sampling of SA
cannot replace the other [Woo14, Theorem 4.3]. Versions of importance sampling may work for the
second sketch (for example, sampling from a low-rank approximation of SA), but we are aware

8The same holds for quantum algorithms using the QRAM data structure input model: the data structure itself
can be built during an O(nnz(A))-time (classical) preprocessing phase.
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of none that can be obtained easily from SQ(A). This may be a manifestation of the difficulty of
achieving relative-error estimates to quantities like leverage scores and residuals in this model.

An alternative approach is to use a projection-cost preserving sketch (PCP) like ridge leverage
score sampling to sketch A on both sides [CMM17]. The importance sampling from SQ(A) λ/2-
oversamples ridge leverage score sampling, where λ := ∥A∥2F/∥A − Ak∥2F ≥ ∥A∥2F/σ2k+1, so using
importance sampling in place of ridge leverage score sampling can give algorithms. This is how
[CCH+22] gets their algorithms for low-rank sampling (recommendation systems) and quantum-
inspired linear regression. This does appear to be a promising approach, with possibility to extend
to dequantizing all of QSVT, but to the authors’ knowledge, it is still an open question how to
improve the algorithms presented in this work, with the exception of [CCH+22] improving over our
recommendation systems algorithm. Their use of PCPs significantly improves the runtime for this

low-rank sampling task down below
∥A∥6F
σ6ε6

, but getting a similarly good runtime for all functions
seems nontrivial. For example, their linear regression algorithm requires that the input matrix is
strictly rank-k (or is regularized).

The quantum-like closure properties of importance sampling shown here may be useful in the
context of classical sketching algorithms. This insight unlocks surprising power in importance
sampling. For example, it reveals that Frieze, Kannan, and Vempala’s low-rank approximation
algorithm [FKV04], which, as stated, requires O(kmn) time to output the desired matrix, actually
can produce useful results (samples and entries) in time independent of input dimension. To use
the language in [FKV04], if Assumptions 1 and 2 hold for the input matrix, they also hold for the
output matrix!

Classical algorithms for quantum problems. We are aware of two important prior results from
before Tang’s first paper [Tan19] that connect quantum algorithms to randomized numerical linear
algebra. The first is Van den Nest’s work on using probabilistic methods for quantum simulation
[VdN11], which defines a notion of “computationally tractable” (CT) state equivalent to our notion
of sampling and query access and then uses it to simulate restricted classes of quantum circuits. We
share some essential ideas with this work, such as the simple sampling lemmas Lemmas 3.6 and 4.12,
but also differ greatly since we focus on low-rank matrices relevant for QML, whereas [VdN11]
focuses on simulating potentially large quantum circuits that correspond to high-rank matrices.
The second is a paper by Rudi, Wossnig, Ciliberto, Rocchetto, Pontil, and Severini [RWC+20] that
uses the Nyström method to simulate a sparse Hamiltonian H on a sparse input state in time
poly-logarithmic in dimension and polynomial in ∥H∥F, assuming sampling and query access to
H. Our Hamiltonian simulation results do not require a sparsity assumption and still achieve a
dimension-independent runtime, but get slightly larger exponents in exchange.

Practical implementation. A work by Arrazola, Delgado, Bardhan, and Lloyd [ADBL20]
implements and benchmarks quantum-inspired algorithms for regression and recommendation
systems. The aforementioned paper of Chepurko, Clarkson, Horesh, Lin, and Woodruff [CCH+22]
does the same for the quantum-inspired algorithms they introduce. The former work makes various
conclusions, including that the ε2 scaling in the number of rows/columns taken in our recommendation
systems algorithm is inherent and that the quantum-inspired algorithms performed slower and worse
than direct computation for practical datasets. The latter work finds that their algorithms perform
faster than direct algorithms, with an accompanying increase in error comparable to that of other
sketching algorithms [DKW18]. This improvement appears to come from both a better-performing
implementation as well as an algorithm with better asymptotic runtime. Nevertheless, it is difficult
to draw definitive conclusions about the practicality of quantum-inspired algorithms as a whole
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from these experimental results. Since quantum-inspired algorithms are a restricted, weaker form of
computation than classical randomized numerical linear algebra algorithms (see the comparison
made above), it seems possible that they perform worse than standard sketching algorithms, despite
seemingly having exponentially improved runtime in theory.

Modern sketching algorithms use similar techniques to quantum-inspired algorithms, but are
more natural to run on a classical computer and are likely to be faster. For example, Dahiya,
Konomis, and Woodruff [DKW18] conducted an empirical study of sketching algorithms for low-
rank approximation on both synthetic datasets and the movielens dataset, reporting that their
implementation “finds a solution with cost at most 10 times the optimal one . . . but does so 10 times
faster.” Sketching algorithms like those in [DKW18] may become a relevant point of reference for
benchmarking quantum linear algebra, when the implementation of these quantum algorithms on
actual quantum hardware becomes possible. In a sense, our work shows using asymptotic runtime
bounds that in many scenarios sketching and sampling techniques give similar computational power
to quantum linear algebra, which is a counterintuitive point since the former typically leads to linear
runtimes and the latter leads to poly-logarithmic ones.

Quantum machine learning. Our work has major implications for the landscape of quantum
machine learning. Since we have presented many dequantized versions of QML algorithms, the
question remains of what QML algorithms don’t have such versions. In other words, what algorithms
still have the potential to give exponential speedups?

There are two general paradigms for employing quantum linear algebra techniques in quantum
machine learning: the low-rank approach and the high-rank approach. In both, we need to
turn classical input data vectors to quantum states (via what’s called an amplitude encoding),
perform linear algebra operations on those vectors, and extract information about the output via
sampling [Aar15]. Since preparing generic quantum states require a number of quantum gates
that is proportional to the dimension of the vectors, we need some state preparation assumptions
(like having QRAM with an appropriate data structure, etc., cf. Remark 3.11) in order to achieve
sublinear runtimes. The main difference between the two paradigms is how the input matrices
are given: in the low-rank approach, they are also given in QRAM, and so must be rescaled to
have Frobenius norm one. QSVT with block-encodings coming from the QRAM data structure9

or density operators is an example framework in this vein. The restrictions of this block-encoding
method means that the rank needs to be small, but assuming the hardware needed for QRAM
can be realized, this is still a flexible setting, one that QML researchers find interesting. In the
high-rank approach, which is used in the HHL algorithm [HHL09] and its derivatives, the matrix
needs to be represented by a concise quantum circuit and have a small (poly-logarithmic in input
dimension) condition number in order to gain an exponential speedup over classical algorithms. This
doesn’t happen in typical datasets. The collection of these demanding requirements hamstrings most
attempts to find applications of HHL [HHL09] with the potential for practical super-polynomial
speedups.

Our results give evidence for the lack of exponential speedup for the former, low-rank approach.
It is important to note however, that our results do not rule out the possibility of large polynomial
quantum speedups. In order to assess the potential usefulness of QML algorithms in this regime it is
important to improve on classical upper and lower bounds for these problems, which we leave as an
open question. On the other hand, high-rank block-encodings, such as those coming from sparsity

9The QRAM data structure used here has alternatives which in some sense vary the “norm” in which one stores
the input matrix [KP20, Theorem IV.4], [CGJ19, Lemma 25]. We do not expect that these alternatives would give
sampling and query access to the matrix they store or could be otherwise dequantized, since these datastructures
generalize and strengthen the sparse-access input model, which is known to be BQP-complete [HHL09].
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assumptions in the original HHL algorithm [HHL09], remain impervious to our techniques. This
suggests that the most promising way to get exponential quantum speedups for QML algorithms is
by assuming sparse matrices as input, or utilizing other efficiently implementable high-rank quantum
operation such as the Quantum Fourier Transform.

Works from Zhao, Fitzsimons, and Fitzsimons on Gaussian process regression [ZFF19]; from
Lloyd, Garnerone, and Zanardi on topological data analysis [LGZ16, GCD20]; and from Yamasaki,
Subramanian, Sonoda, and Koashi [YSSK20] on learning random features attempt to address these
issues to get a super-polynomial quantum speedup. Though these works avoid the dequantization
barrier to large quantum speedups, it remains to be seen how broad will be their impact on QML
and whether these speedups manifest for data seen in practice.

Related independent work. Independently from our work, Jethwani, Le Gall, and Singh
simultaneously derived similar results [JLGS20]. They implicitly derive a version of our even SVT
result, and use it to achieve generic SVT (approximate SQ(b†f (SV)(A)) for a vector b) by writing
f (SV)(A) = Ag(A†A) for g(x) = f(

√
x)/
√
x and then using sampling subroutines to get the solution

from the resulting expression b†AR†UR. It is difficult to directly compare the main SVT results,
because the parameters that appear in their runtime bounds are somewhat non-standard, but one
can see that for typical choices of f , their results require a strictly low-rank A. In comparison our
results apply to general A, and we also demonstrate how to apply them to (re)derive dequantized
algorithms.

1.6 Open questions

Our framework recovers recent dequantization results, and we hope that it will be used for de-
quantizing more quantum algorithms. In the meantime, our work leaves several natural open
questions:

(a) Is there an approach to QML that does not go through HHL (whose demanding assumptions
make exponential speedups difficult to demonstrate even in theory) or a low-rank assumption
(which, as we demonstrate, makes the tasks “easy” for classical computers) and yields a
provable superpolynomial speedup for a practically relevant ML problem?

(b) Our algorithms still have significant slowdown as compared to their quantum counterparts.

Can we shave condition number factors to get runtimes of the form ˜︁O(︂∥A∥6F
σ6ε6

log3 1
δ

)︂
(for the rec-

ommendation systems application, for instance), without introducing additional assumptions?
Can we get even better runtimes by somehow avoiding SVD computation?

(c) Do the matrix arithmetic closure properties we showed for ℓ2-norm importance sampling
hold for other kinds of sampling and sketching distributions, like leverage score or ℓp-norm
sampling?

(d) In the quantum setting, linear algebra algorithms [GSLW19] can achieve logarithmic depen-
dence on the precision ε. Can classical algorithms also achieve such exponentially improved
dependence, when the goal is restricted to sampling from the output (i.e., without the re-
quirement to query elements of the output)? If not, is there a mildly stronger classical model
that can achieve this? Can one prove that this exponential advantage for sampling problems
cannot be conferred to estimation/decision problems?

13



1.7 Organization

The paper proceeds as follows. Section 3 introduces the notion of (over)sampling and query access
and some of its closure properties. Section 4 gives the fundamental idea of using sampling and
query access to sketch matrices used for the approximation results in Section 4.1 and singular value
transformation results in Section 5. These results form the framework that is used to dequantize
QSVT in Section 6.1 and recover all the quantum-inspired results in Section 6. These applications
of our framework contain various tricks and patterns that we consider to be “best practice” for
coercing problems into our framework, since they have given us the best complexities and generality.
More general results of SVT are shown in Section 7.

2 Preliminaries

To begin with, we define notation to be used throughout this paper. For n ∈ N, [n] := {1, . . . , n}.
For z ∈ C, its absolute value is |z| =

√
z∗z, where z∗ is the complex conjugate of z. f ≲ g denotes

the ordering f = O(g) (and respectively for ≳ and ≂). ˜︁O(g) is shorthand for O(g poly(log g)). log
refers to the natural logarithm. Finally, we assume that arithmetic operations (e.g., addition and
multiplication of real numbers) and function evaluation oracles (computing f(x) from x) take unit
time, and that queries to oracles (like the queries to input discussed in Section 3) are at least unit
time cost.

2.1 Linear algebra

In this paper, we consider complex matrices A ∈ Cm×n for m,n ∈ N. For i ∈ [m], j ∈ [n], we let
A(i, ·) denote the i-th row of A, A(·, j) denote the j-th column of A, and A(i, j) denote the (i, j)-th
element of A. (A | B) denotes the concatenation of matrices A and B and vec(A) ∈ Cmn denotes
the vector formed by concatenating the rows of A. For vectors v ∈ Cn, ∥v∥ denotes standard
Euclidean norm (so ∥v∥ := (

∑︁n
i=1|v(i)|2)1/2). For a matrix A ∈ Cm×n, the Frobenius norm of A

is ∥A∥F := ∥vec(A)∥ = (
∑︁m

i=1

∑︁n
j=1|A(i, j)|2)1/2 and the spectral norm of A is ∥A∥ := ∥A∥Op :=

supx∈Cn,∥x∥=1 ∥Ax∥. We say that U is an isometry if ∥Ux∥ = ∥x∥ for all x, or equivalently, if U is a
subset of columns of a unitary.

A singular value decomposition (SVD) of A is a representation A = UDV †, where for N :=
min(m,n), U ∈ Cm×N and V ∈ Cn×N are isometries and D ∈ RN×N is diagonal with σi := D(i, i)

and σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. We can also write this decomposition as A =
∑︁N

i=1 σiuiv
†
i , where

ui := U(·, i) and vi := V (·, i). For Hermitian A, an (unitary) eigendecomposition of A is a singular
value decomposition where U = V , except the entries of D are allowed to be negative.

Using SVD, we can define the rank-k approximation of A to be Ak :=
∑︁k

i=1 σiuiv
†
i and the pseu-

doinverse of A to be A+ :=
∑︁rank(A)

i=1
1
σi
viu

†
i . We now formally define singular value transformation:

Definition 2.1. For a function f : [0,∞) → C such that f(0) = 0 and a matrix A ∈ Cm×n, we

define the singular value transform of A via a singular value decomposition A =
∑︁min(m,n)

i=1 σiuiv
†
i :

f (SV)(A) :=

min(m,n)∑︂
i=1

f(σi)uiv
†
i . (1)

The requirement that f(0) = 0 ensures that the definition is independent of the (not necessarily
unique) choice of SVD.
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Definition 2.2. For a function f : R → C and a Hermitian matrix A ∈ Cn×n, we define the
eigenvalue transform of A via a unitary eigendecomposition A =

∑︁n
i=1 λiviv

†
i :

f (EV)(A) :=
n∑︂

i=1

f(λi)viv
†
i . (2)

Since we only consider eigenvalue transformations of Hermitian matrices, where singular vec-
tors/values and eigenvectors/values (roughly) coincide, the key difference between singular value
transformation and eigenvalue transformation is that the latter can distinguish eigenvalue sign. As
eigenvalue transformation is the standard notion of a matrix function, we will usually drop the
superscript in notation: f(A) := f (EV)(A).

We will use the following standard definition of a Lipschitz function.

Definition 2.3. We say f : R→ C is L-Lipschitz on F ⊆ R if for all x, y ∈ F, |f(x)−f(y)| ≤ L|x−y|.

We define approximate isometry as follows:10

Definition 2.4. Let m,n ∈ N and m ≥ n. A matrix V ∈ Cm×n is an α-approximate isometry if⃦⃦
V †V − I

⃦⃦
≤ α. It is an α-approximate projective isometry if ∥V †V − Π∥ ≤ α for Π an orthogonal

projector.

If V is an α-approximate isometry, among other things, it implies that |∥V ∥2 − 1| ≤ α and that
there exists an isometry U ∈ Cm×n with im(U) = im(V ) such that ∥U − V ∥ ≤ α. We show this and
other basic facts in the following lemma, whose proof is deferred to Appendix B.

Lemma 2.5. If X̂ ∈ Cm×n is an α-approximate isometry, then there is an exact isometry X ∈ Cm×n

with the same columnspace as X̂ such that ∥X̂ −X∥ ≤ α. Furthermore, for any matrix Y ∈ Cn×n,

∥X̂Y X̂† −XYX†∥ ≤ (2α+ α2)∥Y ∥.

If α < 1, then ∥X̂+∥ ≤ (1− α)−1 and

∥X̂Y X̂† −XYX†∥ ≤ α 2− α
(1− α)2

∥X̂Y X̂†∥.

3 Sampling and query access oracles

Since we want our algorithms to run in time sublinear in input size, we must carefully define our
access model. The sampling and query oracle we present below is unconventional, being designed as
a reasonable classical analogue for the input model of some quantum algorithms. It will also be
used heavily to move between intermediate steps of these quantum-inspired algorithms. First, as a
warmup, we define a simple query oracle:

Definition 3.1 (Query access). For a vector v ∈ Cn, we have Q(v), query access to v, if for all i ∈ [n],
we can query for v(i). Likewise, for a matrix A ∈ Cm×n, we have Q(A) if for all (i, j) ∈ [m]× [n],
we can query for A(i, j). Let q(v) (respectively q(A)) denote the (time) cost of such a query.

For example, in the typical RAM access model, we are given our input v ∈ Cn as Q(v) with
q(v) = 1. For brevity, we will sometimes abuse this notation (and other access notations) and,
for example, abbreviate “Q(A) for A ∈ Cm×n” as “Q(A) ∈ Cm×n”. We will also sometimes abuse
complexity notation like q to refer to known bounds on the complexity, instead of the complexity
itself.

10This is the notion of approximate orthonormality as given by the first arXiv version of [Tan19].
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Definition 3.2 (Sampling and query access to a vector). For a vector v ∈ Cn, we have SQ(v),
sampling and query access to v, if we can:

1. query for entries of v as in Q(v);

2. obtain independent samples i ∈ [n] following the distribution Dv ∈ Rn, where Dv(i) :=
|v(i)|2/∥v∥2;

3. query for ∥v∥.

Let q(v), s(v), and n(v) denote the cost of querying entries, sampling indices, and querying the
norm respectively. Further define sq(v) := max(q(v), s(v),n(v)).

We will refer to these samples as importance samples from v, though one can view them as
measurements of the quantum state |v⟩ := 1

∥v∥
∑︁
vi|i⟩ in the computational basis.

Quantum-inspired algorithms typically don’t give exact sampling and query access to the output
vector. Instead, we get a more general version of sampling and query access, which assumes we can
only access a sampling distribution that oversamples the correct distribution.11

Definition 3.3. For p, q ∈ Rn
≥0 that are distributions, meaning

∑︁
i p(i) =

∑︁
i q(i) = 1, we say that

p ϕ-oversamples q if, for all i ∈ [n], p(i) ≥ q(i)/ϕ.

The motivation for this definition is the following: if p ϕ-oversamples q, then we can convert
a sample from p to a sample from q with probability 1/ϕ using rejection sampling: sample an i
distributed as p, then accept the sample with probability q(i)/(ϕp(i)) (which is ≤ 1 by definition).

Definition 3.4 (Oversampling and query access). For v ∈ Cn and ϕ ≥ 1, we have SQϕ(v), ϕ-
oversampling and query access to v, if we have Q(v) and SQ(ṽ) for ṽ ∈ Cn a vector satisfying
∥ṽ∥2 = ϕ∥v∥2 and |ṽ(i)|2 ≥ |v(i)|2 for all i ∈ [n]. Denote sϕ(v) := s(ṽ), qϕ(v) := q(ṽ), nϕ(v) := n(ṽ),
and sqϕ(v) := max(sϕ(v),qϕ(v),q(v),nϕ(v)).

The distribution Dṽ ϕ-oversamples Dv, since for all i ∈ [n],

Dṽ(i) =
|ṽi|2

∥ṽ∥2
=
|ṽi|2

ϕ∥v∥2
≥ |vi|2

ϕ∥v∥2
=

1

ϕ
Dv(i).

For this reason, we call Dṽ a ϕ-oversampled importance sampling distribution of v. SQ(v) is the
same as SQ1(v), by taking ṽ = v. Note that we do not assume knowledge of ϕ (though it can be
estimated, (though it can be estimated as shown in Lemma 3.5). However, we do need to know
∥ṽ∥ (even if ∥v∥ is known), as it cannot be deduced from a small number of queries, samples,
or probability computations. So, we will be choosing ṽ (and, correspondingly, ϕ) such that ∥ṽ∥2
remains computable, even if potentially some cṽ satisfies all our other requirements for some c < 1
(giving a smaller value of ϕ).

Intuitively speaking, estimators that use Dv can also use Dṽ via rejection sampling at the expense
of a factor ϕ increase in the number of utilized samples. From this observation we can prove that
oversampling access implies an approximate version of the usual sampling access:

Lemma 3.5. Suppose we are given SQϕ(v) and some δ ∈ (0, 1]. Denote ˜︂sq(v) := ϕ sqϕ(v) log
1
δ .

We can sample from Dv with probability ≥ 1− δ in O(˜︂sq(v)) time. We can also estimate ∥v∥ to ν
multiplicative error for ν ∈ (0, 1] with probability ≥ 1− δ in O

(︁
1
ν2
˜︂sq(v))︁ time.

11Oversampling turns out to be the “natural” form of approximation in this setting; other forms of error do not
propagate through quantum-inspired algorithms well.
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Proof. Consider the following rejection sampling algorithm to generate samples: sample an index i

from ṽ, and output it as the desired sample with probability r(i) := |v(i)|2
|ṽ(i)|2 . Otherwise, restart. We

can perform this: we can compute r(i) in O
(︁
sqϕ(v)

)︁
time and r(i) ≤ 1 since ṽ bounds v.

The probability of accepting a sample in a round is
∑︁

iDṽ(i)r(i) = ∥v∥2/∥ṽ∥2 = ϕ−1 and,
conditioned on a sample being accepted, the probability of it being i is |v(i)|2/∥v∥2, so the output
distribution is Dv as desired. So, to get a sample with ≥ 1− δ probability, run rejection sampling
for at most 2ϕ log 1

δ rounds.
To estimate ∥v∥2, notice that we know ∥ṽ∥2, so it suffices to estimate ∥v∥2/∥ṽ∥2 which is ϕ−1.

The probability of accepting the rejection sampling routine is ϕ−1, so we run 3ν−2ϕ log 2
δ rounds

of it for estimating ϕ−1. Let Z denote the fraction of them which end in acceptance. Then, by a
Chernoff bound we have

Pr[|Z − ϕ−1| ≥ νϕ−1] ≤ 2 exp
(︂
− ν2zϕ−1

2 + ν

)︂
≤ δ,

so Z∥ṽ∥2 is a good multiplicative approximation to ∥v∥2 with probability ≥ 1− δ.

Generally, compared to a quantum algorithm that can output (and measure) a desired vector |v⟩,
our algorithms will output SQϕ(u) such that ∥u− v∥ is small. So, ˜︂sq(u) is the relevant complexity
measure that we will analyze and bound: if we wish to mimic samples from the output of the quantum
algorithm we dequantize, we will pay a one-time cost to run our quantum-inspired algorithm for
“obtaining” SQϕ(u), and then pay ˜︂sq(u) cost per additional measurement. As for error, bounds on
∥u− v∥ imply that measurements from u and v follow distributions that are close in total variation
distance [Tan19, Lemma 4.1]. Now, we show that oversampling and query access of vectors is closed
under taking small linear combinations.

Lemma 3.6 (Linear combinations, Proposition 4.3 of [Tan19]). Given SQφt
(vt) ∈ Cn and λt ∈ C for

all t ∈ [τ ], we have SQϕ(
∑︁τ

t=1 λtvt) for ϕ = τ
∑︁

φt∥λtvt∥2
∥
∑︁

λtvt∥2 and sqϕ(
∑︁
λtvt) = max

t∈[τ ]
sφt(vt)+

∑︁τ
t=1 q(vt)

(after paying O(
∑︁τ

t=1 nφt(vt)) one-time pre-processing cost to query for norms).

Proof. Denote u :=
∑︁
λtvt. To compute u(s) for some s ∈ [n], we just need to query vt(s) for all

t ∈ [τ ], paying O(
∑︁

q(vt)) cost. So, it suffices to get SQ(ũ) for an appropriate bound ũ. We choose

ũ(s) =
√︁
τ
∑︁τ

t=1 |λtṽt(s)|2,

so that |ũ(s)| ≥ |u(s)| by Cauchy–Schwarz, and ∥ũ∥2 = τ
∑︁τ

t=1 ∥λtṽt∥2 = τ
∑︁τ

t=1 φt∥λtvt∥2, giving
the desired value of ϕ.

We have SQ(ũ): we can compute ∥ũ∥2 by querying for all norms ∥ṽt∥, compute ũ(s) by querying

ṽt(s) for all t ∈ [τ ]. We can sample from ũ by first sampling t ∈ [τ ] with probability ∥λtṽt∥2∑︁
ℓ ∥λℓṽℓ∥2

, and

then taking our sample to be j ∈ [n] from ṽt. The probability of sampling j ∈ [n] is correct:

τ∑︂
t=1

∥λtṽt∥2∑︁
ℓ ∥λℓṽℓ∥2

|ṽt(j)|2

∥ṽt∥2
=

∑︁τ
t=1|λtṽt(j)|2∑︁τ
ℓ=1 ∥λℓṽℓ∥2

=
|ũ(j)|2

∥ũ∥2
.

If we pre-process by querying all the norms ∥ṽℓ∥ in advance, we can sample from the distribution
over i’s in O(1) time, using an alias sampling data structure for the distribution (Remark 3.11),
and we can sample from ṽt using our assumed access to it, SQφt

(vt).
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So, our general goal will be to express our output vector as a linear combination of a small number
of input vectors that we have sampling and query access to. Then, we can get an approximate
SQ access to our output using Lemma 3.5, where we pay an additional “cancellation constant”

factor of ϕ = τ
∑︁

φt∥λtvt∥2
∥
∑︁

λtvt∥2 . This factor is only large when the linear combination has significantly

smaller norm than the components vt in the sum suggest. Usually, in our applications, we can
intuitively think about this overhead being small when the desired output vector mostly lies in a
subspace spanned by singular vectors with large singular values in our low-rank input. Quantum
algorithms also have the same kind of overhead. Namely, the QSVT framework encodes this in
the subnormalization constant α of block-encodings, and the overhead from the subnormalization
appears during post-selection [GSLW19]. When this cancellation is not too large, the resulting
overhead typically does not affect too badly the runtime of our applications.

We also define oversampling and query access for a matrix. The same model (under an alternative
definition) is also discussed in prior work [FKV04, DKR02] and is the right notion for the sampling
procedures we will use.

Definition 3.7 (Oversampling and query access to a matrix). For a matrix A ∈ Cm×n, we have
SQ(A) if we have SQ(A(i, ·)) for all i ∈ [m] and SQ(a) for a ∈ Rm the vector of row norms
(a(i) :=∥A(i, ·)∥).

We have SQϕ(A) if we have Q(A) and SQ(Ã) for Ã ∈ Cm×n satisfying ∥Ã∥2F = ϕ∥A∥2F and

|Ã(i, j)|2 ≥ |A(i, j)|2 for all (i, j) ∈ [m]× [n].
The complexity of (over)sampling and querying from the matrix A is denoted by sϕ(A) :=

max(s(Ã(i, ·)), s(ã)), qϕ(A) := max(q(Ã(i, ·)),q(ã)), q(A) := max(q(A(i, ·))), and nϕ(A) := n(ã)
respectively. We also denote sqϕ(A) := max(sϕ(A),qϕ(A),q(A),nϕ(A)). We omit subscripts if
ϕ = 1.

Observe that access to a matrix, SQϕ(A), implies access to its vectorized version, SQϕ(vec(A)):

we can take ˜︂vec(A) = vec(Ã), and the distribution for vec(Ã) is sampled by sampling i from Dã,
and then sampling j from DÃ(i,·). This gives the output (i, j) with probability |Ã(i, j)|2/∥Ã∥2F.
Therefore, one can think of SQϕ(A) as SQϕ(vec(A)), with the addition of having access to samples
(i, j) from vec(A), conditioned on fixing a particular row i and also knowing the probabilities of
these conditional samples.

Now we prove that oversampling and query access is closed under taking outer products. The
same idea also extends to taking Kronecker products of matrices.

Lemma 3.8. Given vectors SQφu
(u) ∈ Cm and SQφv

(v) ∈ Cn, we have SQϕ(A) for their outer

product A := uv† with ϕ = φuφv and sϕ(A) = sφu(u) + sφv(v), qϕ(A) = qφu
(u) + qφv

(v), q(A) =
q(u) + q(v), and nϕ(A) = nφu(u) + nφv(v),

Proof. We can query an entry A(i, j) = u(i)v(j)† by querying once from u and v. Our choice of
upper bound is Ã = ũṽ†. Clearly, this is an upper bound on uv† and ∥Ã∥2F = ∥ũ∥2∥ṽ∥2 = φuφv∥A∥2F.
We have SQ(Ã) in the following manner: Ã(i, ·) = ũ(i)ṽ†, so we have SQ(Ã(i, ·)) from SQ(ṽ) after
querying for ũ(i), and ã = ∥ṽ∥2ũ, so we have SQ(ã) from SQ(ũ) after querying for ∥ṽ∥.

Using the same ideas as in Lemma 3.6, we can extend sampling and query access of input
matrices to linear combinations of those matrices.

Lemma 3.9. Given SQφ(t)(A(t)) ∈ Cm×n and λt ∈ C for all t ∈ [τ ], we have SQϕ(A) ∈ Cm×n

for A :=
∑︁τ

t=1 λtA
(t) with ϕ = τ

∑︁τ
t=1 φ

(t)∥λtA(t)∥2F
∥A∥2F

and sϕ(A) = max
t∈[τ ]

sφ(t)(A(t)) +
∑︁τ

t=1 qφ(t)(A(t)),
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qϕ(A) =
∑︁τ

t=1 qφ(t)(A(t)), q(A) =
∑︁τ

t=1 q(A
(t)), and nϕ(A) = 1 (after paying O

(︂∑︁τ
t=1 nφ(t)(A(t))

)︂
one-time pre-processing cost).

Proof. To compute A(i, j) =
∑︁τ

t=1 λtA
(t)(i, j) for (i, j) ∈ [m]× [n], we just need to query A(t)(i, j)

for all t ∈ [τ ], paying O
(︁∑︁

t q(A
(t))
)︁
cost. So, it suffices to get SQ(Ã) for an appropriate bound Ã.

We choose

Ã(i, j) =

√︂
τ
∑︁τ

t=1 |λtÃ
(t)
(i, j)|2.

That |Ã(i, j)| ≥ |A(i, j)| follows from Cauchy–Schwarz, and we get the desired value of ϕ:

∥Ã∥2F = τ
τ∑︂

t=1

∥λiÃ
(t)∥2F = τ

τ∑︂
t=1

φ(t)∥λiA(t)∥2F.

We have SQ(Ã): we can compute ∥Ã∥F by querying for all norms ∥Ã(t)∥F, compute ã(i) =

∥Ã(i, ·)∥ =
√︂
τ
∑︁τ

t=1 ∥λtÃ
(t)
(i, ·)∥2 by querying ã(t)(i) for all t ∈ [τ ], and compute Ã(i, j) by querying

Ã
(t)
(i, j) for all t ∈ [τ ]. Analogously to Lemma 3.6, we can sample from ã by first sampling s ∈ [τ ]

with probability
∥λsÃ

(s)∥2F∑︁
t ∥λtÃ

(t)∥2F
, then taking our sample to be i ∈ [m] from Dã(s) . If we pre-process by

querying all the Frobenius norms ∥Ã(t)∥F in advance, we can sample from ã inO
(︂
maxt∈[τ ] sφ(t)(A(t))

)︂
time. We can sample from Ã(i, ·) by first sampling s ∈ [τ ] with probability ∥λsÃ

(s)
(i,·)∥2∑︁

t ∥λtÃ
(t)

(i,·)∥2
, then

taking our sample to be j ∈ [n] from D
Ã

(s)
(i,·)

. This takes O
(︂∑︁τ

t=1 qφ(t)(A(t)) + maxt∈[τ ] sφ(t)(A(t))
)︂

time.

Remark 3.10. With the lemmas we’ve introduced, we can already get oversampling and query
access to some modest expressions. For example, consider RUR decompositions, which show up
frequently in our results: suppose we have SQ(A) for A ∈ Cm×n, R ∈ Cr×n a (possibly normalized)
subset of rows of A, and a matrix U ∈ Cr×r. Then

R†UR =

r∑︂
i=1

r∑︂
j=1

U(i, j)R(i, ·)†R(j, ·),

which is a linear combination of r2 outer products involving rows of A. So, by Lemma 3.8 and
Lemma 3.9, we have SQϕ(R

†UR).

For us, the most interesting scenario is when our sampling and query oracles take poly-logarithmic
time, since this corresponds to the scenarios where quantum state preparation procedures can run
in time polylog(n). In these scenarios, quantum machine learning have the potential to achieve
exponential speedups. We can provide such classical access in various ways.

Remark 3.11. Below, we list settings where we have sampling and query access to input matrices
and vectors, and whenever relevant, we compare the resulting runtimes to the time to prepare
analogous quantum states. Note that because we do not analyze classical algorithms in the bit
model, i.e., we do not count each operation bitwise, their runtimes may be missing log factors that
should be counted for a fair comparison between classical and quantum.
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∥a∥2 = ∥A∥2F

|a1|2 = ∥A(1, ·)∥2 |a2|2 = ∥A(2, ·)∥2

|A(1, 1)|2 + |A(1, 2)|2 |A(1, 3)|2 + |A(1, 4)|2 |A(2, 1)|2 + |A(2, 2)|2 |A(2, 3)|2 + |A(2, 4)|2

|A(1, 1)|2 |A(1, 2)|2 |A(1, 3)|2 |A(1, 4)|2 |A(2, 1)|2 |A(2, 2)|2 |A(2, 3)|2 |A(2, 4)|2

A(1,1)
|A(1,1)|

A(1,2)
|A(1,2)|

A(1,3)
|A(1,3)|

A(1,4)
|A(1,4)|

A(2,1)
|A(2,1)|

A(2,2)
|A(2,2)|

A(2,3)
|A(2,3)|

A(2,4)
|A(2,4)|

Figure 2: Dynamic data structure for a matrix A ∈ C2×4 discussed in Remark 3.11 part (b). We
compose the data structure for a with the data structure for A’s rows.

(a) (Data structure) Given v ∈ Cn in the standard RAM model, the alias method [Vos91] takes
Θ(n) pre-processing time to output a data structure that uses Θ(n) space and can sample
from v in Θ(1) time. In other words, we can get SQ(v) with sq(v) = Θ(1) in O(n) time, and
by extension, for a matrix A ∈ Cm×n, SQ(A) with sq(A) = Θ(1) in O(mn) time.

If the input vector (resp. matrix) is given as a list of nnz(v) (resp. nnz(A)) of its non-zero
entries, then the pre-processing time is linear in that number of entries. Therefore, the
quantum-inspired setting can be directly translated to a basic randomized numerical linear
algebra algorithm. More precisely, with this data structure, a fast quantum-inspired algorithm
(say, one running in time O(T sq(A)) for T independent of input size) implies an algorithm in
the standard computational model (running in O(nnz(A) + T ) time).

(b) (Dynamic data structure) QML algorithms often assume that their input is in a data structure
with a certain kind of quantum access [Pra14, KP20, GLM08, WZP18, RSW+19, CGJ19].
They argue that, since this data structure allows for circuits preparing input states with
linear gate count but polylog depth, hardware called QRAM might be able to parallelize these
circuits enough so that they run in effectively polylog time. In the interest of considering the
best of all possible worlds for QML, we will treat circuit depth as runtime for QRAM and
ignore technicalities.

This data structure (see Fig. 2) admits sampling and query access to the data it stores with
just-as-good runtimes: specifically, for a matrix A ∈ Cm×n, we get SQ(A) with q(A) = O(1),
s(A) = O(logmn), and n(A) = O(1). So, quantum-inspired algorithms can be used whenever
QML algorithms assume this form of input.

Further, unlike the alias method stated above, this data structure supports updating entries
in O(logmn) time, which is used in applications of QML where data accumulates over time
[KP17].

(c) (Integrability assumption) For v ∈ Cn, suppose we can compute entries v(i) and sums∑︁
i∈I(b)|v(i)|2 in time T , where I(b) ⊂ [n] is the set of indices whose binary representation

begins with the bitstring b. Then we have SQ(v) where q(v) = O(T ), s(v) = O(T log n), and
n(v) = O(T ). Analogously, the quantum state that encodes v in its amplitudes, |v⟩ =

∑︁
i

vi
∥v∥ |i⟩,

can be prepared in time O(T log n) via Grover-Rudolph state preparation [GR02]. (One can
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think about the QRAM data structure as pre-computing all the necessary sums for this
protocol.)

(d) (Uniformity assumption) Given O(1)-time Q(v) ∈ Cn and a β such that max|v(i)|2 ≤ β/n, we
have SQϕ(v) with ϕ = β/∥v∥2 and sqϕ(v) = O(1), by using the vector whose entries are all√︁
β/n as the upper bound ṽ. Assuming the ability to query entries of v in superposition, a

quantum state corresponding to v can be prepared in time O
(︁√
ϕ log n

)︁
.

(e) (Sparsity assumption) If A ∈ Cm×n has at most s non-zero entries per row (with efficiently
computable locations) and the matrix elements are |A(i, j)| ≤ c (and efficiently computable),
then we have SQϕ(A) for ϕ = c2 sm

∥A∥2F
, simply by using the uniform distribution over non-zero

entries for the oversampling and query oracles. For example, for SQ(ã) we can set ã(i) := c
√
s,

and for Ã(i, ·) we use the vector with entries c at the non-zeros of A(i, ·) (potentially adding
some “dummy” zero locations to have exactly s non-zeroes).

Note that similar sparse-access assumptions are often seen in the QML and Hamiltonian
simulation literature [HHL09]. Also, if A is not much smaller than we expect, then ϕ can
be independent of dimension. For example, if A has exactly s non-zero entries per row and
|A(i, j)| ≥ c′ for non-zero entries, then ϕ ≤ (c/c′)2.

(f) (CT states) In 2009, Van den Nest defined the notion of a “computationally tractable”
(CT) state [VdN11]. Using our notation, |ψ⟩ ∈ Cn is a CT state if we have SQ(ψ) with
sq(ψ) = polylog(n). Van den Nest’s paper identifies several classes of CT states, including
product states, quantum Fourier transforms of product states, matrix product states of
polynomial bond dimension, stabilizer states, and states from matchgate circuits. For more
details on how can one get efficient sampling and query access to such vectors we direct the
reader to [VdN11].

4 Matrix sketches

We now introduce the workhorse of our algorithms: the matrix sketch. Using sampling and query
access, we can generate these sketches efficiently, and these allow one to reduce the dimensionality
of a problem, up to some approximation. Most of the results presented in this section are known in
the classical sketching literature: we present them here for completeness, and to restate them in the
context of sampling and query access.

Definition 4.1. For a distribution p ∈ Rm, we say that a matrix S ∈ Rs×m is sampled according to
p if each row of S is independently chosen to be ei/

√︁
s · p(i) with probability p(i), where ei is the

vector that is one in the ith position and zero elsewhere. If p is an ℓ2-norm sampling distribution
Dv as defined in Definition 3.2, then we also say S is sampled according to v.

We call S an importance sampling sketch for A ∈ Cm×n if it is sampled according to A’s row
norms a, and we call S a ϕ-oversampled importance sampling sketch if it is sampled according to
the bounding row norms from SQϕ(A), ã (or, more generally, from a ϕ-oversampled importance
sampling distribution of a).

One should think of S as a description of how to sketch A down to SA. The following lemma shows
that ∥SA∥F approximates ∥A∥F, giving a simple example of the phenomenon that SA approximates
A in certain senses: it shows that ∥SA∥F = Θ(∥A∥F) with probability ≥ 0.9 when S has Ω( 1

ϕ2 ) rows.

We show later (Lemma 4.8) that a similar statement holds for spectral norm: ∥SA∥ = Θ(∥A∥) with
probability ≥ 0.9 when S has Ω̃(ϕ2∥A∥2F/∥A∥2) rows.
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Lemma 4.2 (Frobenius norm bounds for matrix sketches). Let S ∈ Cr×m be a ϕ-oversampled
importance sampling sketch of A ∈ Cm×n. Then ∥[SA](i, ·)∥ ≤

√︁
ϕ/r∥A∥F for all i ∈ [r], so

∥SA∥2F ≤ ϕ∥A∥2F (unconditionally). Equality holds when ϕ = 1. Further,

Pr
[︂
|∥SA∥2F − ∥A∥2F| ≥

√︃
ϕ2 log(2/δ)

2r
∥A∥2F

]︂
≤ δ.

Proof. Let p be the distribution used to create S, and let si be the sample from p used for row i of
S. Then ∥SA∥2F is the sum of the row norms ∥[SA](i, ·)∥2 over all i ∈ [r], and

∥[SA](i, ·)∥2 = ∥A(si, ·)∥
2

r · p(si)
≤ ϕ

r
∥A∥2F

E[∥[SA](i, ·)∥2] =
m∑︂
s=1

p(s)
∥A(s, ·)∥2

r · p(s)
=

1

r
∥A∥2F

The first equation shows the unconditional bounds on ∥SA∥F. When ϕ = 1, p(i) = ∥A(i, ·)∥2/∥A∥2F
so the inequality becomes an equality. By the second equation, ∥SA∥2F − ∥A∥2F has expected value
zero and is the sum of independent random variables bounded in [−∥A∥2F, (ϕ − 1)∥A∥2F], so the
probabilistic bound follows immediately from Hoeffding’s inequality.

In the standard algorithm setting, computing an importance sampling sketch requires reading
all of A, since we need to sample from Da. If we have SQϕ(A), though, we can efficiently create a
ϕ-oversampling sketch S in O

(︁
s(sϕ(A) + qϕ(A)) + nϕ(A)

)︁
time: for each row of S, we pull a sample

from p, and then compute
√︁
p(i). After finding this sketch S, we have an implicit description of SA:

it is a normalized multiset of rows of A, so we can describe it with the row indices and corresponding
normalization, (i1, c1), . . . , (is, cs).

SA can be used to approximate matrix expressions involving A. Further, we can chain sketches
using the lemma below, which shows that from SQϕ(A), we have SQ≤2ϕ((SA)

†), under a mild

assumption on the size of the sketch S. This can be used to find a sketch T † of (SA)†. The
resulting expression SAT is small enough that we can compute functions of it in time independent
of dimension, and so will be used extensively. When we discuss sketching A down to SAT , we are
referring to the below lemma for the method of sampling T .

Lemma 4.3. Consider SQφ(A) ∈ Cm×n and S ∈ Rr×m sampled according to ã, described as pairs

(i1, c1), . . . , (ir, cr). If r ≥ 2φ2 log 2
δ , then with probability ≥ 1−δ, we have SQϕ(SA) and SQϕ((SA)

†)

for some ϕ satisfying ϕ ≤ 2φ. If φ = 1, then for all r, we have SQ(SA) and SQ((SA)†).
The runtimes for SQϕ(SA) are q(SA) = q(A), sϕ(SA) = sφ(A), qϕ(SA) = qφ(A), and

nϕ(SA) = O(1), after O(nφ(A)) pre-processing cost. The runtimes for SQϕ((SA)
†) are q((SA)†) =

q(A), sϕ((SA)
†) = sφ(A) + r qφ(A), qϕ((SA)

†) = r qφ(A), and nϕ((SA)
†) = nφ(A).

Proof. By Lemma 4.2, ∥SA∥2F ≥ ∥A∥2F/2 with probability ≥ 1− δ. Suppose this bound holds. To

get SQϕ(SA), we take ˜︂SA = SÃ, which bounds SA by inspection. Further, ∥SÃ∥2F = ∥Ã∥2F by

Lemma 4.2, so ϕ = ∥SÃ∥2F/∥SA∥2F = φ∥A∥2F/∥SA∥2F ≤ 2φ. Analogously, (SÃ)† works as a bound
for SQϕ((SA)

†). We can query an entry of SA by querying the corresponding entry of A, so all

that suffices is to show that we have SQ(SÃ) and SQ((SÃ)†) from SQ(Ã). (When φ = 1, we can
ignore the above argument: the rest of the proof will show that we have SQ(SA) and SQ((SA)†)
from SQ(A).)

We have SQ(SÃ). Because the rows of SÃ are rescaled rows of Ã, we have SQ access to them
from SQ access to Ã. Because ∥SÃ∥2F = ∥Ã∥2F and ∥[SÃ](i, ·)∥2 = ∥Ã∥2F/r, after precomputing
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∥Ã∥2F, we have SQ access to the vector of row norms of SÃ (pulling samples simply by pulling
samples from the uniform distribution).

We have SQ((SÃ)†). (This proof is similar to one from [FKV04].) Since the rows of (SÃ)† are
length r, we can respond to SQ queries to them by reading all entries of the row and performing
some linear-time computation. ∥(SÃ)†∥2F = ∥Ã∥2F, so we can respond to a norm query by querying
the norm of Ã. Finally, we can sample according to the row norms of (SÃ)† by first querying an
index i ∈ [r] uniformly at random, then outputting the index j ∈ [n] sampled from [SÃ](i, ·) (which
we can sample from because it is a row of Ã). The distribution of the samples output by this
procedure is correct: the probability of outputting j is

1

r

r∑︂
i=1

|[SÃ](i, j)|2

∥[SÃ](i, ·)∥2
=

r∑︂
i=1

|[SÃ](i, j)|2

∥SÃ∥2F
=
∥[SÃ](·, j)∥2

∥SÃ∥2F
.

4.1 Approximation results

Here, we present approximation results on sketched matrices that we will use heavily throughout
our results. We begin with a fundamental observation: given sampling and query access to a matrix
A, we can approximate the matrix product A†B by a sum of rank-one outer products. We formalize
this with two variance bounds, which we can use together with Chebyshev’s inequality.

Lemma 4.4 (Asymmetric matrix multiplication to Frobenius norm error, [DKM06, Lemma 4]).
Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according to p ∈ Rm a
ϕ-oversampled importance sampling distribution from X or Y . Then,

E[∥X†S†SY −X†Y ∥2F] ≤
ϕ

r
∥X∥2F∥Y ∥2F and E

[︂ r∑︂
i=1

∥[SX](i, ·)∥2∥[SY ](i, ·)∥2
]︂
≤ ϕ

r
∥X∥2F∥Y ∥2F.

Proof. To show the first equation, we use that E[∥X†X†SY −X†Y ∥2F] is a sum of variances, one
for each entry (i, j), since E[X†S†SY −XY ] is zero in every entry. Furthermore, for every entry
(i, j), the matrix expression is the sum of r independent, mean-zero terms, one for each row of S:

[X†S†SY −XY ](i, j) =
r∑︂

s=1

(︂
[SX](s, i)†[SY ](s, j)− 1

r
[X†Y ](i, j)

)︂
.

So, we can use standard properties of variances12 to conclude that

E[∥X†S†SY −X†Y ∥2F] = r · E[∥[SX](1, ·)†[SY ](1, ·)− 1
rX

†Y ∥2F] ≤ r · E[∥[SX](1, ·)†[SY ](1, ·)∥2F]

= r
m∑︂
i=1

p(i)
∥X(i, ·)†Y (i, ·)∥2F

r2p(i)2
=

1

r

m∑︂
i=1

∥X(i, ·)∥2∥Y (i, ·)∥2

p(i)
≤ ϕ

r
∥X∥2F∥Y ∥2F.

The second other inequality follows by the same computation:

E
[︂ r∑︂

i=1

∥[SX](i, ·)∥2∥[SY ](i, ·)∥2
]︂
= r · E[∥[SX](1, ·)∥2∥[SY ](1, ·)∥2] ≤ ϕ

s
∥X∥2F∥Y ∥2F.

The above result shows that, given SQ(X), X†Y can be approximated by a sketch with constant
failure probability. If we have SQ(X) and SQ(Y ), we can make the failure probability exponential
small. To show this tighter error bound, we use an argument of Drineas, Kannan, and Mahoney
for approximating matrix multiplication. We state their result in a slightly stronger form, which is
actually proved in their paper. For completeness, a proof of this statement is in the appendix.

12See the proof of Lemma 4.5 in Appendix B for this kind of computation done with more detail.
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Lemma 4.5 (Matrix multiplication by subsampling [DKM06, Theorem 1]). Suppose we are given
X ∈ Cn×m, Y ∈ Cn×p, r ∈ N and a distribution p ∈ Rn satisfying the oversampling condition that,
for some ϕ ≥ 1,

p(k) ≥ ∥X(k, ·)∥∥Y (k, ·)∥
ϕ
∑︁

ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥
.

Let S ∈ Rr×n be sampled according to p. Then X†S†SY is an unbiased estimator for X†Y and

Pr
[︂
∥X†S†SY −X†Y ∥F <

√︃
8ϕ2 log(2/δ)

r

∑︂
ℓ

∥X(ℓ, ·)∥∥Y (ℓ, ·)∥⏞ ⏟⏟ ⏞
≤∥X∥F∥Y ∥F

]︂
> 1− δ.

From a simple application of Lemma 4.5, we get a key lemma used frequently in Section 6.

Lemma 4.6 (Approximating matrix multiplication to Frobenius norm error; corollary of [DKM06,
Theorem 1]). Consider X ∈ Cm×n, Y ∈ Cm×p, and take S ∈ Rr×m to be sampled according to
q := q1+q2

2 , where q1, q2 ∈ Rm are ϕ1, ϕ2-oversampled importance sampling distributions from x, y,
the vector of row norms for X, Y , respectively. Then S is a 2ϕ1, 2ϕ2-oversampled importance
sampling sketch of X,Y , respectively. Further,

Pr
[︂
∥X†S†SY −X†Y ∥F <

√︃
8ϕ1ϕ2 log 2/δ

r
∥X∥F∥Y ∥F

]︂
> 1− δ.

Proof. First, notice that 2q(i) ≥ q1(i) and 2q(i) ≥ q2(i), so q oversamples the importance sampling
distributions for X and Y with constants 2ϕ1 and 2ϕ2, respectively. We get the bound by using

Lemma 4.5; q satisfies the oversampling condition with ϕ =
√
ϕ1ϕ2∥X∥F∥Y ∥F∑︁
ℓ ∥X(ℓ,·)∥∥Y (ℓ,·)∥ , using the inequality

of arithmetic and geometric means:

1

q(i)

∥X(i, ·)∥∥Y (i, ·)∥∑︁
ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥

=
2

q1(i) + q2(i)

∥X(i, ·)∥∥Y (i, ·)∥∑︁
ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥

≤ 1√︁
q1(i)q2(i)

∥X(i, ·)∥∥Y (i, ·)∥∑︁
ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥

≤
√
ϕ1ϕ2∥X∥F∥Y ∥F
∥X(i, ·)∥∥Y (i, ·)∥

∥X(i, ·)∥∥Y (i, ·)∥∑︁
ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥

=

√
ϕ1ϕ2∥X∥F∥Y ∥F∑︁

ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥
.

Remark 4.7. Lemma 4.6 implies that, given SQϕ1
(X) and SQϕ2

(Y ), we can get SQϕ(M) for M a

sufficiently good approximation to X†Y , with ϕ ≤ ϕ1ϕ2
∥X∥2F∥Y ∥2F

∥M∥2F
. This is an approximate closure

property for oversampling and query access under matrix products.
Given the above types of accesses, we can compute the sketch S necessary for Lemma 4.6 by

taking p = Dx̃ and q = Dỹ), thereby finding a desired M := X†S†SY . We can compute entries of M
with only r queries each to X and Y , so all we need is to get SQ(M̃) for M̃ the appropriate bound.
We choose |M̃(i, j)|2 := r

∑︁r
ℓ=1 |[SX̃](ℓ, i)†[SỸ ](ℓ, j)|2; showing that we have SQ(M) follows from

the proofs of Lemmas 3.8 and 3.9, since M is simply a linear combination of outer products of rows
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of X̃ with rows of Ỹ . Finally, this bound has the appropriate norm. Notating the rows sampled by
the sketch as s1, . . . , sr, we have

∥M̃∥2F = r
r∑︂

ℓ=1

∥[SX̃](ℓ, ·)∥2∥[SỸ ](ℓ, ·)∥2 = r
r∑︂

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r2(∥X̃(sℓ,·)∥2
2∥X̃∥2F

+ ∥Ỹ (sℓ,·)∥2
2∥Ỹ ∥2F

)2

≤
r∑︂

ℓ=1

∥X̃(sℓ, ·)∥2∥Ỹ (sℓ, ·)∥2

r(∥X̃(sℓ,·)∥∥Ỹ (sℓ,·)∥
∥X̃∥F∥Ỹ ∥F

)2
= ∥X̃∥2F∥Ỹ ∥2F = ϕ1ϕ2∥X∥2F∥Y ∥2F.

If X = Y , we can get an improved spectral norm bound: instead of depending on ∥X∥2F, error
depends on ∥X∥∥X∥F.

Lemma 4.8 (Approximating matrix multiplication to spectral norm error [RV07, Theorem 3.1]).
Suppose we are given A ∈ Rm×n, ε > 0, δ ∈ [0, 1], and S ∈ Rr×n a ϕ-oversampled importance
sampling sketch of A. Then

Pr
[︂
∥A†S†SA−A†A∥ ≲

√︃
ϕ2 log r log 1/δ

r
∥A∥∥A∥F

]︂
> 1− δ.

The above results can be used to approximate singular values, simply by directly translating the
bounds on matrix product error to bounds on singular value error.

Lemma 4.9 (Approximating singular values). Given SQϕ(A) ∈ Cm×n and ε ∈ (0, 1], we can form

importance sampling sketches S ∈ Rr×m and T † ∈ Rc×n in O
(︁
(r + c) sqϕ(A)

)︁
time satisfying the

following property. Take r, c ≥ s for some sufficiently large s = ˜︁O(︂ϕ2

ε2
log 1

δ

)︂
. Then, if σi and σ̂i

are the singular values of A and SAT , respectively (where σ̂i = 0 for i > min(r, c)), we have with
probability ≥ 1− δ that ⌜⃓⃓⎷min(m,n)∑︂

i=1

(σ̂2i − σ2i )2 ≤ ε∥A∥
2
F.

If we additionally assume that ε ≲ ∥A∥/∥A∥F, we can conclude |σ2i − σ̂
2
i | ≤ ε∥A∥∥A∥F for all i.

This result follows from results bounding the error between singular values by errors of matrix
products. For notation, let σi(M) be the ith largest singular value of M . We will use the following
inequalities relating norm error of matrices to error in their singular values:

Lemma 4.10 (Hoffman-Wielandt inequality [KV17, Lemma 2.7]). For symmetric X,Y ∈ Rn×n,∑︂
|σi(X)− σi(Y )|2 ≤ ∥X − Y ∥2F.

Lemma 4.11 (Weyl’s inequality [Bha97, Corollary III.2.2]). For A,B ∈ Cm×n, |σk(A)− σk(B)| ≤
∥A−B∥. When A,B are Hermitian, the same bound holds for their eigenvalues.13

Proof of Lemma 4.9. We use known theorems, plugging in the values of r and c. Using Lemma 4.6
for the sketch S, we know that

Pr
[︂
∥A†S†SA−A†A∥F ≤

ε

2
∥A∥2F

]︂
≥ 1− δ;

13[Bha97, Corollary III.2.2] actually proves the Hermitian version. The result about singular values is an easy
consequence, see for example the blog of Terence Tao [Tao10, Exercise 22(iv)].
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by Lemma 4.3, T † is an ≤ 2ϕ-oversampled importance sampling sketch of (SA)†, so by Lemma 4.6
for T †,

Pr
[︂
∥SATT †A†S† − SAA†S†∥F ≤

ε

4
∥SA∥2F

]︂
≥ 1− δ,

and from Lemma 4.2,

Pr
[︂
∥SA∥2F ≤ 2∥A∥2F

]︂
≥ 1− δ.

By rescaling δ and union bounding, we can have all events happen with probability ≥ 1− δ. Then,
from triangle inequality followed by Lemma 4.10,√︂∑︂

|σi(SAT )2 − σi(A)2|2 ≤
√︂∑︂

|σi(SAT )2 − σi(SA)2|2 +
√︂∑︂

|σi(SA)2 − σi(A)2|2

≤ ∥(SAT )(SAT )† − (SA)(SA)†∥F + ∥(SA)†(SA)−A†A∥F
≤ ε∥A∥2F.

The analogous result holds for spectral norm via Lemma 4.8 and Lemma 4.11; the only additional
complication is that we need to assert that ∥SA∥ ≲ ∥A∥. We use the following argument, using the
upper bound on ε:

∥SA∥2 = ∥A†S†SA∥ ≤ ∥A†S†SA−A†A∥+ ∥A†A∥ ≤ ∥A∥2 + ε∥A∥∥A∥F ≲ ∥A∥2.

Finally, if we wish to approximate a vector inner product u†v, a special case of matrix product,
we can do so with only sampling and query access to one of the vectors while still getting log 1

δ
dependence on failure probability. The proof of this statement is in Appendix B.

Lemma 4.12 (Inner product estimation, [Tan19, Proposition 4.2]). Given SQϕ(u),Q(v) ∈ Cn,
we can output an estimate c ∈ C such that |c − ⟨u, v⟩| ≤ ε with probability ≥ 1 − δ in time
O
(︁
ϕ∥u∥2∥v∥2 1

ε2
log 1

δ (sqϕ(u) + q(v))
)︁
.

Remark 4.13. Lemma 4.12 also applies to higher-order tensor inner products:

(a) (Trace inner products, [GLT18, Lemma 11]) Given SQϕ(A) ∈ Cn×n and Q(B) ∈ Cn×n, we can

estimate Tr[AB†] to additive error ε with probability at least 1− δ by using

O
(︃
ϕ
∥A∥2F∥B∥2F

ε2
(︁
sqϕ(A) + q(B)

)︁
log

1

δ

)︃
time. To do this, note that SQϕ(A) and Q(B) imply SQϕ(vec(A)) and Q(vec(B)). Tr[AB] =
⟨vec(B), vec(A)⟩, so we can just apply Lemma 4.12 to conclude.

(b) (Expectation values) Given SQϕ(A) ∈ Cn×n and Q(x),Q(y) ∈ Cn, we can estimate x†Ay to
additive error ε with probability at least 1− δ in

O
(︃
ϕ
∥A∥2F∥x∥2∥y∥2

ε2
(︁
sqϕ(A) + q(x) + q(y)

)︁
log

1

δ

)︃
time. To do this, observe that x†Ay = Tr(x†Ay) = Tr(Ayx†) and that Q(yx†) can be simulated
with Q(x),Q(y). So, we just apply the trace inner product procedure.

Finally, we observe a simple technique to convert importance sampling sketches into approximate
isometries, by inserting the appropriate pseudoinverse. This will be used in some of the more
involved applications.
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Lemma 4.14. Given A ∈ Cm×n, S ∈ Cr×m sampled from a ϕ-oversampled importance sampling
distribution of A, and T † ∈ Cn×c sampled from an ≤ ϕ-oversampled importance sampling distribution
of (SA)†, let R := SA and C := SAT . Let σk be the kth singular value of A. If, for α ∈ (0, 1],

r = Ω̃(
ϕ2∥A∥2∥A∥2F

σ4
k

log 1
δ ) and c = Ω̃(

ϕ2∥A∥2∥A∥2F
σ4
kα

2 log 1
δ ), then with probability ≥ 1− δ, ((Ck)

+R)† is an

α-approximate projective isometry onto the image of (Ck)
+. Further, (DV †R)† is an α-approximate

isometry, where C+
k = UDV † is a singular value decomposition truncated so that D ∈ Rk′×k′ is full

rank (so k′ ≤ min(k, rank(A))).

Proof. The following occurs with probability ≥ 1− δ. By Lemma 4.9, ∥C+
k ∥ ≲

1
σ2
k
. By Lemma 4.8,

∥R†R−A†A∥ ≲ ∥A∥2, which implies that ∥R∥ ≲ ∥A∥, and by Lemma 4.2, ∥R∥F ≲ ∥A∥F. Further,
∥RR† − CC†∥ ≤ ασ2k

∥R∥∥R∥F
∥A∥∥A∥F ≲ ασ2k. Finally, C+

k C = C+
k Ck is an orthogonal projector. So, with

probability ≥ 1− δ,

∥(C+
k R)(C

+
k R)

† − (C+
k C)(C

+
k C)

†∥ = ∥C+
k (RR† − CC†)(C+

k )†∥ ≤ ∥C+
k ∥

2∥RR† − CC†∥ = O(α).

We get the computation for the α-approximate isometry by restricting attention to the span of U :

∥(DV †R)(DV †R)† − I∥ = ∥DV †(RR† − CC†)V D†∥ ≤ ∥UDV †∥2∥RR† − CC†∥ = O(α).

One can also observe that, for a sufficiently good sketch C, R ≈ Ck(Ck)
+R in spectral norm,

giving a generic way to approximate a sketch R by a product of a small matrix with an approximate
projective isometry. We do not need it in our proofs, so this computation is not included.

5 Singular value transformation

Our main result is that, given SQϕ(A) and a smooth function f , we can approximate f(A†A) by a

decomposition R†UR+ f(0)I. This primitive is based on the even singular value transformation
used by Gilyén, Su, Low, and Wiebe [GSLW19].

Theorem 5.1 (Even singular value transformation). Let A ∈ Cm×n and f : R+ → C be such that f(x)

and f̄(x) := (f(x)−f(0))/x are L-Lipschitz and L̄-Lipschitz, respectively, on ∪min(m,n)
i=1 [σ2i −d, σ2i +d]

for some d > 0. Take parameters ε and δ such that 0 < ε ≲ min(L∥A∥2∗, L̄∥A∥2∗∥A∥2) and δ ∈ (0, 1].
Choose a norm ∗ ∈ {F,Op}.

Suppose we have SQϕ(A). Consider the importance sampling sketch S ∈ Rr×m corresponding to

SQϕ(A) and the importance sampling sketch T † ∈ Rc×n corresponding to SQ≤2ϕ((SA)
†) (which we

have by Lemma 4.3). Then, for R := SA and C := SAT , we can achieve the bound

Pr
[︂
∥R†f̄(CC†)R+ f(0)I − f(A†A)∥∗ > ε

]︂
< δ, (3)

if r, c > ∥A∥2∥A∥2Fϕ2
1
d2

log 1
δ (or, equivalently, d > ε̄ := ∥A∥∗∥A∥F(ϕ

2 log(1/δ)
min(r,c) )1/2) and

r = Ω̃
(︂
ϕ2L2∥A∥2∗∥A∥2F

1

ε2
log

1

δ

)︂
c = Ω̃

(︂
ϕ2L̄

2∥A∥4∥A∥2∗∥A∥2F
1

ε2
log

1

δ

)︂
. (4)

First, we make some technical remarks. The assumption that ε ≲ L∥A∥2∗ is for non-degeneracy: if
ε ≥ L∥A∥2, then the naive approximation f(0)I of f(A†A) would suffice, since ∥f(0)I − f(A†A)∥ ≤
L∥A∥2 ≤ ε as desired.14 The parameter d (or, rather, the parameter ε̄) specifies the domain where

14The choice f(0)I assumes that f is Lipschitz on {0, ∥A∥2}. More generally, we can choose f(x)I for any

x ∈ ∪min(m,n)
i=1 [σ2

i − d, σ2
i + d] in order to get a sufficiently good naive approximation.
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f(x) and f̄(x) should be smooth: the condition in the theorem is that they should be Lipschitz on
the spectrum of A†A, with ε̄ room for approximation. This will not come into play often, though,
since we can often design our singular value transforms such that we can take d =∞. For example,
if our desired transform f becomes non-smooth outside the relevant interval [0, ∥A∥2], we can apply
Theorem 5.1 with d =∞ and the function g such that g(x) = g(∥A∥2) for x ≥ ∥A∥2 and g(x) = f(x)
otherwise. Then g(A†A) = f(A†A) and g is smooth everywhere, so we do not need to worry about
the d parameter. Finally, we note that no additional log terms are necessary (i.e., Ω̃ becomes Ω)
when the Frobenius norm is used.

By our discussion in Section 4, finding the sketches S and T for Theorem 5.1 takes time
O
(︁
(r + c) sϕ(A) + rcqϕ(A) + nϕ(A)

)︁
, querying for all of the entries of C takes additional time

O(rcq(A)), and computing f̄(CC†) takes additional time O
(︁
min(r2c, rc2)

)︁
(if done naively). For

our applications, this final matrix function computation will dominate the runtime, and the rest of
the cost we will treat as O

(︁
rc sqϕ(A)

)︁
.

For some intuition on error bounds and time complexity, we consider how the parameters in our
main theorem behave in a restricted setting: suppose we have SQ(A) with minimum singular value
σ and such that ∥A∥F/σ is dimension-independent.15 This condition simultaneously bounds the
rank and condition number of A. Further suppose16 that f is L-Lipschitz on the interval [0, ∥A∥2]
and satisfies

L∥A∥2 < ΓD where D := max
x∈[0,∥A∥2]

f(x)− min
y∈[0,∥A∥2]

f(y),

for some dimension-independent Γ. Γ must be at least one, so we can think about such an f as being
at most Γ times “steeper” compared to the least possible “steepness”. Under these assumptions, we
can get a decomposition satisfying

∥R†f̄(CC†)R+ f(0)I − f(A†A)∥ > εD

with probability ≥ 1− δ by taking

r = Θ̃
(︂
Γ2 ∥A∥2F
∥A∥2

1

ε2
log

1

δ

)︂
and c = Θ̃

(︂
Γ2 ∥A∥2∥A∥2F

σ4
1

ε2
log

1

δ

)︂
.

The time to compute the decomposition is

˜︁O(︃ ∥A∥6F
∥A∥2σ4

Γ6

ε6
log3

1

δ

)︃
.

These quantities are all dimensionless. Dependence on σ arises because we bound L̄ ≤ L/σ2: our
algorithm’s dependence on L̄ implicitly enforces a low-rank constraint in this case. All of our analyses
give qualitatively similar results to this, albeit in more general settings allowing approximately
low-rank input.

To perform error analyses, we will need bounds on the norms of the matrices in our decomposition.
The following lemma gives the bounds we need for Section 6.

Lemma 5.2 (Norm bounds for even singular value transformation). Suppose the assumptions
from Theorem 5.1 hold. Then with probability at least 1− δ, the event in Eq. (3) occurs (that is,

15By a dimension-independent or dimensionless quantity, we mean a quantity that is both independent of the size of
the input matrix and is scale-invariant, i.e., does not change under scaling A← αA.

16This criterion is fairly reasonable. For example, the polynomials used in QSVT satisfy it.
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R†f̄(CC†)R ≈ f(A†A)− f(0)I) and moreover, the following bounds also hold:

∥R∥ = O(∥A∥) and ∥R∥F = O(∥A∥F), (5)

∥f̄(CC†)∥ ≤ max
{︂
|f̄(x)|

⃓⃓⃓
x ∈

min(r,c)⋃︂
i=1

[σ2i − ε̄, σ2i + ε̄]
}︂
, (6)

when ∗ = Op,
⃦⃦⃦
R†
√︂
f̄(CC†)

⃦⃦⃦
≤
√︂
∥f(A†A)− f(0)I∥+ ε. (7)

Eq. (7) is typically a better bound than combining Eqs. (5) and (6). For intuition, notice this is
true if ε, ε̄ = 0: the left-hand and right-hand sides of the following inequality are the two ways to
bound ∥R†

√︁
f̄(CC†)∥2, up to constant factors (σ below runs over the singular values of A):

∥f(A†A)− f(0)I∥ ≤ max
σ
|f(σ2)− f(0)| ≤ max

σ
σ2max

σ

|f(σ2)− f(0)|
σ2

= ∥A∥2max
σ
|f̄(σ2)|.

The rest of this section will be devoted to proving Theorem 5.1 and Lemma 5.2. A mathematical tool
we will need is a matrix version of the defining inequality of L-Lipschitz functions, |f(x)− f(y)| ≤
L|x− y| when f is L-Lipschitz. The Frobenius norm version of this bound (Lemma 5.3) follows by
computing matrix derivatives; the spectral norm version (Lemma 5.4) has a far less obvious proof.

Lemma 5.3 ([Gil10, Corollary 2.3]). Let A and B be Hermitian matrices and let f : R → C be
L-Lipschitz continuous on the eigenvalues of A and B. Then ∥f (EV)(A)−f (EV)(B)∥F ≤ L∥A−B∥F.

Lemma 5.4 ([AP11, Theorem 11.2]). Let A and B be Hermitian matrices and let f : R → C be
L-Lipschitz continuous on the eigenvalues of A and B. Then⃦⃦⃦

f (EV)(A)− f (EV)(B)
⃦⃦⃦
≲ L∥A−B∥ logmin(rankA, rankB).

Proof of Theorem 5.1 and Lemma 5.2. Since g(A†A) = f(A†A) + g(0)I for f(x) := g(x)− g(0), we
can assume without loss of generality that f(0) = 0. As a reminder, in the statement of Theorem 5.1
we take

r = Ω̃
(︂
ϕ2L2∥A∥2∗∥A∥2F

1

ε2
log

1

δ

)︂
c = Ω̃

(︂
ϕ2L̄

2∥A∥4∥A∥2∗∥A∥2F
1

ε2
log

1

δ

)︂
.

These values are chosen such that the following holds with probability ≥ 1− δ simultaneously.

1. The ith singular value of CC† does not differ from the ith singular value of A†A by more than
ε̄. This follows from Lemma 4.9 with error parameter ε∥A∥−1

F ∥A∥−1
∗ max(L−1, L̄

−1∥A∥−2).
This immediately implies Eq. (6).

2. ∥R∥2 = O
(︁
∥A∥2

)︁
. This is the spectral norm bound in Eq. (5) (the Frobenius norm bound

follows from Lemma 4.2). We use Lemma 4.8:

∥R∥2 ≤ ∥A∥2 + ∥R†R−A†A∥ ≤ ∥A∥2 + ε∥A∥2

L∥A∥2∗
= O(∥A∥2).

3. ∥f(R†R)− f(A†A)∥∗ = O(ε). We need the polylog factors in our number of samples to deal
with the log r that arises from Lemma 5.4 in the spectral norm case.

∥f(R†R)− f(A†A)∥∗
≲ L∥R†R−A†A∥∗ log rank(R†R) (Lemma 5.4 or Lemma 5.3)

≲ L

√︃
ϕ2 log r log(1/δ)

r
∥A∥∗∥A∥F log r (Lemma 4.8 or Lemma 4.6)

≲ ε. (plugging in value for r)
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4. ∥f̄(CC†)− f̄(RR†)∥∗ = O
(︁
ε/∥A∥2

)︁
. This follows similarly to the above point.

When all of the above bounds hold, we can conclude:

∥R†f̄(CC†)R− f(A†A)∥∗
≤ ∥R†f̄(RR†)R− f(A†A)∥∗ + ∥R†(f̄(RR†)− f̄(CC†))R∥∗
= ∥f(R†R)− f(A†A)∥∗ + ∥R†(f̄(RR†)− f̄(CC†))R∥∗ (Definition of f̄)

≤ ∥f(R†R)− f(A†A)∥∗ + ∥R∥2∥f̄(RR†)− f̄(CC†)∥∗
≲ ε+ ∥R∥2ε/∥A∥2

≲ ε.

This gives Eq. (3) after rescaling ε by an appropriate constant factor. When ∗ = Op, we also have
Eq. (7), since ⃦⃦⃦

R†
√︂
f̄(CC†)

⃦⃦⃦
=
√︂
∥R†f̄(CC†)R∥ ≤

√︂
∥f(A†A)− f(0)I∥+ ε.

We remark here that the log term in Lemma 5.4 unfortunately cannot be removed (because some
Lipschitz functions are not operator Lipschitz). However, several bounds hold under various mild
assumptions, and for particular functions, the log term can be improved to log log or completely
removed. For example, the QSVT literature [GSLW19] cites the following result:

Lemma 5.5 ([AP10, Corollary 7.4]). Let A and B be Hermitian matrices such that aI ⪯ A,B ⪯ bI,
and let f : R→ C be L-Lipschitz continuous on the interval [a, b]. Then⃦⃦⃦

f (EV)(A)− f (EV)(B)
⃦⃦⃦
≲ L∥A−B∥ log

(︃
e

b− a
∥A−B∥

)︃
.

Though we will not use it, we can extend these results on eigenvalue transformation of Hermitian
matrices to singular value transformation of general matrices via the reduction from [GSLW19,
Corollary 21]. For example, Lemma 5.4 implies the following:

Lemma 5.6. Let A,B ∈ Cm×n be matrices and let f : [0,∞)→ C be L-Lipschitz continuous on the
singular values of A and B such that f(0) = 0. Then

∥f (SV)(A)− f (SV)(B)∥ ≲ L∥A−B∥ logmin(rankA, rankB).

In Section 7, we prove results on generic singular value transformation and eigenvalue trans-
formation by bootstrapping Theorem 5.1. Since these are slower, though, we will use primarily
the even singular value transformation results that we just proved to recover “dequantized QML”
results. This will be the focus of next section.

6 Applying the framework to dequantizing QML algorithms

Now, with our framework, we can recover previous dequantization results: recommendation systems
(Section 6.2), supervised clustering (Section 6.3), principal component analysis (Section 6.4), low-
rank matrix inversion (Section 6.5), support-vector machines (Section 6.6), and low-rank semidefinite
programs (Section 6.8). We also propose new quantum-inspired algorithm for other applications,
including QSVT (Section 6.1), Hamiltonian simulation (Section 6.7), and discriminant analysis
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(Section 6.9). We give applications in roughly chronological order; this also happens to be a rough
difficulty curve, with applications that follow more easily from our main results being first.

Everywhere it occurs, K := ∥A∥2F/σ2, where A is the input matrix. κ := ∥A∥22/σ2. For simplicity,
we will often describe our runtimes as if we know spectral norms of input matrices (so, for example,
we know κ). If we do not know the spectral norm, we can run Lemma 4.9 repeatedly with
multiplicatively decreasing ε until we find a constant factor upper bound on the spectral norm,
which suffices for our purposes. Alternatively, we can bound the spectral norm by the Frobenius
norm, which we know from sampling and query access to input.

6.1 Dequantizing QSVT

We begin by dequantizing the quantum singular value transformation described by Gilyén, Su, Low,
and Wiebe [GSLW19] for close-to-low-rank matrices.

Definition 6.1. For a matrix A ∈ Cm×n and p(x) ∈ C[x] degree-d polynomial of parity-d (i.e., even
if d is even and odd if d is odd), we define the notation p(QV)(A) in the following way:

1. If p is even, meaning that we can express p(x) = q(x2) for some polynomial q(x), then

p(QV)(A) := q(A†A) = p(
√
A†A).

2. If p is odd, meaning that we can express p(x) = x · q(x2) for some polynomial q(x), then

p(QV)(A) := A · q(A†A).

Theorem 6.2. Suppose we are given a matrix A ∈ Cm×n satisfying ∥A∥F = 1 via the oracles
for SQ(A) and SQ(A†) with sq(A), sq(A†) = O(log(mn)), a vector SQ(b) ∈ Cn with ∥b∥ = 1 and
sq(b) = O(log n), and a degree-d polynomial p(x) of parity-d such that |p(x)| ≤ 1 for all x ∈ [−1, 1].

Then with probability ≥ 1− δ, for ε a sufficiently small constant, we can get SQϕ(v) ∈ Cn such

that ∥v − p(QV)(A)b∥ ≤ ε∥p(QV)(A)b∥ in poly
(︂
d, 1

∥p(QV)(A)b∥ ,
1
ε ,

1
δ , logmn

)︂
time.

Specifically, for p even, the runtime is

˜︁O(︃ d16∥A∥10

(ε∥p(QV)(A)b∥)6
log3

1

δ
+
d12∥A∥8 + d6∥A∥2

(ε∥p(QV)(A)b∥)4
log2

1

δ
log(mn)

)︃
with

˜︂sq(v) = ˜︁O(︃ d12∥A∥4

ε4∥p(QV)(A)b∥6
log(mn) log3

1

δ

)︃
,

and for p odd, the runtime is

˜︁O(︃ d22∥A∥16

(ε∥p(QV)(A)b∥)6
+
d16∥A∥12 + d10∥A∥4δ−1

(ε∥p(QV)(A)b∥)4
log(mn)

)︃
with

˜︂sq(v) = ˜︁O(︃ d8

ε2δ∥p(QV)(A)b∥4
log(mn)

)︃
.
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From this result it follows that QSVT, as described in [GSLW19, Theorem 17], has no exponential
speedup when the block-encoding of A comes from a quantum-accessible “QRAM” data structure as
in [GSLW19, Lemma 50]. In the setting of QSVT, given A and b in QRAM, one can prepare |b⟩ and
construct a block-encoding for A/∥A∥F = A in polylog(mn) time. Then one can apply (quantum)
SVT by a degree-d polynomial on A and apply the resulting map to |b⟩ with d·polylog(mn) gates and
finally project down to get the state |p(QV)(A)b⟩ with probability ≥ 1− δ after Θ

(︁
1

∥p(QV)(A)b∥ log
1
δ

)︁
iterations of the circuit. So, getting a sample from |p(QV)(A)b⟩ takes Θ

(︁
d 1
∥p(QV)(A)b∥ polylog(mn/δ)

)︁
time. This circuit gives an exact outcome, possibly with some log(1/ε) factors representing the
discretization error in truncating real numbers to finite precision (which we ignore, since we do not
account for them in our classical algorithm runtimes).

Analogously, by Remark 3.11, having A and b in (Q)RAM implies having SQ(A) and SQ(b) with
sq(A) = O(logmn) and sq(b) = O(log n). Since QSVT also needs to assume maxx∈[−1,1]|p(x)| ≤ 1,
the classical procedure matches the assumptions for QSVT. Our algorithm runs only polynomially
slower than the quantum algorithm, since the quantum runtime clearly depends on d, 1

∥p(QV)(A)b∥ ,

and log(mn). We are exponentially slower in ε and δ (these errors are conflated for the quantum
algorithm). However, this exponential advantage vanishes if the desired output is not a quantum
state but some fixed value (or an estimate of one). In that case, the quantum algorithm must
also pay 1

ε during the sampling or tomography procedures and the classical algorithm can boost a
constant success probability to ≥ 1− δ, only paying a log 1

δ factor. Note that, unlike in the quantum
output, we can query entries of the output, which a quantum algorithm cannot do without paying
at least a 1

ε factor.
Theorem 6.2 also dequantizes QSVT for block-encodings of density operators when the density

operator comes from some well-structured classical data. Indeed, [GSLW19, Lemma 45] assumes
we can efficiently prepare a purification of the density operator ρ. The rough classical analogue is
the assumption that we have sampling and query access to some A ∈ Cm×n with ρ = A†A. Since
Tr(ρ) = 1, we have ∥A∥F = 1. Then, p(QV)(ρ) = r(QV)(A) for r(x) = p(x2) and ∥ρ∥ = ∥A∥2, so we
can repeat the above argument to show the lack of exponential speedup for this input model too.

We can mimic the quantum algorithm with our techniques because low-degree polynomials are
smooth, in the sense that we formalize with the following lemma (proven in Appendix B).

Lemma 6.3. Consider p(x) a degree-d polynomial of parity-d such that |p(x)| ≤ 1 for x ∈ [−1, 1].
Recall that, for a function f : C→ C, we define f̄(x) := (f(x)− f(0))/x (and f̄(0) = f ′(0) when f
is differentiable at zero).

• If p is even, then max
x∈[0,1]

|q(x)| ≤ 1, max
x∈[−1,1]

|q′(x)| ≲ d2, max
x∈[−1,1]

|q̄(x)| ≲ d2, and max
x∈[−1,1]

|q̄′(x)| ≲ d4.

• If p is odd, then max
x∈[−1,1]

|q(x)| ≲ d, max
x∈[−1,1]

|q′(x)| ≲ d3, max
x∈[−1,1]

|q̄(x)| ≲ d3, and max
x∈[−1,1]

|q̄′(x)| ≲ d5.

These bounds are tight for Chebyshev polynomials. In general, these bounds can be loose, so for
any particular QML application we recommend using our main results for faster algorithms.

Proof of Theorem 6.2. Consider the even case: take p(x) = q(x2) for q a degree-d/2 polynomial, so
p(QV)(A) = q(A†A), and we have the correct form to apply Theorem 5.1. q is uncontrolled outside
of [−1, 1], so we instead apply the singular value transformation which is constant outside of [−1, 1]:

f(x) :=

⎧⎪⎨⎪⎩
q(−1) x ≤ −1
q(x) −1 ≤ x ≤ 1

q(1) 1 ≤ x
.

32



We can do this because the singular values of A lie in [0, 1], so q(A†A) = f(A†A). Then, by
Lemma 6.3, f and f̄ are Lipschitz with L = O

(︁
d2
)︁
, L̄ = O

(︁
d4
)︁
. So, by Theorem 5.1, we can get

R ∈ Cr×n and C ∈ Cr×c such that ∥R†f̄(CC†)R+ f(0)I − f(A†A)∥ ≤ ε, where

r = ˜︁O(︃d4∥A∥2∥A∥2F 1

ε2
log

1

δ

)︃
and c = ˜︁O(︃d8∥A∥6∥A∥2F 1

ε2
log

1

δ

)︃
.

(We will later rescale ε; note that ε∥p(QV)(A)b∥ ≲ L∥A∥2∥b∥, so ε is small enough for the theorem
assumption.) This reduces the problem to approximating R†f̄(CC†)Rb+ f(0)b. We further approx-

imate Rb ≈ u ∈ Cr such that ∥Rb− u∥ ≤ ε/d. Using Lemma 4.6, this needs O
(︂
∥A∥2F∥b∥2

d2

ε2
log 1

δ

)︂
samples, which can be done in time O

(︂
∥A∥2F∥b∥2

d2

ε2
r log(mn) log 1

δ

)︂
, using that ∥R∥F ≲ ∥A∥F

(Eq. (5)) and sq(R†) = O(r sq(A)) (Lemma 4.3). This suffices to maintain the error bound because
(using Eqs. (6) and (7) and Lemma 6.3),

∥R†f̄(CC†)(Rb− u)∥ ≤
⃦⃦⃦
R†
√︂
f̄(CC†)

⃦⃦⃦⃦⃦⃦√︂
f̄(CC†)

⃦⃦⃦
∥Rb− u∥

≤
√︂
∥f(A†A)− f(0)I∥+ ε

√︂
max
x

f̄(x)
ε

d
≤
√
2 + εd

ε

d
≲ ε.

As a consequence, v := R†f̄(CC†)u+ f(0)b satisfies ∥v − p(QV)(A)b∥ ≤ ε. Via Lemma 3.6, we can
get SQϕ(v) with

˜︂sq(v) = ϕ SQϕ(v) log
1

δ

=
(︂
(r + 1)

∥R∥2F∥f̄(CC†)u∥2 + p(0)2∥b∥2

∥v∥2
)︂(︂

(r + 1) log(mn)
)︂
log

1

δ

≲ r2
∥f̄(CC†)∥2(∥Rb∥+ ∥Rb− u∥)2 + p(0)2

(∥p(QV)(A)b∥ − ∥v − p(QV)(A)∥)2
log(mn) log

1

δ

≲ r2
d4(1 + ε/d)2 + 1

(∥p(QV)(A)b∥ − ε)2
log

1

δ

≲
r2d4

∥p(QV)(A)b∥2
log(mn) log

1

δ
.

In the last step, we use that ε ≲ ∥p(QV)(A)b∥; if we do not have that assumption, ˜︂sq(v) ≲
r2d4

∥v∥2 log(mn) log
1
δ . We rescale ε← ε∥p(QV)(A)b∥ to get the desired bound. The runtime is dominated

by finding C in O(rc log(mn)) time, computing f̄(CC†) in O
(︁
r2c
)︁
time, and estimating R†b in

O
(︂
r d

2

ε2
log(mn) log 1

δ

)︂
time. We also need to compute the matrix-vector product f̄(CC†)u, but this

can be done in O(rc) time by instead multiplying through with the expression Uf̄(D2)U † = f̄(CC†),
where U ∈ Cr×c comes from the SVD of C.

Now for the odd case: we could use Theorem 7.1 here, but we will continue to use Theorem 5.1
here. Similarly to the even case, we take g(x) to be q(x) in [−1, 1] and held constant ouside it, so
p(QV)(A) = A · g(A†A). Then, by plugging in the smoothness parameters from Lemma 6.3, we get
R,C such that ∥R†ḡ(CC†)R+ g(0)I − g(A†A)∥ < ε

∥A∥ with probability ≥ 1− δ where

r = ˜︁O(︃d6∥A∥4∥A∥2F 1

ε2
log

1

δ

)︃
c = ˜︁O(︃d10∥A∥8∥A∥2F 1

ε2
log

1

δ

)︃
.

We now use the approximating matrix product lemmas Lemmas 4.4 and 4.6 three times.
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1. We use Lemma 4.4 to approximate AR† ≈ A′R′† such that ∥AR† − A′R′†∥ ≤ εd−2. We can
do this since we have SQ(A†) (by assumption) and SQ(R†), in O

(︁
∥A∥2F∥R∥2Fd4ε−2δ−1

)︁
=

O
(︁
d4ε−2δ−1

)︁
samples, with each sample costing O(r log(mn)) time (by Lemma 4.3). Then

using Lemma 5.2 and the bounds on |q(x)| and |q̄(x)| in Lemma 6.3,

∥(AR† −A′R′†)ḡ(CC†)R∥ ≤ ∥AR† −A′R′†∥∥
√︂
ḡ(CC†)∥∥

√︂
ḡ(CC†)R∥

≤ (εd−2)
√
d3
√︃
∥g(A†A)− g(0)I∥+ ε

∥A∥
≲ ε.

2. We use Lemma 4.6 to approximate Rb ≈ u such that ∥Rb − u∥ ≤ ε
d2∥A∥ , where we use

O
(︂
∥R∥2F∥b∥2

d4∥A∥2
ε2

log 1
δ

)︂
= O

(︁
d4∥A∥2ε−2 log 1

δ

)︁
samples.

∥A′R′†ḡ(CC†)(Rb− u)∥ ≤ ∥AR†ḡ(CC†)(Rb− u)∥+ ∥(A′R′† −AR†)ḡ(CC†)Rb∥
≲ ∥A∥∥R†ḡ(CC†)∥∥Rb− u∥+ ε ≲ ∥A∥d2(εd−2∥A∥−1) + ε ≲ ε.

3. Using SQ(b) and Lemma 4.4, we approximate Ab ≈ A′′b′′ such that ∥Ab−A′′b′′∥ ≤ ε/d (and
consequently, q(0)∥Ab−A′′b′′∥ ≤ ε) with O

(︁
∥A∥2F∥b∥2d2ε−2δ−1

)︁
= O

(︁
d2ε−2δ−1

)︁
samples.

So, we have shown that v := A′R′†ḡ(CC†)u+ q(0)A′′b′′ satisfies ∥v− p(QV)(A)∥ ≲ ε. v is a linear
combination of columns of A; via Lemma 3.6, we can get SQϕ(v) with

˜︂sq(v) = ϕ SQϕ(v) log
1

δ

= ˜︁O(︄∑︁i ∥A′(·, i)∥2∥R′(·, i)†ḡ(CC†)u∥2 +
∑︁

j q(0)
2∥A′′(·, j)∥2∥b′′(j)∥2

∥v∥2
(︂d4 + d2

ε2δ

)︂2
log(mn)

)︄

= ˜︁O
⎛⎝ ∥A∥2F∥R

†∥2F
d4ε−2δ−1 (∥ḡ(CC†)R∥∥b∥+ ∥ḡ(CC†)∥∥Rb− u∥)2 + q(0)2

∥A∥2F∥b∥
2

d2ε−2δ−1

(∥p(QV)(A)b∥ − ∥p(QV)(A)b− v∥)2
d8

ε4δ2
log(mn)

⎞⎠
= ˜︁O(︃d−4(d2 + d3εd−2∥A∥−1)2 + 1

(∥p(QV)(A)b∥ − ε)2
d8

ε2δ
log(mn)

)︃
= ˜︁O(︂d8∥p(QV)(A)b∥−2ε−2δ−1 log(mn)

)︂
.

Above, we used that ε ≲ ∥p(QV)(A)b∥ ≤ ∥A∥∥q(A†A)∥∥b∥ ≤ d∥A∥. Now, we rescale ε ←
ε∥p(QV)(A)b∥ to get the desired statement. The runtime is dominated by the sampling for C
in O(rc log(mn)) time, the computation of ḡ(CC†) in O

(︁
r2c
)︁
time, and the approximation of

AR† ≈ A′R′† in O
(︁
rd4ε−2δ−1 log(mn)

)︁
time.

Remark 6.4. Here, we make a brief remark about a technical detail we previously elided. Technically,
QSVT can use A† in QRAM instead of A (cf. [GSLW19, Lemma 50]), leaving open the possibility
that there is a quantum algorithm that does not give an exponential speedup when A is in QRAM,
but does when A† is in QRAM. We sketch an argument why this is impossible by showing that,
given SQ(A), we can simulate SQϕ(B) (and SQϕ(B

†)) for B such that ∥B − A†∥ ≤ ε∥A∥ with
probability ≥ 1− δ. Unfortunately, this argument is fairly involved, so we defer it to Appendix A.
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6.2 Recommendation systems

Our framework gives a simpler and faster variant of Tang’s dequantization [Tan19] of Kerenidis and
Prakash’s quantum recommendation systems [KP17]. Tang’s result is notable for being the first
result in this line of work and for dequantizing what was previously believed to be the strongest
candidate for practical exponential quantum speedups for a machine learning problem [Pre18].

We want to find a product j ∈ [n] that is a good recommendation for a particular user i ∈ [m],
given incomplete data on user-product preferences. If we store this data in a matrix A ∈ Rm×n with
sampling and query access, in the strong model described by Kerenidis and Prakash [KP17], finding
good recommendations reduces to the following:

Problem 6.5. For a matrix A ∈ Rm×n, given SQ(A) and a row index i ∈ [m], sample from Â(i, ·)
up to δ error in total variation distance, where ∥Â−Aσ,η∥F ≤ ε∥A∥F.

Here, Aσ,η is a certain type of low-rank approximation to A. The standard notion of low-rank
approximation is that of Ar :=

∑︁r
i=1 σiU(·, i)V (·, i)†, which is the rank-r matrix closest to A in

spectral and Frobenius norms. Using singular value transformation, we define an analogous notion
thresholding singular values instead of rank.

Definition 6.6 (Aσ,η). We define Aσ,η as a singular value transform of A satisfying:

Aσ,η := P (SV)
σ,η (A) Pσ,η(λ)

⎧⎪⎨⎪⎩
= λ λ ≥ σ(1 + η)

= 0 λ < σ(1− η)
∈ [0, λ] otherwise

.

Note that Pσ,η is not fully specified in the range [σ(1− η), σ(1 + η)), so Aσ,η is any of a family of
matrices with error η.

For intuition, P
(SV)
σ,η (A) is A for (right) singular vectors with value ≥ σ(1 + η), zero for those

with value < σ(1− η), and something in between for the rest. Our analysis simplifies the original
algorithm, which passes through the low-rank approximation guarantee of Frieze, Kannan, and
Vempala [FKV04].

Our algorithm uses that we can rewrite our target low-rank approximation as A · t(A†A), where
t is a smoothened projector. So, we can use our main theorem, Theorem 5.1, to approximate
t(A†A) by some R†UR. Then, the ith row of our low-rank approximation is A(i, ·)R†UR, which is a
product of a vector with an RUR decomposition. Thus, using the sampling techniques described in
Section 4.1, we have SQϕ(A(i, ·)R†UR), so we can get the sample from this row as desired.

Corollary 6.7. Suppose 0 < ε ≲ ∥A∥/∥A∥F and η ≤ 0.99. A classical algorithm can solve
Problem 6.5 in time ˜︁O(︄K3κ5

η6ε6
log3

1

δ
+
K2κ∥A(i, ·)∥2

η2ε2∥Â(i, ·)∥2
log2

1

δ

)︄
.

The assumption on ε is a weak non-degeneracy condition in the low-rank regime. For reference,
η = 1/6 in the application of this algorithm to recommendation systems. So, supposing the first

term of the runtime dominates, the runtime is ˜︁O(︂∥A∥6F∥A∥10
σ16ε6

log3 1
δ

)︂
, which improves on the previous

runtime ˜︁O(︂ ∥A∥24F
σ24ε12

log3 1
δ

)︂
of [Tan19]. The quantum runtime for this problem is ˜︁O(︂∥A∥F

σ

)︂
, up to

polylog(m,n) terms [CGJ19, Theorem 27].

35



Proof. Note that Aσ,η = A · t(A†A), where t is the thresholding function shown below.

t(x) =

⎧⎪⎨⎪⎩
0 x < (1− η)2σ2

1
4ησ2 (x− (1− η)2σ2) (1− η)2σ2 ≤ x < (1 + η)2σ2

1 x ≥ (1 + η)2σ2
.

We will apply Theorem 5.1 with error parameter ε to get matrices R,C such that AR†t̄(CC†)R
satisfies

∥Aσ,1/6 −AR†t̄(CC†)R∥F ≤ ∥A∥F∥t(A†A)−R†t̄(CC†)R∥ ≤ ε∥A∥F. (8)

Since t(x) is (4ησ2)−1-Lipschitz and t(x)/x is (4η(1− η)2σ4)−1-Lipschitz, the sizes of r and c are

r = ˜︁O(︃L2∥A∥2∥A∥2F
1

ε2
log

1

δ

)︃
= ˜︁O(︃∥A∥2∥A∥2F

σ4η2ε2
log

1

δ

)︃
= ˜︁O(︃ Kκ

η2ε2
log

1

δ

)︃
;

c = ˜︁O(︃L̄2∥A∥6∥A∥2F
1

ε2
log

1

δ

)︃
= ˜︁O(︃∥A∥6∥A∥2F

σ8η2ε2
log

1

δ

)︃
= ˜︁O(︃Kκ3

η2ε2
log

1

δ

)︃
.

So, it suffices to compute the SVD of an r × c matrix, which has a runtime of

˜︁O(︃K3κ5

η6ε6
log3

1

δ

)︃
.

Next, we want to approximate AR† ≈ A′R′†. If we had SQ(A†) (in particular, if we could compute
column norms ∥A(·, j)∥), we could do this via Lemma 4.6, and if we were okay with paying factors
of 1

δ , we could do this via Lemma 4.4. Here, we will instead implicitly define an approximation by
approximating each row [AR†](i, ·) = A(i, ·)R† via Lemma 4.6, since we then have SQ(A(i, ·)†) and
SQ(R†). With this proposition, we can estimate [AR†](i, ·) ≈ (A(i, ·)S†S)R† to ε√

K
∥A(i, ·)∥∥R†∥F =

ε∥A(i, ·)∥σ error using r′ := O(ε−2K log 1
δ ) samples17. Here, A′(i, ·) := A(i, ·)S†S is our r′-sparse

approximation, giving that

∥AR† −A′R†∥F =
√︂∑︁m

i=1 ∥[AR†](i, ·)− [A′R†](i, ·)∥2 ≤
√︂∑︁m

i=1 ε
2∥A(i, ·)∥2σ2 = εσ∥A∥F. (9)

Using this and the observation that maxx t̄(x) = (1 + η)−2σ−2 ≤ σ−2, we can bound the quality of
our final approximation as

∥Â−Aσ,η∥F ≤ ∥(A′R† −AR†)t̄(CC†)R∥F + ∥AR†t̄(CC†)R−Aσ,η∥F by triangle inequality

≤ ∥A′R† −AR†∥F
⃦⃦⃦√︂

t̄(CC†)
⃦⃦⃦⃦⃦⃦√︂

t̄(CC†)R
⃦⃦⃦
+ ε∥A∥F by Eq. (8)

≤ εσ∥A∥Fσ−1
√
1 + ε+ ε∥A∥F ≲ ε∥A∥F. by Lemma 5.2 and Eq. (9)

We can sample from Â(i, ·) = A′(i, ·)R†f̄(CC†)R by naively computing x := A′(i, ·)R†f̄(CC†),
taking O(r′r+ rc) time. Then, we use Lemmas 3.5 and 3.6 to get a sample from xR with probability
≥ 1− δ in O

(︁˜︂sqϕ(xR)
)︁
time, which is O

(︁
ϕ sqϕ(xR) log

1
δ

)︁
, where sqϕ(xR) = O(r) and

ϕ = r

∑︁r
j=1|x(j)|2∥R(j, ·)∥2

∥xR∥2
≲ r

∑︁r
j=1|x(j)|2∥A∥2F
∥Â(i, ·)∥2r

=
∥x∥2∥A∥2F
∥Â(i, ·)∥2

.

17Formally, to get a true approximation AR ≈ A′R, we need to union bound the failure probability for each row,
paying a logm factor in runtime. However, we will ignore this consideration: our goal is to sample from one row, so
we only need to succeed in our particular row.
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Then, using previously established bounds and bounds from Lemma 5.2, we have

∥x∥2∥A∥2F
∥Â(i, ·)∥2

=
∥A′(i, ·)R†t̄(CC†)∥2∥A∥2F

∥Â(i, ·)∥2

≤
(︂
∥A(i, ·)∥

⃦⃦⃦
R†
√︂
t̄(CC†)

⃦⃦⃦⃦⃦⃦√︂
t̄(CC†)

⃦⃦⃦
+ ∥A(i, ·)′R† −A(i, ·)R†∥∥t̄(CC†)∥

)︂2 ∥A∥2F
∥Â(i, ·)∥2

≲ (∥A(i, ·)∥σ−1 + εσ∥A(i, ·)∥σ−2)2
∥A∥2F
∥Â(i, ·)∥2

≲
∥A(i, ·)∥2∥A∥2F
∥Â(i, ·)∥2σ2

.

This sampling procedure and the SVD dominate the runtime. Since the sampling is exact, the only
error in total variation distance is the probability of failure.

Remark 6.8. This algorithm implicitly assumes that the important singular values are ≥ σ.
Without such an assumption, we can take σ = ε∥A∥F and η = 1/2, and have meaningful bounds on
the output matrix Â. Observe that, for p(x) = x(t(

√
x)− 1),

∥A · t(A†A)−A∥ = ∥p(SV)(A)∥ ≤ 3

2
ε∥A∥F.

So, our low-rank approximation output Â satisfies ∥Â−A∥ ≲ ε∥A∥F, with no assumptions on A,

in ˜︁O(︂ ∥A∥6F
∥A∥6ε22 log

3 1
δ

)︂
time. This can be subsequently used to get SQϕ(Â(i, ·)) = SQϕ(eiÂ) where

∥Â(i, ·)−A(i, ·)∥ ≲ ε∥A∥F (in a myopic sense, solving the same problem as Problem 6.5), or more
generally, any product of Â with a vector, in time independent of dimension.

6.3 Supervised clustering

The 2013 paper of Lloyd, Mohseni, and Rebentrost [LMR13] gives two algorithms for the machine
learning problem of clustering. The first algorithm is a simple swap test procedure that was
dequantized by Tang [Tan21] (the second is an application of the quantum adiabatic algorithm
with no proven runtime guarantees). We will reproduce the algorithm from [Tan21] here: since the
dequantization just uses the inner product protocol, so it rather trivially fits into our framework.

We have a dataset of points in Rd grouped into clusters, and we wish to classify a new data
point by assigning it to the cluster with the nearest average, aka centroid. We do this by estimating
the distance between the new point p ∈ Rd to the centroid of a cluster of points q1, . . . , qn−1 ∈ Rd,
namely, ∥p− 1

n−1(q1 + · · ·+ qn−1)∥2. This is equal to ∥wM∥2, where

M :=

⎡⎢⎣
p/∥p∥

−q1/(∥q1∥
√
n−1)

...
−qn−1/(∥qn−1∥

√
n−1)

⎤⎥⎦ ∈ Rn×d, w :=

[︃
∥p∥, ∥q1∥√

n− 1
, . . . ,

∥qn−1∥√
n− 1

]︃
∈ Rn.

Because the quantum algorithm assumes input in quantum states, we can assume sampling and
query access to the data points, giving the problem

Problem 6.9. Given SQ(M) ∈ Rn×d,Q(w) ∈ Rn, approximate (wM)(wM)T to additive ε error
with probability at least 1− δ.

Corollary 6.10 ([Tan21, Theorem 4]). There is a classical algorithm to solve Problem 6.9 in
O
(︁
∥M∥4F∥w∥4

1
ε2

log 1
δ

)︁
time.
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Note that ∥M∥2F = 2 and ∥w∥2 = ∥p∥2 + 1
n−1

∑︁n−1
i=1 ∥qi∥2. The quantum algorithm has a

quadratically faster runtime of O
(︁
∥M∥2F∥w∥2

1
ε

)︁
, ignoring polylog(n, d) factors [LMR13, Tan21].

Proof. Recall our notation for the vector of row norms m := [∥M(1, ·)∥, . . . , ∥M(n, ·)∥] coming from
Definition 3.7. We can rewrite (wM)(wM)T as an inner product ⟨u, v⟩ where

u :=
n∑︂

i=1

d∑︂
j=1

n∑︂
k=1

M(i, j)∥M(k, ·)∥ei ⊗ ej ⊗ ek =M ⊗m

v :=
n∑︂

i=1

d∑︂
j=1

n∑︂
k=1

wiwkM(j, k)

∥M(k, ·)∥
ei ⊗ ej ⊗ ek,

where u and v are three-dimension tensors. By flattening u and v, we can represent them as two
vectors in R(n·d·n)×1. We clearly have Q(v) from queries to M and w. As for getting SQ(u) from
SQ(M): to sample, we first sample i according to m, sample j according to M(i, ·), and sample
k according to m; to query, compute ui,j,k = M(i, j)m(k). Finally, we can apply Lemma 4.12
to estimate ⟨u, v⟩. ∥u∥ = ∥M∥2F and ∥v∥ = ∥w∥2, so estimating ⟨u, v⟩ to ε additive error with
probability at least 1− δ requires O(∥M∥4F∥w∥4ε−2 log 1

δ ) samples.

6.4 Principal component analysis

Principal component analysis (PCA) is an important data analysis tool, first proposed to be feasible
via quantum computation by Lloyd, Mohseni, and Rebentrost [LMR14]. Given copies of states with
density matrix ρ = X†X, the quantum PCA algorithm can prepare the state

∑︁
λi|vi⟩⟨vi| ⊗ |λ̂i⟩⟨λ̂i|,

where λi and vi are the eigenvalues and eigenvectors of X†X, and λ̂i are eigenvalue estimates (up to
additive error). See Prakash’s PhD thesis [Pra14, Section 3.2] for a full analysis and Chakraborty,
Gilyén, and Jeffery for a faster version of this algorithm in the block-encoding model [CGJ19].
Directly measuring the eigenvalue register is called spectral sampling, but such sampling is not
directly useful for machine learning applications.

Though we do not know how to dequantize this protocol exactly, we can dequantize it in the
low-rank setting, which is the only useful poly-logarithmic time application that Lloyd, Mohseni,
and Rebentrost [LMR14] suggests for quantum PCA.

Problem 6.11 (PCA for low-rank matrices). Given a matrix SQ(X) ∈ Cm×n such that X†X has
top k eigenvalues {λi}ki=1 and eigenvectors {vi}ki=1, with probability ≥ 1− δ, compute eigenvalue

estimates {λ̂i}ki=1 such that
∑︁k

i=1|λ̂i − λi| ≤ εTr(X†X) and eigenvectors {SQϕ(v̂i)}ki=1 such that
∥v̂i − vi∥ ≤ ε for all i.

Note that we should think of λi as σ
2
i , where σi is the ith largest singular value of X. To robustly

avoid degeneracy conditions, our runtime must depend on parameters for condition number and
spectral gap:

K := Tr(X†X)/λk ≥ k and η := min
i∈[k]
|λi − λi+1|/∥X∥2. (10)

We also denote κ := ∥X∥2/λk. Dependence on K and η are necessary to reduce Problem 6.11
to spectral sampling. If K = poly(n), then λk = Tr(X†X)/ poly(n), so distinguishing λk from
λk+1 necessarily takes poly(n) samples, and even sampling λk once takes poly(n) samples. As a
result, learning vk is also impossible. A straightforward coupon collector argument (given e.g. by
Tang [Tan21]) shows that Problem 6.11 can be solved by a quantum algorithm performing spectral
sampling18, with runtime depending polynomially on K and 1

η . We omit this argument for brevity.

18The quantum analogue to SQ(X) is efficient state preparation of X, a purification of ρ.
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Classically, we can solve this PCA problem with quantum-inspired techniques, as first noted in
[Tan21].

Corollary 6.12. For 0 < ε ≲ η∥X∥2/∥X∥2F, we can solve Problem 6.11 in ˜︁O(︂ ∥X∥6F
λ2
k∥X∥2 η

−6ε−6 log3 k
δ

)︂
time to get SQϕ(v̂i) where ˜︂sq(v̂i) = ˜︁O(︂ ∥X∥4F

λi∥X∥2 η
−2ε−2 log2 1

δ

)︂
.

This improves significantly over prior work [Tan21, Theorem 8], which achieves the runtime of˜︁O(︂ ∥X∥36F
∥X∥12λ12

k
η−6ε−12 log3 k

δ

)︂
.19 The best quantum algorithm for this problem runs in ˜︁O(︂∥X∥F∥X∥

λkε

)︂
time, up to factors of polylog(m,n) [CGJ19, Theorem 27].20

We approach the problem as follows. First, we use that an importance-sampled submatrix
of X has approximately the same singular values as X itself (Lemma 4.9) to get our estimates
{λ̂i}ki=1. With these estimates, we can define smoothened step functions fi for i ∈ [k] such that

fi(X
†X) = v†i vi. We can then use our main theorem to find an RUR decomposition for fi(X

†X).
We use additional properties of the RUR description to argue that it is indeed a rank-1 outer
product v̂†i v̂i, which is our desired approximation for the eigenvector. We have sampling and query
access to v̂i because it is R†x for some vector x. Our runtime is quite good because these piecewise
linear step functions have relatively tame derivatives, as opposed to the thresholded inverse function,
whose Lipschitz constants must incur quadratic and cubic overheads in terms of condition number.

Proof. We will assume that we know λk and η. If both are unknown, then we can estimate them
with the singular value estimation procedure described below (Lemma 4.9).

Notice that η∥X∥2 ≤ λk follows from our definition of η. The algorithm will proceed as follows:
first, consider C := SXT ∈ Cc×r as described in Theorem 5.1, with parameters

r := ˜︁O(︃ ∥X∥2F
η2∥X∥2ε2

log
k

δ

)︃
c := ˜︁O(︃∥X∥2F∥X∥2

η2λ2kε
2

log
k

δ

)︃
.

Consider computing the eigenvalues of CC†; denote the ith eigenvalue λ̂i. Since r, c = Ω(
∥X∥2F
λkε2

log 1
δ ),

by Lemma 4.9 with error parameter ε
√
λk

8∥X∥F , with probability ≥ 1− δ,√︃∑︂min(m,n)

i=1
(λ̂i − λi)2 ≤

ε
√
λk

8∥X∥F
∥X∥2F.

These λ̂i’s for i ∈ [k] have the desired property for eigenvalue estimates:

k∑︂
i=1

|λ̂i − λi| ≤
√
k

√︃∑︂k

i=1
(λ̂i − λi)2 ≤ ε

√︁
kλk∥X∥F ≤ ε∥X∥2F.

19This runtime comes from taking εσ = εv = ε and changing the normalization of the gap parameter η =
η∥X∥2/∥X∥2F to correspond to the problem as formulated here.

20Given X in QRAM, this follows from applying Theorem 27 to a quantum state with density matrix of X†X

with α = ∥X∥F and ∆ =
ε∥X∥2F
∥X∥ ≲ η∥X∥

∥X∥F
. The output is some estimate of

√
λi to ∆ error, which when squared is

an estimate of λi to ∆∥X∥ = ε∥X∥2F error as desired. Then, the density matrix is a probability distribution over
eigenvectors with their corresponding eigenvalue estimate (which is enough to identify the eigenvector). The coupon
collector argument mentioned above gives us access to all the top k eigenvalues and eigenvectors by running this
algorithm ∥X∥2F/λk times [Tan21].
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This bound also implies that, for all i, |λ̂i − λi| ≤ ε
8∥X∥

2
F. Next, consider the eigenvalue transforma-

tions fi for i ∈ [k], defined

fi(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x− λ̂i < −1
4η∥X∥

2

2 + 8
η∥X∥2 (x− λ̂i) −1

4η∥X∥
2 ≤ x− λ̂i < −1

8η∥X∥
2

1 −1
8η∥X∥

2 ≤ x− λ̂i < 1
8η∥X∥

2

2− 8
η∥X∥2 (x− λ̂i)

1
8η∥X∥

2 ≤ x− λ̂i < 1
4η∥X∥

2

0 1
4η∥X∥

2 ≤ x− λ̂i

.

This is a function that is one when |x− λ̂i| ≤ 1
8η∥X∥

2, zero when |x− λ̂i| ≥ 1
4η∥X∥

2, and interpolates

between them otherwise. From the eigenvalue gap and the aforementioned bound |λ̂i−λi| ≤ 1
8η∥X∥

2,

we can conclude that fi(X
†X) = viv

†
i exactly. Further, by Theorem 5.1, we can conclude that

R†f̄ i(CC
†)R approximates viv

†
i , with C,R the exact approximations used to estimate singular values.

The conditions of Theorem 5.1 are satisfied because ε ≲ 8 ≤ 8
η = L∥X∥2 for L the Lipschitz constant

of fi. The values of r, c are chosen so that ∥R†f̄ i(CC
†)R− fi(X†X)∥ ≤ ε/2 (note fi(0) = 0):

r = ˜︁O(︃L2∥X∥2∥X∥2F
1

ε2
log

1

δ

)︃
= ˜︁O(︃ ∥X∥2F

∥X∥2η2ε2
log

1

δ

)︃
c = ˜︁O(︃L̄2∥X∥6∥X∥2F

1

ε2
log

1

δ

)︃
= ˜︁O(︄ ∥X∥6∥X∥2F

η2∥X∥4(λ̂i − 1
4η∥X∥2)2ε2

log
1

δ

)︄
= ˜︁O(︃∥X∥2∥X∥2F

η2λ2kε
2

log
1

δ

)︃
.

Further, fi is chosen with respect to λ̂i such that R†f̄ i(CC
†)R is rank one, since CC† has one

eigenvalue between λ̂i − 1
4η∥X∥

2 and λ̂i +
1
4η∥X∥

2. Thus, this approximation is an outer product,

R†f̄ i(CC
†)R = v̂iv̂

†
i , and we take the corresponding vector to be our eigenvector estimate: ∥v̂i∥ ≤√︁

1 + ε/2 ≤ 1 + ε/4, so

ε/2 ≥ ∥(v̂iv̂†i − viv
†
i )vi∥ by definition

= ∥⟨v̂i, vi⟩v̂i − vi∥ by ∥vi∥2 = 1

≥ ∥v̂i − vi∥ − (⟨v̂i, vi⟩ − 1)∥v̂i∥ by triangle inequality

≥ ∥v̂i − vi∥ − (∥v̂i∥∥vi∥ − 1)∥u∥ by Cauchy–Schwarz

≥ ∥v̂i − vi∥ − (1 + ε/4− 1)(1 + ε/4) by ∥v̂i∥ ≤ 1 + ε/4

≥ ∥v̂i − vi∥ − ε/2,

which is the desired bound. By choosing failure probability δ/k, the bound can hold true for all k
with probability ≥ 1− δ.

Finally, we can get access to v̂i = R†v̄i, where v̄i ∈ Cr satisfies v̄†i v̄i = f̄ i(CC
†). Since

∥v̄†i∥ ≤
√︁
maxx f̄ i(x) ≲ λ

− 1
2

i , using Lemmas 3.5 and 3.6, we have SQϕ(v̂i) with

ϕ = r

∑︁r
s=1|v̂i(s)|2∥R(s, ·)∥2

∥R†v̄i∥2
= r

∑︁r
s=1|v̂i(s)|2∥X∥2F
∥R†v̄i∥2r

=
∥v̂i∥2∥X∥2F
∥R†v̄i∥2

≲
∥X∥2F

λi(1− ε)2
≲
∥X∥2F
λi

,

so ˜︂sqϕ(v̂i) = ϕ sqϕ(v) log
1
δ ≲

∥X∥2F
λi

r log 1
δ .
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6.5 Matrix inversion and principal component regression

The low-rank matrix inversion algorithms given by Gilyén, Lloyd, and Tang [GLT18] and Chia, Lin,
and Wang [CLW18] dequantize Harrow, Hassidim, and Lloyd’s quantum matrix inversion algorithm
(HHL) [HHL09] in the regime where the input matrix is low-rank instead of sparse. The corresponding
quantum algorithm in this regime is given by Chakraborty, Gilyén, and Jeffery [CGJ19], among
others. Since sparse matrix inversion is BQP-complete, it is unlikely that one can efficiently
dequantize it. However, the variant of low-rank (non-sparse) matrix inversion appears often in
quantum machine learning [Pra14, WZP18, RML14, CD16, RL18], making it an influential primitive
in its own right.

Using our framework, we can elegantly derive the low-rank matrix inversion algorithm in a
manner similar to prior quantum-inspired work [GLT18, CLW18]. Moreover, we can also handle
the approximately low-rank regime and only invert the matrix on a well-conditioned subspace,
solving principal component regression—for more discussion see [GSLW19]. Namely, we can find a
thresholded pseudoinverse of an input matrix:

Definition 6.13 (A+
σ,η). We define A+

σ,η to be any singular value transform of A satisfying:

A+
σ,η := tinv(SV)

σ,η (A) tinvσ,η(λ)

⎧⎪⎨⎪⎩
= 1/λ λ ≥ σ
= 0 λ < σ(1− η)
∈ [0, σ−1] otherwise

. (11)

This definition is analogous to Aσ,η in Section 6.2: it is A+ for singular vectors with value
≥ σ, zero for singular vectors with value ≤ σ(1− η), and a linear interpolation between the two in
between.

Problem 6.14. Given SQφ(A) ∈ Cm×n,Q(b) ∈ Cm, with probability ≥ 1− δ, get SQϕ(x̂) such that
∥x̂− x∗∥ ≤ ε∥A∥−1∥b∥, where x∗ := A+

σ,ηb.

Corollary 6.15. For 0 < ε ≲ ∥A∥2
σ2 and η ≤ 0.99, we can solve Problem 6.14 in ˜︁O(︂φ6K3κ11

η6ε6
log3 1

δ

)︂
time to give SQϕ(x̂) for ˜︂sqϕ(x̂) = ˜︁O(︂φ4K2κ5

η2ε2
∥x∗∥2
∥x̂∥2 log2 1

δ

)︂
.

This should be compared to [GLT18], which applies only to strictly rank-k A with φ = 1 and

gets the incomparable runtime of ˜︁O(︂K3κ8k6

η6ε6
log3 1

δ

)︂
. The corresponding quantum algorithm using

block-encodings takes O(∥A∥F/σ) time, up to polylog(m,n) factors, to get this result for constant
η [GSLW19, Theorem 41].

If we further assume that ε < 0.99 and b is in the image of A, then ˜︂sqϕ(x̂) can be simplified,

since ∥x̂∥ ≥ ∥x∗∥− ε∥A∥−1∥b∥ ≥ (1− ε)∥x∗∥, so ∥x∗∥
∥x̂∥ ≤ 100. However, this algorithm also works for

larger ε; namely, if we only require that ∥x̂ − x∗∥ ≤ εσ−1∥b∥ (a “worst-case” error bound), then
this algorithm works with runtime smaller by a factor of κ3 (and ˜︂sqϕ(x̂) smaller by a factor of κ).

The algorithm comes from rewriting A+
σ,ηb = ι(A†A)A†b for ι a function encoding a thresholded

inverse. Namely, ι(x) = 1/x for x ≥ σ2, ι(x) = 0 for x ≤ (1− η)2σ2, and is a linear interpolation
between the endpoints for x ∈ [(1 − η)2σ2, σ2]. By our main theorem, we can find an RUR
decomposition for ι(A†A), from which we can then get SQ(R†URA†b) via sampling techniques.

Proof. We will solve our problem for x∗ = A+
σ,ηb = ι(A†A)A†b where

ι(x) :=

⎧⎪⎨⎪⎩
0 x < σ2(1− η)2

1
(2η−η2)σ4 (x− σ2(1− η)2) σ2(1− η)2 ≤ x < σ2

1
x σ2 ≤ x

.
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So, if we can estimate ι(A†A) such that ∥ι(A†A)−R†ῑ(CC†)R∥ ≤ ε
∥A∥2 , then as desired,

∥A+
σ,ηb−R†ῑ(CC†)RA†b∥ ≤ ε

∥A∥
∥b∥ ≤ ε∥A+

σ,ηb∥.

By Theorem 5.1 with L = 1
(2η−η2)σ4 and L̄ = 1

(1−η)2(2η−η2)σ6 , we can find such R and C with

r = ˜︁O(︄φ2 ∥A∥2∥A∥2F
(2η − η2)2σ8 ε2

∥A∥4
log

1

δ

)︄
= ˜︁O(︃φ2Kκ3

η2ε2
log

1

δ

)︃

c = ˜︁O(︄φ2 ∥A∥6∥A∥2F
(1− η)4(2η − η2)2σ12 ε2

∥A∥4
log

1

δ

)︄
= ˜︁O(︃φ2Kκ5

η2ε2
log

1

δ

)︃
.

Computing the SVD of a matrix of this size dominates the runtime, giving the complexity in the
theorem statement. Next, we would like to further approximate R†ῑ(CC†)RA†b. We will do this

by estimating RA†b by some vector u to εσ3∥A∥−1∥b∥ = ε∥A∥2F∥b∥K−1κ−
1
2 error, since then, using

the bounds from Lemma 5.2,

∥R†ῑ(CC†)RA†b−R†ῑ(CC†)u∥ ≤
⃦⃦⃦
R†
√︂
ῑ(CC†)

⃦⃦⃦⃦⃦⃦√︂
ῑ(CC†)

⃦⃦⃦
∥RA†b− u∥

≲
√︂
σ−2 + ε

∥A∥2σ
−2(εσ3∥A∥−1∥b∥) ≲ ε∥A∥−1∥b∥.

We use Remark 4.13 to estimate u(i) = R(i, ·)A†b, for all i ∈ [r], to ε∥R(i, ·)∥∥A∥F∥b∥K−1κ−
1
2 error,

with probability ≥ 1−δ/r. This takes O
(︂
φK2κ

ε2
log r

δ

)︂
samples for each of the r entries. This implies

that x̂ := R†ῑ(CC†)u has the desired error and failure probability. Finally, we can use Lemmas 3.5
and 3.6 with matrix R† and vector ῑ(CC†)u to get SQϕ(x̂) for

ϕ = φr

∑︁r
s=1|[ῑ(CC†)u](s)|2∥R(s, ·)∥2

∥x̂∥2

= φ2 ∥ῑ(CC†)u∥2∥A∥2F
∥x̂∥2

by ∥R(s, ·)∥ ≤ ∥A∥F
√︁
φ/r

≤ φ2 (∥ῑ(CC†)R∥∥A†∥∥b∥+ ∥ῑ(CC†)∥∥RA†b− u∥)2∥A∥2F
∥x̂∥2

by linear algebra

≲ φ2 (σ
−3∥A∥∥b∥+ σ−4εσ3∥b∥/∥A∥)2∥A∥2F

∥x̂∥2
by prior bounds

≲ φ2σ
−6∥A∥2∥b∥2∥A∥2F

∥x̂∥2
by ε ≲ ∥A∥2/σ2

≤ φ2Kκ2
∥x∗∥2

∥x̂∥2
, by ∥A∥−1∥b∥ ≤ ∥x∗∥

so ˜︂sqϕ(x̂) = ϕ sqϕ(x̂) log
1
δ = O

(︂
rφ2Kκ2 ∥x

∗∥2
∥x̂∥2 log 1

δ

)︂
.

6.6 Support vector machines

In this section, we use our framework to dequantize Rebentrost, Mohseni, and Lloyd’s quantum
support vector machine [RML14], which was previously noted to be possible by Ding, Bao, and
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Huang [DBH21]. Mathematically, the support vector machine is a simple machine learning model
attempting to label points in Rm as +1 or −1. Given input data points x1, . . . , xm ∈ Rn and
their corresponding labels y ∈ {±1}m. Let w ∈ Rn and b ∈ R be the specification of hyperplanes
separating these points. It is possible that no such hyperplane satisfies all the constraints. To
resolve this, we add a slack vector e ∈ Rm such that e(j) ≥ 0 for j ∈ [m]. We want to minimize the
squared norm of the residuals:

min
w,b

1

2

∥w∥2

2
+
γ

2
∥e∥2

s.t. y(i)(wTxi + b) = 1− e(i), ∀i ∈ [m].

The dual of this problem is to maximize over the Karush-Kuhn-Tucker multipliers of a Lagrange
function, taking partial derivatives of which yields the linear system[︂

0 1⃗
T

1⃗ XXT+γ−1I

]︂
[ bα ] =

[︁
0
y

]︁
, (12)

where 1⃗ is the all-ones vector and X = {x1, . . . , xm} ∈ Cm×n. Call the above m+ 1×m+ 1 matrix
F , and F̂ := F/Tr(F ).

The quantum algorithm, given X and y in QRAM, outputs a quantum state |F̂+
λ,0.01[

0
y ]⟩

(Definition 6.13) in ˜︁O(︁ 1
λ3ε3

polylog(mn)
)︁
time. The quantum-inspired analogue is as follows.

Problem 6.16. Given SQ(X) ∈ Rm×n and SQ(y) ∈ Rm, for ∥F̂∥ ≤ 1, output SQϕ(v) ∈ Rm+1 such

that ∥x̂− F̂+
λ,η[

0
y ]∥ ≤ ε∥F̂

+
λ,η[

0
y ]∥ with probability ≥ 1− δ.

Note that we must assume ∥F̂∥ ≤ 1; the quantum algorithm makes the same assumption21.
Another dequantization was reported in [DBH21], which, assuming X is strictly low-rank (with
minimum singular value σ), outputs a description of (XXT )+y that can be used to classify points.
This can be done neatly in our framework: express (XXT )+ (or, more generally, (XXT )+σ,η) as

Xf(XTX)XT for the appropriate choice of f . Then, use Theorem 5.1 to approximate f(XTX) ≈
RTZR and use Lemma 4.4 to approximate XRT ≈ CW T . This gives an approximate “CUC”
decomposition of the desired matrix, since Xf(XTX)XT ≈ XRTZRXT ≈ CW TZWCT , which we
can use for whatever purpose we like.

For our solution to Problem 6.16, though, we simply reduce to matrix inversion as described
in Section 6.5: we first get SQϕ(F̂ ), and then we apply Corollary 6.15 to complete. Section VI.C
of [DBH21] claims to dequantize this version, but gives no correctness bounds22 or runtime bounds
(beyond arguing it is polynomial in the desired parameters).

Corollary 6.17. For 0 < ε ≲ 1 and η ≤ 0.99, we can solve Problem 6.16 in ˜︁O(︁λ−28η−6ε−6 log3 1
δ

)︁
time, where we get SQϕ(v) for ˜︂sqϕ(v) = ˜︁O(︁λ−14η−2ε−4 log2(1δ ) log(

m
δ )
)︁
.

The runtimes in the statement are not particularly tight, but we chose the form to mirror the
runtime of the QSVM algorithm, which similarly depends polynomially on 1

λ and 1
η .

Proof. Consider constructing SQφ(K) ∈ Cm×m as follows. To query an entry K(i, j), we estimate

X(i, ·)X(j, ·)T to ε∥X(i, ·)∥∥X(j, ·)∥ error. We define K(i, j) to be this estimate. Using Lemma 4.12,

21The algorithm as written in [RML14] assumes that ∥F∥ ≤ 1; we confirmed with an author that this is a typo.
22The correctness of this dequantization is unclear, since the approximations performed in this section incur

significant errors.
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we can do this in O
(︁

1
ε2

log q
δ

)︁
time. q here refers to the number of times the query oracle is used, so

in total the subsequent algorithm will only have an errant query with probability ≥ 1− δ. (q will
not appear in the runtime because it’s folded into a polylog term.) Then, we can take K̃ := xxT ,
where x ∈ Rm is the vector of row norms of X, since by Cauchy–Schwarz,

K(i, j) ≤ X(i, ·)X(j, ·)T + ε∥X(i, ·)∥∥X(j, ·)∥ ≤ (1 + ε)∥X(i, ·)∥∥X(j, ·)∥ = K̃(i, j).

Since we have SQ(x) from SQ(X), we have SQ(K̃) with sq(K̃) = O(1) by Lemma 3.8. ∥K̃∥2F =

(1+ε)2∥X∥4F, so we have SQφ(K) for φ = (1+ε)2
∥X∥4F
∥K∥2F

. We can trivially get SQ(L) for L :=
[︁
0 1⃗

T

1⃗ γ−1I

]︁
with sq(L) = O(1). Our approximation to F̂ is

M :=
1

Tr(F )

(︂
L+

[︂
0 0⃗

T

0⃗ K

]︂)︂
; ∥M − F̂∥ ≤ 1

Tr(F )
∥K −XXT ∥F ≤

1

Tr(F )
ε∥X∥2F ≤ ε.

Using Lemma 3.9, we have SQφ′(M) with

φ′ =
2((1 + ε)2

∥X∥4F
∥K∥2F

∥K∥2F + ∥L∥2F)

Tr(F )2∥M∥2F
≲
∥X∥4F + γ−2m+ 2m

(∥X∥2F +mγ−1)2∥M∥2F
≲

1

∥M∥2F
,

where the last inequality uses that Tr(F ) ≥
√
m, which follows from ∥F̂∥ ≤ 1:

1 = ∥F̂∥
⃦⃦[︁ 0

1⃗/
√
m

]︁⃦⃦
≥
⃦⃦
F̂
[︁ 0
1⃗/

√
m

]︁⃦⃦
≥
√
m

Tr(F )
.

Note that we can compute Tr(F ) given SQ(X). So, applying Corollary 6.15, we can get the desired
SQϕ(v) in runtime

˜︁O(︃φ6∥M∥6F∥M∥22

λ28η6ε6
log3

1

δ

)︃
≲ ˜︁O(︃ ∥M∥22

∥M∥6Fλ28η6ε6
log3

1

δ

)︃
≲ ˜︁O(︃ 1

λ28η6ε6
log3

1

δ

)︃
.

Here, we used that ∥M∥ ≤ ∥M∥F ≲ 1, which we know since φ′ ≥ 1 (by our definition of oversampling
and query access). That Q(M) = O

(︁
1
ε2

log q
δ

)︁
does not affect the runtime, since the dominating cost

is still the SVD. On the other hand, this does come into play for the runtime for sampling:

˜︂sqϕ(v) = ˜︁O(︃φ4∥M∥4F∥M∥10

η2ε2
log2

(︁1
δ

)︁ 1
ε2

log
(︁m
δ

)︁)︃
.

We take q = m to guarantee that all future queries will be correct with probability ≥ 1− δ.

The normalization used by the quantum and quantum-inspired SVM algorithms means that
these algorithms fail when X has too small Frobenius norm, since then the singular values from
XXT are all filtered out. In Appendix B, we describe an alternative method that relies less on
normalization assumptions, instead simply computing F+. This is possible if we depend on ∥X∥2Fγ
in the runtime. Recall from Eq. (12) that we regularize by adding γ−1I, so γ−1 acts as a singular
value lower bound and ∥X∥2Fγ implicitly constrains.

Corollary 6.18. Given SQ(XT ) and SQ(y), with probability ≥ 1 − δ, we can output a real
number b̂ such that |b − b̂| ≤ ε(1 + b) and SQϕ(α̂) such that ∥α̂ − α∥ ≤ εγ∥y∥, where α and b

come from Eq. (12). Our algorithm runs in ˜︁O(︁∥X∥6F∥X∥16γ11ε−6 log3 1
δ

)︁
time, with ˜︂sqϕ(α̂) =˜︁O(︂∥X∥4F∥X∥6γ5 γ2m

∥α̂∥2 ε
−4 log2 1

δ

)︂
. Note that when γ−1/2 is chosen to be sufficiently large (e.g.

O(∥X∥F)) and ∥α∥ = Ω(γ∥y∥), this runtime is dimension-independent.

Notice that εγ∥y∥ is the right notion, since γ is an upper bound on the spectral norm of the
inverse of the matrix in Eq. (12). We assume SQ(XT ) instead of SQ(X) for convenience, though
both are possible via the observation that f(XXT ) = Xf̄(XTX)XT .
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6.7 Hamiltonian simulation

The problem of simulating the dynamics of quantum systems was the original motivation for quantum
computers proposed by Feynman [Fey82]. Specifically, given a Hamiltonian H, a quantum state |ψ⟩,
a time t > 0, and a desired error ε > 0, we ask to prepare a quantum state |ψt⟩ such that

∥|ψt⟩ − eiHt|ψ⟩∥ ≤ ε.

This problem, known as Hamiltonian simulation, sees wide application, including in quantum physics
and quantum chemistry. A rich literature has developed on quantum algorithms for Hamiltonian
simulation [Llo96, ATS03, BCK15], with an optimal quantum algorithm for simulating sparse
Hamiltonians given in [LC17]. In this subsection, we apply our framework to develop classical
algorithms for Hamiltonian simulation. Specifically, we ask:

Problem 6.19. Consider a Hermitian matrix H ∈ Cn×n, a unit vector b ∈ Cn, and error parameters
ε, δ > 0. Given SQ(H) and SQ(b), output SQϕ(b̂) with probability ≥ 1−δ for some b̂ ∈ Cn satisfying

∥b̂− eiHb∥ ≤ ε.

We give two algorithms that are fundamentally the same, but operate in different regimes: the
first works for low-rank H, and the second for arbitrary H.

Corollary 6.20. Suppose H has minimum singular value σ and ε < min(0.5, σ). We can solve

Problem 6.19 in ˜︁O(︂∥H∥6F∥H∥16
σ16ε6

log3 1
δ

)︂
time, giving SQϕ(b̂) with ˜︂sqϕ(b̂) = ˜︁O(︂∥H∥4F∥H∥8

σ8ε4
log3 1

δ

)︂
.

This runtime is dimensionless in a certain sense. The natural error bound to require is that
∥b̂ − eiHb∥ ≤ ε∥H∥, since | ddx(e

−i∥H∥x)| = ∥H∥. So, if we rescale ε to ε∥H∥, the runtime is˜︁O(︂∥H∥6F∥H∥10
σ16ε6

log3 1
δ

)︂
, which is dimensionless. The runtime of the algorithm in the following corollary

does not have this property, so its scaling with ∥H∥ is worse, despite being faster for, say, ∥H∥ = 1.

Corollary 6.21. For ε < min(0.5, ∥H∥3), we can solve Problem 6.19 in ˜︁O(︁∥H∥16∥H∥6Fε−6 log3 1
δ

)︁
time, giving SQϕ(b̂) with ˜︂sqϕ(b̂) = ˜︁O(︁∥H∥8∥H∥4Fε−4 log3 1

δ

)︁
.

Our strategy proceeds as follows: consider a generic function f(x) and Hermitian H. We can
write f(x) as a sum of an even function a(x) := 1

2(f(x) + f(−x)) and an odd function b(x) :=
1
2(f(x)− f(−x)). For the even function, we can use Theorem 5.1 to approximate it via the function
fa(x) := a(

√
x); the odd function can be written as H times an even function, which we approximate

using Theorem 5.1 for fb(x) := b(
√
x)/
√
x. In other words, f(H) = fa(H

†H) + fb(H
†H)H. Since

|a′(x)|, |b′(x)| ≤ |f ′(x)|, the Lipschitz constants don’t blow up by splitting f into even and odd
parts.

Now, we specialize to Hamiltonian simulation. We first rewrite the problem, using the function
sinc(x) := sin(x)/x.

eiHb = cos(H)b+ i · sinc(H)Hb = fcos(H
†H)b+ fsinc(H

†H)Hb,

where fcos(λ) := cos(
√
λ) and fsinc(λ) := i · sinc(

√
λ). When applying Theorem 5.1 on fcos and fsinc,
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we will use the following bounds on the smoothness of fcos and fsinc.

|f ′cos(x)| =
⃓⃓⃓sin(√x)

2
√
x

⃓⃓⃓
≤ min

(︂1
2
,

1

2
√
x

)︂
|f̄ ′cos(x)| =

⃓⃓⃓2− 2 cos(
√
x)−

√
x sin(

√
x)

2x2

⃓⃓⃓
≤ min

(︂ 1

24
,

5

2x3/2

)︂
|f ′sinc(x)| =

⃓⃓⃓√x cos(√x)− sin(
√
x)

2x3/2

⃓⃓⃓
≤ min

(︂1
4
,
1

x

)︂
|f̄ ′sinc(x)| =

⃓⃓⃓2√x+
√
x cos(

√
x)− 3 sin(

√
x)

2x5/2

⃓⃓⃓
≤ min

(︂ 1

60
,
3

x2

)︂
We separate these bounds into the case where x ≥ 1, which we use when we assume H has a
minimum singular value, and the case where x < 1, which we use for arbitrary H.

Proof of Corollary 6.21. Using the Lipschitz bounds above with Theorem 5.1, we can find Rcos ∈
Crcos×n, Ccos ∈ Crcos×ccos , Rsinc ∈ Crsinc×n, Csinc ∈ Crsinc×csinc such that

∥R†
cosf̄ cos(CcosC

†
cos)Rcos + I − fcos(H†H)∥ ≤ ε (13)

∥R†
sincf̄ sinc(CsincC

†
sinc)Rsinc + i · I − fsinc(H†H)∥ ≤ ε

∥H∥
(14)

where, using that our Lipschitz constants are all bounded by constants,

rcos = ˜︁O(︃∥H∥2F∥H∥2ε−2 log
1

δ

)︃
ccos = ˜︁O(︃∥H∥2F∥H∥6ε−2 log

1

δ

)︃
rsinc = ˜︁O(︃∥H∥2F∥H∥4ε−2 log

1

δ

)︃
csinc = ˜︁O(︃∥H∥2F∥H∥8ε−2 log

1

δ

)︃
.

As a consequence,⃦⃦⃦
eiHb−

(︂
R†

cosf̄ cos(CcosC
†
cos)Rcosb+ b+R†

sincf̄ sinc(CsincC
†
sinc)RsincHb+ iHb

)︂⃦⃦⃦
≲ ε.

Note that, by Lemma 5.2, ∥Rcos∥ ≲ ∥H∥, ∥f̄ cos(CcosC
†
cos)∥ ≲ 1, and ∥R†

cos

√︂
f̄ cos(CcosC

†
cos)∥ ≲ 1;

the same bounds hold for the sinc analogues. We now approximate using Lemma 4.6 four times.

1. We approximate Rcosb ≈ u to ε∥b∥ error, requiring O
(︁
∥H∥2Fε−2 log 1

δ

)︁
samples.

2. We approximate RsincH ≈WC to ε error, requiring O
(︁
∥H∥4Fε−2 log 1

δ

)︁
samples.

3. We approximate Cb ≈ v to ε∥H∥−1
F ∥b∥ error, requiring O

(︁
∥H∥4Fε−2 log 1

δ

)︁
samples.

4. We approximate Hb ≈ R†w to ε∥b∥ accuracy, requiring r := O
(︁
∥H∥2Fε−2 log 1

δ

)︁
samples.

Our output will be

b̂ := R†
cosf̄ cos(CcosC

†
cos)u+ b+R†

sincf̄ sinc(CsincC
†
sinc)Wv + iR†w,

which is close to eiHb because⃦⃦⃦
b̂−

(︂
R†

cosf̄ cos(CcosC
†
cos)Rcosb+ b+R†

sincf̄ sinc(CsincC
†
sinc)RsincHb+ iHb

)︂⃦⃦⃦
≤ ∥R†

cosf̄ cos(CcosC
†
cos)(u−Rcosb)∥+ ∥R†

sincf̄ sinc(CsincC
†
sinc)(RsincH −WC)b∥

+ ∥R†
sincf̄ sinc(CsincC

†
sinc)W (Cb− v)∥+ ∥iR†w − iHb∥

≲ ∥u−Rcosb∥+ ∥RsincH −WC∥∥b∥+ ∥H∥F∥Cb− v∥+ ∥R†w −Hb∥ ≤ 4ε∥b∥.
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Now, we have expressed b̂ as a linear combination of a small number of vectors, all of which
we have sampling and query access to. We can complete using Lemmas 3.5 and 3.6, where
the matrix is the concatenation (R†

cos | b | R†
sinc | i · R†), and the vector is the concatenation

(f̄ cos(CcosC
†
cos)u | 1 | f̄ sinc(CsincC

†
sinc)Wv | w). The length of this vector is rcos +1+ rsinc + r ≲ rsinc.

We get SQϕ(b̂) where

ϕ ≲ rsinc

(︂∥H∥2F
rcos

∥f̄ cos(CcosC
†
cos)u∥2 + ∥b∥2 +

∥H∥2F
rsinc

∥f̄ sinc(CsincC
†
sinc)Wv∥2 +

∥H∥2F
r
∥w∥2

)︂
∥b̂∥−2

≲
(︂rsinc
rcos
∥H∥2F(1 + ε)2∥b∥2 + rsinc∥b∥2 + ∥H∥2F(1 + ε)2∥b∥2 + rsinc

r
∥H∥2F∥b∥2

)︂
∥b∥−2

= ˜︁O(︁∥H∥2F∥H∥2 + rsinc + ∥H∥2F + ∥H∥2F∥H∥4
)︁
= ˜︁O(rsinc).

In the second inequality, we use the same bounds for proving ∥b̂− eiHb∥ ≤ ε, repurposed to argue
that all approximations are sufficiently close to the values they are estimating, up to relative error.
So, ˜︂sqϕ(b̂) = ˜︁O(︁r2sinc log 1

δ

)︁
.

Proof of Corollary 6.20. Our approach is the same, though with different parameters. For The-
orem 5.1, we use that in the interval [σ2/2,∞), fcos has Lipschitz constants of L = O(1/σ) and
L̄ = O(1/σ3) and fsinc has L = O(1/σ2) and L̄ = O(1/σ4). So, if we take

rcos = ˜︁O(︃∥H∥2 ∥H∥2F
σ2

ε−2 log
1

δ

)︃
ccos = ˜︁O(︃∥H∥2 ∥H∥2F∥H∥4

σ6
ε−2 log

1

δ

)︃
rsinc = ˜︁O(︃∥H∥2 ∥H∥2F∥H∥2

σ4
ε−2 log

1

δ

)︃
csinc = ˜︁O(︃∥H∥2 ∥H∥2F∥H∥6

σ8
ε−2 log

1

δ

)︃
,

all the conditions of Theorem 5.1 are satisfied: in particular, σ2/2 > ε̄ in both cases, up to rescaling
ε by a constant factor:

ε̄cos ≲ ∥H∥∥H∥F
εσ

∥H∥∥H∥F
= εσ ≤ σ2

ε̄sinc ≲ ∥H∥∥H∥F
εσ2

∥H∥2∥H∥F
= εσ2∥H∥−1 ≤ σ2

Here, we used our initial assumption that ε ≤ σ. So, the bounds Eqs. (13) and (14) hold. Note that,

by Lemma 5.2, ∥Rcos∥ ≲ ∥H∥, ∥f̄ cos(CcosC
†
cos)∥ ≲ σ−2, and ∥R†

cos

√︂
f̄ cos(CcosC

†
cos)∥ ≤ 1; the same

bounds hold for the sinc analogues. We now approximate using Lemma 4.6 four times.

1. We approximate Rcosb ≈ u to εσ∥b∥ error, requiring O
(︁
∥H∥2Fσ−2ε−2 log 1

δ

)︁
samples.

2. We approximate RsincH ≈WC to εσ error, requiring O
(︁
∥H∥4Fσ−2ε−2 log 1

δ

)︁
samples.

3. We approximate Cb ≈ v to εσ∥H∥−1
F ∥b∥ error, requiring O

(︁
∥H∥4Fσ−2ε−2 log 1

δ

)︁
samples.

4. We approximate Hb ≈ R†w to ε∥b∥ accuracy, requiring r := O
(︁
∥H∥2Fε−2 log 1

δ

)︁
samples.

Our output will be

b̂ := R†
cosf̄ cos(CcosC

†
cos)u+ b+R†

sincf̄ sinc(CsincC
†
sinc)Wv + iR†w,

47



which is close to eiHb by the argument⃦⃦⃦
b̂−

(︂
R†

cosf̄ cos(CcosC
†
cos)Rcosb+ b+R†

sincf̄ sinc(CsincC
†
sinc)RsincHb+ iHb

)︂⃦⃦⃦
≤ ∥R†

cosf̄ cos(CcosC
†
cos)(u−Rcosb)∥+ ∥R†

sincf̄ sinc(CsincC
†
sinc)(RsincH −WC)b∥

+ ∥R†
sincf̄ sinc(CsincC

†
sinc)W (Cb− v)∥+ ∥iR†w − iHb∥

≲ σ−1∥u−Rcosb∥+ σ−1∥RsincH −WC∥∥b∥+ σ−1∥H∥F∥Cb− v∥+ ∥R†w −Hb∥ ≤ 4ε∥b∥

Now, we have expressed b̂ as a linear combination of a small number of vectors, all of which
we have sampling and query access to. We can complete using Lemmas 3.5 and 3.6, where
the matrix is the concatenation (R†

cos | b | R†
sinc | i · R†), and the vector is the concatenation

(f̄ cos(CcosC
†
cos)u | 1 | f̄ sinc(CsincC

†
sinc)Wv | w). The length of this vector is rcos +1+ rsinc + r ≲ rsinc.

We get SQϕ(b̂) where

ϕ ≲ rsinc

(︂∥H∥2F
rcos

∥f̄ cos(CcosC
†
cos)u∥2 + ∥b∥2 +

∥H∥2F
rsinc

∥f̄ sinc(CsincC
†
sinc)Wv∥2 +

∥H∥2F
r
∥w∥2

)︂
∥b̂∥−2

≲
(︂rsinc
rcos
∥H∥2Fσ−2∥b∥2 + rsinc∥b∥2 + ∥H∥2Fσ−2∥b∥2 + rsinc

r
∥H∥2F∥b∥2

)︂
∥b∥−2

= ˜︁O(︁∥H∥2F∥H∥2σ−4 + rsinc + ∥H∥2Fσ−2 + ∥H∥4σ−4∥H∥2F
)︁
= ˜︁O(︃rsinc + t2∥H∥2F

σ4

)︃
.

So, ˜︂sqϕ(b̂) = ˜︁O(︁rsinc(rsinc + ∥H∥2F∥H∥2σ−4) log 1
δ

)︁
. Since ε < σ, the r2sinc term dominates.

Remark 6.22. In the case where H is not low-rank, we could still run a modified version of
Corollary 6.20 to compute a modified “expσ,η(iH)” where singular values below σ are smoothly
thresholded away. Following the same logic as Definition 6.13, we could redefine fcos such that
fcos(x) = 1 for x < σ2(1− η), fcos(x) = cos(

√
λ) for x ≥ σ2, and is a linear interpolation between

the endpoints for the x in between (and fsinc similarly). These functions have the same Lipschitz
constants as their originals, up to factors of 1

η , and give the desired behavior of “smoothing away”
small singular values (though we do keep the 0th and 1st order terms of the exponential).

Remark 6.23. Our result generalizes those of Ref. [RWC+20], which achieves essentially the same
result only in the much easier regime where H and b are sparse. They achieve a significant speedup
due to these assumptions: note that when H is sparse, and a subsample of rows R is taken, RR† can
be computed in time independent of dimension; so, we only need to take a subsample of rows, and
not of columns. More corners can be cut from our algorithm in this fashion. In summary, though
our algorithm is significantly slower, their sparsity assumptions are essential for their fast runtime,
and our framework can identify where these tradeoffs occur.

6.8 Semidefinite program solving

A recent line of inquiry in quantum computing [BS17, vAGGdW20, BKL+19, vAG19] focuses
on finding quantum speedups for semidefinite programs (SDPs), a central topic in the theory of
convex optimization with applications in algorithms design, operations research, and approximation
algorithms. Chia, Li, Lin, and Wang [CLLW20] first noticed that quantum-inspired algorithms
could dequantize these quantum algorithms in certain regimes. We improve on their result, giving
an algorithm which is as general as the quantum algorithms, if the input is given classically (e.g., in
a data-structure in RAM). Our goal is to solve the ε-feasibility problem; solving an SDP reduces by
binary search to solving log(1/ε) instances of this feasibility problem.
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Problem 6.24 (SDP ε-feasibility). Given an ε > 0, m real numbers b1, . . . , bm ∈ R, and Hermitian
n× n matrices SQ(A(1)), . . . ,SQ(A(m)) such that −I ⪯ A(i) ⪯ I for all i ∈ [m], we define Sε as the
set of all X satisfying23

Tr[A(i)X] ≤ bi + ε ∀ i ∈ [m];

X ⪰ 0;

Tr[X] = 1.

If Sε = ∅, output “infeasible”. If S0 ̸= ∅, output an X ∈ Sε. (If neither condition holds, either
output is acceptable.)

Corollary 6.25. Let F ≥ maxj∈[m](∥A(j)∥F), and suppose24 F = Ω(1). Then we can solve
Problem 6.24 with success probability ≥ 1− δ in cost

˜︁O(︃(︂F 18

ε40
log20(n) sq(A) +

F 22

ε46
log23(n) +m

F 8

ε18
log8(n)q(A) +m

F 14

ε28
log13(n)

)︂
log3

1

δ

)︃
,

providing sampling and query access to a solution.

Assuming sq(A) = ˜︁O(1), this runtime is ˜︁O(︂F 22

ε46
log23(n) +mF 14

ε28
log13(n)

)︂
. For the same feasi-

bility problem, the previous quantum-inspired SDP solver [CLLW20] proved a complexity bound˜︁O(︁mr57ε−92 log37(n)
)︁
, assuming that the constraint matrices have rank at most r. Since the

rank constraint implies that
⃦⃦
A(·)⃦⃦

F
≤
√
r, under this assumption our algorithm has complexity˜︁O(︁r11ε−46 log23(n) +mr7ε−28 log13(n)

)︁
. So, our new algorithm both solves a more general problem

and also greatly improves the runtime. The paper with the current best runtime for SDP solving
does not discuss this precise model, but if we use the runtime they achieve in quantum state input
model, making reasonable substitutions of γ → 1

ε and B → F 2, the corresponding quantum runtime

is ˜︁O(︂ F 7

ε7.5
+

√
mF 2

ε4

)︂
, up to polylog(n) factors.

Like prior work on quantum algorithms for SDP-solving, we use the matrix multiplicative weights
(MMW) framework [AK16, Kal07] to solve Problem 6.24. Corollary 6.25 immediately follows from
running the algorithm this framework admits (Algorithm 1), where we solve an instance of the
problem described in Lemma 6.26 with precision θ = ε/4 in each of the O

(︁
log(n)/ε2

)︁
iterations.

MMW works as a zero-sum game with two players, where the first player wants to provide an
X ∈ Sε, and the second player wants to find a violation for any proposed X, i.e., a j ∈ [m] such
that Tr[A(j)X] > bj + ε. At the tth round of the game, if the second player points out a violation jt
for the current solution Xt, the first player proposes a new solution

Xt+1 ∝ exp[−ε(A(j1) + · · ·+A(jt))].

Solutions of this form are also known as Gibbs states. It is known that MMW solves the SDP
ε-feasibility problem in O

(︂
logn
ε2

)︂
iterations; a proof can be found, e.g., in the work of Brandão,

Kalev, Li, Lin, Svore, and Wu [BKL+19, Theorem 3] or in Lee, Raghavendra and Steurer [LRS15,
Lemma 4.6].

Our task is to execute Lines 3 and 4 of Algorithm 1, for an implicitly defined matrix with the
form given in Line 6.

23For simplicity, we assume here that X is normalized to have trace 1. This can be relaxed; for an example,
see [vAGGdW20].

24Because of the normalization assumption that ∥A(·)∥ ≤ 1, F is effectively a dimensionless “stable rank”-type
constant, normalized by maxi ∥A(i)∥.
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Algorithm 1: MMW based feasibility testing algorithm for SDPs

1 Set X1 :=
In
n , and the number of iterations T := 16 logn

ε2
;

2 for t = 1, . . . , T do

3 find a jt ∈ [m] such that Tr[A(jt)Xt] > bjt +
ε
2

4 or conclude correctly that Tr[A(jt)Xt] ≤ bjt + ε for all j ∈ [m]
5 if a jt ∈ [m] is found then

6 Xt+1 := exp[− ε
4

∑︁t
i=1A

(ji)]/Tr[exp[− ε
4

∑︁t
i=1A

(ji)]]
7 else conclude that Xt ∈ Sε
8 return Xt

9 end
10 If no solution found, conclude that the SDP is infeasible and terminate the algorithm

Lemma 6.26 (“Efficient” trace estimation). Consider the setting described in Corollary 6.25. Given

θ ∈ (0, 1], t ≤ log(n)
θ2

and ji ∈ [m] for i ∈ [t], defining H := exp[−θ
∑︁t

i=1A
(ji)], we can estimate

Tr(A(i)H)/Tr(H) with success probability ≥ 1− δ for all i ∈ [m] to precision θ in cost

˜︁O(︃[︃F 18

θ38
log19(n) sq(A) +

F 22

θ44
log22(n) +m

F 8

θ16
log7(n)q(A) +m

F 14

θ26
log12(n)

]︃
log3

1

δ
+

log(n)

θ2
n(A)

)︃
,

where sq(A) = maxj∈[m] sq(A
(j)), and s(A), q(A), n(A) are defined analogously.

To estimate Tr[A(i)H], we first notice that we have SQϕ(θ
∑︁t

i=1A
(ji)), since it is a linear

combination of matrices that we have sampling and query access to (Lemma 3.9). Then, we can find
approximations of the Gibbs state by applying eigenvalue transformation (Theorem 7.2) according to
the exponential function to get exp[−θ

∑︁t
i=1A

(ji)] as an RUR decomposition. Then the estimation
of Tr[A(i)H] can be performed by usual techniques (namely, Remark 4.13).

In order to understand how precisely we need to approximate the matrix in Line 6 we prove the
following lemmas. Our first lemma will show that, to estimate Tr(A(i)H)/Tr(H) to θ precision, it
suffices to estimate both Tr(A(i)H) and Tr(H) to 1

3θTr(H) precision.

Lemma 6.27. Suppose that θ ∈ [0, 1] and a, ã, Z, Z̃ are such that |a| ≤ Z, |a − ã| ≤ θ
3Z, and

|Z − Z̃| ≤ θ
3Z, then ⃓⃓⃓⃓

ã

Z̃
− a

Z

⃓⃓⃓⃓
≤ θ.

Proof.⃓⃓⃓⃓
ã

Z̃
− a

Z

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓ ãZZZ̃ − aZ̃

ZZ̃

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓
ãZ − aZ
ZZ̃

⃓⃓⃓⃓
+

⃓⃓⃓⃓
⃓aZ − aZ̃ZZ̃

⃓⃓⃓⃓
⃓ ≤ 3

2Z
|ã− a|+ 3a

2Z2
|Z − Z̃| ≤ 1

2
θ+

1

2
θ ≤ θ.

Next, we will prove that the approximations we will use to Tr(A(i)H) and Tr(H) suffice. We
introduce some useful properties of matrix norms. For a matrix A ∈ Cm×n and p ∈ [1,∞], we
denote by ∥A∥p the Schatten p-norm, which is the ℓp-norm of the singular values (

∑︁
i σ

p
i (A))

1/p. In
particular, ∥A∥F = ∥A∥2 and ∥A∥Op = ∥A∥∞. We recall some useful inequalities [Bha97, Section
IV.2]. Hölder’s inequality states that for all B ∈ Cn×k and r, p, q ∈ (0,∞] such that 1

p + 1
q = 1

r , we
have ∥AB∥r ≤ ∥A∥p∥B∥q. The trace-norm inequality states that if n = m, then |Tr(A)| ≤ ∥A∥1.
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Lemma 6.28 (Perturbations of the partition function). For all Hermitian matrices H, H̃ ∈ Cn×n,⃓⃓⃓
Tr(eH̃)− Tr(eH)

⃓⃓⃓
≤
⃦⃦⃦
eH̃ − eH

⃦⃦⃦
1
≤
(︂
e∥H̃−H∥ − 1

)︂
Tr(eH).

The bound in the above lemma is tight, as shown by the example H̃ := H + εI. The proof is
in the appendix. Before proving the following lemma, we observe that for any Hermitian matrix
H ∈ Cn×n with ∥H∥2F ≤

n
4 , we have by Hölder’s inequality that

Tr(eH) = n+Tr(eH − I) = n+
∑︂
i

(eλi − 1) ≥ n+
∑︂
i

λi = n+Tr(H) ≥ n−
√
n∥H∥F ≥ n/2. (15)

Lemma 6.29. Consider a Hermitian matrix H ∈ Cn×n such that ∥H∥2F ≤
n
4 . Let H have an

approximate eigendecomposition in the following sense: for r ≤ n, suppose we have a diagonal
matrix D ∈ Rr×r and ˜︁U ∈ Cr×n that satisfy ∥˜︁U ˜︁U † − I∥ ≤ δ and ∥H − ˜︁U †D ˜︁U∥ ≤ ε for ε ≤ 1

2 and
δ ≤ min( ε

4(∥H∥+ε) ,
ε
2). Then we have

|(Tr(eD) + n− r)− Tr(eH)| ≤ 2(e− 1)εTr(eH), (16)

and, moreover, for all A ∈ Cn×n we have

|Tr(A˜︁U †(eD − I)˜︁U) + Tr(A)− Tr(AeH)| ≲ ε∥A∥Tr(eH).

Proof. First, recall that, by Lemma 2.5, there is unitary U such that ∥˜︁U − U∥ ≤ δ. Consequently,
also using facts from Lemma 2.5, along with bounds on δ,

∥H − U †DU∥ ≤ ∥H − ˜︁U †D ˜︁U∥+ δ
2− δ

(1− δ)2
∥˜︁U †D ˜︁U∥ ≤ ε+ 4δ(∥H∥+ ε) ≤ 2ε. (17)

By Lemma 6.28 we have⃦⃦
eU

†DU − eH
⃦⃦
1
≤ (e2ε − 1)Tr(eH) ≤ 2(e− 1)εTr(eH),

and since eU
†DU = U †(eD−I)U+I, by the linearity of trace, the trace-norm inequality, and Hölder’s

inequality,

|Tr(AU †(eD − I)U) + Tr(A)− Tr(AeH)|

= |Tr(A(eU†DU − eH))| ≤ ∥A∥∥eU†DU − eH∥1 ≤ 2(e− 1)∥A∥εTr(eH). (18)

In particular, setting A = I, we get the first desired bound

|(Tr(eD) + n− r)− Tr(eH)| = |Tr(U †(eD − I)U + I)− Tr(eH)| ≤ 2(e− 1)εTr(eH).

Note that the two identity matrices in the equation above refer to identities of two different sizes.
Now, if we show that Tr(AU †(eD − I)U)− Tr(A˜︁U †(eD − I)˜︁U) is sufficiently small, then the second
desired bound follows by Eq. (18) and triangle inequality.

|Tr(AU †(eD − I)U)− Tr(A˜︁U †(eD − I)˜︁U)|

= |Tr((UAU † − ˜︁UA˜︁U †)(eD − I))|

≤
⃦⃦
UAU † − ˜︁UA˜︁U †⃦⃦⃦⃦eD − I⃦⃦

1
by trace-norm and Hölder’s inequality

≤ (2δ + δ2)∥A∥
⃦⃦
eD − I

⃦⃦
1

by Lemma 2.5

≤ 2ε∥A∥
⃦⃦
eD − I

⃦⃦
1

by assumption that δ ≤ ε/2
≤ 2ε∥A∥

(︁
Tr(eD) + r

)︁
by triangle inequality

≲ ε∥A∥Tr(eH). by Eqs. (15) and (16)
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Now we are ready to devise our upper bound on the trace estimation subroutine.

Proof of Lemma 6.26. By Lemma 6.27, it suffices to find estimates of Tr(eH) and Tr(AeH) for all
A = A(i), to θ

3 Tr(e
H) additive precision. Recall from the statement that H := −θ

∑︁t
i=1A

(ji). By
triangle inequality, ∥H∥F ≤

F
θ log(n). Because H is a linear combination of matrices, by Lemma 3.9,

after paying log(n)
θ2

n(A) cost, we can obtain SQϕ(H) for ϕ ≤ F 2 log2(n)

θ2∥H∥2F
with q(H) = qϕ(H) ≤

log(n)
θ2

q(A) and sϕ(H) = s(A).

If F
θ log(n) >

√
n/18, then we simply compute the sum H by querying all matrix elements

of every A(ji) in the sum, costing O
(︁
tn2 q(A)

)︁
. Then we compute eH and its trace Tr(eH) all in

time O
(︁
n3
)︁
[PC99]. Finally, we compute all the traces Tr(eHA(m)) in time O

(︁
mn2

)︁
. The overall

complexity is O
(︁
n2(tq(A) + n+m)

)︁
= ˜︁O(︂F 6

θ6
q(A) log6(n) +mF 4

θ4
log4(n)

)︂
.

If F
θ log(n) ≤

√
n/18 we do the following. Note that if ∥H∥ ≤ 1, then Tr(eH) ≥ n/e

and Tr(A(i)eH) ≤
⃦⃦
A(i)

⃦⃦
F

⃦⃦
eH
⃦⃦
F
≤ Fe

√
n, so Tr(A(i)eH)/Tr(eH) ≤ e2F/

√
n ≤ θ, and out-

putting 0 as estimates is acceptable. We use Theorem 7.2 (with f(x) = x, so that L = 1,

and choosing ε := Θ(θ)) to find a diagonal matrix D ∈Rs×s with s = ˜︁O(︂ϕ2∥H∥6F/ε6 log(1/δ))︂=˜︁O(︁F 6θ−6 log6(n)ε−6 log(1/δ)
)︁
= ˜︁O(︁F 6θ−12 log6(n) log(1/δ)

)︁
together with an approximate isome-

try ˜︁U = N(SH) ∈ Cs×n such that
⃦⃦⃦
H − ˜︁U †D ˜︁U ⃦⃦⃦ ≤ O(ε). If every diagonal element is less than

3/4, then we conclude that ∥H∥ ≤ 1, and return 0. Otherwise we have ∥H∥ ≥ 1/2 and thus by

Theorem 7.2 we have
⃦⃦⃦ ˜︁U ˜︁U † − I

⃦⃦⃦
≲ ε3∥H∥−3 ≲ ε

∥H∥+ε + ε with probability at least 1− δ
2 . As per

Theorem 7.2, the cost of this is log3(1/δ) times at most

˜︁O(︃∥H∥18F
ε18

ϕ7 sqϕ(H) +
∥H∥22F
ε22

ϕ6
)︃

= ˜︁O(︃∥H∥4F
ε18

F 14

θ14
log14(n) sqϕ(H) +

∥H∥10F
ε22

F 12

θ12
log12(n)

)︃
= ˜︁O(︃∥H∥4F

ε18
F 14

θ16
log15(n) sq(A) +

∥H∥10F
ε22

F 12

θ12
log12(n)

)︃
= ˜︁O(︃ 1

ε18
F 18

θ20
log19(n) sq(A) +

1

ε22
F 22

θ22
log22(n)

)︃
= ˜︁O(︃F 18

θ38
log19(n) sq(A) +

F 22

θ44
log22(n)

)︃
.

By Lemma 6.29 we have25 that Tr(eD) + (n− s) is a multiplicative θ
3 -approximation of Tr(eH)

as desired, and for all A = A(i), Tr((eD− I)˜︁UA˜︁U †)+Tr(A) is an additive ( θ9 Tr(e
H))-approximation

of Tr(AeH). We can ignore the Tr(A) in our approximation: by Eq. (15) we have

Tr(A) ≤ ∥A∥F∥I∥F ≤ F
√
n ≤ θn/18 ≤ θTr(eH)/9,

so |Tr((eD − I)˜︁UA˜︁U †)− Tr(AeH)| ≤ 2θ
9 Tr(eH)). So, it suffices to compute an additive ( θ9 Tr(e

H))-

approximation of Tr((eD − I)˜︁UA˜︁U †) = Tr(A˜︁U †(eD − I)˜︁U) to obtain the ( θ3 Tr(e
H))-approximation

of Tr(AeH) we seek.
We use Remark 4.13 to estimate Tr(A˜︁U †(eD − I)˜︁U) to additive precision ( θ9 Tr(e

H)). Note that
by Lemma 6.29 and Eq. (15) we have⃦⃦⃦ ˜︁U †(eD − I)˜︁U ⃦⃦⃦

F
≤ ∥Ũ∥2∥eD − I∥F ≤ 2∥eD − I∥F ≤ 2∥eD − I∥1 ≲ Tr(eH),

25In case applying Theorem 7.2 would result in s > n, we instead directly diagonalize H ensuring s ≤ n.
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and since s = ˜︁O(︁F 6θ−12 log6(n) log(1/δ)
)︁
and q(H) ≤ log(n)

θ2
q(A), we also have

q(˜︁U †(eD − I)˜︁U) = q((SH)†N †(eD − I)N(SH))

= O
(︁
s · q(H) + s2

)︁
= ˜︁O(︁F 6θ−14 log7(n) log(1/δ)q(A) + F 12θ−24 log12(n) log2(1/δ)

)︁
.

Therefore, Remark 4.13 tells us that given SQ(A), a ( θ9 Tr(e
H))-approximation of Tr(A˜︁U †(eD− I)˜︁U)

can be computed with success probability at least 1− δ
2m in time

O
(︃
∥A∥2F
θ2

(︁
sq(A) + s · q(H) + s2

)︁
log

m

δ

)︃
.

Since we do this for all i ∈ [m], the overall complexity of obtaining the desired estimates Tr(A(i)eH)
with success probability at least 1− δ

2 is m times

˜︁O(︃F 8

θ16
log7(n) log(1/δ) log(m/δ)q(A) +

F 14

θ26
log12(n) log2(m/δ) log(m/δ)

)︃
.

6.9 Discriminant analysis

Discriminant analysis is used for dimensionality reduction and classification over large data sets.
Cong and Duan introduced a quantum algorithm to perform both with Fisher’s linear discriminant
analysis [CD16], a generalization of principal component analysis to data separated into classes.

The problem is as follows: given classified data, we wish to project our data onto a subspace
that best explains between-class variance, while minimizing within-class variance. Suppose there
are M input data points {xi ∈ RN : 1 ≤ i ≤M} each belonging to one of k classes. Let µc denote
the centroid (mean) of class c ∈ [k], and x̄ denote the centroid of all data points. Following the
notation of [CD16], let

SB =
k∑︂

c=1

(µc − x̄)(µc − x̄)T and SW =
k∑︂

c=1

∑︂
x∈c

(µc − x)(µc − x)T .

denote the between-class and within-class scatter matrices of the dataset respectively. The original
goal is to solve the generalized eigenvalue problem SBvi = λiSW vi and output the top eigenvalues
and eigenvectors; for dimensionality reduction using linear discriminant analysis, we would project
onto these top eigenvectors. If SW would be full-rank, this problem would be equivalent to finding the
eigenvalues of S−1

W SB. However, this does not happen in general, and therefore various relaxations are
considered in the literature [BHK97, Wel09]. For example, Welling [Wel09] considers the eigenvalue
problem of

S
1
2
BS

−1
W S

1
2
B. (19)

Cong and Duan further relax the problem, as they ignore small eigenvalues of SW and SB, and
only compute approximate eigenvalues of Eq. (19) (after truncating eigenvalues), leading to inexact
eigenvectors. We construct a classical analogue of their quantum algorithm.26 Cong and Duan also
describe a quantum algorithm for discriminant analysis classification; this algorithm does a matrix
inversion procedure very similar to those described in Section 6.5 and Section 6.6, so for brevity we
will skip dequantizing this algorithm.

26Analyzing whether or not the particular relaxation used in this and other quantum machine learning papers
provides a meaningful output is unfortunately beyond the scope of our paper.
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To formally analyze this algorithm, we could, as in Section 6.4, assume the existence of an
eigenvalue gap, so the eigenvectors are well-conditioned. However, let us instead use a different

convention: if we can find diagonal D and an approximate isometry U such that S
1
2
BS

−1
W S

1
2
BU ≈ UD,

then we say we have found approximate eigenvalues and eigenvectors of S+
WSB.

Problem 6.30 (Linear discriminant analysis). Consider the functions

sqrt(x) =

⎧⎪⎨⎪⎩
0 x < σ2/2

2x/σ − σ σ2/2 ≤ x < σ2
√
x x ≥ σ2

inv(x) =

⎧⎪⎨⎪⎩
0 x < σ2/2

2x/σ4 − 1/σ2 σ2/2 ≤ x < σ2

1/x x ≥ σ2
.

Given SQ(B,W ) ∈ Cm×n, with SW := W †W and SB := B†B, find an α-approximate isometry
U ∈ Cn×p and diagonal D ∈ Cp×p such that we have SQϕ(U(·, i)) for all i, |Dii − λi| ≤ ε∥B∥2/σ2
for λi the eigenvalues of sqrt(SB) inv(SW ) sqrt(SB), and

∥ sqrt(SB) inv(SW ) sqrt(SB)U − UD∥ ≤ ε∥ sqrt(SB)∥2∥ inv(SW )∥ ≤ ε∥B∥2/σ2.

The choice of error bound is natural, since ∥B∥2/σ2 is essentially ∥ sqrt(SB)∥2∥ inv(SW )∥: we
aim for additive error. The quantum algorithm achieves a runtime of ˜︁O(︂∥B∥7F

ε3σ7 +
∥W∥7F
ε3σ7

)︂
, up to

polylog(m,n) factors [CD16, Theorem 2].27

Corollary 6.31. For ε < σ/∥B∥, we can solve Problem 6.30 in ˜︁O(︂(∥B∥6F∥B∥4
ε6σ10 +

∥W∥6F∥W∥10
ε6σ16 ) log3 1

δ

)︂
time, with ˜︂sqϕ(U(·, i)) = ˜︁O(︂∥B∥4F

ε2σ4 log2 1
δ

)︂
.

We prove this by using Theorem 5.1 to approximate sqrt(W †W ) ≈ R†
WUWRW and inv(B†B) ≈

R†
BUBRB by RUR decompositions. Then, we use Lemma 4.6 to approximate RWR

†
B by small

submatrices R′
WR

′†
B. This yields an approximate RUR decomposition of the matrix whose eigenvalues

and vectors we want to find, R†
WURW for U = UWR

′
WR

′†
BUBR

′
BR

′†
WUW .

Finding eigenvectors from an RUR decomposition follows from an observation (Lemma 4.14):
for a matrix CW formed by sampling columns from RW (using SQ(W )), and [CW ]k the rank-k
approximation to CW (which can be computed because CW has size independent of dimension),
(([CW ]k)

+RW )† has singular values either close to zero or close to one. This roughly formalizes the
intuition of CW preserving the left singular vectors and singular values of RW . We can rewrite
R†

WURW = R†
W (C+

k )
†C†

kUCkC
+
k RW , which holds by choosing k sufficiently large and choosing C

to be the same sketch used for U . Then, we can compute the eigendecomposition of the center
C†
kUCk = V DV †, which gives us an approximate eigendecomposition for R†

WURW : (C+
k RW )†V is

an approximate isometry, so we choose its columns to be our eigenvectors, and our eigenvalues are
the diagonal entries of D. We show that this has the approximation properties analogous to the
quantum algorithm.

Proof. By Theorem 5.1, we can find RB, CB, RW , CW such that

∥ sqrt(B†B)−R†
Bsqrt(CBC

†
B)RB∥ ≤ ε∥B∥

∥ inv(W †W )−R†
W inv(CWC

†
W )RW ∥ ≤ ε/σ2

27This is the runtime of Step 2 of Algorithm 1. The normalization factor of max(∥B∥F, ∥S∥F) is implicit there,

κeff corresponds to max(∥B∥F,∥S∥F)

σ2 , and the error bound the algorithm achieves is the one we describe here, since the
authors must implicitly rescale the inverse and square root function by a cumulative factor of ∥B∥2/σ2 to apply their
Theorem 1.
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with

rB = ˜︁O(︃∥B∥2F
ε2σ2

log
1

δ

)︃
cB = ˜︁O(︃∥B∥4∥B∥2F

ε2σ6
log

1

δ

)︃
rW = ˜︁O(︃∥W∥2∥W∥2F

ε2σ4
log

1

δ

)︃
cW = ˜︁O(︃∥W∥6∥W∥2F

ε2σ8
log

1

δ

)︃
.

Let ZB := sqrt(CBC
†
B) and ZW := inv(CWC

†
W ). These approximations suffice for us:

∥ sqrt(SB) inv(SW ) sqrt(SB)−R†
BZBRBR

†
WZWRWR

†
BZBRB∥

≤ ∥ sqrt(SB)−R†
BZBRB∥∥ inv(SW ) sqrt(SB)∥

+ ∥R†
BZBRB∥∥ inv(SW )−R†

WZWRW ∥∥ sqrt(SB)∥

+ ∥R†
BZBRBR

†
WZWRW ∥∥ sqrt(SB)−R†

BZBRB∥,

each of which is bounded by ε∥B∥2/σ2. Next, we approximate ∥RBR
†
W −R′

BR
′†
W ∥F ≤ εσ3/2

√︁
∥B∥,

since then

∥Σ̄
1
2
BŪ

†
BRBR

†
W ŪW Σ̄

1
2
W − Σ̄

1
2
BŪ

†
BR

′
BR

′†
W ŪW Σ̄

1
2
W ∥

≤ ∥Σ̄
1
2
BŪ

†
B∥∥RBR

†
W −R

′
BR

′†
W ∥∥ŪW Σ̄

1
2
W ∥

≤ σ−
1
2 ∥RBR

†
W −R

′
BR

′†
W ∥σ

−2

≤ ε
√︁
∥B∥/σ2,

and so

∥R†
BZBRBR

†
WZWRWR

†
BZBRB −R†

BZBR
′
BR

′†
WZWR

′
WR

′†
BZBRB∥ ≲ ε∥B∥2/σ2.

Now, we can compute Z := ZBR
′
BR

′†
WZWR

′
WR

′†
BZB and, using that ZB = ZB [CB ] σ√

2
[CB]

+
σ√
2

, rewrite

R†
BZRB = R†

B([CB]
+
σ√
2

)†[CB]
†
σ√
2

Z[CB] σ√
2
[CB]

+
σ√
2

RB.

By Lemma 4.14, ([CB]
+
σ√
2

RB)
† is an εσ/∥B∥-approximate projective isometry28 onto the image of

[CB]
+
σ√
2

(where we use that ε < σ/∥B∥). To turn this approximate projective isometry into an

isometry, we compute the eigendecomposition [CB]
†
σ√
2

Z[CB] σ√
2
= V ΣV †, where we truncate so that

V is full rank. Consequently, U := R†
B([CB]

+
σ√
2

)†V is full rank—the image of V is contained in the

image of [CB ]
+
σ√
2

—and thus is an εσ/∥B∥-approximate isometry. So, our eigenvectors are U and our

eigenvalues are D := Σ. This satisfies the desired bounds because

∥ sqrt(SB) inv(SW ) sqrt(SB)U − UD∥ ≤ ∥ sqrt(SB) inv(SW ) sqrt(SB)U − UDU †U∥+ ∥UDU †U − UD∥

≤ ε∥B∥
2

σ2
∥U∥+ ∥UD∥∥U †U − I∥ ≲ ε

∥B∥2

σ2
.

28We get more than we need here: an ε-approximate projective isometry would suffice for the subsequent arguments.
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The eigenvalues are correct because, by the approximate isometry condition, ∥U − Ũ∥ ≲ ε σ
∥B∥ for Ũ

an isometry, and so we can use Lemma 2.5 to conclude

∥ sqrt(SB) inv(SW ) sqrt(SB)− ŨDŨ
†∥

≤ ∥ sqrt(SB) inv(SW ) sqrt(SB)− UDU †∥+ ∥UDU † − ŨDŨ †∥

≲ ε
∥B∥2

σ2
+ ε

σ

∥B∥
∥D∥ ≲ ε

∥B∥2

σ2
.

ŨDŨ
†
is an eigendecomposition. Furthermore, this is an approximation of a Hermitian PSD

matrices, where singular value error bounds align with eigenvalue error bounds. So, Weyl’s

inequality (Lemma 4.11) implies the desired bound |Dii − λi| ≲ ε∥B∥2
σ2 for λi the true eigenvalues.

We have SQϕ(U(·, i)) by Lemmas 3.5 and 3.6, since U(·, i) = R†
B([CB]

+
σ√
2

)†V (·, i). The runtime

is ˜︂sqϕ(U(·, i)) = rBϕ log
1
δ , where

ϕ = rB

∑︁rB
j=1 ∥RB(j, ·)∥2|[([CB]

+
σ√
2

)†V (·, i)](j)|2

∥U(·, i)∥
≲ ∥B∥2F∥([CB]

+
σ√
2

)†V (·, i)∥2 ≲
∥B∥2F
σ2

.

This gives the stated runtime.

7 More singular value transformation

In this section, we present more general versions of our algorithm for even SVT to get results
for generic SVT (Theorem 7.1) and eigenvalue transformation (Theorem 7.2). In applications we
mainly use even SVT to allow for more fine-tuned control over runtime, but we do use eigenvalue
transformation in Section 6.8.

For generic SVT: consider a matrix A ∈ Cm×n and a function f : [0,∞)→ C satisfying f(0) = 0
(so the singular value transformation f (SV)(A) is well-defined as in Definition 2.1). Given SQ(A)
and SQ(A†), we give an algorithm to output a CUR decomposition approximating f (SV)(A).

Theorem 7.1 (Generic singular value transformation). Let A ∈ Cm×n be given with both SQϕ(A)

and SQϕ(A
†) and let f : [0,∞) → C be a function such that f(0) = 0, g(x) := f(

√
x)/
√
x is

L-Lipschitz, and ḡ(x) := (g(x)− g(0))/x is L̄-Lipschitz. Then, for 0 < ε ≤ min(L∥A∥3, L̄∥A∥5), we
can output sketches R := SA ∈ Cr×n and C := AT ∈ Cm×c, along with M ∈ Cr×c such that

Pr
[︂
∥CMR+ g(0)A− f (SV)(A)∥ > ε

]︂
< δ,

with r = ˜︁O(︁ϕ2L2∥A∥2∥A∥4F
1
ε2

log 1
δ

)︁
and c = ˜︁O(︁ϕ2L2∥A∥4∥A∥2F

1
ε2

log 1
δ

)︁
. Finding S, M , and T

takes time

Õ
(︂
(L̄

2∥A∥8∥A∥2F + L2∥A∥2∥A∥4F)
ϕ2

ε2
log

1

δ
(sϕ(A) + sϕ(A

†) + qϕ(A) + qϕ(A
†))

+ (L2L̄
2∥A∥12∥A∥4F + L4∥A∥6∥A∥6F)

ϕ4

ε4
log2

1

δ
q(A)

+ (L4L̄
2∥A∥16∥A∥6F + L6∥A∥10∥A∥8F)

ϕ6

ε6
log3

1

δ
+ nϕ(A)

)︂
.
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If we only wish to assume SQϕ(A), we can do so by using Lemma 4.4 instead of Lemma 4.6 in

our proof, paying an additional factor of 1
δ .

Note that if sqϕ(A), sqϕ(A
†) = O(1), then this runtime is dominated by the last term. Moreover,

if A is strictly low-rank, with minimum singular value σ, or essentially equivalently, if f(x) = 0 for
x ≤ σ and so g(x) = 0 for x ≤ σ2, then L ≤ ℓ/σ2 and L̄ = 2ℓ/σ4 for ℓ the Lipschitz constant of f .
In this case the complexity is

˜︁O(︃(︂∥A∥10∥A∥6F
σ16

+
∥A∥4∥A∥8F

σ12

)︂(︂ℓ∥A∥
ε

)︂6
ϕ6 log3

1

δ

)︃
. (20)

Importantly, when ε = O(ℓ∥A∥) (that is, if we want relative error), this runtime is independent of
dimension. If one desires greater generality, where we only need to depend on the Lipschitz constant
of f , we can use a simple trick: as we aim for a spectral norm bound, we can essentially treat A as
if it had strictly low rank. Consider the variant of f , f≥σ, which is zero below σ/2, f above σ, and
is a linear interpolation in between.

f≥σ(x) :=

⎧⎪⎨⎪⎩
0 0 ≤ x < σ/2

(2x/σ − 1)f(σ) σ/2 ≤ x < σ

f(x) σ ≤ x

Then ∥f (SV)(A)− f (SV)
≥ε/ℓ(A)∥ ≤ ε, because f(ε/ℓ) ≤ ε. Further, the Lipschitz constant of f≥ε/ℓ is at

most 2ℓ: the slope of the linear interpolation is 2f(σ)/σ ≤ 2ℓσ/σ. So, we can run our algorithm for
arbitrary ℓ-Lipschitz f in the time given by Eq. (20), with σ = ε/ℓ.

Our proof strategy is to apply our main result Theorem 5.1 to g(A†A), for g(x) := f(
√
x)/
√
x,

and subsequently approximate matrix products with Lemma 4.6 to get an approximation of the
form A′R′†UR+ g(0)A:

f (SV)(A) = Ag(A†A) ≈ AR†UR+A(g(0)I) ≈ A′R′†UR+ g(0)A.

Here, A′R′†UR is a CUR decomposition as desired, since A′ is a normalized subset of columns of A.
One could further approximate g(0)A by a CUR decomposition if necessary (e.g. by adapting the
eigenvalue transformation result below).

We do not use this theorem in our applications. Sometimes we implicitly use a similar strategy
(e.g. in Section 6.5), but because we apply our matrix to a vector (f(A†)b) we can use Lemma 4.12
instead of Lemma 4.6 when approximating. This allows for the algorithm to work with only SQϕ(A)

and still achieve a poly-logarithmic dependence on 1
δ .

Proof. If we want to compute f̂
(SV)

(A), we can work with f(x) := f̂(x)− g(0)x, so that g(0) = 0

without loss of generality. Notice that f̂
(SV)

(A) = f (SV)(A)+g(0)A, so if we get a CUR decomposition
for f (SV)(A) we can add g(0)A after to get the decomposition in the theorem statement.

Consider the SVT g(x) := f(
√
x)/
√
x, so that f (SV)(A) = Ag(A†A). First, use Theorem 5.1 to

get SA ∈ Cr×n, SAT ∈ Cr×c such that, with probability ≥ 1− δ/4,

∥(SA)†ḡ((SAT )(SAT )†)SA− g(A†A)∥ ≤ ε

2∥A∥
. (21)

Second, use Lemma 4.6 to get a sketch T ′† ∈ Cc′×n such that, with probability ≥ 1− δ/4,

∥A(SA)† −AT ′(SAT ′)†∥ ≤ ε(3L∥A∥)−1. (22)
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The choices of parameters necessary are as follows (using that ∥SA∥F = O(∥A∥F) by Eq. (5) and
we have a 2ϕ-oversampled distribution for (SA)† by Lemma 4.3):

r = Θ̃
(︂
ϕ2L2∥A∥4∥A∥2F

1

ε2
log

1

δ

)︂
c = Θ̃

(︂
ϕ2L̄

2∥A∥8∥A∥2F
1

ε2
log

1

δ

)︂
c′ = Θ̃

(︂
ϕ2L2∥A∥2∥A∥4F

1

ε2
log

1

δ

)︂
This implies the desired bound through the following sequence of approximations:

f (SV)(A) = Ag(A†A)

≈ A(SA)†ḡ((SAT )(SAT )†)SA
≈ AT ′⏞⏟⏟⏞

C

(SAT ′)†ḡ((SAT )(SAT )†)⏞ ⏟⏟ ⏞
M

SA⏞⏟⏟⏞
R

.

This gives us a CUR decomposition of f (SV)(A). These two approximations only incur O(ε) error
in spectral norm; for the first, notice that

∥Ag(A†A)−A(SA)†ḡ((SAT )(SAT )†)SA∥

≤ ∥A∥∥(SA)†ḡ((SAT )(SAT )†)SA− g(A†A)∥ ≤ ε

2
. (by (21))

For the second approximation observe that |g(x)| ≤ L|x| (and, by corollary, ḡ(x) ≤ L) due to g
being L-Lipschitz and g(0) = 0, therefore

∥(A(SA)† −AT ′(SAT ′)†)ḡ((SAT )(SAT )†)SA∥

≤ ∥AT ′(SAT ′)† −A(SA)†∥∥
√︂
ḡ((SAT )(SAT )†)∥∥

√︂
ḡ((SAT )(SAT )†)SA∥

≤ ε(3L∥A∥)−1∥
√︂
ḡ((SAT )(SAT )†)∥∥

√︂
ḡ((SAT )(SAT )†)SA∥ (by (22))

≤ ε(3L∥A∥)−1
√
L

√︃
∥g(A†A)∥+ ε

2∥A∥
(since ḡ(x) ≤ L and by (21))

≤ ε(3L∥A∥)−1

√︃
3

2
L∥A∥ < ε

2
. (since |g(x)| ≤ L|x| and ε ≤ L∥A∥3)

The time complexity of this procedure is

O
(︂
nϕ(A) + (r + c+ c′)(sϕ(A) + qϕ(A)) + c′(sϕ(A

†) + qϕ(A
†)) + (rc+ rc′)q(A) + r2c+ r2c′

)︂
,

which comes from producing sketches, querying all the relevant entries of SAT and SAT ′, the
singular value transformation of SAT , and the matrix multiplication in M . We get r factors in
the latter two terms because we can separate ḡ((SAT )(SAT )†) =

√
ḡ(SAT )(

√
ḡ(SAT ))† where√

ḡ(x) :=
√︁
ḡ(x).

As for eigenvalue transformation, consider a function f : R → C and a Hermitian matrix
A ∈ Cn×n, given SQ(A). If f is even (so f(x) = f(−x)), then f(A) = f(

√
A†A), so we can use

Theorem 5.1 to compute the eigenvalue transform f(A). For non-even f , we cannot use this result,
and present the following algorithm to compute it.
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Theorem 7.2 (Eigenvalue transformation). Suppose we are given a Hermitian SQϕ(A) ∈ Cn×n

with eigenvalues λ1 ≥ · · · ≥ λn, a function f : R→ C that is L-Lipschitz on ∪ni=1[λi − d, λi + d] for
some d > ε

L , and some ε ∈ (0, L∥A∥/2]. Then we can output matrices S ∈ Cr×n, N ∈ Cs×r, and

D ∈ Cs×s, with r = ˜︁O(︂ϕ2∥A∥4∥A∥2FL6

ε6
log 1

δ

)︂
and s = ˜︁O(︂∥A∥2FL2

ε2

)︂
, such that

Pr
[︂
∥(SA)†N †DN(SA) + f(0)I − f (EV)(A)∥ > ε

]︂
< δ,

in time

Õ
(︂
(L10ε−10∥A∥8∥A∥2Fϕ2 log

1

δ
+ L6ε−6∥A∥6Fϕ log

1

δ
)(sϕ(A) + qϕ(A))

+ (L16ε−16∥A∥12∥A∥4Fϕ4 log2
1

δ
+ L18ε−18∥A∥8∥A∥10F ϕ5 log3

1

δ
)q(A)

+ L22ε−22∥A∥16∥A∥6Fϕ6 log3
1

δ
+ nϕ(A)

)︂
.

Moreover, this decomposition satisfies the following two properties. First, NSA is an approximate
isometry: ∥(NSA)(NSA)† − I∥ ≤ ( ε

L∥A∥)
3. Second, D is a diagonal matrix and its diagonal entries

satisfy |D(i, i) + f(0)− f(λi)| ≤ ε for all i ∈ [n] (where D(i, i) := 0 for i > s).

Under the reasonable assumptions29 that sq(A) and ϕ are small (O(1), say) and ε ≤ L∥A∥ ∥A∥
∥A∥F ,

the complexity of this theorem is ˜︁O(︁L22ε−22∥A∥16∥A∥6F log3 1
δ

)︁
.

We now outline our proof. Our strategy is similar to the one used for quantum-inspired
semidefinite programming [CLLW20]: first we find the eigenvectors and eigenvalues of A and then
apply f to the eigenvalues. Let π(x) be a (smoothened) step function designed so it can zeroes out
small eigenvalues of A (in particular, eigenvalues smaller than ε/

√
2L). Then

A ≈ π(A†A)Aπ(A†A) by definition of π

≈ R†π̄(CC†)RAR†π̄(CC†)R by Theorem 5.1

≈ R†π̄(CC†)Mπ̄(CC†)R by sketching M ≈ RAR†

= R†(CσC
+
σ )†π̄(CC†)Mπ̄(CC†)CσC

+
σ R. where σ = ε/

√
2L

Here, Cσ is the low-rank approximation of C formed by transforming C according to the “filter”
function on x that is 0 for x < σ and x otherwise. Û := C+

σ R ∈ Cc×n is an approximate
isometry by Lemma 4.14. We are nearly done now: since the rest of the matrix expression,
C†
σπ̄(CC†)Mπ̄(CC†)Cσ ∈ Cc×c, consists of submatrices of A of size independent of n, we can

directly compute its unitary eigendecomposition UDU †. This gives the approximate decomposition
A ≈ (ÛU)D(ÛU)†, with ÛU and D acting as approximate eigenvectors and eigenvalues of A,
respectively. An application of Lemma 5.4 shows that f(A) ≈ (ÛU)f(D)(ÛU)† in the desired sense.
Therefore, our output approximation of f(A) comes in the form of an RUR decomposition that can
be rewritten in the form of an approximate eigendecomposition. The only major difference between
this proof sketch and the proof below is that we perform our manipulations on the SVD of Cσ, to
save on computation time: note that the SVD can be made small in dimension, using that the rank
of Cσ is bounded by ∥C∥2F/σ2.

29The correct way to think about ε is as some constant fraction of L∥A∥. If ε > L∥A∥ then f(0)I is a satisfactory
approximation. The bound we give says that we want an at least ∥A∥F/∥A∥ improvement over trivial, which is modest
in the close-to-low-rank regime that we care about. Similar assumptions appear in Section 6.
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Proof. Throughout this proof ε is not dimensionless; if choices of parameters are confusing, try
replacing ε with ε∥A∥. We will take f(0) = 0 without loss of generality. First, consider the “smooth
projection” singular value transformation

π(x) =

⎧⎪⎨⎪⎩
0 x < ε2

2L2

2L2

ε2
x− 1 ε2

2L2 ≤ x < ε2

L2

1 ε2

L2 ≤ x

Since π is a projector onto the large eigenvectors of A, we can add these projectors to our expression
without incurring too much spectral norm error.

∥π(A†A)Aπ(A†A)−A∥ = max
i∈[n]
|π(λ2i )λiπ(λ2i )− λi| ≤ ε/L

Second, use Theorem 5.1 to get SA ∈ Cr×n, SAT ∈ Cr×c such that, with probability ≥ 1− δ,

∥(SA)†π̄((SAT )(SAT )†)SA− π(A†A)∥ ≤ ε

L∥A∥
.

The necessary sizes for these bounds to hold are as follows (Lipschitz constants for π are 2L2/ε2

and 4L4/ε4, ∥SA∥F = O(∥A∥F) by Eq. (5), and we have a 2ϕ-oversampled distribution for (SA)†

by Lemma 4.3):30

r = Θ̃
(︂
ϕ2
L4

ε4
∥A∥2∥A∥2F

L2∥A∥2

ε2
log

1

δ

)︂
= Θ̃

(︂
ϕ2∥A∥4∥A∥2F

L6

ε6
log

1

δ

)︂
,

c = Θ̃
(︂
ϕ2
L8

ε8
∥A∥6∥A∥2F

L2∥A∥2

ε2
log

1

δ

)︂
= Θ̃

(︂
ϕ2∥A∥8∥A∥2F

L10

ε10
log

1

δ

)︂
.

This approximation does not incur too much error:

∥R†π̄(CC†)RAR†π̄(CC†)R− π(A†A)Aπ(A†A)∥
≤ ∥π(A†A)A(π(A†A)−R†π̄(CC†)R)∥+ ∥(π(A†A)−R†π̄(CC†)R)AR†π̄(CC†)R∥

≤ ε

L∥A∥

(︂
∥π(A†A)∥∥A∥+ ∥A∥∥R†π̄(CC†)R∥

)︂
≤ ε

L∥A∥

(︂
∥A∥+ ∥A∥

(︂
1 +

ε

L∥A∥

)︂)︂
≤ 3

ε

L
.

Third, apply Remark 4.13(b) r2 times to approximate each entry of RAR†: pull t samples from

SQϕ(A) for t := O
(︂
ϕ∥A∥6F

L6

ε6
log r2

δ

)︂
such that, given some Q(x),Q(y), with probability ≥ 1− δ

r2
,

one can output an estimate of x†Ay up to ε3∥x∥∥y∥
L3∥A∥2F

additive error with no additional queries to

SQϕ(A). Then, by union bound, with probability ≥ 1− δ, using the same t samples from A each

time, one can output an estimate of R(i, ·)AR(j, ·)† up to ε3∥R(i,·)∥∥R(j,·)∥
L3∥A∥2F

error for all i, j ∈ [r] such

that i ≤ j. Let M be the matrix of these estimates. Then, using that ∥R∥F = O(∥A∥F) from
Eq. (5),

∥M −RAR†∥2F ≤
r∑︂

i=1

r∑︂
j=1

(︂ε3∥R(i, ·)∥∥R(j, ·)∥
L3∥A∥2F

)︂2
=
ε6∥R∥4F
L6∥A∥4F

≲
ε6

L6
.

30The constraint on the size of ε from Theorem 5.1 here is ε(L∥A∥)−1 ≲ min(L2∥A∥2/ε2, L4∥A∥4/ε4), which is true
since ε ≤ L∥A∥/2.
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From Eqs. (6) and (7),

∥R†π̄(CC†)(RAR† −M)π̄(CC†)R∥ ≲ ε3

L3
∥R†π̄(CC†)∥2 ≤ ε3

L3

(︂
1 +

ε

L∥A∥

)︂L2

ε2
≲
ε

L
.

So far, we have shown that we can find an RUR approximation to A, with

∥R†π̄(CC†)Mπ̄(CC†)R−A∥ ≲ ε

L

However, if we wish to apply an eigenvalue transformation to A, we need to access the eigenvalues of A
as well. To do this, we will express this decomposition as an approximate unitary eigendecomposition.
Using that π̄ zeroes out singular values that are smaller than ε2

2L2 , we can write our expression as

ÛD̂Û
†
, for Û ∈ Cn×s and D̂ ∈ Cs×s:

R†π̄(CC†)Mπ̄(CC†)R

=
(︁
C+

ε√
2L

R
)︁†(︁

C†
ε√
2L

π̄(CC†)Mπ̄(CC†)C ε√
2L

)︁(︁
C+

ε√
2L

R
)︁

=
(︁
R†U

(C)
ε√
2L

(D
(C)

ε√
2L

)−1
)︁

⏞ ⏟⏟ ⏞
Û

(︁
D

(C)
ε√
2L

(U
(C)
ε√
2L

)†π̄(CC†)Mπ̄(CC†)U
(C)
ε√
2L

D
(C)

ε√
2L

)︁
⏞ ⏟⏟ ⏞

D̂

(︁
(D

(C)
ε√
2L

)−1(U
(C)
ε√
2L

)†R
)︁

⏞ ⏟⏟ ⏞
Û

†

. (23)

Here, we are using an SVD of C truncated to ignore singular values smaller than ε√
2L

, where

U
(C)
ε√
2L

∈ Cr×s, D
(C)

ε√
2L

∈ Cs×s, V
(C)
ε√
2L

∈ Cc×s, where s is the number of singular values of C that

are at least ε√
2L

. Note that, as a result, s ≤ ∥C∥2F/(ε/
√
2L)2 ≲ ∥A∥2FL2ε−2 and s ≤ min(r, c, n).

By Lemma 4.14 with our values of r and c, we get that Û := R†U
(C)
ε√
2L

(D
(C)

ε√
2L

)−1 is an O
(︂

ε3

L3∥A∥3

)︂
-

approximate isometry; we rescale ε until this is at most 1
2 .

The rest of this error analysis will show that, since Û is an approximate isometry, f(A) ≈
Ûf(D̂)Û

†
in the senses required for the theorem statement. Though D̂ is not diagonal, since it is s×s,

we can compute its unitary eigendecomposition U (D̂)D(D̂)(U (D̂))†; so, we can take D := f(D(D̂))

and N := (U (D̂))†(D
(C)

ε√
2L

)+(U
(C)
ε√
2L

)† to get the decomposition in the theorem statement. (Including

the isometry (U (D̂))† in our expression for Û does not change the value of α).

First, consider the eigenvalues of D̂. Note that ∥Û †
Û − I∥ ≤ α since Û is an α-approximate

isometry, and by Lemma 2.5, there exists an isometry U such that ∥U − Û∥ ≤ α. We first observe
that, using Lemma 2.5 and our bound on α,

∥A− UD̂U †∥ ≤ ∥A− ÛD̂Û †∥+ ∥ÛD̂Û † − UD̂U †∥

≤ ε

L
+ α

2− α
(1− α)2

∥ÛD̂Û †∥

≤ ε

L
+ α

2− α
(1− α)2

(︂
∥A∥+ ε

L

)︂
≲
ε

L
.

Consequently, by Weyl’s inequality (Lemma 4.11), the eigenvalues of UD̂U †, λ̂1 ≥ · · · ≥ λ̂n satisfy
|λi − λî| ≲ ε

L for all i ∈ [n], and by assumption, f is L-Lipschitz on the spectrums of A and

UD̂U . From this, we can conclude that we can compute estimates for the eigenvalues of f(A),
since the eigenvalues of UD̂U † are the eigenvalues of D̂ (padded with zero eigenvalues) which we
know from our eigendecomposition of D̂ Further, our estimates f(λ̂i) satisfy the desired bound
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|f(λ̂i)−f(λi)| ≤ ε. Finally, since f is Lipschitz on our spectrums of concern, the desired error bound
for our approximation holds by the following computation (which uses Lemma 2.5 extensively):

∥f(A)− Ûf(D̂)Û
†∥ ≤ ∥f(A)− Uf(D̂)U †∥+ ∥Uf(D̂)U † − Ûf(D̂)Û

†∥
≤ ∥f(A)− Uf(D̂)U †∥+ (2α+ α2)∥f(D̂)∥
≲ L(∥A− UD̂U †∥+ (2α+ α2)∥D̂∥) log s by Lemma 5.4

≤ L(∥A− ÛD̂Û †∥+ 2(2α+ α2)∥D̂∥) log s

≤ L
(︂ ε
L

+
2(2α+ α2)

(1− α)2
∥ÛD̂Û †∥

)︂
log s

≤ L
(︂ ε
L

+
2(2α+ α2)

(1− α)2
(︂
∥A∥+ ε

L

)︂)︂
log s ≲ ε log s. by α ≤ ε

L∥A∥

Finally, we rescale ε down by log2 s so that this final bound is O(ε). This term is folded into the
polylog terms of r, c, and s. (We need to scale by more than log s because s has a dependence on
1
ε2
.) This completes the error analysis.
The complexity analysis takes some care: we want to compute our matrix expressions in the

correct order. First, we will sample to get S and T , and then compute the truncated singular

value decomposition of C := SAT , which we have denoted C ε√
2L

= U
(C)
ε√
2L

D
(C)

ε√
2L

(V
(C)
ε√
2L

)† for U
(C)
ε√
2L

∈

Cr×s, D
(C)

ε√
2L

∈ Cs×s, V
(C)
ε√
2L

∈ Cc×s. Then, we will perform the inner product estimation protocol r2

times to get our estimate M ∈ Cr×r, and compute the eigendecomposition of

D̂ = D
(C)

ε√
2L

(U
(C)
ε√
2L

)†π̄(CC†)Mπ̄(CC†)U
(C)
ε√
2L

D
(C)

ε√
2L

= D
(C)

ε√
2L

π̄((D
(C)

ε√
2L

)2)(U
(C)
ε√
2L

)†MU
(C)
ε√
2L

π̄((D
(C)

ε√
2L

)2)D
(C)

ε√
2L

via the final expression above, with the truncations propagated through the matrices, to get

D̂ = U (D̂)D(D̂)(U (D̂))†. Then, we compute and output D = D̂ and N = (U (D̂))†(D
(C)

ε√
2L

)+(U
(C)
ε√
2L

)†.

By evaluating the expression for D̂ from left-to-right, we only need to perform matrix multiplications
that (naively) take s3 or sr2 time. The only cost of c we incur is in computing the SVD of C. The
runtime is

O
(︁
(r + c+ t)(sϕ(A) + qϕ(A)) + (rc+ r2t)q(A) + s3 + r2s+ r2c+ nϕ(A)

)︁
.
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∥A∥28ε22 log
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δ
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B =
∑︁r

i=1

∑︁r
j=1[t̄(CC

†)](i, j)[A′R′†](·, i)R(j, ·), and we can express B as a sum of r2 outer products

of vectors that we have sampling and query access to. This gives us both SQϕ(B) and SQϕ(B
†).

We won’t get exactly this, but using that t̄(CC†) = (C+
ε∥A∥/2)

†t(C†C)C+
ε∥A∥/2, for UDV

† the

SVD of C and Uε∥A∥/2Dε∥A∥/2V
†
ε∥A∥/2 the SVD truncated to singular values at least ε∥A∥/2, we can

rewrite
B = A(R†Uε∥A∥/2D

+
ε∥A∥/2)(t(D

2)D+
ε∥A∥/2U

†
ε∥A∥/2)R.

Now it suffices to get sampling and query access to the columns of A(R†Uε∥A∥/2D
+
ε∥A∥/2), and by

Lemma 4.14, R†Uε∥A∥/2D
+
ε∥A∥/2 is an ε3-approximate isometry. Further, we can lower bound the

norms of these columns, using that R†R ≈ A†A and CC† ≈ RR†.

∥A(R†Uε∥A∥/2D
+
ε∥A∥/2)∥

2 = ∥(Uε∥A∥/2D
+
ε∥A∥/2)

†RA†AR†(Uε∥A∥/2D
+
ε∥A∥/2)∥

≈ ∥(Uε∥A∥/2D
+
ε∥A∥/2)

†RR†RR†(Uε∥A∥/2D
+
ε∥A∥/2)∥

= ∥RR†(Uε∥A∥/2D
+
ε∥A∥/2)∥

2

≈ ∥CC†Uε∥A∥/2D
+
ε∥A∥/2∥

2

= ∥UD2U †Uε∥A∥/2D
+
ε∥A∥/2∥

2

≥ ε2∥A∥2

Consider one particular column v := [R†Uε∥A∥/2D
+
ε∥A∥/2](·, ℓ); summarizing our prior arguments,

we know ∥v∥ ≥ 1
2 from approximate orthonormality and ∥Av∥ ≳ ε∥A∥, which we just showed.

We can also query for entries of v since it is a linear combination of rows of R. We make one
more approximation Av ≈ u, using Lemma 4.12 as we do in Corollary 6.7. That is, if we want to
know [Av](i) = A(i, ·)v, we use our inner product protocol to approximate it to γ∥A(i, ·)∥∥v∥ error,
and declare it to be u(i). This implicitly defines u via an algorithm to compute its entries from
SQ(A) and Q(v). Let B′ be the version of B, with the columns of AR†Uε∥A∥/2D

+
ε∥A∥/2 replaced

with their u versions. One can set γ such that the correctness bound ∥B′ −A†∥ ≲ ε and our lower
bound u ≳ ε∥A∥ both still hold. All we need now to get SQϕ(u) (thereby completing our proof
sketch) is a bound ũ such that we have SQ(ũ). We will take ũ(i) := 2∥A(i, ·)∥. We have SQ(ũ)
immediately from SQ(A), ϕ = ∥ũ∥2/∥u∥2 ≲ ε2∥A∥2F/∥A∥2 (from our lower bound on ∥u∥), and
|ũ(i)| ≥ ∥A(i, ·)∥+ γ∥A(i, ·)∥v∥ ≥ |u(i)| (from our correctness bound from Lemma 4.12).

B Deferred proofs

Lemma 2.5. If X̂ ∈ Cm×n is an α-approximate isometry, then there is an exact isometry X ∈ Cm×n

with the same columnspace as X̂ such that ∥X̂ −X∥ ≤ α. Furthermore, for any matrix Y ∈ Cn×n,

∥X̂Y X̂† −XYX†∥ ≤ (2α+ α2)∥Y ∥.

If α < 1, then ∥X̂+∥ ≤ (1− α)−1 and

∥X̂Y X̂† −XYX†∥ ≤ α 2− α
(1− α)2

∥X̂Y X̂†∥.

Proof. Let X̂ = UDV † be a singular value decomposition of X̂, with singular values σ1, . . . , σn and
U ∈ Cm×n, D ∈ Rn×n, V ∈ Cn×n. We set X := UV † which is an isometry since (UV †)†UV † = I,
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and has the same columnspace as X̂, and

∥UV † − X̂∥ = ∥UV † − UDV †∥ = ∥I −D∥ = max
i∈[n]
|1− σi| ≤ max

i∈[n]
|1− σi||1 + σi|

= max
i∈[n]
|1− σ2i | = ∥I −D2∥ = ∥I − V DU †UDV †∥ = ∥I − X̂†

X̂∥ ≤ α.

Consequently,

∥X̂Y X̂† −XYX†∥ ≤ ∥X̂Y (X̂ −X)†∥+ ∥(X̂ −X)Y X∥
≤ α(∥X̂Y ∥+ ∥Y X∥)
≤ α(∥XY ∥+ α∥Y ∥+ ∥Y X∥)
= (2α+ α2)∥Y ∥

Suppose α < 1, ruling out the possibility that X̂ is the zero matrix. Then by Lemma 4.11 we have

∥X̂+∥ = max
i∈[n]

1

σi
≤ 1

1− α
, and consequently

∥X̂Y X̂† −XYX†∥ ≤ α(∥X̂Y ∥+ ∥Y ∥)

≤ α(∥X̂Y X̂†∥∥X̂+∥+ ∥X̂Y X̂†∥∥X̂+∥2)

≤ α1− α+ 1

(1− α)2
∥X̂Y X̂†∥.

Lemma 4.5 (Matrix multiplication by subsampling [DKM06, Theorem 1]). Suppose we are given
X ∈ Cn×m, Y ∈ Cn×p, r ∈ N and a distribution p ∈ Rn satisfying the oversampling condition that,
for some ϕ ≥ 1,

p(k) ≥ ∥X(k, ·)∥∥Y (k, ·)∥
ϕ
∑︁

ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥
.

Let S ∈ Rr×n be sampled according to p. Then X†S†SY is an unbiased estimator for X†Y and

Pr
[︂
∥X†S†SY −X†Y ∥F <

√︃
8ϕ2 log(2/δ)

r

∑︂
ℓ

∥X(ℓ, ·)∥∥Y (ℓ, ·)∥⏞ ⏟⏟ ⏞
≤∥X∥F∥Y ∥F

]︂
> 1− δ.
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Proof. Using that the rows of S are selected independently, we can conclude the following:

E[(SX)†(SY )] = r · E[[SX](1, ·)†[SY ](1, ·)] = r
n∑︂

i=1

p(i)
X(i, ·)†Y (i, ·)

rp(i)
= X†Y

E[∥X†S†SY −X†Y ∥2F] =
m∑︂
i=1

p∑︂
j=1

E
[︁⃓⃓
[X†S†SY −X†Y ](i, j)

⃓⃓2]︁
= r

m∑︂
i=1

p∑︂
j=1

E
[︁⃓⃓
[SX](1, i)†[SY ](1, j)− [X†Y ](i, j)

⃓⃓2]︁
≤ r

m∑︂
i=1

p∑︂
j=1

E
[︁⃓⃓
[SX](1, i)†[SY ](1, j)

⃓⃓2]︁
= rE

[︁
∥[SX](1, ·)∥2∥[SY ](1, ·)∥2

]︁
= r

n∑︂
k=1

p(k)
∥X(k, ·)∥2

r · p(k)
∥Y (k, ·)∥2

r · p(k)

=
1

r

n∑︂
k=1

1

p(k)
∥X(k, ·)∥2∥Y (k, ·)∥2

≤ 1

r

n∑︂
k=1

ϕ
∑︁

ℓ ∥X(ℓ, ·)∥∥Y (ℓ, ·)∥
∥X(k, ·)∥∥Y (k, ·)∥

∥X(k, ·)∥2∥Y (k, ·)∥2

=
ϕ

r

(︂∑︂
k

∥X(k, ·)∥∥Y (k, ·)∥
)︂2
.

To prove concentration, we use McDiarmid’s “independent bounded difference inequality” [McD89].

Lemma B.1 ([McD89, Lemma (1.2)]). Let X1, . . . , Xc be independent random variables with Xs

taking values in a set As for all s ∈ [c]. Suppose that f is a real valued measurable function on the
product set ΠsAs such that |f(x)− f(x′)| ≤ bs whenever the vectors x and x′ differ only in the s-th
coordinate. Let Y be the random variable f [X1, . . . , Xc]. Then for any γ > 0:

Pr[|Y − E[Y ]| ≥ γ] ≤ 2 exp
(︂
− 2γ2∑︁

s b
2
s

)︂
.

To use Lemma B.1, we think about this expression as a function of the indices that are randomly
chosen from p. That is, let f be the function [n]r → R defined to be

f(i1, i2, . . . , ir) :=
⃦⃦⃦
X†Y −

r∑︂
s=1

1

r · p(is)
X(is, ·)†Y (is, ·)

⃦⃦⃦
F
,

Then, by Jensen’s inequality, we have

E[f ] = E[∥X†S†SY −X†Y ∥F] ≤
√︂

E[∥X†S†SY −XY ∥2F] ≤
√︃
ϕ

r

∑︂
k

∥X(k, ·)∥∥Y (k, ·)∥.
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Now suppose that the index sequences i⃗ and i⃗
′
only differ at the s-th position. Then by the triangle

inequality,

|f(i⃗)− f(i⃗′)| ≤ 1

r

⃦⃦⃦ 1

p(is)
X(is, ·)†Y (is, ·)−

1

p(i′s)
X(i′s, ·)†Y (i′s, ·)

⃦⃦⃦
F

≤ 2

r
max
k∈[n]

⃦⃦⃦ 1

p(k)
X(k, ·)†Y (k, ·)

⃦⃦⃦
F
≤ 2ϕ

r

n∑︂
k=1

∥X(k, ·)∥∥Y (k, ·)∥.

Now, by Lemma B.1, we conclude that

Pr

[︄
|f − E[f ]| ≥

√︃
2ϕ2 log(2/δ)

r

∑︂
k

∥X(·, k)∥∥Y (k, ·)∥

]︄
≤ δ.

So, with probability ≥ 1− δ,

∥X†S†SY −X†Y ∥F ≤ E[∥X†S†SY −X†Y ∥F] +
√︃

2ϕ2 log(2/δ)

r

∑︂
k

∥X(·, k)∥∥Y (k, ·)∥

≤
(︂√︃ϕ

r
+

√︃
2ϕ2 log(2/δ)

r

)︂∑︂
k

∥X(·, k)∥∥Y (k, ·)∥

≤
√︃

8ϕ2 log(2/δ)

r

∑︂
k

∥X(·, k)∥∥Y (k, ·)∥.

Lemma 4.12 (Inner product estimation, [Tan19, Proposition 4.2]). Given SQϕ(u),Q(v) ∈ Cn,
we can output an estimate c ∈ C such that |c − ⟨u, v⟩| ≤ ε with probability ≥ 1 − δ in time
O
(︁
ϕ∥u∥2∥v∥2 1

ε2
log 1

δ (sqϕ(u) + q(v))
)︁
.

Proof. Define a random variable Z by sampling an index from the distribution p given by SQϕ(u),
and setting Z := u(i)v(i)/p(i). Then

E[Z] = ⟨u, v⟩ and E[|Z|2] =
n∑︂

i=1

p(i)
|u(i)v(i)|2

p(i)2
≤

n∑︂
i=1

|u(i)v(i)|2 ϕ∥u∥
2

|u(i)|2
= ϕ∥u∥2∥v∥2.

So, we just need to boost the quality of this random variable. Consider taking Z̄ to be the mean
of x := 8ϕ∥u∥2∥v∥2 1

ε2
independent copies of Z. Then, by Chebyshev’s inequality (stated here for

complex-valued random variables),

Pr[|Z̄ − E[Z̄]| ≥ ε/
√
2] ≤ 2Var[Z]

xε2
≤ 1

4
.

Next, we take the (component-wise) median of y := 8 log 1
δ independent copies of Z̄, which we call

Z̃, to decrease failure probability. Consider the median of the real parts of Z̄. The key observation
is that if ℜ(Z̃ − E[Z]) ≥ ε/

√
2, then at least half of the Z̄’s satisfy ℜ(Z̄ − E[Z]) ≥ ε/

√
2. Let

Ei = χ(ℜ(Z̄i − E[Z]) ≥ ε/
√
2) be the characteristic function for this event for a particular mean.

The above argument implies that Pr[Ei] ≤ 1
4 . So, by Hoeffding’s inequality,

Pr

[︄
1

q

q∑︂
i=1

Ei ≥
1

2

]︄
≤ Pr

[︄
1

q

q∑︂
i=1

Ei ≥
1

4
+ Pr[Ei]

]︄
≤ exp(−q/8) ≤ δ

2
.
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With this combined with our key observation, we can conclude that Pr[ℜ(Z̃−⟨u, v⟩) ≥ ε/
√
2] ≤ δ/2.

From a union bound together with the analogous argument for the imaginary component, we have
Pr[|Z̃ − ⟨u, v⟩| ≥ ε] ≤ δ as desired. The time complexity is the number of samples multiplied by the
time to create one instance of the random variable Z, which is O(sq(u) + q(v)).

Lemma 6.3. Consider p(x) a degree-d polynomial of parity-d such that |p(x)| ≤ 1 for x ∈ [−1, 1].
Recall that, for a function f : C→ C, we define f̄(x) := (f(x)− f(0))/x (and f̄(0) = f ′(0) when f
is differentiable at zero).

• If p is even, then max
x∈[0,1]

|q(x)| ≤ 1, max
x∈[−1,1]

|q′(x)| ≲ d2, max
x∈[−1,1]

|q̄(x)| ≲ d2, and max
x∈[−1,1]

|q̄′(x)| ≲ d4.

• If p is odd, then max
x∈[−1,1]

|q(x)| ≲ d, max
x∈[−1,1]

|q′(x)| ≲ d3, max
x∈[−1,1]

|q̄(x)| ≲ d3, and max
x∈[−1,1]

|q̄′(x)| ≲ d5.

Proof. We use the following Markov-Bernstein inequality [BE95, 5.1.E.17.f]. For every p ∈ C[x] of
degree at most d

max
x∈[−1,1]

|p(k)(x)| ≲
(︂
min

(︂
d2,

d√
1− x2

)︂)︂k
max

x∈[−1,1]
|p(x)|, (24)

where ≲ hides a constant depending on k. Note that by replacing x in the above equation with 2y−1,
we get that maxy∈[0,1]|p(k)(y)| ≲ d2k maxy∈[0,1]|p(y)| (paying an additional 2k constant factor).

We make a couple observations about r̄(x) using Taylor expansions, where r(x) is any degree-d
polynomial. First,

r̄(x) =
r(x)− r(0)

x
=
r(x)− (r(x)− r′(y)x)

x
= r′(y),

where y ∈ [0, x] comes from the remainder term of the Taylor expansion of r(x) at x. Similarly,

r̄′(x) =
(︂r(x)− r(0)

x

)︂′
=

1

x2

(︂
xr′(x)− r(x) + r(0)

)︂
=

1

x2

(︂
xr′(x)− r(x) + r(x)− r′(x)x+ r′′(y)

x2

2

)︂
=

1

2
r′′(y)

for some y ∈ [0, x]. Then, for p even, maxx∈[0,1] |q(x)| ≤ 1 by definition. We also have

max
x∈[0,1]

|q′(x)| ≲ d2 max
x∈[0,1]

|q(x)| ≤ d2

max
x∈[0,1]

|q̄(x)| ≤ max
y∈[0,1]

|q′(y)| ≲ d2

max
x∈[0,1]

|q̄′(x)| ≤ max
y∈[0,1]

1

2
|q′′(y)| ≲ d4

For p odd, the same argument applies provided we can show that maxx∈[0,1] |q(x)| ≲ d, which we do

by splitting into two cases: x ≤ 1
2 and x > 1

2 .

max
x∈[0, 1

2
]
|q(x)| = max

x∈[0, 1
2
]

⃓⃓⃓p(x)
x

⃓⃓⃓
= max

y∈[0, 1
2
]
|p′(y)| ≲ max

x∈[0, 1
2
]

d√
1− x2

max
x∈[−1,1]

|p(x)| ≲ d;

max
x∈( 1

2
,1]
|q(x)| = max

x∈( 1
2
,1]

⃓⃓⃓p(x)
x

⃓⃓⃓
≤ max

x∈( 1
2
,1]
|2p(x)| ≤ 2.
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Corollary 6.18. Given SQ(XT ) and SQ(y), with probability ≥ 1 − δ, we can output a real
number b̂ such that |b − b̂| ≤ ε(1 + b) and SQϕ(α̂) such that ∥α̂ − α∥ ≤ εγ∥y∥, where α and b

come from Eq. (12). Our algorithm runs in ˜︁O(︁∥X∥6F∥X∥16γ11ε−6 log3 1
δ

)︁
time, with ˜︂sqϕ(α̂) =˜︁O(︂∥X∥4F∥X∥6γ5 γ2m

∥α̂∥2 ε
−4 log2 1

δ

)︂
. Note that when γ−1/2 is chosen to be sufficiently large (e.g.

O(∥X∥F)) and ∥α∥ = Ω(γ∥y∥), this runtime is dimension-independent.

Proof. Denote σ2 := γ−1, and redefine X ← XT (so we have SQ(X) instead of SQ(XT )). By the
block matrix inversion formula31 we know that

[︂
0 1⃗

T

1⃗ M

]︂−1
=

[︄
− 1

1⃗
T
M−11⃗

1⃗
T
M−1

1⃗
T
M−11⃗

M−11⃗

1⃗
T
M−11⃗

M−1−M−11⃗1⃗
T
M−1

1⃗
T
M−11⃗

]︄
⇒

[︂
0 1⃗

T

1⃗ M

]︂−1[︁
0
y

]︁
=

⎡⎣ 1⃗
T
M−1y

1⃗
T
M−11⃗

M−1

(︂
y− 1⃗

T
M−1y

1⃗
T
M−11⃗

1⃗

)︂⎤⎦.
So, we have reduced the problem of inverting the modified matrix to just inverting M−1 where
M = XTX + σ−2I. M is invertible because M ⪰ σ2I. Note that M−1 = f(XTX), where

f(λ) :=
1

λ+ σ2
.

So, by Theorem 5.1, we can find R†f̄(CC†)R such that ∥R†f̄(CC†)R + 1
σ2 I − f(XTX)∥ ≤ εσ−2,

where (because L = σ−4, L̄ = σ−6)

r = ˜︁O(︃L2∥A∥2∥A∥2Fσ4

ε2
log

1

δ

)︃
= ˜︁O(︃Kκ

ε2
log

1

δ

)︃
,

c = ˜︁O(︄ L̄2∥A∥6∥A∥2Fσ4

ε2
log

1

δ

)︄
= ˜︁O(︃Kκ3

ε2
log

1

δ

)︃
.

So, the runtime for estimating this is ˜︁O(︂K3κ5

ε6
log3 1

δ

)︂
. We further approximate using Lemma 4.6:

we find r1 ≈ R†1⃗, ry ≈ R†y⃗, and γ ≈ 1⃗
†
y in O(rK

ε2
log 1

δ ) time (for the first two) and O( 1
ε2

log 1
δ )

time (for the last one) such that the following bounds hold:

∥R†1⃗− r1∥ ≤ ε
√
mσ ∥R†y − ry∥ ≤ ε

√
mσ |1⃗†y − γ| ≤ εm (25)

Via Lemma 5.2, we observe the following additional bounds:

∥M−1∥ ≤ σ−2 ∥R†(f̄(CC†))1/2∥ ≤ (1 + ε)σ−1 ∥(f̄(CC†))1/2∥ ≤ σ−2 (26)

Now, we compute what the subsequent errors are for replacing M−1 with N := R†ZR+ 1
σ2 I,

31In a more general setting, we would use the Sherman-Morrison inversion formula, or the analogous formula for
functions of matrices subject to rank-one perturbations.
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where Z := f̄(CC†).

1⃗
†
M−1y

1⃗
†
M−11⃗

=
1⃗
†
(R†ZR+ σ−2I)y ± ∥1⃗∥∥y∥∥R†ZR+ σ−2I −M−1∥

1⃗
†
(R†ZR+ σ−2I)1⃗± ∥1⃗∥2∥R†ZR+ σ−2I −M−1∥

=
1⃗
†
R†ZRy + σ−21⃗

†
y ± εσ−2m

1⃗
†
R†ZR1⃗ + σ−21⃗

†
1⃗± εσ−2m

by SVT bound

=
1⃗
†
R†Zry ± ∥1⃗

†
R†Z∥∥Ry − ry∥+ σ−2γ ± σ−2|γ − 1⃗

†
y| ± εσ−2m

1⃗
†
R†Zr1 ± ∥1⃗

†
R†Z∥∥R1⃗− r1∥+ (1± ε)σ−2m

=
1⃗
†
R†Zry ± (

√
m(1 + ε)σ−3)(εσ

√
m) + σ−2γ ± 2εσ−2m

1⃗
†
R†Zr1 ± (

√
m(1 + ε)σ−3)(εσ

√
m) + σ−2m± εσ−2m

by Eqs. (25) and (26)

=
r†1Zry ± ∥R1⃗− r1∥∥Zry∥+ σ−2γ ±O

(︁
εσ−2m

)︁
r†1Zr1 ± ∥R1⃗− r1∥∥Zr1∥+ σ−2m±O(εσ−2m)

=
r†1Zry ± εσ

√
m(∥ZRy∥+ ∥Z∥∥Ry − ry∥) + σ−2γ ±O

(︁
εσ−2m

)︁
r†1Zr1 ± εσ

√
m(∥ZR1⃗∥+ ∥Z∥∥R1⃗− r1∥) + σ−2m±O(εσ−2m)

by Eq. (25)

=
r†1Zry + σ−2γ ±O

(︁
εσ−2m

)︁
r†1Zr1 + σ−2m±O(εσ−2m)

by Eqs. (25) and (26)

=
r†1Zry + σ−2γ

r†1Zr1 + σ−2m
(1±O(ε))±O(ε). by r†1Zr1 ≥ 0

We will approximate the output vector as

M−1y − 1⃗
†
M−1y

1⃗
†
M−11⃗

M−11⃗ ≈ R†Zry + σ−2y − r†1Zry + σ−2γ

r†1Zr1 + σ−2m
(R†Zr1 + σ−21⃗).

To analyze this, we first note that

∥M−1y −R†Zry + σ−2y∥ ≤ ∥M−1 −R†ZR− σ−2I∥∥y∥+ ∥R†Z∥∥Ry − ry∥
≤ εσ−2√m+ (1 + ε)σ−3εσ

√
m ≲ εσ−2√m

and analogously, ∥M−11⃗−R†Zr1 + σ−21⃗∥ ≲ εσ−2√m. We also use that

1⃗
†
M−1y

1⃗
†
M−11⃗

≤ ∥1⃗M
−1/2∥∥M−1/2y∥
∥M−1/21⃗∥2

=
∥M−1/2y∥
∥M−1/21⃗∥

≤ ∥X∥
σ

. (27)
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With these bounds, we can conclude that (continuing to use Eqs. (25) and (26))⃦⃦⃦⃦
⃦M−1

(︂
y − 1⃗

†
M−1y

1⃗
†
M−11⃗

1⃗
)︂
−
(︂
R†Zry + σ−2y − r†1Zry + σ−2γ

r†1Zr1 + σ−2m
(R†Zr1 + σ−21⃗)

)︂⃦⃦⃦⃦⃦
≤ ∥M−1y −R†Zry + σ−2y∥+

⃦⃦⃦⃦
⃦ 1⃗

†
M−1y

1⃗
†
M−11⃗

M−11⃗− r†1Zry + σ−2γ

r†1Zr1 + σ−2m
(R†Zr1 + σ−21⃗)

)︂⃦⃦⃦⃦⃦
≤ εσ−2√m+

1⃗
†
M−1y

1⃗
†
M−11⃗

∥M−11⃗−R†Zr1 − σ−21⃗∥+
⃓⃓⃓ 1⃗†M−1y

1⃗
†
M−11⃗

− r†1Zry + σ−2γ

r†1Zr1 + σ−2m

⃓⃓⃓
∥R†Zr1 + σ−21⃗∥

≲
(︂
1 +

1⃗
†
M−1y

1⃗
†
M−11⃗

)︂
εσ−2√m+ ε

(︂
1 +

1⃗
†
M−1y

1⃗
†
M−11⃗

)︂
∥R†Zr1 + σ−21⃗∥

= ε
(︂
1 +

1⃗
†
M−1y

1⃗
†
M−11⃗

)︂(︂
σ−2√m+ ∥R†Zr1 + σ−21⃗∥

)︂
≲ ε
∥X∥
σ

(︂
σ−2√m+ ∥M−11⃗∥+ ∥(R†ZR+ σ−2I −M−1)1⃗∥+ ∥R†Zr1 −R†ZR1⃗∥

)︂
by Eq. (27)

≲ ε
∥X∥
σ

(︂
σ−2√m+ σ−2√m+ εσ−2√m+ εσ−2√m

)︂
≲ ε
∥X∥
σ

σ−2√m.

So, by rescaling ε down by ∥X∥
σ , it suffices to sample from

α̂ := R†Z
(︂
ry −

r†1Zry + σ−2γ

r†1Zr1 + σ−2m
r1

)︂
− σ−2

(︂
y − r†1Zry + σ−2γ

r†1Zr1 + σ−2m
1⃗
)︂
.

To gain sampling and query access to the output, we consider this as a matrix-vector product, where
the matrix is (R† | y | 1⃗) and the vector is the corresponding coefficients in the linear combination.
Then, by Lemmas 3.5 and 3.6, we can get SQϕ(α̂) for

ϕ = (r + 2)

(︄
∥X∥2F
r

⃦⃦⃦
Z
(︂
ry −

r†1Zry + σ−2γ

r†1Zr1 + σ−2m
r1

)︂⃦⃦⃦2
+ σ−4

(︂
∥y∥2 +

(︂ r†1Zry + σ−2γ

r†1Zr1 + σ−2m

)︂2
∥1⃗∥2

)︂)︄
∥α̂∥−2

≲

(︃
∥X∥2F

∥X∥2

σ2
σ−6m+ rσ−4 ∥X∥2

σ2
m

)︃
∥α̂∥−2 ≲

(︂∥X∥2F
σ2

+ r
)︂∥X∥2

σ2
σ−4m

∥α̂∥2

so ˜︂sqϕ(α̂) = ϕ sqϕ(α̂) log
1
δ = O

(︂
r(

∥X∥2F
σ2 + r)∥X∥2

σ2
σ−4m
∥α̂∥2 log 1

δ

)︂
.

Lemma 6.28 (Perturbations of the partition function). For all Hermitian matrices H, H̃ ∈ Cn×n,⃓⃓⃓
Tr(eH̃)− Tr(eH)

⃓⃓⃓
≤
⃦⃦⃦
eH̃ − eH

⃦⃦⃦
1
≤
(︂
e∥H̃−H∥ − 1

)︂
Tr(eH).

Proof. We will use the following formula introduced by [KS48, Fey51] (see also [Bel97, Page 181]):

d

dt
eM(t) =

∫︂ 1

0
eyM(t)dM(t)

dt
e(1−y)M(t)dy. (28)
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Let A ∈ Cn×n with ∥A∥ ≤ 1, we define the function gA(t) := Tr
(︁
AeH+t(H̃−H)

)︁
, and observe that

g′A(t) =
d

dt
Tr
(︂
AeH+t(H̃−H)

)︂
by definiton

=Tr

(︃
A
d

dt
eH+t(H̃−H)

)︃
by linearity of trace

=Tr

(︃
A

∫︂ 1

0
ey[H+t(H̃−H)](H̃ −H)e(1−y)[H+t(H̃−H)]dy

)︃
by Eq. (28)

=

∫︂ 1

0
Tr
(︂
Aey[H+t(H̃−H)](H̃ −H)e(1−y)[H+t(H̃−H)]

)︂
dy by linearity of trace32

≤
∫︂ 1

0

⃦⃦⃦
Aey[H+t(H̃−H)](H̃ −H)e(1−y)[H+t(H̃−H)]

⃦⃦⃦
1
dy by trace-norm inequality

≤
∫︂ 1

0

⃦⃦⃦
Aey[H+t(H̃−H)]

⃦⃦⃦
1
y

⃦⃦⃦
(H̃ −H)e(1−y)[H+t(H̃−H)]

⃦⃦⃦
1

1−y

dy by Hölder’s inequality

≤
∫︂ 1

0
∥A∥

⃦⃦⃦
ey[H+t(H̃−H)]

⃦⃦⃦
1
y

⃦⃦⃦
H̃ −H

⃦⃦⃦⃦⃦⃦
e(1−y)[H+t(H̃−H)]

⃦⃦⃦
1

1−y

dy by Hölder’s inequality

≤
⃦⃦⃦
H̃ −H

⃦⃦⃦ ∫︂ 1

0

⃦⃦⃦
ey[H+t(H̃−H)]

⃦⃦⃦
1
y

⃦⃦⃦
e(1−y)[H+t(H̃−H)]

⃦⃦⃦
1

1−y

dy since ∥A∥ ≤ 1

=
⃦⃦⃦
H̃ −H

⃦⃦⃦⃦⃦⃦
eH+t(H̃−H)

⃦⃦⃦
1
. (29)

Now we consider z(t) := gI(t) = Tr
(︁
eH+t(H̃−H)

)︁
. From Eq. (29) we have z′(t) ≤ ∥H̃ −H∥z(t).

Using Grönwall’s differential inequality, we can conclude that z(t) ≤ z(0)et∥H̃−H∥ for every t ∈ [0,∞).
Finally, we use the fact that there exists a matrix A of operator norm at most 1 such that⃦⃦

eH̃ − eH
⃦⃦
1
= Tr(A(eH̃ − eH)) (take, e.g., sgn(eH̃ − eH)). We finish the proof by observing that for

such an A,
⃦⃦
eH̃ − eH

⃦⃦
1
= Tr(AeH̃)− Tr(AeH) = gA(1)− gA(0) =

∫︁ 1
0 g

′
A(t)dt and∫︂ 1

0
g′A(t)dt

(29)

≤
∫︂ 1

0
∥H̃ −H∥z(t)dt ≤ z(0)

∫︂ 1

0
∥H̃ −H∥et∥H̃−H∥dt = Tr(eH)

(︂
e∥H̃−H∥ − 1

)︂
.

32Note that in case A = I, by the cyclicity of trace, this equation implies that d
dt

Tr(eH(t)) = Tr(eH(t) d
dt
H(t)).
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