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Abstract

We study the problem of learning a Hamiltonian H to precision ε, supposing we are given
copies of its Gibbs state ρ = exp(−βH)/Tr(exp(−βH)) at a known inverse temperature β. Anshu,
Arunachalam, Kuwahara, and Soleimanifar [AAKS21] recently studied the sample complexity
(number of copies of ρ needed) of this problem for geometrically local N -qubit Hamiltonians. In
the high-temperature (low β) regime, their algorithm has sample complexity poly(N, 1/β, 1/ε)
and can be implemented with polynomial, but suboptimal, time complexity.

In this paper, we study the same question for a more general class of Hamiltonians. We
show how to learn the coefficients of a Hamiltonian to error ε with sample complexity S =
O(logN/(βε)2) and time complexity linear in the sample size, O(SN). Furthermore, we prove a
matching lower bound showing that our algorithm’s sample complexity is optimal, and hence
our time complexity is also optimal.

In the appendix, we show that virtually the same algorithm can be used to learn H from a
real-time evolution unitary e−itH in a small t regime with similar sample and time complexity.
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1 Introduction

In this paper we study a problem that is at the intersection of quantum many-body physics and
machine learning: learning the Hamiltonian of a quantum system from copies of its Gibbs state.
This problem has recently received much attention in the quantum community [BAL19, QR19,
EHF19, BGP+20], and the classical analogue of this task, learning undirected graphical models or
Markov random fields (MRFs), is well studied in the machine learning community [KS01, AKN06,
SW12, BMS13, Bre15, VMLC16, KM17].

Motivation. This problem has a straightforward physical motivation. The Hamiltonian H of
a quantum system is an operator that tells us how the constituents of the system interact with
each other and how the system evolves in time, which is governed by the Schrödinger equation.
The Hamiltonian also tells us what the equilibrium state of the quantum system will be if it is
in contact with the environment at a particular temperature and reaches thermal equilibrium.
This state, which is a function of the temperature and the Hamiltonian, is called the Gibbs state.
Formally, for a Hamiltonian H and inverse temperature β (i.e., temperature 1/β), the Gibbs state
is ρ = exp(−βH)/Tr(exp(−βH)).

In the Hamiltonian learning problem, we imagine that we have a system governed by an unknown
Hamiltonian H from a known class of physically reasonable Hamiltonians, such as geometrically
local Hamiltonians, and we have access to copies of its Gibbs state at a known inverse temperature
β. These copies, for example, result from leaving the system to interact with the environment at
a known temperature and stabilize: eventually, the system is described by the Gibbs state. Our
goal is to learn the Hamiltonian H, from the assumed class of Hamiltonians, while minimizing the
number of copies of ρ required and the running time of the algorithm. These are called the sample
complexity and time complexity of the algorithm.

The classical analogue of Hamiltonian learning is the problem of learning undirected graphical
models or Markov random fields. This is, in fact, a special case of Hamiltonian learning where
everything is classical, which means that the Hamiltonian is a diagonal operator, and consequently
the Gibbs state is a diagonal density operator, which is just a sample from a classical probability
distribution. The goal is again to learn the parameters of the classical Hamiltonian from these
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samples. This classical problem has been studied for over 50 years, usually in the harder setting
of learning the terms and parameters of the classical Hamiltonian, starting with the work of
[CL68], to more recent works that provide nearly-sample-optimal algorithms, with time-efficient
implementations [SW12, BMS13, Bre15, VMLC16, KM17]. Markov random fields find applications
in a variety of areas including computer graphics, vision, economics, sociology, and biology [KS80,
Cli90, Lau96, JEMF06, KF09, Li09], so studying its quantum generalization is well-motivated
independently from its physical motivation.

Problem statement. The formal statement of the Hamiltonian learning problem is as follows.
Consider a quantum system of N qubits and a Hamiltonian H =

∑︁M
a=1 λaEa ∈ C2N ×2N consisting

of M terms, where the operators Ea ∈ C2N ×2N are known, distinct, non-identity Pauli operators1

and the coefficients satisfy λa ∈ [−1, 1] for all a ∈ [M ] = {1, . . . ,M}. We assume the Hamiltonian
has no identity term since the Gibbs state is invariant under adding multiples of the identity matrix
to the Hamiltonian. We assume terms are distinct because identical terms can be merged. Further
suppose that this Hamiltonian H is low-intersection (a constraint defined below).

Given copies of the Gibbs state of this unknown low-intersection Hamiltonian H and known
inverse temperature β, our goal is to learn the coefficients λa to additive error ε, or equivalently,
to learn the vector of coefficients to error ε in ℓ∞ norm. Previous work on the problem has also
considered the goal of learning this vector to ℓ2 norm, so we study this version of the problem as
well.

We define the class of low-intersection Hamiltonians to be the set of Hamiltonians where each
operator Ea is supported on a constant number of qubits, meaning that it acts as the identity
operator on all but a constant number of qubits (which are its support), and for each operator
Ea, there are only a constant number of other operators Eb such that Ea and Eb’s supports have
nontrivial intersection.

Notice that this definition has no geometric constraints. Instead, it generalizes geometrically
local Hamiltonians in fixed-dimensional Euclidean spaces, which is the class of physically motivated
Hamiltonians with geometric constraints considered in prior work [AAKS21]. In such Hamiltonians,
each operator Ea is only supported on a constant number of qubits that are adjacent in the
underlying geometry (e.g., a 2-dimensional grid). Since the dimension is fixed and interactions
must be local, each operator Ea can only act nontrivially on a constant number of qubits, and
furthermore each qubit can only be nontrivially involved in a constant number of operators Ea. So,
a geometrically local Hamiltonian in any constant-dimensional space is always low-intersection.

The converse is not true, though. For example, if we arrange qubits on the vertices of a
constant-degree expander graph, and let edges denote 2-qubit interaction terms, such a Hamiltonian
would be a low-intersection Hamiltonian, but not a geometrically local Hamiltonian in any constant-
dimensional Euclidean space. In this introduction we will assume that we have a low-intersection
Hamiltonian whose degree is a constant independent of other parameters, although our general
algorithm can also handle growing degree.

Prior work. We first discuss the complexity of the classical problem to understand the best we
could do, since classical Hamiltonians, also known as Markov random fields, are a special case of
quantum Hamiltonians. The classical problem is then the parameter learning of low-intersection
MRFs to ℓ∞ error ε. The sample complexity and time complexity of this problem are

2O(β) logN
β2ε2 and 2O(β)N logN

β2ε2 , (1)

1It is not essential that these are Pauli operators, but it is convenient for us that the entries of Pauli matrices are
small integers, which allows us compute quantities of interest exactly and not worry about numerical precision.
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respectively. The sample complexity is optimal up to the constant in the exponent [SW12], so the
time complexity, which is the time needed to read all of the samples, is also optimal. This result
appears to be folklore, so in Appendix B, we give a simple algorithm demonstrating this result.

Most of the classical literature focuses on the harder task of structure learning, which is learning
the terms of the Hamiltonian in addition to the coefficients, for Ising models, which are classical
Hamiltonians with only pairwise interactions. For structure learning in the Ising model, the
same sample complexity bound can be achieved in time only polynomially worse than the sample
complexity times the size of each sample [VMLC16, KM17].

Notice that the problem becomes harder as β → 0 and as β → ∞. This is intuitive because
the state at β = 0 is the maximally mixed state (or the uniform distribution in the classical case),
which contains no information about the Hamiltonian. When β tends to ∞, the state tends to the
ground state of the Hamiltonian, which does not have enough information to reconstruct the entire
Hamiltonian.

The quantum version of this problem for geometrically local Hamiltonians was recently studied.
The algorithm in [BAL19] allows us to learn Hamiltonians from stationary states of Hamiltonian
dynamics (which include Gibbs states) or from the dynamics itself by measuring local observables
and solving a system of linear equations; however, it was unclear how the algorithm would perform
in the worst-case. More recently, Anshu, Arunachalam, Kuwahara, and Soleimanifar [AAKS21] was
the first to rigorously establish sample complexity upper bounds for this problem in the full range
of parameters, and in particular, for all inverse temperatures β. They showed that a geometrically
local Hamiltonian in a constant-dimensional space can be learned to ℓ∞ error ε using

O

(︄
2poly(β)N2 logN

βcε2

)︄
(2)

samples2, for some constant c > 4. Note that for a geometrically local Hamiltonian, the number of
terms N = Θ(M), so we have expressed the bound in terms of N .

This upper bound is worse than the classical sample complexity in Eq. (1) in several regards.
First, it has worse dependence on β both in the numerator and the denominator, which means it
is worse in the high-temperature and low-temperature regime. Second, the dependence on N is
quadratic, whereas the dependence on N is logarithmic in the classical upper bound3. This leaves
two natural open questions: Can we solve the quantum problem with sample complexity matching
Eq. (1)? And what about time complexity?

The question of time complexity is not explicitly addressed in [AAKS21], but they note that
the problem can be solved in polynomial time in the high-temperature regime, by combining
their algorithm with the polynomial-time algorithm for computing partition functions at high
temperatures due to [KKB20]. We discuss this approach further in the “Comparison with previous
quantum algorithms” section, but in brief, this approach leaves significant room for improvement in
both sample complexity and time complexity.

Our results. We study the Hamiltonian learning problem in the high-temperature regime, and
we are able to obtain an algorithm with optimal sample complexity and optimal time complexity.
The high-temperature regime is where we know β is smaller than some fixed constant called the
critical inverse temperature, βc. This constant βc depends only on the constant in the definition of
a low-intersection Hamiltonian, and not on N or M .

2Actually, they claim a slightly weaker statement: learning to ℓ2 error ε using N times the expression in Eq. (2)
many samples. We derive the version stated here in Remark 4.5.

3In the ℓ2 error setting, though, this classical upper bound has a factor of N , and so the quantum bound is
polynomially close to the classical bound in the high-temperature setting.
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Our main algorithmic result is the following. A more precise version can be found in Section 4.

Theorem 1.1 (Algorithm). Let H be a low-intersection Hamiltonian on N qubits, ε > 0, and
β < βc. Then we can learn the coefficients of H with ℓ∞ error ε and failure probability δ using
O
(︁ 1

β2ε2 log N
δ

)︁
samples. Consequently, we can learn the coefficients of H with ℓ2 error ε and failure

probability δ using O
(︁

N
β2ε2 log N

δ

)︁
samples. In both cases, the time complexity is linear in the sample

size, which is the sample complexity multiplied by N , the size of each sample.

Our upper bound improves on the sample complexity of [AAKS21] and indeed matches the
sample complexity of the classical algorithm in the high-temperature regime, where the 2O(β) term
can be dropped since it is constant. Furthermore, our algorithm has optimal time complexity.

Along the way, we show that the log-partition function is (β2

2 )-strongly convex in the high-
temperature regime; this is the main quantity bounded by [AAKS21] to achieve their sample
complexity result, and our analysis improves this strong convexity parameter to within a constant
factor of its true value. As observed in [AAKS21], this strong convexity bound implies a lower
bound on the variance of macroscopic observables in thermal equilibrium. Specifically, for a local
operator

∑︁M
a=1 vaEa, its variance with respect to the Gibbs state is v†(∇⊗2L)v = Ω(β2∥v∥22), where

∇⊗2L is the Hessian of the log-partition function, improving on the bound Ω(βc∥v∥22/N) implied
by [AAKS21].

We also prove a matching lower bound on the sample complexity showing that our algorithm’s
sample complexity cannot be improved. Our lower bound significantly improves on the lower
bound shown in [AAKS21] (displayed below in Eq. (3)), holds for the full range of β, and matches
our algorithm’s complexity in the high-temperature regime. A more formal version appears as
Theorem 5.3 and Theorem 5.5.

Theorem 1.2 (Lower bound). For any ε ∈ (0, 1/2], any β > 0, and any N , there exists a 2-local
Hamiltonian on N qubits such that the sample complexity of learning its coefficients to ℓ∞ error ε
and failure probability δ is Ω

(︂
exp(β)
β2ε2 log N

δ

)︂
, and the sample complexity of learning its coefficients to

ℓ2 error ε and constant failure probability is Ω
(︂

exp(β)N
β2ε2

)︂
.

The Hamiltonians used in our lower bound are extremely simple 2-local Hamiltonians, where
each term acts nontrivially only on 2 qubits and each qubit is involved in only 1 term. This shows
that although our algorithms apply to a more general class of Hamiltonians than considered by
[AAKS21], restricting our attention to a simpler class of Hamiltonians will not allow us to improve
on the sample complexity compared to our algorithm.

This improves significantly on the lower bound given in [AAKS21], which states that any
algorithm that learns a Hamiltonian to ℓ2 error ε has sample complexity

Ω
(︄√

N + log(1− δ)
βε

)︄
. (3)

In addition, we observe that virtually the same algorithm can be used to learn a low-intersection
Hamiltonian H, given black-box access to its real-time evolution unitary e−itH , provided t is
known and smaller than some critical time that is a constant in the definition of a low-intersection
Hamiltonian, which does not depend on N or M .

Theorem 1.3 (Real-time dynamics). Let H be a low-intersection Hamiltonian on N qubits and let
U = e−itH be a blackbox unitary with t < tc. Then we can learn the coefficients of H to ℓ∞ error ε
with success probability 1− δ, using U O

(︁ 1
tε2 log N

δ

)︁
times, with time complexity O

(︁
N
tε2 log N

δ

)︁
.
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We report this observation in Appendix A. Prior work on this task [BAL19, ZYLB21] uses
measurements of short-time evolutions, i.e. time resolution t = O(ε), to estimate time derivatives,
which gives a sample complexity scaling as 1/ε4. We improve this quadratically, and since we only
apply U for t as large as constant, we improve the time resolution to constant.

High-level overview of techniques. Our algorithm in Theorem 1.1 proceeds in two steps. First,
we notice that, for sufficiently small (but constant) β, the Taylor series expansion of the expectation
Tr(Eaρ) in β converges. This observation follows from the cluster expansion techniques from
[KS20], which essentially describes and bounds the coefficients in the Taylor series expansion of the
log-partition function, log Tr exp(−βH). We reproduce these (lengthy but elementary) calculations
here, amending some minor issues in their presentation. The log-partition function is related to the
expectation Tr(Eaρ) (in fact, ∂

∂λa
log Tr exp(−βH) = −β Tr(Eaρ)), so we can use these results on

convergence of the log-partition function to get convergence of the expectation.
One notable difference from prior work is our results showing how to efficiently compute the Taylor

series expansion described above (Proposition 3.13). Prior work asserted such computation was
possible [KKB20], but did not provide an explicit algorithm. We provide an algorithm (Algorithm 2),
and because the Ea’s are Pauli operators in our setting, the matrices are composed of small integers
and so this algorithm works in exact arithmetic.

This shows that we can approximate Tr(Eaρ), an expression that can be easily estimated from
copies of ρ, by a polynomial in {λb}, the parameters we wish to estimate. This polynomial is the
one we get from truncating the Taylor series expansion of Tr(Eaρ). Once we approximate these
Tr(Eaρ)’s, we are left with the task of solving the system of polynomial equations defined by these
truncated Taylor series expansions. By bounding the ∞→∞ norm of the inverse Jacobian of this
system, we immediately get a bound on the sample complexity (Theorem 4.2). By performing the
Newton–Raphson method for root-finding, we can invert this system efficiently, only needing to
compute the (first-order) Jacobian for O(log 1

βε) iterations. In fact, the Newton–Raphson method
performs so efficiently that its runtime is dominated by the runtime of simply reading in the input,
making the algorithm as a whole run in linear time (Theorem 4.6).

For our lower bound, we use information-theoretic techniques to show that without sufficiently
many Gibbs states, the coefficient vector cannot be determined to ε error. In particular, we use
Fano’s lemma to establish a lower bound from a KL-divergence computation, similarly to prior
classical work for lower bounds of learning undirected graphical models [SW12]. This immediately
gives the lower bound in the ℓ∞ case (Theorem 5.3), and a simple argument with error correcting
codes bootstraps this to an ℓ2 bound (Theorem 5.5).

Comparison with previous quantum algorithms. We now provide a comparison of our
algorithm’s sample and time complexity bounds compared to that of prior work. We consider the
task of learning a geometrically local Hamiltonian for sufficiently small β with success probability
0.9. One algorithm to compare to is a naive “state tomography” strategy that one can derive from
[KKB20, Theorems 2 and 11]. These results show that to estimate a Hamiltonian coefficient λa

to ε error, for sufficiently high temperature, it suffices to know the Gibbs state ρ on a “patch”, a
ball of radius O(log 1

βε) around the support of Ea. So, one can perform state tomography to learn
the patch of ρ in time exponential in the number of qubits in the ball, giving an algorithm for
Hamiltonian learning with quasi-polynomial sample and time complexity

Õ
(︂
e

logc( 1
βε

) log(N)
)︂

and Õ
(︂
e

logc( 1
βε

)
N log(N)

)︂
, (4)

where the factor of c comes from the ambient dimension, i.e. a ball of radius r on the lattice of
qubits is size O(r)c.
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As for [AAKS21], we already gave the sample complexity bound in Eq. (2). As for time
complexity, [AAKS21] describe an stochastic gradient descent (SGD) approach that solves the task
of Hamiltonian learning, assuming one can evaluate the log partition function. This subroutine
is hard in general, but [AAKS21] acknowledge that, for the high-temperature regime, it can be
done efficiently [KKB20] to get a time-efficient algorithm for Hamiltonian learning. This resulting
algorithm will inherit the sub-optimal sample complexity of [AAKS21], and though [AAKS21] don’t
give a precise time complexity, we can conclude that at best its time complexity will be linear in
the sample size, which is the sample complexity times N . So, the sample and time complexity of
[AAKS21] in the high temperature regime is something like

O
(︂N2 log(N)

βcε2

)︂
and O

(︂N3 log(N)
βcε2

)︂
. (5)

The prior work achieves optimal scaling in either N or 1/ε. We get a sample and time complexity,

O
(︂ log(N)
β2ε2

)︂
and O

(︂N log(N)
β2ε2

)︂
, (6)

that is simultaneously optimal in all parameters and improves at least polynomially over prior
results. In fact, in certain regimes (like when βε ≂ exp(− log1/c(N))), we give a super-polynomial
improvement in sample complexity over prior work.

Our algorithm can be viewed as a refinement of the patching argument described in [KKB20];
cluster expansion is the technique used to prove the results there, and we use it in a similar way
to argue that it suffices to only consider O( 1

βε) terms that are within log( 1
βε) of the support of Ea.

Our contribution is that we use this expansion algorithmically via the Newton–Raphson method to
improve the quasi-polynomial time from the naive algorithm to polynomial time.

[AAKS21] proceeds by establishing that the log partition function is strongly convex. This
actually immediately gives a sample complexity bound, but [AAKS21] instead provide a concrete
algorithm, stochastic gradient descent (SGD), that solves the task of Hamiltonian learning, assuming
one can evaluate the log partition function (a hard problem in general). Specifically, this means
that they need to lower bound the smallest eigenvalue of the Hessian of the log partition function,
or equivalently, upper bound the spectral norm of the inverse of this matrix.

At its core, our strategy is similar to that of [AAKS21]. Like in [AAKS21], we also work with
the inverse of the Hessian of the log-partition function (or an approximation of it). Since we want to
solve the problem with ℓ∞ error ε, instead of upper bounding the spectral norm of this matrix, we
upper bound its ∞→∞ norm. Our bound also yields an upper bound on the spectral norm that is
tighter than the bound in [AAKS21]. The improvement is due to the more precise characterization
of this matrix via the series expansion described above. To get a time-efficient algorithm, we then
use the Newton–Raphson method, whose analysis also requires us to understand a higher order
derivative of the log partition function than is needed for bounding the sample complexity. Our
characterization through the series expansion is able to provide this higher order information, which
allows us to bound the running time of the Newton–Raphson method and show it to be time efficient.

Comparision with previous classical algorithms. One might wonder why classical techniques
for solving the Hamiltonian learning problem do not apply to quantum Hamiltonians. Our algorithm
and the [AAKS21] algorithm do not use strategies that are common in the classical literature.

The reason is that classical algorithms for learning Hamiltonians rely on a property of the
classical Gibbs state called the Markov property. To understand this property, partition the set of
bits into 3 disjoint parts A, B, and C, such that there is no term in the Hamiltonian that has a bit
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from A and C. The sets A and C only interact through B. Now it is not hard to show that if we
condition the classical Gibbs distribution of this Hamiltonian on the values taken by bits in B, the
resulting distribution on A and C is independent. In fact, the Hammersley–Clifford theorem shows
that this is not just a property of Gibbs states, but this property characterizes Gibbs states [HC71].
This property fails to hold in general for quantum Gibbs states, although it can hold for special
classes of Hamiltonians, such as commuting Hamiltonians [BP12]. For high-temperature Gibbs
states, this holds only approximately, as cluster expansion formalizes: roughly, in this setting, A
and C can be treated as independent subsystems provided B is “wide” enough.

Classical algorithms can efficiently perform structure learning by treating it as parameter learning
on the full space of k-local Pauli matrices. This would naively take exponential time, but algorithms
are still able to use the low-intersection guarantee, despite not knowing anything else about the
terms [KM17]. It’s not clear how to show a similar statement in the quantum setting; we can apply
our algorithm, but it only works for β smaller than 1/poly(N).

2 Preliminaries

Throughout the paper all the exponential and logarithm functions (exp, log) are with natural base
e =

∑︁∞
k=0

1
k! ≈ 2.718. For a vector v, ∥v∥ =

∑︁
i |vi|2 denotes the Euclidean (or ℓ2) norm. For a

matrix M , we use ∥M∥ = maxv ̸=0
∥Mv∥

∥v∥ to denote the operator norm (also known as the spectral
norm, 2→ 2 norm, or the Schatten ∞-norm).

2.1 Notations and conventions

Definition 2.1 (Hamiltonian). A Hamiltonian is a collection of tuples (a,Ea, λa), where a is an
index ranging over some finite set of M elements, which we usually take to be [M ] = {1, 2, . . . ,M};
the Hamiltonian term Ea ∈ CD×D is a Hermitian operator with ∥Ea∥ ≤ 1 acting on a Hilbert space
of dimension D; and the Hamiltonian term coefficient λa ∈ [−1, 1] is a real number. We use the
notation λ = (λ1, . . . , λM ) for the vector of coefficients. The associated Hamiltonian operator H is
defined to be H =

∑︁
a λaEa.

Our full algorithm will require that Ea are distinct, non-identity Pauli matrices. This assumption
is neither essential nor too constraining. Since a Hamiltonian is Hermitian, we definitely want Ea to
be Hermitian. Requiring that TrEa = 0 is simply a shift in the eigenspectrum of the Hamiltonian.
Since Pauli operators form an orthonormal basis for operators, we can always write any Hamiltonian
term as a sum of Pauli operators. The dual interaction graph degree may increase in this rewriting
by a factor that is at most the exponential of the number of qubits in the support of the Hamitonian
terms; however, in the arguably most important scenario where a term acts on a constant number
of qubits, this blowup is a constant multiplicative factor.

We always assume that some system of N qubits comprises the Hilbert space, so D = 2N is
some power of two. Upon introducing this decomposition of the Hilbert space into qubits, we can
define the support Supp(P ) of an operator P . The support is the minimal set of qubits such that P
can be written as P = OSupp(P ) ⊗ ISupp(P )c for some operator O. (The superscript c here means the
complement.)

Definition 2.2 (Dual interaction graph). For any Hamiltonian {(a,Ea, λa) : a ∈ [M ]}, there is an
associated undirected dual interaction graph G with vertex set [M ] and an edge between a and b if
and only if a ̸= b and

Supp(Ea) ∩ Supp(Eb) ̸= ∅. (7)
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We denote by d the maximum degree of the graph G over all vertices.

Note that we have defined a Hamiltonian in such a way that it is possible that Ea = Eb for
a ̸= b. If this is the case, then there is an edge in G between a and b. In our learning algorithm we
will require that Ea’s are distinct nonidentity Pauli operators, but this definition is sufficient for our
series expansion of log-partition functions.

Although we do not specify how d depends on M , we focus on the case when d is a constant
independent of M . This case encompasses most Hamiltonians classes discussed in the literature.
For example, if every Hamiltonian term Ea acts on a constant number of qubits and every qubit is
involved in a constant number of terms, all with respect to M , then d will be constant as well. More
concretely, if we have a directed graph G with a qubit on each vertex and a two-qubit Hermitian
operator for every edge (which may require direction on each edge), then the vertices of G correspond
to the edges of G and the dual interaction graph has d ≤ 2(d− 1), where d is the degree (in-degree
plus out-degree) of G.

As another example, an important class of Hamiltonians is the class of geometrically local
Hamiltonians on, say, Euclidean space Rd. There are some constant number of qubits on each point
of the lattice Zd ⊂ Rd, and a Hermitian operator is defined for each unit hypercube. Here, the dual
interaction graph has d ≤ 3d − 1, which is again independent of M .

Definition 2.3 (Gibbs state). The Gibbs state of the Hamiltonian {(a,Ea, λa)} at inverse tempera-
ture β > 0 is given by

exp(−βH)
Tr exp(−βH) = exp

(︃
−β

∑︂
a

λaEa

)︃/︃
Tr exp

(︃
−β

∑︂
a

λaEa

)︃
. (8)

It is a trivial but important fact that the exponential of the Hamiltonian operator always makes
sense for any β ∈ C, not just positive β, since the norm of the Hamiltonian is upper bounded by M .

2.2 Time complexity

When we discuss the time complexity of our algorithms, we will usually do so in the standard word
RAM model, where operations on words, integers of w bits with w ≥ log2(N +M + ε−1

machine), take
unit time. This word size is defined so that an index into qubits, an index into terms, and β can all
be stored in one word. With this model, the input to the Hamiltonian learning problem (the terms
{Ea}a and β) can be given in O(LM) words, where L is the maximum support of all the terms
Ea. This requires representing a term Ea by its support (≤ L words) and the non-identity Pauli
operator that Ea performs on each qubit in its support (≤ 2L bits).

Remark 2.4. Our algorithms assume that the input to the Hamiltonian learning problem also
contains an adjacency-list representation of the dual graph G corresponding to the input Hamiltonian.
That is, we want to query any node b ∈ [M ] to receive a list of its neighbors in G in unit time,
where the list is given as a random-access array.

Producing this adjacency-list representation requires only O(LMd log d) time: first, for each
qubit i, produce a list of the terms that have that qubit in its support, Si = {a ∈ [M ] : i ∈ Supp(a)};
second, sort the Si’s; third, for every term a, produce a list that is the sorted concatenation of every
qubit in its support, ∪i∈Supp(a)Si. After removing a itself, this list is the set of neighbors of a in G.

The first step takes time linear in the number of edges, so O(LM) time. The second step takes
O(Nd log d) time, since |Si| ≤ d + 1. The third step takes O(LdM) time, since we can merge sorted
lists in linear time, removing duplicates as we find them so that we never merge lists of length larger
than d + 1. So, the total time complexity is O(Nd log d + LMd) = O(LMd log d), since N ≤ LM .
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As for operations on the quantum computer, we will use the standard model of time complexity
(or, rather, gate complexity). However, since the only quantum operations our algorithm will ever
perform is measuring a single-qubit Pauli operator on a qubit of an input Gibbs state, it suffices to
just assume that this operation takes unit time.

Finally, in this paper we will ignore issues of numerical stability. We can do this comfortably
because the only portion of our algorithm that is not exact arithmetic is the Newton’s method
iterations in Algorithm 3. This algorithm accounts for per-iteration error already, so issues with
numerical instability do not arise here.

2.3 Analytic functions and series expansions

We will extensively use infinite series expansions of analytic functions, and here we discuss general
principles of handling infinite series. The material here is all standard in complex analysis.

A complex function f : D → C is defined to be (complex) analytic at a ∈ D ⊆ C if, for some
ε > 0, the function agrees with a power series

f(x) =
∞∑︂

k=0
ck(x− a)k (9)

for all x ∈ D such that |x − a| < ε. Here, the coefficients ck ∈ C and ε ∈ R>0 may depend on a.
Since such a power series converges uniformly (at least on a small neighborhood of a), the infinite
sum commutes with taking derivatives, and therefore the coefficients ck must be those of the Taylor
expansion:

ck = (∂k
xf)(a)
k! . (10)

A complex function is said to be analytic on an open set D if it is analytic at every point in D. A
basic theorem in complex analysis is that a complex function is complex differentiable (holomorphic)
at a point if and only if it is analytic at that point [Rud87, 10.14, 10.16].

Functions with a power series expansion are “rigid” in the following sense. A power series
expansion at a ∈ D is identically zero if and only if there is an infinite sequence of distinct points
x1, x2, . . . ∈ D such that limn→∞ xn = a and that the power series is zero at every xn. This implies a
uniqueness theorem of analytic functions [Rud87, 10.18]: if two analytic functions f, g on a connected
open domain D agree on a subset that has a limit point within D, then f = g on D. In particular,

Lemma 2.5. Suppose a complex function f is complex differentiable on E, an open neighborhood
of the origin. If its Taylor series at the origin

∞∑︂
k=0

f (k)(0)
k! zk (11)

uniformly converges on D = {z ∈ C : |z| < r} for some r, then it must converge to f(z) for all z on
the connected component of the origin in D ∩ E.

This basically says that the Taylor series of a holomorphic function can only converge to its
function value. Our typical use of the lemma will be as follows. We will show that f is complex
differentiable on an open set E containing R and consider its Taylor expansion at the origin and
lower bound the radius of convergence. Then, the lemma will imply that the series converges to the
function value in the real domain of convergence of the Taylor series. The way we show a function
is complex differentiable is simply by noting that it is a composition of functions (such as addition,
multiplication, exponentiation, etc.) that are themselves complex differentiable.
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Proof. Let g be the function on D defined by the series. By uniform convergence, the series is
differentiable term by term, and hence g is complex differentiable everywhere in D, and hence is
analytic on D. Since f is analytic on E, on some tiny open neighborhood U ⊂ D ∩E of the origin
it is represented by its Taylor series, which is the same as g. Since U has a limit point within D ∩E,
we must have f = g on the connected component of D ∩ E containing the origin.

Lemma 2.5 is not true if we only assume that f is real infinitely differentiable, as witnessed by
the well-known function

h(x) =
{︄

exp(− 1
x2 ) (x ̸= 0)

0 (x = 0)
. (12)

Its Taylor series at the origin is identically zero, and hence converges everywhere on R but the
function is zero only at the origin. Note that if we extend the domain of definition of h from R to C
by the same formula, then h is not complex differentiable at the origin; h is divergent at the origin
along the imaginary axis.

3 Series expansions of expectation values

The main goal of this section is to prove the following theorem. A direct consequence of this
theorem is that the Taylor series expansion for expectation values of local operators converges when
2e2(d + 1)2β < 1 (see the discussion above Eq. (98)). A reader who wishes to understand just our
learning algorithm may skip the rest of this section on their first reading, since all notions and
properties needed for our algorithm and its analysis are contained in the statement of Theorem 3.1.

Theorem 3.1. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]}. Then, for every a ∈ [M ] we have a
Taylor series expansion

Tr(Ea exp(−βH))
Tr exp(−βH) = Tr(Ea)

D +
∞∑︂

m=1
βmpm(λ1, . . . , λM ), (13)

where equality holds whenever the series converges absolutely. For any m ∈ Z>0, the following hold:

1. pm ∈ R[λ1, . . . , λM ] is a degree m homogeneous polynomial in the Hamiltonian term coefficients.

2. pm involves λb only if the distance between a and b on G, distG(a, b), is at most m.

3. pm consists of at most ed(1 + e(d− 1))m monomials.

4. The coefficient in front of any monomial of pm is at most (2e(d+ 1))m+1(m+ 1) in magnitude.

Suppose further that every Ea is a tensor product of Pauli matrices, supported on at most L qubits.
Then, after O(LMd log d) pre-processing time (see Remark 2.4), the following are true for every
m ∈ Z>0.

A. The list of monomials that appear in pm can be enumerated in time O(mdC), where C is the
number of monomials (so, in particular, in time O(md2(1 + e(d− 1))m)).

B. The coefficient of any monomial in pm can be computed exactly as a rational number in
O(Lm3 + 8mm5 log2m) = (8m + L) poly(m) time.
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Overview of the proof. The series expansion in Eq. (13) is certainly conceivable. When β = 0,
the numerator is zero because TrP = 0. The first order term in β comes from the first order term
in β of the numerator and the zeroth order term in the denominator. One can keep finding terms
order by order in β, but this calculation soon becomes too complicated to be useful in a proof.

Following the wisdom of statistical mechanics, as done explicitly in e.g. [KKB20, WA22], we
examine the logarithmic partition function log Tr exp(−βH), and take differentials to arrive at
Eq. (13). This basic connection is established in Section 3.1.

To put our series expansion on a rigorous foundation, we will use complex differentiability
(holomorphicity) of the function β ↦→ log Tr exp(−βH). Although we are only interested in the
regime where β is positive real, it is quite useful for us to observe that this function behaves nicely
in a sufficiently large domain in the complex plane of β. Armed with Lemma 2.5, we fearlessly
write infinite Taylor series and resummations thereof, to derive a series expansion of the logarithmic
partition function as a multivariate function of λ1, . . . , λM . This leads to the concept of cluster
expansion ∑︂

m≥0

∑︂
V
C(m,V), (14)

which is an infinite sum of finite sums over clusters V (see Section 3.2). In this section we use
the convention that boldface uppercase letters refer to clusters. Each C(m,V) has a βm factor,
so in order for the infinite sum

∑︁
m≥0 to converge for some small enough β, each

∑︁
VC(m,V)

has to be at most exponentially large in m. This exponential bound will occupy us for most
of the proof, regarding which we follow many elements from [KS20] and [WA22]. We count
the number of summands of

∑︁
V purely combinatorially in Section 3.3, and, separately, bound

the magnitude of C(m,V) for each V. The second step follows the approach in [WA22]. The
result will be that |

∑︁
VC(m,V)| ≤ poly(β, d)O(d2β)m. In contrast, assertions in [KS20] imply

|
∑︁

VC(m,V)| ≤ poly(β, d)O(dβ)m, which is quadratically stronger in d. This difference is because
we do not use [KS20, App. D of arXiv-v2], in which the argument appears to have a mathematical
gap in [KS20, (D.10) of arXiv-v2]. Recently, another mathematical gap in [KS20, App. C of
arXiv-v2] was pointed out by [WA22].

Finally, we take some care to give an algorithm to compute the Taylor series. This is often elided
as it is fairly standard, but for completeness, we show how to do this with symbolic computation to
get the coefficients with no error. First, we are able to enumerate the list of summands in the series
in Section 3.4. This is a breadth-first search, with some care to avoid duplicating work. Second, we
compute the coefficient for each summand in Section 3.6. These coefficients are derivatives of the
log-partition function log Tr exp(−βH) at the origin. With some simple observations (truncating
Taylor series and using the definition of a derivative), we conclude that these derivatives are equal to
the trace of a matrix polynomial in the terms of the Hamiltonian at zero Eq. (72). Since we assume
that these are tensor products of Pauli matrices, these polynomials can be evaluated efficiently,
where the final runtime is exponential in the order of the derivative, as one would expect.

This gives the formal guarantees that this computation is bounded in complexity. Practically,
one can use any method at hand, not necessarily relying on the specific algorithm we propose.
Indeed, there is a large body of classic literature on high temperature expansions (see e.g. the
book [Dom96]) which does not always discuss formal convergence.
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3.1 The logarithmic partition function

Given a Hamiltonian {(a,Ea, λa) : a ∈ [M ]}, our primary object of study is

L = log Tr exp(−βH) = log Tr exp
(︃
−β

∑︂
a∈[M ]

λaEa

)︃
. (15)

The argument of the log function is called the partition function in statistical mechanics. Hence, we
will refer to this expression L as the logarithmic partition function or log-partition function of the
Hamiltonian. The quantity β−1L is called (Helmholtz) free energy in statistical mechanics, but we
will not use this terminology.

The connection of the logarithmic partition function to Theorem 3.1 is given by the following.

Proposition 3.2. For any Hamiltonian {(a,Ea, λa) : a ∈ [M ]}, a ∈ [M ], and nonzero β ∈ C,

Tr(Ea exp(−βH))
Tr exp(−βH) = − 1

β

∂

∂λa
log Tr exp(−βH). (16)

Proof. Since H and Ea have finite norm, the Taylor expansion of Tr exp converges absolutely. The
claim is proved by

∂

∂λa
Tr exp(−βH) =

∞∑︂
m=0

1
m! Tr

[︃
∂

∂λa
(−βH)m

]︃

=
∞∑︂

m=1

1
m!

m∑︂
k=1

Tr[(−βH)k−1(−βEa)(−βH)m−k]

= −β
∞∑︂

m=1

1
m!

m∑︂
k=1

Tr[Ea(−βH)m−1]

= −β Tr[Ea exp(−βH)], (17)

using linearity and the cyclic property of Tr. Finally,

∂

∂λa
log Tr exp(−βH) = 1

Tr exp(−βH)
∂

∂λa
Tr exp(−βH) = −βTr(Ea exp(−βH))

Tr exp(−βH) , (18)

which completes the proof.

If we understood the series expansion of the logarithmic partition function well enough, we
could prove Theorem 3.1 easily by way of Proposition 3.2. There will be an important advantage
(Proposition 3.5 below) in considering the logarithmic partition function, rather than the ratio of
two traces as in Theorem 3.1. So, we will study the series expansion of the logarithmic partition
function.

3.2 Deriving multivariate Taylor series expansions

In this section, we prove that a series expansion for the logarithmic partition function like the one
in Eq. (13) converges in some open neighborhood around the origin.

Though the logarithmic partition function is a complex-valued function of β, λ1, . . . , λM , de-
pending on context, we’ll think of it as either a function of a single variable β for a fixed choice of
λa’s, or a function of (λ1, . . . , λM ) for a fixed β.
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Let us first take the first perspective: Fix4 λa ∈ (−1, 1) for all a ∈ [M ] and consider the
map β ↦→ L. By our convention that Hamiltonian terms Ea are Hermitian with ∥Ea∥ ≤ 1, the
spectrum of the Hamiltonian operator H =

∑︁
a λaEa is contained in the real interval (−M,M),

and further, for any β ∈ C, the spectrum of the operator −βH is contained in the complex disk
{z | z ∈ C, |z| ≤ |β|M}. Hence, for β ∈ E where

E =
{︃
x+ iy

⃓⃓⃓⃓
x, y ∈ R, |y| < π

2M

}︃
, (19)

if h ∈ (−M,M) is an eigenvalue of H, then the complex number e−βh = e−xhe−iyh has positive
real part. Therefore, Tr exp(−βH) is in the right half-plane of the complex plane and the function
β ↦→ log Tr exp(−βH) is complex differentiable on E, using that log is complex differentiable on the
right half-plane and that complex differentiability is closed under composition. So by Lemma 2.5,
we are guaranteed that the function β ↦→ log Tr exp(−βH) has a Taylor series representation in
some open neighborhood of the origin in the complex plane of β, although we do not yet know how
large the open neighborhood can be.

Note that the same argument shows that the multivariate function

CM+1 ∋ (β, λ1, . . . , λM ) ↦→ log Tr exp(−βH) (20)

is complex differentiable in each variable on

Ẽ =
{︃

(β, λ1, . . . , λM ) ∈ CM+1
⃓⃓⃓
| Im(βλa)| < π

2M

}︃
. (21)

Here, for any z ∈ C, Im(z) denotes the imaginary part of z. This set Ẽ is an open neighborhood of
the real line of β times the real box (−1, 1)M of λa’s.

The Taylor expansion at the origin is straightforward to write as
∑︁

m≥0
1

m!β
m(∂m

β L|β=0), but
this is not enlightening. Let us make some observations first. We interpret the logarithmic partition
function as a function of z = (z1, . . . , zM ) ∈ CM :

L = log Tr exp(−
∑︂

a

zaEa) where za = βλa. (22)

It follows that
∂L
∂β

=
∑︂

a

∂za

∂β

∂L
∂za

=
∑︂

a

λa
∂L
∂za

, (23)

so

L =
∑︂
m≥0

βm

m!

(︄
∂mL
∂βm

⃓⃓⃓⃓
β=0

)︄

=
∑︂
m≥0

βm

m!
∑︂

a1,a2,...,am

λa1 · · ·λam

(︄
∂mL

∂za1 · · · ∂zam

⃓⃓⃓⃓
z=(0,...,0)

)︄
. (24)

Since L is complex differentiable in any variable (at least on Ẽ), it is infinitely differentiable, and
hence any two differentiations commute. So, instead of summing over ordered tuples (a1, . . . , am),
we can sum over multisets, which are unordered tuples. This particular class of multisets will be
used frequently, so let’s give a proper definition.

4We restrict λj to the open interval (−1, 1) to avoid the inconvenience of discussing derivatives at the boundary of
the domain of L.
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Definition 3.3. A cluster V is a set of tuples {(a, µ(a)) | a ∈ [M ]} where the function µ : [M ]→ Z≥0
maps a to the multiplicity of a. The total weight, denoted |V|, of V is

∑︁
a µ(a). We will write

a ∈ V if µ(a) is nonzero, and the support of V is defined to be Supp V = {a ∈ [M ] : µ(a) ≥ 1}. We
also introduce a combinatorial factor V! to mean

∏︁
a µ(a)!.

One may think of a cluster as a function a ↦→ µ(a) or a monomial in indeterminates λ1, . . . , λM .
Returning to Eq. (24), we have

L =
∑︂
m≥0

βm

m!
∑︂

a1,a2,...,am

λa1 · · ·λam

(︄
∂mL

∂za1 · · · ∂zam

⃓⃓⃓⃓
z=(0,...,0)

)︄

=
∑︂
m≥0

βm
∑︂

V:|V|=m

1
V!

∏︂
a∈Supp V

λµ(a)
a

⎛⎝ ∏︂
a∈Supp V

∂µ(a)

∂z
µ(a)
a

⎞⎠L⃓⃓⃓⃓
z=(0,...,0)

=
∑︂
m≥0

∑︂
V:|V|=m

1
V!

∏︂
a∈Supp V

λµ(a)
a⏞ ⏟⏟ ⏞

λV

⎛⎝ ∏︂
a∈Supp V

∂µ(a)

∂λ
µ(a)
a

⎞⎠⃓⃓⃓⃓
λ=(0,...,0)⏞ ⏟⏟ ⏞

DV

L

=
∑︂
m≥0

∑︂
V:|V|=m

λV

V!DVL. (25)

Note that we have introduced the cluster notations

λV =
∏︂

a∈Supp V
λµ(a)

a and DV =
∏︂

a∈Supp V

∂µ(a)

∂λ
µ(a)
a

⃓⃓⃓⃓
λ1=···=λM =0

. (26)

Eq. (25) is the series expansion of L that we are going to investigate. It is nothing but the Taylor
expansion of L, treating it as a multivariate function (λ1, . . . , λM ) ↦→ L. Though we could have
guessed this expansion from the outset, this derivation is necessary to show that the series converges:
we start with a β-series whose validity is guaranteed, albeit on an unspecified small domain, by the
complex differentiability with respect to β.

The number of all clusters of weight m is at least
(︁M

m

)︁
. This is much larger than what we claim

in Item 3.1(3), where the bounds are independent of M . The special structure of the logarithmic
partition function will help us show the improved bound.

3.3 Counting connected clusters

The main point of considering the logarithmic partition function is that a cluster has nonzero
coefficient in Eq. (25) only if it is connected.

Definition 3.4. A cluster W = {(a, µ(a))} is connected if the subgraph of G induced by the support
of W is connected.

Proposition 3.5. Define Z = 1
D Tr exp(−βH). If W′ and W′′ are both nonempty such that no

edge of G connects Supp W′ and Supp W′′, then DW′∪W′′Z = (DW′Z)(DW′′Z). In particular, if a
cluster W is not connected, then DWL = 0.

Proof. The two operators
∑︁

a∈Supp W′ λaEa and
∑︁

b∈Supp W′′ λbEb commute with each other since
the operators’ supports do not overlap. Define Z|W = 1

D Tr exp(−β
∑︁

a∈Supp W λaEa) and similarly
L|W = log(DZ|W). Then, Z|W = Z|W′Z|W′′ and L|W = L|W′ + L|W′′ − log D. The first claim
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immediately follows. Since DW evaluates the derivative at the origin of the Hamiltonian coefficient
space, we see

DWL = DW(L|W) =
∏︂

a∈Supp W′

∂µ(a)

∂λ
µ(a)
a

∏︂
b∈Supp W′′

∂µ(b)

∂λ
µ(b)
b

(L|W′ + L|W′′ − log D)
⃓⃓⃓⃓
λ=(0,...,0)

= 0. (27)

In other words, L decomposes into a sum of L|W′ and L|W′′ , which are each a function of a strict
subset of the variables λa that appear in W , but they are each being differentiated with respect to
all λa that appear in W , and hence must evaluate to zero.

Now we bound the number of all connected clusters of a given total weight w. What matters most
for us is that this bound is just exponential in the total weight, exp(O(w)) instead of, say, the
more naive bound O(w!). We optimize the base of the exponent in our bound, since this affects the
eventual algorithm’s runtime.

Proposition 3.6. Let G be any graph with maximum degree d ≥ 2. Given any node a of G and
any weight w ∈ Z>0, the number of all connected clusters W such that a ∈W and |W| = w is at
most ed(1 + e(d− 1))w−1. If d = 1, then we have an upper bound of w.
Proof. For a fixed degree d, the number of clusters is maximized when G is an infinite d-regular tree.
Since this graph is self-similar, without loss of generality we can think of a ∈ G as being the root of
the tree. So, this question reduces to upper-bounding the number of connected rooted subtrees of
the infinite d-regular tree, where nodes of the subtrees are allowed to have multiplicity. If every node
in the tree must have multiplicity one (that is, if we disallow multiplicity), we have the following.

Lemma 3.7. For n ∈ Z≥0, let Dn be the number of all connected rooted subtrees with n nodes in
the infinite d-regular tree. Then

Dn =
(︄
n(d− 1) + 1

n− 1

)︄
d

n(d− 1) + 1 ≤ ed(e(d− 1))n−1. (28)

To count subtrees with multiplicity, we must count the number of ways to assign a positive
integer to every node of a subtree. If the subtree has k nodes, there are

(︁(w−k)+(k−1)
k−1

)︁
ways to assign

multiplicities to these nodes such that the multiplicities sum to w. Hence, the number of weight-w
connected rooted clusters of the infinite d-regular tree is

w∑︂
k=1

Dk

(︄
w − 1
k − 1

)︄
≤

w∑︂
k=1

ed(e(d− 1))k−1
(︄
w − 1
k − 1

)︄
(29)

= ed(1 + e(d− 1))w−1.

Proof of Lemma 3.7. This can be done with standard manipulations of generating functions, which
we detail below. As a reminder, if we have a sequence {a0, a1, a2, . . .} of integers, then the generating
function corresponding to it is A(z) =

∑︁
i≥0 aiz

i. We use the notation [zi]A(z) to refer to the
coefficient ai of A(z).

Let E(z) be the generating function counting subtrees of the infinite (d− 1)-ary tree, the tree
where every node has d− 1 children.5 Then the following recursion holds.

[zn](E(z)) =
∑︂

(i1,...,id−1)∈Zd−1
≥0

i1+···+id−1=n−1

d−1∏︂
j=1

[zij ](E(z)) (30)

5For combinatorialists, this is also the generating function for the Fuss-Catalan numbers: E(z) + 1 =∑︁
n≥0

1
n(d−1)+1

(︁
n(d−1)+1

n

)︁
zn [GKP94, 7.5 Example 5].
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In words, this describes an n-node rooted subtree of the infinite (d− 1)-ary tree as d− 1 (possibly
empty) subtrees corresponding to each child of the root, where the number of nodes in each subtree
sum to n− 1. These subtrees are also rooted subtrees of the infinite (d− 1)-ary tree, allowing the
expression above to recurse as stated. One can verify that Eq. (30) is equivalent to the equation

E(z) = z(1 + E(z))d−1. (31)

Let D(z) be the generating function counting subtrees of the infinite d-regular tree, the tree
where every node has d neighbors. In particular, it only differs from the (d− 1)-ary tree in the root
node, where there are d instead of d− 1 many options. Using a similar argument as with E(z), we
can conclude that

D(z) = z(1 + E(z))d = E(z)(1 + E(z)). (32)

As an aside, the number of rooted clusters on the d-regular infinite tree, Cn =
∑︁

k≥1
(︁n−1

k−1
)︁
Dk,

corresponds to the generating function definition C(z) = D( z
1−z ). Since

(︁n−1
k−1
)︁

= [zn]((z+z2 + · · · )k),
we have

[zn](C(z)) =
∑︂
k≥0

(︄
n− 1
k − 1

)︄
[zk]D(z) = [zn]D(z + z2 + · · · ) = [zn]D( z

1−z ). (33)

Returning to the proof, we use the Lagrange–Bürmann formula to get the series expansion of D(z)
from the inverse of E(z). In particular, we use the formulation common in combinatorics [FS09,
Thm A.2 (14)],

[zn]H(y(z)) = 1
n

[un−1](H ′(u)ϕ(u)n), (34)

where H is an arbitrary function and y(z) = zϕ(y(z)). We set H(z) = z(1 + z), y(z) = E(z), and
ϕ(z) = (1 + z)d−1. So

[zn]D(z) = 1
n

[un−1]((2u+ 1)(1 + u)n(d−1)) (35)

= 1
n

(︄
2
(︄
n(d− 1)
n− 2

)︄
+
(︄
n(d− 1)
n− 1

)︄)︄

=
(︄
n(d− 1) + 1

n− 1

)︄
d

n(d− 1) + 1 .

Eq. (35) is the desired equality in the lemma statement. As for the inequality, clearly, [zn]D(z) ≤
ed(e(d− 1))n−1 for n = 0, 1. For n ≥ 2, we see(︄

n(d− 1) + 1
n− 1

)︄
d

n(d− 1) + 1 ≤ d

(︄
n(d− 1)
n− 1

)︄
(36)

≤ d
(︂en(d− 1)

n− 1
)︂n−1

= d(e(d− 1))n−1(︁ n

n− 1
)︁n−1

≤ ed(e(d− 1))n−1.
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3.4 Enumerating connected clusters

Enumerating clusters of total weight m at a node a ∈ G can be done with the following al-
gorithm. First, perform a breadth-first search starting at a to produce the disjoint sets Vi for
i ∈ {0, 1, . . . ,m− 1}, where Vi is the set of nodes exactly i away from a in graph distance. Note that
this induces a directed tree G = (V,E) with vertices V = V0 ⊔ · · · ⊔ Vm−1 and a directed edge (u, v)
occurring if it is an edge in G and v is at a lower level than u (so u ∈ Vi and v ∈ Vi+1). Since G is
directed, all the neighbors of u ∈ Vi are in Vi+1. For S ⊂ V , we denote Γ(S) to be the neighborhood
of S in G. If S is a multiset, Γ(S) is defined to be the G-neighborhood of the support, Γ(Supp S).

Every cluster can be represented uniquely as a collection of multisets Si of Vi for i ∈ {0, 1, . . . ,m−
1} satisfying that every node in Si+1 has a parent in Si (or equivalently, satisfying that Supp S0 ∪
· · · ∪ Supp Sm−1 is connected in G).

Because of this characterization, we can enumerate clusters through a recursive function that,
given the first i layers of a cluster S0, . . . ,Si−1, outputs a list of all possible ways to complete the
cluster Si, . . . ,Sm−1 such that the total weight of the cluster is m. We describe this function in
Algorithm 1; it only requires three parameters, the recursion level i, the remaining weight mi, and
the neighborhood Ci, which correspond to i, m − (|S0|+ · · ·+ |Si−1|), and Γ(Si−1) in the above
description. To find all the clusters of weight m, run tails(0,m, {a}). The function proceeds as
follows: at recursion level i ≥ 0, we loop over all possible nonempty multisets Si of Ci ⊂ Vi of
weight ≤ mi. For each such multiset Si of Ci, we call the recursive function to enumerate all of
its possible continuations, with parameters i + 1, mi+1 = mi − |Si|, and Ci+1 = Γ(Si). Once it
returns the possible continuations of this cluster, we add Si to every continuation (to make them
continuations of Si−1). Upon enumerating all possible Si’s, return the resulting (now complete) list
of continuations of Si−1 as output.

Algorithm 1: tails(i,mi, Ci) [Cluster enumeration recursion]
Data: depth i, size mi, base Ci ⊆ Vi

Result: Ci, the collection of all connected multisets of size mi supported on
Ci ⊔ Vi+1 ⊔ · · · ⊔ Vm−1

1 if mi = 0 then
2 Return {∅};
3 end
4 Let out← ∅;
5 for S ∈

(︂(︂
Ci
1

)︂)︂
∪ · · · ∪

(︂(︂
Ci
mi

)︂)︂
, where

(︂(︂
Ci
j

)︂)︂
denotes the set of all multisets of weight j

supported on Ci do
6 Recurse continuations(S)← tails(i+ 1, mi − |S|, Γ(S));
7 Append out← out∪{S ∪T | T ∈ continuations(S)};
8 end
9 Return out;

Given the dual interaction graph as a random-access dictionary, (i.e., one can query an arbitrary
node and receives its neighbors), the runtime of this algorithm is O(mdC), where C is the number
of clusters output. The main cost is computing Γ(S) from a given multiset S on Vi: this takes
time

∑︁
v∈Supp S|Γ(v)| ≤ d|S|, where the inequality uses that G is degree ≤ d. For every cluster

S0 ⊔ · · · ⊔ Sm−1, this computation occurs once for each of the Si’s. Since every cluster has a total
weight of m, this gives an upper bound of O(mdC) for all such computations.
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3.5 Estimating cluster derivatives

The goal of this subsection is to prove the following bound on cluster derivatives.

Proposition 3.8. Consider a Hamiltonian {(a,Ea, λa)}. Let W = {(a, µ(a))} be a cluster of the
associated dual interaction graph G with total weight m+ 1 ≥ 1. Then⃓⃓⃓ 1

W!DWL
⃓⃓⃓
≤ (2e(d + 1)β)m+1. (37)

To prove this, we will bound |DwL| by a quantity that depends on a simple graph constructed
from W and the dual interaction graph G, which we now define.

Recall from Definition 3.3 that given a set S, a multiset Sµ of elements of S is a set {(s, µ(s)) | s ∈
S} where µ(s) ∈ Z≥0 is the multiplicity of s. We also write Sµ = {(si, µ(si))} = {{s1, . . . , s2, . . .}}
where si is repeated exactly µ(si) times. The size of Sµ is |Sµ| =

∑︁
s∈S µ(s). The support of Sµ is

SuppSµ = {s ∈ S|µ(s) > 0}. We write Sµ! to mean
∏︁

s∈S(µ(s)!). If S is the node set of a simple
graph F , we define a simple graph Gra(Sµ) as follows. The set of nodes are

Mar(Sµ) := {(s, i) ∈ (SuppSµ)× Z>0|1 ≤ i ≤ µ(s)}; (38)

in other words, there are exactly µ(s) nodes corresponding to s for each s ∈ S, so there are |Sµ|
nodes in total. In Gra(Sµ), an edge between (s, i) and (s′, i′) exists if and only if either s = s′ or
(s, s′) is an edge of F . In particular, the induced subgraph of {(s, i)}i for any given s is a clique.

Since the dual interaction graph G serves as the underlying graph for Hamiltonian terms, for
any cluster W of Hamiltonian terms we have a corresponding Gra(W). In Gra(W) there are |W|
nodes in total, and an edge between two nodes (a, i), (a′, i′) exists iff the Hamiltonian terms Ea and
Ea′ have overlapping supports. Note that if all multiplicities of W are either 0 or 1, then Gra(W)
is an induced subgraph of G, but is not otherwise. Most of this section will be devoted to proving
the following lemma, which implies Proposition 3.8.

Lemma 3.9 ([WA22]). Denote by deg(v) the number of neighbors of any node v in Gra(W). Then,⃓⃓⃓
DWL

⃓⃓⃓
≤ |β||W| ∏︂

v∈Mar W
(2 deg(v)). (39)

Proof of Proposition 3.8. It follows from the definition of Gra(W) that

deg((b, i)) = µ(b)− 1 +
∑︂

a∈Γ(b)
µ(a) (40)

for any b ∈ Supp W, where Γ(b) is the set of all neighbors of b in G that appear in W. Further
note that∑︂

b∈Supp W
deg((b, 1)) =

∑︂
b∈Supp W

(︂
µ(b)−1+

∑︂
a∈Γ(b)

µ(a)
)︂
≤ m+1+

∑︂
b∈Supp W

∑︂
a∈Γ(b)

µ(a) ≤ m+d(m+1).

(41)
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because µ(a) appears in
∑︁

b

∑︁
a∈Γ(b) at most d times. We can now apply Lemma 3.9.

1
W! |DWL| ≤

(2β)m+1

W!
∏︂

b∈Supp W

µ(b)∏︂
i=1

deg((b, i)) by Lemma 3.9

= (2β)m+1 ∏︂
b∈Supp W

1
µ(b)!

(︂
µ(b)− 1 +

∑︂
a∈Γ(b)

µ(a)
)︂µ(b)

by Equation (40)

≤ (2eβ)m+1 ∏︂
b∈Supp W

(︄
µ(b)− 1 +

∑︁
a∈Γ(b) µ(a)

µ(b)

)︄µ(b)

because u! ≥ uue−u

≤ (2eβ)m+1
(︃(1 + d)(m+ 1)

m+ 1

)︃m+1
. (42)

The last inequality uses Lemma 3.10 below and Equation (41).

Lemma 3.10. Let µ1, . . . , µn > 0 be real numbers, and y1, . . . , yn ≥ 0 be real numbers. Then(︃
y1
µ1

)︃µ1

· · ·
(︃
yn

µn

)︃µn

≤
(︃
y1 + · · ·+ yn

µ1 + · · ·+ µn

)︃µ1+···+µn

, (43)

where the equality holds when yj/µj = (
∑︁

i yi)/(
∑︁

i µi) for all j.

Proof. If any of yi is zero, the inequality is trivial. Assume yi > 0 for all i. Taking log of both sides
and dividing by

∑︁
i µi, we have

n∑︂
i=1

µi∑︁
j µj

log
(︃
yi

µi

)︃
≤ log

(︃
y1 + · · ·+ yn

µ1 + · · ·+ µn

)︃
. (44)

This is Jensen’s inequality applied to a concave function log.

Proof of Lemma 3.9.

We will adopt the approach in [WA22], making some short-cuts.6 Our combinatorics will be self-
contained; we do not assume any prior knowledge of Tutte polynomials or chromatic polynomials,
which were used in [WA22]. However, in essence, the proof here is due to [WA22].

We will use multisets of clusters. All the general remarks above on multisets continue to apply.
Consider a multiset of clusters Wi, which we denote P = {{W1, . . .}} = {(W, µ(W))}. We write
|P| =

∑︁
W µ(W), Supp P = {W | µ(W) > 0}, and P! =

∏︁
W∈Supp P(µ(W)!). The set (not multiset)

of all connected clusters defines a simple graph where there is an edge between W and W′ if and
only if their multiset union W∪W′ (obtained by summing the multiplicities) is a connected cluster.
With this, a multiset P of connected clusters defines a simple graph Gra(P): there are |P| nodes in
total, and an edge between two nodes corresponding to W and W′ exists if and only if W ∪W′ is
connected.

6We thank the authors of [WA22] for pointing out a problem in our earlier version of this proof, which traces back
to [KS20, App. C].
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Counting partitions of a cluster Consider a cluster W. From an (unordered) partition
{W1, . . . ,Wp} of the graph node set Mar(W), we can get an (unordered) partition of the cluster W
simply by forgetting all of the labels on the terms in W. By a “partition” of a cluster, we mean
a multiset P = {{W1, . . . ,Wp}} such that their multiset union is W. Conversely, given a cluster
partition P, the number of graph partitions that get mapped to P by “forgetting” is

W!
P!
∏︁p

ℓ=1(Wℓ!)
. (45)

Here, W! is the number of ways to assign labels to P if we give an arbitrary ordering to both the
clusters and the terms within the clusters;

∏︁p
ℓ=1(Wℓ!) addresses the overcounting from ordering

each term Wℓ, since swapping labels within a cluster doesn’t change the cluster; and P! addresses
the overcounting from ordering P, since swapping the labels across two identical clusters doesn’t
change the cluster partition. For example, consider a Hamiltonian with two terms Ea, Eb with
overlapping support. Then the cluster partition P = {{a, b}, {a, b}, {b, b}} of the connected cluster
W = {(a, 2), (b, 4)} corresponds to 12 graph partitions, using the reasoning above.

(((a, f), (b, h)), ((a, g), (b, i)), ((b, j), (b, k))) {f, g} = [2], {h, i, j, k} = [4], 2!4! = 48 choices
↦→({(a, f), (b, h)}, {(a, g), (b, i)}, {(b, j), (b, k)}) overcounts by a (1!1!)(1!1!)(2!) factor, 24 choices
↦→{{(a, f), (b, h)}, {(a, g), (b, i)}, {(b, j), (b, k)}} overcounts by a 2!1! factor, 12 choices

We write PaC(F ) for a graph F (not necessarily simple) to mean the collection of all graph
partitions of F into connected induced subgraphs. For any integer n ≥ 1, let χ∗(n, F ) denote the
number of all node colorings (two end nodes of an edge having different colors) on F using exactly
n colors.

Lemma 3.11. For any nonempty cluster W we have

|DWL| ≤ β|W| ∑︂
P∈PaC(Gra(W))

⃓⃓⃓⃓
⃓⃓ |P|∑︂
n=1

(−1)n−1

n
χ∗(n,Gra(P))

⃓⃓⃓⃓
⃓⃓. (46)

This is a repackaging of [WA22, App. B.1].

Proof. Recall that Z = 1
D Tr exp(−βH). There is a formal cluster expansion for Z (which is

meaningful in view of Lemma 2.5):

Z = 1 +
∑︂
k≥1

∑︂
W: weight k

λW

W!DWZ (47)

where W is not always connected. The cluster derivative DWZ factorizes if W is not connected
(Proposition 3.5). Let Pmax(W) be the set of maximal connected subclusters of W. Then, using
log(1 + x) =

∑︁∞
n=1

(−x)n−1

n for small x (which is again meaningful in view of Lemma 2.5),

Z = 1 +
∑︂
k≥1

∑︂
W:

|W|=k

∏︂
V∈Supp Pmax(W)

λV

V!DVZ, (48)

logZ =
∞∑︂

n=1

(−1)n−1

n

∑︂
k1,...,kn≥1

∑︂
W1,...,Wn:

|Wi|=ki

n∏︂
i=1

⎛⎝ ∏︂
Vi∈Supp Pmax(Wi)

λVi

Vi!
DViZ

⎞⎠
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Now, we rearrange this sum as a β-power series; DVZ carries β|V|. The double product can be
written as a product over a multiset P = {{V1,1,V1,2, . . . ,Vn,1,Vn,2, . . .}} of connected clusters.
This multiset P of connected clusters obeys a special property that each cluster Vi,j is assigned a
label i, and among those of a given label i no two clusters become connected by taking the multiset
union. That is, the labels give a unique node coloring on Gra(P) with exactly n colors.

Conversely, with a node coloring on Gra(P) with exactly n colors, we see that the collection
of nodes of a given color i defines Wi. But this converse direction is many-to-one: a cluster
in P with multiplicity ≥ 2 gives two or more nodes in Gra(P) that have all different colors, and
permuting colors among these “duplicate” nodes of Gra(P) gives the same Wi’s. We see that
precisely P! different colorings give the same Wi’s. The multiset P is a cluster partition of the
multiset union W =

⋃︁
i

⋃︁
j Vi,j , and |W| = k = k1 + · · ·+ kn is the order in β of the double product.

Hence, letting ℓ assume all tuples (i, j) that index Vi,j , we see that

logZ =
∞∑︂

k=1

∑︂
W:

|W|=k,
W connected

∑︂
P={{Vℓ}}:⋃︁

ℓ
Vℓ=W,

Vℓ connected

⎛⎝ |P|∑︂
n=1

(−1)n−1

n

χ∗(n,Gra(P))
P!

⎞⎠ |P|∏︂
ℓ=1

λVℓ

Vℓ!
DVℓ
Z. (49)

Next, we rewrite the sum over P as a sum over graph partitions P of Gra(W) into connected
induced subgraphs. By Eq. (45), for each P there are exactly W!

P!
∏︁|P|

ℓ=1(Vℓ!)
different graph partitions P

that give P. Each induced subgraph in P is connected iff the corresponding cluster is connected.
Therefore,

logZ =
∑︂
W:

connected
nonempty

1
W!

∑︂
P∈PaC(Gra(W))

⎛⎝ |P|∑︂
n=1

(−1)n−1

n
χ∗(n,Gra(P))

⎞⎠ |P|∏︂
ℓ=1

λVℓDVℓ
Z. (50)

where P ↦→ P = {{Vℓ}} is implicit. Now we can read off

DWL = DW logZ =
∑︂

P∈PaC(Gra(W))

⎛⎝ |P|∑︂
n=1

(−1)n−1

n
χ∗(n,Gra(P))

⎞⎠ |P|∏︂
ℓ=1
DVℓ
Z (51)

=
∑︂

P∈PaC(Gra(W))

⎛⎝ |P|∑︂
n=1

(−1)n−1

n
χ∗(n,Gra(P))

⎞⎠ |P|∏︂
ℓ=1
DVℓ
Z.

The proof is completed by bounding DVZ as follows. If V = {{a1, . . . , ak}}, then

DVZ = DV
1
D Tr(e−βH) = DV

∞∑︂
n=0

(−β)n

n!
1
D Tr(Hn)

= DV
(−β)k

k!
1
D Tr(Hk) = (−β)k

k!
∑︂

σ∈Sk

1
D Tr(Eaσ(1) · · ·Eaσ(k)). (52)

Since ∥Ea∥ ≤ 1, we see |DVZ| ≤ |β|k.

Lemma 3.9 is proved by Lemma 3.11 and a combinatorial estimate in Lemma 3.12 below. We
recall some elements of graph combinatorics.

Let F be a possibly nonsimple graph with self-loops and multiple edges. Given an edge e (not
a self-loop) of a graph F the contraction of the edge e, denoted by F/e, is the graph obtained by
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removing the edge e and merging the two end points of e into one vertex; and the deletion of e,
denoted by F \ e, is the graph obtained by removing the edge e from F . The following identities are
standard. For any graph F (not necessarily simple),

χ∗(k, F \ e) = χ∗(k, F ) + χ∗(k, F/e), (53)
τ(F ) = τ(F \ e) + τ(F/e) (54)

where τ(F ) is the number of all spanning trees of F . If F is disconnected, τ(F ) = 0. For Eq. (53),
a coloring of F \ e either colors the endpoints of e the same or different: the colorings where they
are colored differently are exactly the set of colorings of F , and the colorings where they are colored
the same correspond to the set of colorings of F/e. For Eq. (54), a spanning tree of τ(F ) either
contains the edge e or it does not: the spanning trees that do not contain e are exactly the spanning
trees of τ(F \ e), and the spanning trees that do contain e correspond to spanning trees of F/e.

Lemma 3.12. Let G be a nonempty connected graph with n vertices. Then,

∑︂
P∈PaC(G)

⃓⃓⃓⃓
⃓⃓ |P|∑︂
k=1

(−1)k−1

k
χ∗(k,Gra(P))

⃓⃓⃓⃓
⃓⃓ ≤ 2n−1τ(G). (55)

This can be proved via perhaps more canonical approach using Tutte polynomials and chromatic
polynomials [WA22], but we directly use the founding principle of these polynomials—the deletion-
contraction recurrence.

Proof. For any nonempty (not necessarily simple) graph F on n vertices, we define a rational
number η(F ), which will turn out to be a nonnegative integer, by

η(F ) =
n∑︂

k=1

(−1)n−k

k
χ∗(k, F ) (56)

Now, consider an edge e = (a, b) where a ̸= b. Since F/e has n− 1 vertices, Eq. (53) gives

η(F/e) + η(F \ e) =
n−1∑︂
k=1

(−1)n−1−k

k
χ∗(k, F/e) +

n∑︂
k=1

(−1)n−k

k
χ∗(k, F \ e)

= −
n∑︂

k=1

(−1)n−k

k
χ∗(k, F/e) +

n∑︂
k=1

(−1)n−k

k
χ∗(k, F \ e)

= η(F ) (57)

where the second equality is because χ∗(n, F/e) = 0. Notice that this is the same recursive formula
as that of τ in Eq. (54). Our goal will be to show η(F ) ≤ τ(F ): by applying Eq. (57) and Eq. (54)
to reduce to cases with fewer edges via deletion and contraction, it suffices to show this for F with
no edges, and only self-loops.

We first show that, for S the graph of n isolated vertices with no edges, η(S) = δn,1 where
δ is the Kronecker delta. The number of all proper colorings of S using k or fewer colors is
χ(k, S) = kn = (x∂x)nxk|x=1, where x is an indeterminant. By inclusion-exclusion, we have
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χ∗(k, T ) =
∑︁k

j=0
(︁k

j

)︁
(−1)k−jχ(j, T ). Hence,

η(T ) =
n∑︂

k=1

(−1)n−k

k

k∑︂
j=0

(︄
k

j

)︄
(−1)k−j(x∂x)nxj

⃓⃓⃓
x=1

= (−x∂x)n
⃓⃓⃓
x=1

n∑︂
k=1

(−1)k

k
(x− 1)k (58)

= (−x∂x)n−1
⃓⃓⃓
x=1

x
∞∑︂

k=1
(−1)k−1(x− 1)k−1

= (−x∂x)n−1
⃓⃓⃓
x=1

1 = δn,1.

So, η(S) = τ(S) = δn,1 for graphs S without any edges or loops. For graphs F with some loops
but without any edges, η(F ) = 0 since a self-loop prohibits any proper coloring, but τ(F ) may be
positive if n = 1. Hence, η(F ) ≤ τ(F ) for F without any edges.

We conclude that 0 ≤ η(F ) ≤ τ(F ) for any nonempty graph F .7 It follows that⃓⃓⃓⃓
⃓

|P|∑︂
k=1

(−1)k−1

k
χ∗(k,Gra(P))

⃓⃓⃓⃓
⃓ = η(Gra(P)) ≤ τ(Gra(P)). (59)

The proof is completed by observing the following [WA22, Lem. 21]. Consider a spanning tree T
of G and a subset E0 of some edges of T . Let E1 be the set of all edges of T not in E0; E0 ⊔ E1 is
the total edge set of T . We obtain a graph partition P ∈ PaC(G) of G into connected subgraphs,
namely the connected components of E0-deleted subgraph of T . We also obtain a spanning tree
of Gra(P), obtained by contracting all edges of E1 from T . (Any contraction on a tree is a tree.)
Hence, given G, we have a map from pairs (T,E0) of a spanning tree and its subset of edges to pairs
(P ∈ PaC(G), T ′) of a graph partition P and a spanning tree of Gra(P). This map is surjective: by
choosing a spanning tree in each party of P we have E0, and by choosing some edges, one among
those that would merge to an edge in T ′ upon contraction of the spanning trees of the parties of P,
we construct a spanning tree T of G whose edge set contains E0. This surjection gives∑︂

P∈PaC(G)
τ(Gra(P)) ≤ 2|G|−1τ(G). (60)

where |G| − 1 is the number of all edges in any spanning tree T of G.

Combining Lemmas 3.11 and 3.12, we have

|DEL| ≤
∑︂

P∈PaC(G)

⃓⃓⃓⃓
⃓⃓ |P|∑︂
k=1

(−1)k−1

k
χ∗(k,Gra(P))

⃓⃓⃓⃓
⃓⃓ ≤ 2n−1τ(G). (61)

where n = |E| = |G|. It remains to show that τ(G), the number of all spanning trees of G, is at
most the product of degrees of nodes. Fix a root, an arbitrary node of G. Given a spanning tree
of G, we choose a unique edge attached to each node different from the root along which the unique
shortest path to the root from the node traverses. Each nonroot node a have deg(a), the degree
of a, choices at most, implying τ(G) ≤

∏︁
a∈G deg(a). This complete the proof of Lemma 3.9.

7[WA22] shows that η(F ) equals the value of the Tutte polynomial TF at (1, 0), and quotes the facts that
TF (1, 0) ≤ TF (1, 1) and that TF (1, 1) = τ(F ).
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3.6 Computing cluster derivatives

Proposition 3.13. Consider a Hamiltonian {(a,Ea, xa)} where every term Ea is a tensor product
of Pauli matrices and is supported on at most L qubits. Then, there is a deterministic algorithm
running in time (8m + L) poly(m) such that for every cluster W of total weight m+ 1 it outputs

1
βm+1W!DWL exactly as a rational number.

Proof. Let W = {(a, µa)}, and suppose there are n distinct a in W. By assumption, n ≤ m+ 1.
Without loss of generality, we relabel the indices so that a iterates over [n]: W = {(1, µ1), . . . , (n, µn)}.
The expression DWL depends only on {x1, . . . , xn}, since it evaluates the derivative at the origin.
Hence, to evaluate it, we may assume that our Hamiltonian is simply H =

∑︁n
a=1 xaEa. This

restricted Hamiltonian has operator norm at most n.
We can further simplify because DWL depends only on the βm+1 term of the Taylor expansion

of L. So, we can freely truncate and avoid worrying about higher-order terms. In particular, we will
truncate the Taylor expansion of the exponential in L to get

DWL = βm+1DW log Tr exp
(︂
−

n∑︂
j=1

xjEj

)︂
= βm+1DW log r. (62)

for r the polynomial function8

r(x1, . . . , xn) =
m+1∑︂
k=0

(−1)k

k!
1
D Tr

[︂(︂ n∑︂
j=1

xjEj

)︂k]︂
∈ C[x1, . . . , xn], (63)

r(0, . . . , 0) = 1. (64)

This expression normalizes by 1
D , which vanishes after taking DW log. To compute the derivative of

log r, we first make a general observation, whose proof will be given later.

Lemma 3.14. Let f : Rn → R be a smooth (infinitely differentiable in any variable in any order)
function. Then, f(x) for x = (x1, . . . , xn) satisfies

∂µf

∂x1µ1 · · · ∂xn
µn

= lim
α→0

1
αµ

µ1∑︂
z1=0
· · ·

µn∑︂
zn=0

(−1)|z|+µ

(︄
µ1
z1

)︄
· · ·
(︄
µn

zn

)︄
f(x+ αz) (65)

where µ = µ1 + · · ·+ µn, z = (z1, . . . , zn) ∈ Zn
≥0 and |z| = z1 + · · ·+ zn.

Lemma 3.14 implies that there are some integers cz depending on z such that we can write

DW log r = lim
α→0

1
αm+1

∑︂
z∈Zn

≥0
zj≤µj ∀j∈[n]

cz log g(α; z) (66)

where g(α; z) = r(z1α, . . . , znα) ∈ C[α]. (67)

We treat g(α; z) as a univariate function parametrized by an integer vector z ∈ Zn. There are at
most 2m+1 summands in Eq. (66). Further, the limit in Eq. (66) can be computed by L’Hospital’s

8In this proof of Proposition 3.13, Eq. (63) is the only place we use the fact that Ea are Pauli operators. If we
used an arithmetic model of computation, the operators Ea can be more general.

25



rule:

DW log r = 1
(m+ 1)!

∑︂
z∈Zn

≥0
zj≤µj ∀j∈[n]

cz

[︂
∂m+1

α log g(α; z)
]︂

α=0
(68)

= 1
(m+ 1)!

∑︂
z∈Zn

≥0
zj≤µj ∀j∈[n]

czhm(α; z)|α=0 (69)

where we define hm(α; z) := g(α; z)m+1∂m+1
α log g(α; z). The above equality holds because g(0; z) = 1.

The function hm(α; z) is in fact a polynomial and satisfies a straightforward recursion:

h0 = g ∂α log g
= ∂ag (70)

ht = gt+1∂t+1
α log g

= ∂α(gt∂t
α log g)g − t(gt∂t

α log g)∂αg

= ∂α(ht−1)g − tht−1∂αg (71)

In summary, we have reduced the problem to finding the constant term of hm, a recursively-defined
polynomial, for various choices of z:

1
βm+1W!DWL = 1

W!(m+ 1)!
∑︂

z

cz
hm(0; z)
g(0; z)m+1 = 1

W!(m+ 1)!
∑︂

z

czhm(0; z). (72)

For a fixed z, the function g(α; z) is a polynomial in α. Using the notation that [αk]g(α; z) is the
coefficient of αk in g(α; z), we have that

g(α; z) = 1 + [α]g(α; z) · α+ · · ·+ [αm+1]g(α; z) · αm+1 (73)

[αk]g(α; z) = (−1)k

k!
1
D Tr

[︄(︂ n∑︂
j=1

zjEj

)︂k
]︄

(74)

Time complexity. Now that we’ve established the form of the expression that we will compute,
we will now discuss the time complexity necessary to compute it. First, we consider computing the
coefficients [αk]g(α; z) as seen in Eq. (74).

A binary representation of the n Pauli operators Ea and Gauss elimination reveals a minimal set
(multiplicative basis) of Pauli operators which can generate all the n operators by multiplications
together with phase factors ±1,±i [AG04]. Since the set of all those n Pauli operators are supported
on at most nL qubits, It takes time O(n3L) to find a multiplicative basis. Once we have a
multiplicative basis, we can find another set of Pauli operators Ẽ1, . . . , Ẽn on n qubits, preserving all
the pairwise commutation relations and the multiplicative independence. The procedure is simple:
For the first basis element, choose Ẽ1 = Z1. If the second basis element commutes with the first,
choose Ẽ2 = Z2, or otherwise, choose Ẽ2 = X1Z2. Inductively, for t-th basis element we choose
Ẽt to be Zt multiplied by an appropriate Pauli operator to preserve all the commutation relations
with Ẽt′ where t′ < t. Thus, it takes time O(n3L) to find a faithful representation Ẽa of n Pauli
operators Ea.

Equipped with a faithful representation Ẽa, Eq. (74) is evaluated by powering a matrix P =∑︁
j zjẼa of dimension 2n. The normalization constant also changes from 1

D to 1
2n . The matrix
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P has O(n) entries in each column and in each row, and they are in Z[
√
−1] since the Ea’s are

Pauli operators. Hence, multiplying a 2n-dimensional matrix by P takes O(4nn) integer arithmetic
operations. Since we raise P to k-th power, we can compute Tr(P k) in O(4nnk) integer arithmetic
operations, and we can compute the trace for all k ∈ [m+ 1] in O(4nnm) operations. This is the
numerator of g(; z)k, and we maintain g(; z)k as a rational number by maintaining its numerator and
denominator. By multiplying both by (k + 1)(k + 2) · · · (m+ 1), we can standardize these rational
number representations of g(; z)k to have be some integer in the numerator and (m+ 1)!2n in the
denominator.

Once we have representations for g(; z)k, we can compute hm(0; z), the constant term of hm(α; z),
via the recursive formula Eq. (71). This takes O(m3) integer arithmetic operations, since [αk]ht,
the coefficient of αk in ht, satisfies

[αk]h0 = (k + 1)[αk+1]g (75)

[αk]ht =
k∑︂

j=0

[︂
[αj ]h′

t−1[αk−j ]g − t · [αj ]ht−1[αk−j ]g′
]︂

=
k∑︂

j=0

[︂
(j + 1)[αj+1]ht−1[αk−j ]g − t(k − j + 1)[αj ]ht−1[αk−j+1]g

]︂
. (76)

Because our goal is to compute [α0]hm, we only need to compute the [αk]ht’s for t from 0 to m
and k from 0 to m − t. Since we can compute [αk]ht with O(k) integer arithmetic operations,
we can compute [α0]hm with O(m3) integer operations. Since there are at most 2m+1 summands
in Eq. (66), computing 1

βm+1W!DWL requires O(2m(4nnm+m3)) = O(8mm3) integer operations.
Since the integer operations in question (addition, subtraction, and multiplication) can be performed
in O(b log b) time [HvdH21], where b is the length of the integer in bits, it suffices to show that,
throughout this procedure, we always work with integers that are poly(m) bits long.

When computing coefficients of g, note that the magnitude of the integers in P k is bounded by⃦⃦⃦
P k
⃦⃦⃦

= O(mk) = O(mm), so the trace (and consequently, the numerator of [αk]g can be represented
with O(m logm) bits. The denominator is m!2n, which can also be represented in O(m logm) bits.

As for ht, we proceed by giving upper bounds on the coefficients. We claim that for any k ≤ m+1
and any t ≤ m ⃓⃓⃓

[αk]ht

⃓⃓⃓
≤ 2t(m+ 1)3t+1e(t+1)(m+1). (77)

The case of t = 0 is shown below.⃓⃓⃓
[αk]g

⃓⃓⃓
≤ 1
k!
(︂ n∑︂

j=1
zj

)︂k
≤ 1
k!
(︂ n∑︂

j=1
µj

)︂k
= 1
k! (m+ 1)k ≤

∞∑︂
s=0

(m+ 1)s

s! = em+1 (78)

⃓⃓⃓
[αk]h0

⃓⃓⃓
=
⃓⃓⃓
[αk]g′

⃓⃓⃓
≤ (m+ 1)k+1

k! ≤ (m+ 1)em+1. (79)

Since taking derivative brings a factor at most (m+ 1) to the polynomial coefficient of k-th order
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term where k ≤ m+ 1, the induction hypothesis implies that

⃓⃓⃓
[αk]ht

⃓⃓⃓
=
⃓⃓⃓⃓
⃓

k∑︂
j=0

[︂
(j + 1)[αj+1]ht−1[αk−j ]g − t(k − j + 1)[αj ]ht−1[αk−j+1]g

]︂⃓⃓⃓⃓⃓ (80)

≤ (m+ 1)
[︂
(m+ 1)2t−1(m+ 1)3t−2et(m+1)em+1

+ (m+ 1)22t−1(m+ 1)3t−2et(m+1)em+1
]︂

= 2t−1(m+ 1)3te(t+1)(m+1)(m+ 2)
≤ 2t(m+ 1)3t+1e(t+1)(m+1).

This implies that every coefficient of ht(α; z) up to the (m+ 1)-th order is at most exp(O(m2)) in
magnitude.9 Because all coefficients of g are represented with a denominator of (m+ 1)!2n, when
computing [αk]ht, the denominator is always ((m+ 1)!)t+12n(t+1) = exp(O(m2 logm)). So, along
with the magnitude bound, the numerator of these coefficients is always exp(O(m2 logm)). Thus,
we are always working with integers of O(m2 logm) digits, as desired.

Altogether, this makes the time complexity of computing a coefficient

O(n3L+ 8mm3(m2 logm(log(m2 logm)))) = O(Lm3 + 8mm5 log2m). (81)

We summarize the algorithm in Algorithm 2.

Algorithm 2: Evaluating a cluster derivative
Data: Cluster W = {(a, µ(a)) : a = 1, 2, . . . , n} of total weight

∑︁
a µ(a) = m+ 1 and

associated Pauli operator Ea with a ∈W
Result: A rational number 1

βm+1W!DWL
1 Let out← 0;
2 Let Ẽa be a faithful representation on m+ 1 qubits for Ea;
3 for z1 ∈ {0, 1, . . . , µ(1)}, . . . , zn ∈ {0, 1, . . . , µ(n)} do
4 Compute coefficients [αk]g(α; z) of Eq. (74) using Ẽa;
5 for t ∈ {0, 1, . . . ,m} do
6 Compute [αk]ht(α; z) for k from 0 to m− t by Eq. (76);
7 end
8 out← out +(−1)z1+···+zn+m+1(︁µ(1)

z1

)︁
· · ·
(︁µ(n)

zn

)︁
[α0]hm(α; z);

9 end
10 Return 1

W!(m+1)! out;

Proof of Lemma 3.14. Without loss of generality, we assume that our derivative is taken at the
origin in the domain. Define functions ek for k = 0, 1, 2, . . . , n recursively as

e0 = f, (82)
ek(x1, . . . , xn) = ek−1(x1, . . . , xk−1, xk, xk+1, . . . , xn)− ek−1(x1, . . . , xk−1, 0, xk+1, . . . , xn). (83)
9If this bound were exp(O(m)), we would have implied Proposition 3.8.
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The function en is a sum of 2n terms. The mean value theorem implies that for any α ̸= 0 there
exist θn, θn−1, . . . , θ1 ∈ (0, 1) such that

en(α, α, . . . , α) = α(∂nen−1)(α, . . . , α⏞ ⏟⏟ ⏞
n−1

, θnα)

= α(∂nα∂n−1en−2)(α, . . . , α⏞ ⏟⏟ ⏞
n−2

, θn−1α, θnα)

= αn(∂n∂n−1 · · · ∂1e0)(θ1α, θ2α, . . . , θnα). (84)

This means that

∂nf

∂x1 · · · ∂xn

⃓⃓⃓⃓
x=0

= lim
α→0

en(α, . . . , α)
αn

= lim
α→0

1
αn

∑︂
y∈{0,1}n

(−1)|y|+nf(x+ αy), (85)

where |y| is the sum of components of y. This completes the proof of the lemma in the case where
the derivative is first order in each variable.

Higher order cases are proved by considering the composition h of f and a linear function

h : (xi,j | j = 1, . . . , µi, i = 1, 2, . . . , n) (86)

↦→

⎛⎝xi =
∑︂

j

xi,j

⃓⃓⃓⃓
i = 1, 2, . . . , n

⎞⎠
↦→ f(x1, . . . , xn)

We see that ∂µ1
1 · · · ∂µn

n f = (
∏︁n

i=1
∏︁µi

j=1 ∂xi,j )h. Let µ = µ1 + µ2 + · · ·+ µn. For any y ∈ {0, 1}µ we
define z(y) ∈ Zn

≥0 to be a vector whose component z(y)k is

z(y)k = yµ1+···+µk−1+1 + yµ1+···+µk−1+2 + · · ·+ yµ1+···+µk
. (87)

In other words, we put the components of y into n bins of sizes µk and sum the numbers in each
bin to make z(y). Then, an arbitrary mixed derivative is expressed as

∂µf

∂x1µ1 · · · ∂xn
µn

⃓⃓⃓⃓
x

= lim
α→0

1
αµ

∑︂
y∈{0,1}µ

(−1)|y|+µf(x+ αz(y)). (88)

Expressing the summation over y as a summation over zk, we complete the proof.

3.7 Proof of Theorem 3.1

To be clear where we are evaluating derivatives, in this proof we let L = L(λ) be the function of
variables λa. Let ∂a denote the derivative ∂/∂λa at λ = ξ. Proposition 3.2 says that the expectation
value Tr(Eae

−βH)/Tr e−βH of Ea is given by the first derivative of the logarithmic partition function:

Tr(Eae
−βH)

Tr e−βH

⃓⃓⃓⃓
λ=ξ

= − 1
β
∂a log Tr exp(−βH)|λ=ξ (89)

= − 1
β
∂a|λ=ξ

∞∑︂
m=0

∑︂
V:|V|=m

λV

V!DVL by Eq. (25) (90)
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Recall that DVL is a constant in λ, since DV is a derivative evaluated at λ = 0 (Eq. (26)). This
multivariate Taylor series is in fact a (disguised) power series in β. Since all the functions here are
complex differentiable on an open set that contains R in the β-complex plane, Lemma 2.5 implies
that the equality holds whenever the series is absolutely convergent and β ∈ R, in which case the
infinite sum over m can be interchanged with ∂a. The term with m = 0 is eliminated by ∂a, so we
shift the dummy variable m by one. Hence,

= − 1
β

∞∑︂
m=0

∑︂
V:|V|=m+1

∂aλ
V|λ=ξ

V! DVL (91)

= − 1
β

∞∑︂
m=0

∑︂
V:|V|=m+1,

a∈V

∂aλ
V|λ=ξ

V! DVL. since ∂aλ
V = 0 if a ̸∈ V (92)

For a cluster V of total weight m + 1, the expression DVL has a factor of βm+1. The overall 1
β

factor reduces the exponent of β by one, so, if we group summands by degree of β, we have

Tr(Eae
−βH)

Tr e−βH

⃓⃓⃓⃓
λ=ξ

= p0 + βp1 + β2p2 + · · · , (93)

pm = (−1)m+1 ∑︂
V:|V|=m+1,

a∈V

(∂aλ
V|λ=ξ) DVL

βm+1V! . (94)

Note that p0 is proportional to Eq. (89) with λ = 0. Since TrEa = 0, we have p0 = 0. This proves
Item 3.1(1) that pm is a homogeneous polynomial in λa of total degree m. Proposition 3.5 says that
V has to be connected and includes a, implying that V of total weight m+ 1 includes nodes within
G-distance m from a. This implies Item 3.1(2). Proposition 3.6 bounds the number of clusters to
be summed over. This is Item 3.1(3). Proposition 3.8 bounds the magnitude of DVL/V!. The
derivative ∂a may put an additional factor at most m+ 1. This proves Item 3.1(4).

We have considered algorithms to enumerate clusters, proving Item 3.1(A). Proposition 3.13
shows Item 3.1(B). This completes the proof of Theorem 3.1.

4 Learning algorithm

In this section, we describe our algorithm for learning the coefficients of a Hamiltonian given copies
of its Gibbs state. This section relies on the results of the previous section only through Theorem 3.1.

Unlike Section 3, we only consider Hamiltonians {(a,Ea, λa) : a = 1, 2, . . . ,M} (Definition 2.1)
where the Ea’s are distinct non-identity tensor products of Pauli matrices, so that they are
orthonormal with respect to the normalized Hilbert–Schmidt inner product. That is,

∀a, b ∈ [M ] : Tr(EaEb) = Dδab, (95)

where δab is the Kronecker delta function.
Our overall strategy for the learning algorithm can be broken down into the following two steps.

Let ρ(λ) be the Gibbs state with coefficients λ.

1. Find estimates Êa for all of the expectation values ⟨Ea⟩(λ) = Tr(Eaρ(λ)) that satisfy⃓⃓⃓
Êa − ⟨Ea⟩(λ)

⃓⃓⃓
≤ βε for all a ∈ [M ].

2. Then (approximately) invert the function x ↦→ ⟨Ea⟩(x) on these estimates to find an estimate
of the coefficients x̂.
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Step 1 of this plan is the easier step and not too hard to establish.

Lemma 4.1. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]} on N qubits. We can find estimates
Êa such that

⃓⃓⃓
Êa − ⟨Ea⟩(λ)

⃓⃓⃓
≤ βε for all a ∈ [M ], with probability at least 1 − δ, using only

O( d
β2ε2 log(M

δ )) copies of the Gibbs state and with time complexity O( Nd
β2ε2 log(M

δ )).

Proof. Recall the problem of estimating Tr(Eρ) for ∥E∥ ≤ 1 and a quantum state ρ. If we want
to estimate this to accuracy ε with success probability at least 1− δ, it is a standard result that
this can be done with O(log(1/δ)/ε2) copies of ρ. Indeed, we measure ρ in the eigenbasis of E and
output the corresponding eigenvalue of E on getting that outcome. This is a random variable with
expected value Tr(Eρ). Since ∥E∥ ≤ 1, this is a random variable in [−1, 1]. Hence by the Chernoff
bound we can estimate it to additive error ε with probability at least 1− δ using O(log(1/δ)/ε2)
copies of ρ.

Now we want to measure all the observables Ea. But not all of these have overlapping support,
and we can measure a large number of them simultaneously. Imagine we color the vertices of G
using d + 1 colors such that no neighboring pair of nodes have the same color; a greedy coloring
algorithm can be used. By definition of the dual interaction graph, all the Ea’s of a particular
color act on separate qubits. So we can estimate all of the Ea’s of a particular color using only
O(log(1/δ′)/ε′2) Gibbs state where δ′ is the probability that one of estimates has error larger than
ε′ = εβ.

Since Ea is a Pauli operator (a tensor product of single-qubit Paulis), it suffices to measure
individual qubits in some Pauli basis and multiply them (each of which is ±1) to infer the eigenvalue
of Ea. Hence, for a particular color, the time complexity is O(N log(1/δ′)/ε′2). We repeat this for
each color, resulting in d + 1 rounds.

Since we want all M estimates to be correct with probability at least 1 − δ, it suffices to set
δ′ = δ/M to apply the union bound.

The remainder of this section is devoted to implementing Step 2 of the above plan. We start by
upper bounding the sample complexity, and then move on to bounding the time complexity of our
algorithm.

4.1 Definitions and a sample complexity upper bound

Recall that Theorem 3.1 implies that we can expand ⟨Ea⟩ into a Taylor series

⟨Ea⟩(x) = βp
(a)
1 (x) + β2p

(a)
2 (x) + β3p

(a)
3 (x) + · · · , (96)

where the sum of the absolute values of the coefficients of pm is bounded by a universal constant
that depends only on d and m. We call this constant cm ∈ R>0, and from Items 3.1(3) and 3.1(4)
we have

cm = ed(1 + e(d− 1))m(2e(d + 1))m+1(m+ 1)
= 2e2d(d + 1)τm(m+ 1), (97)

where
τ = (1 + e(d− 1))(2e(d + 1)) ≤ 2e2(d + 1)2. (98)

Further, p(a)
k (x) only depends on the entries of x whose operators are within G-distance k from a.

The first term p
(a)
1 can be determined more explicitly by

p
(a)
1 (x) = ∂

∂β

Tr(Ea exp(−βH))
Tr exp(−βH)

⃓⃓⃓⃓
β=0,λ=x

= 1
D Tr(Ea(−H))|λ=x = −xa, (99)
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where we used Eq. (95) in the last equality.
Let F : [−1, 1]M → RM be ⟨Ea⟩(x), truncated to order m terms (m ≥ 1) and shifted by our

known estimates Êa of ⟨Ea⟩(λ) from Lemma 4.1, which satisfy |Êa − ⟨Ea⟩(λ)| ≤ βε. Thus we have

Fa(x) := Fa(x1, . . . , xM ) =
m∑︂

k=0
βkp

(a)
k (x) = −Êa − βxa + β2p

(a)
2 (x) + · · ·+ βmp

(a)
m (x), (100)

where we defined p
(a)
0 = −Êa. Our goal is to find an x such that F(x) is small, since, as we argue

below, such an x will be close to the true coefficient vector λ.
As a warmup for the time complexity upper bound proved in the next section, we will show a

sample complexity upper bound. The fundamental idea in both upper bounds is the same: Find an
x such that ∥F(x)∥∞ = O(βε).

Theorem 4.2. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]} such that Ea are traceless and
orthonormal with respect to the Hilbert-Schmidt inner product. Then, for any β such that

100e6(d + 1)8β ≤ 1, (101)

we can find x ∈ [−1, 1]M , such that ∥x− λ∥∞ ≤ ε with probability ≥ 1− δ using only

O

(︃
d

β2ε2 log M
δ

)︃
(102)

copies of the Gibbs state.

Proof. From Lemma 4.1 we know that O( d
β2ε2 log(M

δ )) Gibbs states suffice to estimate ⟨Ea⟩ to βε
accuracy for all a with probability ≥ 1− δ.

Next, consider F for m =∞, so Fa(x) = ⟨Ea⟩(x)− Êa. Notice that this means that ∥F(λ)∥∞ ≤
βε, by our assumption about the accuracy of the estimates Êa. Our algorithm will be to find and
output any x ∈ [−1, 1]M satisfying ∥F(x)∥∞ ≤ βε. We know one such x must exist, since λ satisfies
this equation. It remains to be shown that any such x is also close to λ.

Let ∂b denote the derivative with respect to xb and let J = dF be the Jacobian of F , so
Jab := ∂bFa. Then, for each a, by the multivariate mean value theorem, there exists y(a) ∈ (−1, 1)M

such that
Fa(x) = Fa(λ) + (J |y(a)(x− λ))a. (103)

This implies that

|xa − λa| = |
∑︂

b

(J |−1
y(a))ab(Fb(x)−Fb(λ))|

≤ ∥J |−1
y(a)∥∞→∞(∥F(x)∥∞ + ∥F(λ)∥∞) ≤ (2β−1)(2βε) = 4ε, (104)

where the final inequality uses Lemma 4.3 below, which holds when β is bounded as in Eq. (101).
Rescaling ε→ 1

4ε completes the proof.

Lemma 4.3. For Hamiltonians as in Theorem 4.2, if Eq. (101) holds, then for any x ∈ [−1, 1]M ,
we have ∥I + β−1J(x)∥∞→∞ ≤ 1

2 and ∥J(x)−1∥∞→∞ ≤ 2β−1 for any m ≥ 1.

In particular, the lemma is true when m =∞ and consequently J is also the Jacobian of the
function RM ∋ x ↦→ (⟨Ea⟩(x)) ∈ RM . The proof implicitly uses a band-diagonal property of J : if b
and a are distance k apart, then Jab scales as βk+1.
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Proof. In this proof we suppress the argument x in J(x). If ∥I + β−1J∥∞→∞ ≤ 1
2 , then

J−1 = − 1
β

I

I − (I + β−1J) = − 1
β

∞∑︂
k=0

(I + β−1J)k (105)

∥J−1∥∞→∞ ≤ β−1
∞∑︂

k=0
∥I + β−1J∥k∞→∞ ≤ 2β−1. (106)

Hence, we have to show that ∥βI + J∥∞→∞ ≤ β
2 in the stated range of β to complete the proof.

The leading order term of J is −βI,

Jab = ∂bFa = −βδab +O(β2); (107)

we will bound the rest of J to show that J is close to −βI. Let u = (u1, u2, . . . , uM ) be such that
|ub| ≤ 1 for all b.

((J + βI)u)a =
∑︂

b

(J + βI)abub

=
∑︂

b

ub

(︂
β2∂bp

(a)
2 (x) + · · ·+ βm∂bp

(a)
m (x)

)︂
=

m∑︂
k=2

βk
∑︂

b:dist(a,b)≤k

ub∂bp
(a)
k (x) by Item 3.1(2). (108)

For each k in the last sum, the index b ranges over at most 1 + d + · · ·+ dk ≤ (d + 1)k nodes of G.
Further, Item 3.1(1) says that p(a)

k is a homogeneous polynomial of degree k and the sum of the
absolute value of its coefficients is bounded by ck of Eq. (97). As a result, |∂bp

(a)
k | ≤ kck everywhere

in the domain of F .

|((J + βI)u)a| ≤
∞∑︂

k=2
βk · (d + 1)k · kck (109)

≤ 2e2(d + 1)2(β(d + 1)τ)2
∞∑︂

k=2
(β(d + 1)τ)k−2 · k(k + 1) (110)

= 2e2(d + 1)4β2τ2
(︃6− 6r + 2r2

(1− r)3

⃓⃓⃓
r=β(d+1)τ

)︃
if β(d + 1)τ < 1

≤ 2e2(d + 1)4β2τ2 · 25
4 if β(d + 1)τ ≤ 1

100. (111)

Since u ∈ [−1, 1]M is arbitrary, the last quantity is an upper bound on ∥J + βI∥∞→∞. The bound
on τ , Eq. (98), and the bound on β, Eq. (101), together imply that it is ≤ β

2 .

With this analysis, we can also deduce a bound on the strong convexity of the log-partition
function, as analyzed by [AAKS21], that is optimal up to constants. This is simply a matter of
bounding J−1 in the usual operator norm, ∥ · ∥2→2, rather than the (in this case, larger) ∥ · ∥∞→∞
norm.

Corollary 4.4. For Hamiltonians as in Theorem 4.2, if Eq. (101) holds, then L is (β2

2 )-strongly
convex, i.e., ∇⊗2L − β2

2 I (whose (a, b)-component is ∂a∂bL − β2δab/2) is positive semidefinite. The
strong convexity constant is only a constant factor off from optimal.
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Proof. In this proof we suppress the argument x in J(x), and similar arguments. By Proposition 3.2,
−βJ is the Hessian of L, taking m = ∞. Since it comes from a Hessian, J is Hermitian. So, it
suffices to show that ∥I + β−1J∥ ≤ 1

2 , since

∥I + β−1J∥ ≤ 1
2 =⇒ I + β−1J ⪯ I/2 =⇒ β−1J ⪯ −I/2 =⇒ ∇⊗2L ⪰ β2I/2, (112)

∥I + β−1J∥ ≤ 1
2 =⇒ −I − β−1J ⪯ I/2 =⇒ −β−1J ⪯ 3I/2 =⇒ ∇⊗2L ⪯ β23I/2. (113)

The second equation above proves optimality, up to a factor of 3. The bound we need follows
immediately from Lemma 4.3, since for a Hermitian matrix X, it holds that ∥X∥ ≤ ∥X∥∞→∞. (For
an eigenvector v achieving Xv = µv with |µ| = ∥X∥, we see ∥X∥∞→∞ ≥ ∥Xv∥∞/∥v∥∞ = ∥X∥.)
So,

∥I + β−1J∥ ≤ ∥I + β−1J∥∞→∞ ≤
1
2 , (114)

as desired.

Remark 4.5. In this remark, we show how to tweak the result in [AAKS21] to get a slightly
improved version shown in Eq. (2). We assume knowledge of [AAKS21]. First, if we do not perform
the final bound in [AAKS21, Proof of Theorem 28, p.28], we have that v†∇⊗2Lv ≥ C∥v∥2∞ for
C = e−O(βc)βc′ . Using Proposition 3.2, we have that −β(v†Jv) ≥ C∥v∥2∞. Consider taking the v
that achieves ∥J−1v∥∞ = ∥J−1∥∞→∞∥v∥∞. Then, using that ∥X∥2→2 ≤ ∥X∥∞→∞ for Hermitian
X,

C∥J−1∥2∞→∞∥v∥2∞ = C∥(−J)−1v∥2∞ ≤ β(v†J−1v) ≤ β∥J−1∥∥v∥22 ≤ β∥J−1∥∞→∞M∥v∥2∞. (115)

So, ∥J−1∥∞→∞ ≤ βM
C . This can be plugged in directly into, say, Eq. (104) to see that, using this

bound, we would need to estimate the marginals to ε C
βM error, giving the bound. Note that the

assumption that β = O(1) is not needed to achieve this sample complexity bound.

4.2 Time complexity and analysis of the Newton–Raphson method

The goal of this section is to prove the following theorem, which when combined with Lemma 4.1 to
get the assumed estimates, gives us the main result (Theorem 1.1).

Theorem 4.6. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]} such that Ea are traceless and
orthonormal with respect to the Hilbert-Schmidt inner product. Suppose β > 0 satisfies

25e6(d + 1)10β ≤ 1. (116)

Suppose we know estimates Ê ∈ [−1, 1]M such that
⃓⃓⃓
Êa − ⟨Ea⟩

⃓⃓⃓
≤ βε for all a ∈ [M ]. Then we can

find an x such that ∥x− λ∥∞ ≤ 18ε in time O
(︂

ML
ε poly(d, log 1

βε)
)︂
.

Recall that we defined L as the maximum number of qubits that a Hamiltonian term acts on
in Theorem 3.1. If L and d are constant (as in our definition of a low-intersection Hamiltonian),
then our time complexity has linear dependence in M , which is optimal since our output consists
of M numbers. In addition, our ε-dependence is better than the ε−2 dependence in the sample
complexity. There is very mild β-dependence since F becomes simpler for smaller β. The rest of
this section constitutes the proof of this theorem.
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Algorithm 3: The Newton–Raphson method
Data: β satisfying Eq. (116), and estimates {Êa}a∈[M ] such that

⃓⃓⃓
Êa − ⟨Ea⟩

⃓⃓⃓
≤ βε for all

a ∈ [M ] with ε < 1
18 .

Result: Estimates λ̂ ∈ [−1, 1]M such that
⃓⃓⃓
λ̂a − λa

⃓⃓⃓
≤ 18ε for all a ∈ [M ]

1 Define T = Θ(log( 1
βεd)) (see Eq. (134) for a precise expression) and K = ⌈log( 3

βε)⌉;
2 Initialize x(0) = 0⃗ for x(0) ∈ RM ;
3 Compute all of the coefficients in the polynomials Fa(·) for all a ∈ [M ] via Algorithm 2;
4 for t = 0, 1, 2, . . . , T − 1 do
5 Compute F(x(t)) and (the nonzero entries of) J(x(t));
6 Compute x(t+1) by Eq. (118),

x(t+1) = Proj[−1,1]M
[︂
x(t) + β−1

K−1∑︂
k=0

(I + β−1J(x(t)))kF(x(t))
]︂
;

7 end
8 Return λ̂← x(T );

From this point on, we will fix the point where we truncate F to be a particular value

m =
⌈︄

e

e− 1
1

ln 1
βτ

ln
(︄

12e2(d + 1)2

βε ln 1
βτ

)︄⌉︄
, (117)

a choice that is explained in Eq. (125).
To perform the task in the theorem statement, we use Algorithm 3. Our analysis only applies

when ε ≤ 1
12 , but when ε ≥ 1

18 , we can simply output λ̂ = 0⃗ as a sufficient approximation. As in the
previous section, the main idea is to find an x ∈ [−1, 1]M such that ∥F(x)∥∞ = O(βε). We will
do this with a version of the Newton–Raphson method. Typically, the Newton–Raphson method
performs the iteration x(t+1) = x(t) − (J−1F)(x(t)) until convergence. However, we want to avoid
computing the inverse of J explicitly, so we will perform the iteration

x(0) = 0⃗ x(t+1) = Proj[−1,1]M
[︂
x(t) + β−1

K−1∑︂
k=0

(I + β−1J(x(t)))kF(x(t))
]︂
. (118)

This uses the Taylor series approximation for J−1 from Eq. (105). We also perform a projection to
remain inside our parameter space [−1, 1]M , where Proj[−1,1]M is the coordinate-wise application of

Proj[−1,1](u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u ∈ (1,∞)
u if u ∈ [−1, 1]
−1 if u ∈ (−∞,−1)

. (119)

In Algorithm 3 it might seem counterintuitive that T = Θ(log( 1
βεd)) decreases as d increases when

β and ε are held constant; however, due to Eq. (116) our algorithm is not guaranteed to work for
arbitrarily large d with β and ε fixed.

Time complexity. First, we will show that Algorithm 3 has the time complexity claimed in
Theorem 4.6. There are several parameters that appear in the algorithm, and it will be helpful
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to upper bound them with simpler expressions now. Note that T , the number of iterations of
Newton–Raphson, and K, the number of terms used in the approximation of the inverse of J , are
both clearly O(ln( 1

βε)). The other parameter, which is implicit in the definition of F is m, which is
also O(ln( 1

βε)) due to Eq. (121).
Now let us bound the time complexity of the algorithm line by line. The first line of the algorithm

with a nontrivial contribution to time complexity is Line 3. We need to compute all the coefficients
in the polynomials representing Fa for a ∈ [M ] up to truncation order m. By Item 3.1(3), we know
that each polynomial pm has at most ed(1 + e(d− 1))m monomials, and hence the total number of
monomials in Fa is at most C, where C ≤

∑︁m
m=1 ed(1 + e(d− 1))m ≤ (ed)m+1. By Item 3.1(A), we

can enumerate these coefficients in time O(dMC). Then by Item 3.1(B), each coefficient can be
computed exactly in time D = (8m + L) poly(m). Finally there are M different Fa to be computed,
and hence we can write down all of F in O(dmCMD) time.

Then in Line 5, we can perform evaluations of F(x) in O(CMm) time, since there are C
monomials in each Fa, and each has up to m variables. Now recall that Jab(x) = ∂bFa(x) is a
sparse matrix with at most dm nonzero entries per row or column due to Item 3.1(2). We start
by setting all these entries to 0. Then we fill out the nonzero entries of column b of the matrix
by enumerating the monomials of Fa, and for those monomials that contain xb (and hence will
contribute to Jab(x)), adding the contribution due to this monomial to the memory location for
Jab(x). For a given b ∈ [M ], this takes time O(Cm), and so we can compute J(x) in O(CMm) time.

Finally, in Line 6, we need to compute the power (I + 1
βJ)kF , which can be done by starting

with F and multiplying by I + 1
βJ k times, where each matrix–vector product takes time linear in

the number of nonzero entries in I + 1
βJ , which is O(Mdm). So, the total runtime is

O

(︄
dmCMD⏞ ⏟⏟ ⏞

Line 3

+T
(︂
CMm⏞ ⏟⏟ ⏞
Line 5

+KMdm⏞ ⏟⏟ ⏞
Line 6

)︂)︄
= O(Md2(ed)m(8m + L) polylog( 1

βε)). (120)

Let us examine m more carefully. Let d := d + 1. There are two asymptotically small parameters
ε and β, and one large parameter d. The inverse temperature β is at most βc = (25e6d10)−1 by
Eq. (116). Pulling m from Eq. (117) (and recalling that τ = (1 + e(d− 2))2ed from Eq. (98)), we
have

m− 1 =
⌈︄

e

e− 1
(︂ ln(12e2d2

βε ln( 1
βτ ))

ln( 1
βτ )

)︂⌉︄
− 1

≤ e

e− 1
(︂ ln(12e2d2

βε ln( 1
βτ ))

ln( 1
βτ )

)︂

= e

e− 1
(︂
1 +

ln(d2τ) + ln(1
ε )

ln( 1
βτ )

+
ln(12e2 ln( 1

βτ ))
ln( 1

βτ )

)︂

≤ e

e− 1
(︂
1 +

ln(d2τ) + ln(1
ε )

ln( 1
βcτ )

+
ln(12e2 ln( 1

βcτ ))
ln( 1

βcτ )

)︂

= e

e− 1
(︂ ln(d2

βc
)

ln( 1
βcτ )

+
ln(1

ε )
ln( 1

βcτ )

)︂
+O

(︂ ln ln d
ln d

)︂
. (121)

So far, we have refrained from bounding the leading-order term (apart from taking β ≤ βc). We do
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this now to bound the runtime. We use that τ ≤ 2e2d2 by Eq. (98), so 1
βτ ≥

1
βcτ ≥ 12e4d8.

(8ed)m = exp
(︂

ln(8ed)
(︂
1 + e

e− 1
(︂ ln(d2

βc
)

ln( 1
βcτ )

+
ln(1

ε )
ln( 1

βcτ )

)︂)︂
+O(ln ln d)

)︂
≤ exp

(︂
ln(8ed)

(︂
1 + e

e− 1
(︂ ln(25e6d12)

ln(12e4d8) +
ln(1

ε )
ln(12e4d8)

)︂)︂
+O(ln ln d)

)︂
≤ exp

(︂
ln(8ed)

(︂
1 + e

e− 1
3
2
)︂

+ e ln(8ed)
(e− 1) ln(12e4d8) ln 1

ε
+O(ln ln d)

)︂
(122)

One can verify that 1 + e
e−1

3
2 < 3.5 and e

e−1
ln(8ed)

ln(12e4d8) ≤
e ln(16e)

(e−1) ln(3072e5) < 0.5 for all d ≥ 2. Hence,

(8ed)m = (8ed)1+ 3e
2(e−1) eO(ln ln(d))(1/ε)0.5 = O

(︂
d3.5(1/ε)0.75

)︂
= O

(︃poly(d)
ε

)︃
. (123)

This leads to an upper bound on the time complexity O
(︂

ML
ε poly(d, log 1

βε)
)︂

as promised in
Theorem 4.6.

Correctness and error analysis. We begin by explaining the choice of m that we stated above
in Eq. (117). We want to choose a large enough m so that the magnitude |Fa(λ)| will be small (say,
at most 2βε). The convergence of the β-series by Theorem 3.1 implies that for all a,

|Fa(λ)| ≤ |−Êa + ⟨Ea⟩|+ |−⟨Ea⟩ − βλa + β2p
(a)
2 (λ) + · · ·+ βmp

(a)
m (λ)|

≤ βε+
∑︂

m>m

βmcm

= βε+ 2e2d(d + 1) (βτ)m

(1− βτ)2 (m(1− βτ) + 1)

≤ βε+ 12e2(d + 1)2(βτ)mm if βτ ≤ 1
2 . (124)

To obtain an m such that ∥F(λ)∥∞ ≤ 2βε, we require

e−m′
m′ ≤ βε

12e2(d + 1)2 ln 1
βτ

where m′ = m log 1
βτ
. (125)

Using the fact that, for 0 < b < 1, x = e
e−1 ln 1

b is a solution to xe−x ≤ b, it is enough to have m
chosen as in Eq. (117).

Then recall that in our algorithm we wanted to apply J−1, but settled for an approximation to
make it more time efficient. There is a deviation incurred from this approximation of J−1 in each
time step t:

e(t) :=
(︂
J(x(t))−1 + 1

β

K−1∑︂
k=0

(I + β−1J(x(t)))k
)︂
F(x(t))

= − 1
β

∞∑︂
k=K

(I + β−1J(x(t)))kF(x(t)) (126)

= J−1(x)(I + β−1J(x(t)))KF(x(t))

From Lemma 4.3, this error decays exponentially with K.
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We can now begin analyzing the convergence of the Newton–Raphson method. Consider
Fa(s) : [0, 1]→ R, where Fa(s) := Fa(x+ s(λ− x)), which is coordinate a of F along the straight-
line path between x and λ. Then using Taylor’s theorem, which gives us a form for the remainder
term in a Taylor series expansion, there is some s′ ∈ [0, 1] such that

Fa(1) = Fa(0) + (∂sFa)(0) + 1
2(∂2

sFa)(s′). (127)

Now, we use that ∂s =
∑︁

b(λb − xb)∂b and substitute our previous definition of Fa to get that, for
y(a) := s′λ+ (1− s′)x,

Fa(λ) = Fa(x) +
∑︂

b

(λb − xb)(∂bFa⏞ ⏟⏟ ⏞
Jab

)(x) + 1
2
∑︂
b,c

(λb − xb)(λc − xc)(∂b∂cFa)(y(a)). (128)

Using this, we will analyze how a Newton–Raphson method iteration decreases the distance to the
solution λ. Let x := x(t), x′ := x(t+1), e := e(t), ∆ := x− λ, and ∆′ := x′ − λ.

|∆′
d| = |Proj[−1,1][(x− (J−1F)(x) + e)d]− λd| (129)

≤
⃓⃓⃓
(x− (J−1F)(x) + e)d − λd

⃓⃓⃓
=
⃓⃓⃓⃓
⃓ed + ∆d −

∑︂
a

(J(x)−1)da(F(x))a

⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓
⃓⃓ed + ∆d −

∑︂
a

J(x)−1
da

(︂
Fa(λ)−

∑︂
b

(λb − xb)J(x)ab −
1
2
∑︂
b,c

(λb − xb)(λc − xc)[∂b∂cFa](y(a))
)︂⃓⃓⃓⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓[︂e+ ∆− J(x)−1F(λ)− J(x)−1J(x)∆

]︂
d

+ 1
2
∑︂
a,b,c

J(x)−1
da ∆b∆c[∂b∂cFa](y(a))

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓[︂J(x)−1

(︂
(I + β−1J(x))KF(x)−F(λ)

)︂]︂
d

+ 1
2
∑︂
a,b,c

J(x)−1
da ∆b∆c[∂b∂cFa](y(a))

⃓⃓⃓⃓
⃓⃓

We will bound each expression above in turn. We can bound the first expression using Lemma 4.3
and Eq. (124), and that K = ⌈log2( 3

βε)⌉:⃓⃓⃓⃓[︂
J(x)−1

(︂
(I + β−1J(x))KF(x)−F(λ)

)︂]︂
d

⃓⃓⃓⃓
≤ ∥J(x)−1∥∞→∞

(︂
∥I + β−1J(x)∥K∞→∞∥F(x)∥∞ + ∥F(λ)∥∞

)︂
≤ 2β−1

(︂
2−K(2 + βε) + 2βε

)︂
≤ 6ε. (130)

The second expression can be bounded through an argument similar to that of Lemma 4.3, in
particular, that Fa(y) decomposes into degree-k polynomials p(a)

k (y) that depend only on yb where b
are within G-distance k from a and that have a bound on the magnitude of the coefficients (given
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by ck defined in Eq. (97)). We have that for all d,⃓⃓⃓⃓
⃓⃓12 ∑︂

a,b,c

J(x)−1
da ∆b∆c[∂b∂cFa](y(a))

⃓⃓⃓⃓
⃓⃓ ≤ 1

2∥J(x)−1∥∞→∞ max
a
|
∑︂
b,c

∆b∆c[∂b∂cFa](y(a))| (131)

≤ 1
β

max
a

∑︂
k≥0

∑︂
b,c

|∆b∆c| · βk · |∂b∂cp
(a)
k (y)|

≤ 1
β

max
a

∑︂
k≥0

∑︂
b,c:

dist(b,a)≤k
dist(c,a)≤k

∥∆∥2∞ · βk · k(k − 1)ck

≤ 1
β

∑︂
k≥0

(d + 1)2k∥∆∥2∞ · βk · k(k − 1)ck

= 12e2

β
∥∆∥2∞(d + 1)2 (β(d + 1)2τ)2

(1− β(d + 1)2τ)4 if β(d + 1)2τ < 1

≤ 12.5e2β(d + 1)6τ2∥∆∥2∞ if βd2τ ≤ 1− 4
√︂

12
12.5 .

These two computations, together with Eq. (129), gives us our bound on ∥∆′∥∞.

∥∆′∥∞ ≤ 6ε+ 12.5e2β(d + 1)6τ2∥∆∥2∞ (132)

To summarize, we have just shown that for the Newton–Raphson method iteration shown in
Eq. (118), the error decays as

∥∆t+1∥∞ ≤ 6ε+ 12.5e2β(d + 1)6τ2∥∆t∥2∞. (133)

We can solve this recursion: By Lemma 4.7 below, provided that 75εe2β(d + 1)6τ2 ≤ 1
4 and

∥∆0∥∞ ≤ 1
25e2β(d+1)6τ2 , we have that ∥xt − λ∥∞ ≤ 18ε after T iterations where

T = ⌈− log2(75e2(d + 1)6τ2βε)⌉
≤ ⌈− log2(300e6(d + 1)10βε)⌉. (134)

Since ∥∆0∥∞ ≤ 1, the condition is satisfied when β ≤ (25e2(d+1)6τ2)−1 and ε ≤ 1
12 . This completes

the proof of Theorem 4.6.

Lemma 4.7. Let c, d ∈ R>0 be such that cd ≤ 1
4 . Consider a sequence of positive real numbers

z0, z1, z2, . . . that satisfy for all n ≥ 0,

z0 ≤
1
2d and zn+1 ≤ c+ dz2

n. (135)

Then, for all n ≥ log2
1
cd − 1 it holds that zn ≤ 3c.

Proof. With yn := dzn, the recursion is

y0 ≤
1
2 and yn+1 ≤ cd+ y2

n. (136)

Note that by induction, yn ≤ 1
2 for all n ≥ 0. So, {yn} also satisfies the inequality yn+1 ≤ cd+ 1

2yn.
Unrolling the iteration, we get that

dzn = yn ≤ cd
(︂
1 + 1

2 + · · ·+ 1
2n−1

)︂
+ 1

2n
y0 ≤ 2cd+ 1

2n+1 . (137)

So, zn ≤ 3c when n ≥ log2
1
cd − 1.
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5 Lower bounds

In this section we establish the lower bounds claimed in Theorem 1.2, starting with the lower bound
for Hamiltonian learning with ℓ∞ error ε. We then build on that argument to obtain the lower
bound with ℓ2 error ε.

5.1 Warmup for constant N

As a warmup, let’s establish a lower bound for ℓ∞ error for Hamiltonians on a constant number
of qubits. In this case we want to show a lower bound of Ω(exp(2β)/β2ε2) samples for any β and
ε ∈ (0, 1/2].

Consider two diagonal Hamiltonians H0 and H1 for a 2-qubit system (or a single qudit with
local dimension 4) expressed in terms of the Pauli matrices

Z ⊗ I =
(︄+1

+1
−1

−1

)︄
, I ⊗ Z =

(︄+1
−1

+1
−1

)︄
, and Z ⊗ Z =

(︄+1
−1

−1
+1

)︄
. (138)

For any ε ∈ (0, 1/2], we define

H0 = (−1)Z ⊗ I +
(︃
−1

2

)︃
I ⊗ Z +

(︃
−1

2

)︃
Z ⊗ Z =

⎛⎜⎜⎜⎝
−2

0
1

1

⎞⎟⎟⎟⎠, and (139)

H1 = (−1)Z ⊗ I +
(︃
−1

2 + ε

)︃
I ⊗ Z +

(︃
−1

2 − ε
)︃
Z ⊗ Z =

⎛⎜⎜⎜⎝
−2

0
1 + 2ε

1− 2ε

⎞⎟⎟⎟⎠. (140)

The coefficients of these Hamiltonians lie in [−1, 1], and if we learn an unknown Hamiltonian to
error < ε/2, then we can distinguish these two Hamiltonians. We now show that distinguishing the
Gibbs states of these Hamiltonians needs Ω(exp(2β)/β2ε2) samples.

Since the Hamiltonians are diagonal, their Gibbs states are also diagonal and are simply
probability distributions. The two Gibbs states ρ0 and ρ1 are

ρ0 = 1
Z0

⎛⎜⎜⎜⎝
e2β

1
e−β

e−β

⎞⎟⎟⎟⎠ and ρ1 = 1
Z1

⎛⎜⎜⎜⎝
e2β

1
e−β+2βε

e−β−2βε

⎞⎟⎟⎟⎠, (141)

where Z0 and Z1 are the respective partition functions (or normalization constants).
We want to lower bound the number of samples needed to distinguish the two probability

distributions corresponding to ρ0 and ρ1, which we can call q0 and q1. The problem of distinguishing
probability distributions given samples is called hypothesis testing, and its complexity is well
understood.

One way to lower bound the number of samples needed is via the KL divergence between these
distributions, which is defined as follows for two distributions p and q:

DKL(p ∥ q) =
∑︂

j

pj log
(︄
pj

qj

)︄
. (142)

40



Lemma 5.1. For the probability distributions q0 and q1 corresponding to ρ0 and ρ1 in Eq. (141),
we have DKL(q1 ∥ q0) ≤ 8β2ε2e−3β+2βε. When ε ≤ 1/2, we have DKL(q1 ∥ q0) ≤ 8β2ε2e−2β.

Proof. This follows from a straightforward calculation.

DKL(q1 ∥ q0) =
e2β log e2β

e2β + 1 log 1
1 + e−β+2βε log e−β+2βε

e−β + e−β−2βε log e−β−2βε

e−β

Z1
+ log Z0

Z1

= e−β+2βε2βε− e−β−2βε2βε
Z1

+ log Z0
Z1

= 2βεe−β+2βε(1− e−4βε)
e2β + 1 + e−β+2βε + e−β−2βε

− log Z1
Z0

= 2βεe−β+2βε(1− e−4βε)
e2β + 1 + e−β+2βε + e−β−2βε

− log e
2β + 1 + e−β−2βε + e−β+2βε

e2β + 1 + 2e−β
. (143)

Now using the inequality log(x) ≥ 1− 1/x = (x− 1)/x, which holds for x > 0, we get

≤ 2βεe−β+2βε(1− e−4βε)
e2β + 1 + e−β+2βε + e−β−2βε

− e−β−2βε + e−β+2βε − 2e−β

e2β + 1 + e−β−2βε + e−β+2βε
. (144)

The denominators in this expression are ≥ e2β, so we can continue

≤ e−2β
(︂
2βεe−β+2βε(1− e−4βε)− (e−β−2βε + e−β+2βε − 2e−β)

)︂
= e−3β+2βε

(︂
2βε(1− e−4βε)− (1− e−2βε)2

)︂
≤ e−3β+2βε2βε(1− e−4βε)
= e−3β+2βε2βε(1− e−2βε)(1 + e−2βε)
≤ e−3β+2βε4βε(1− e−2βε) ≤ e−3β+2βε(4βε)(2βε)
= 8β2ε2e−3β+2βε, (145)

where the last inequality used 1− e−x ≤ x, which holds for x > 0.

The number of samples needed to distinguish the two probability distributions is lower bounded
by the inverse of the KL divergence between the two, as we make precise in the next section, which
gives us the desired lower bound for constant N .

5.2 Lower bound for ℓ∞ error

To prove the general lower bound for non-constant N , we will need Fano’s lemma, and specifically
we use the version in [Tsy09, Cor. 2.6]:

Lemma 5.2 (Fano’s lemma). For any N ≥ 2, let P0, P1, . . . , PN be probability distributions that
satisfy

1
N + 1

N∑︂
j=1

DKL(Pj ∥ P0) ≤ α (146)

for some α ∈ (0, logN). Then if perror denotes the minimax error of the hypothesis testing problem,
or the worst-case error of distinguishing the different distributions by the best strategy, we have

perror ≥
log(N + 1)− log(2)− α

log(N) ≥ 1− log(2) + α

log(N) . (147)
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We’re now ready to establish a more precise version of Theorem 1.2 for ℓ∞ error ε.

Theorem 5.3. For any ε ∈ (0, 1/2], β > 0, δ > 0, and N , there exists a 2-local Hamiltonian on
2N qubits such that the sample complexity of learning its coefficients to ℓ∞ error ε with probability
at least 1− δ is Ω

(︂
exp(2β)

β2ε2 log
(︂

N
δ

)︂)︂
.

Proof. We divide our 2N qubits into N pairs and consider Hamiltonians that are either H0 or H1,
as defined in Section 5.1, on each pair. We consider N + 1 possible Hamiltonians, corresponding
to all pairs having Hamiltonian H0, or all but one pair having Hamiltonian H0 and one pair of
qubits having Hamiltonian H1. So the potential Gibbs states produced are of the form ρ0 ⊗ · · · ⊗ ρ0
or ρ0 ⊗ . . . ⊗ ρ0 ⊗ ρ1 ⊗ ρ0 ⊗ . . . ⊗ ρ0 where ρ1 is the ith copy for i ∈ [N ]. As noted, learning the
Hamiltonian to ℓ∞ error ε/2 allows us to distinguish all these distributions. We will show that these
distributions are hard to distinguish unless we have enough samples.

Consider the problem of distinguishing between N + 1 distributions P0, P1, . . . , PN , where each
Pi is S independent copies of a distribution pi over N qubits. These distributions pi correspond to
the 2N -bit probability distributions that we get from the density matrix that has ρ0 on all qubits
and ρ1 on the ith qubit. Since these are diagonal density matrices, we’ll just think of them as
probability distributions over 2SN bits.

To employ Fano’s lemma, we need to bound DKL(Pj ∥ P0). Since each Pi is simply S copies of a
distribution pi, we have DKL(Pj ∥ P0) = SDKL(pj ∥ p0) due to the chain rule for KL divergence.
Any pj with j ̸= 0 and p0 only differ at one site, where one distribution is q1 and the other is q0, so
by the chain rule again we have DKL(pj ∥ p0) = DKL(q1 ∥ q0), which we have already computed in
Lemma 5.1. Thus we have that

DKL(Pj ∥ P0) = SDKL(pj ∥ p0) = SDKL(q1 ∥ q0) ≤ 8Sβ2ε2e−2β. (148)

Then we can take α to be this value and apply Fano’s lemma to get

perror ≥ 1− log(2) + α

log(N)

= 1− log(2) + 8Sβ2ε2e−2β

log(N) . (149)

This error can be a small constant only if S = Ω
(︂

e2β log(N)
β2ε2

)︂
. This gives us the lower bound for

constant δ.
To get the δ dependence, we show a reduction to this case. Assume there is an algorithm that

can solve the Hamiltonian learning problem with error δ on the above instance on N qubits using T
samples. Let’s use the same algorithm to solve the hard instance we constructed above on N/(3δ)
qubits with probability 2/3. For this problem we already have a lower bound of Ω

(︂
exp(2β)

β2ε2 log
(︂

N
δ

)︂)︂
,

which we get by replacing N by N/(3δ) in our previous lower bound.
We can split this problem up into 1/(3δ) instances of size N , and apply the assumed algorithm

that solves N -size instances with error δ. This algorithm needs T samples of the each of the 1/(3δ)
N -qubit Hamiltonians, but each sample of the N/(3δ)-qubit Hamiltonian provides one sample each
for the N -qubit Hamiltonians. So the sample complexity of our new algorithm remains T . Finally,
this algorithm learns all 1/(3δ) N -qubit Hamiltonians with error probability at most δ per instance.
So by the union bound, it correctly learns all 1/(3δ) instances with error at most 1/3. Thus our
assumed algorithm solves the Hamiltonian learning problem on N/(3δ) qubits and hence must use
Ω
(︂

exp(2β)
β2ε2 log

(︂
N
δ

)︂)︂
samples.
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Remark 5.4. The lower bound above even applies to a slightly more general learning setting where
we can choose different β (inverse temperature) for different samples. This scenario may arise in a
physical situation where one wishes to examine the temperature dependence of some observable’s
expectation value to learn the Hamiltonian. In this case, the probability distributions Pj that we
will distinguish is a product of pj at possibly different temperatures. The KL divergence can be
upper bounded similarly, and in the application of Fano’s lemma we can take the maximum of
the upper bounds on the KL divergence. If the temperatures are chosen nonadaptively, i.e., β are
chosen beforehand and the samples are prepared for us accordingly, then the sample complexity is
Ω(minβ

e2β

β2ε2 logN) for a constant probability of success, where the minimum is taken over β that
are used in the samples.

5.3 Lower bound for ℓ2 error

Our lower bound for ℓ2 error ε′ builds on the previous construction. Let us use ε′ to denote the ℓ2
error and reserve ε to be the parameter that appears in the definition of H1 in Eq. (140).

Theorem 5.5. For any β > 0, N , and ε′ ∈ (0, 0.01
√
N ], there exists a 2-local Hamiltonian on 2N

qubits such that the sample complexity of learning its coefficients to ℓ2 error ε′ with probability ≥ 2
3

is Ω
(︂

exp(2β)
β2ε′2 N

)︂
.

Proof. To get this result for ℓ2 error ε′, we consider a different collection of Hamiltonians. Consider
an error correcting code C over N bits that encodes Ω(N) logical bits and has code distance
at least N/10.10 We know such codes exist that achieve the Hamming bound and have size
|C| = Θ

(︃
2N∑︁0.05N−1

t=0 (N
k )

)︃
≳ 2cN

√
N

= 2Ω(N).

Consider a Hamiltonian on 2N qubits that is specified by a codeword x ∈ {0, 1}N . We divide the
2N qubits into pairs again and each pair will have Hamiltonian either H0 or H1 as before. Recall
that H1 depends on a parameter ε, which will be different from ε′ and will be chosen later.

The Hamiltonian for the first pair of qubits is Hx1 , for the next pair is Hx2 and so on. So just
as before, the Gibbs state will be ρx1 ⊗ ρx2 ⊗ · · · ⊗ ρxN , and as before, these are diagonal states, so
the resulting probability distributions will be qx1 ⊗ qx2 ⊗ · · · ⊗ qxN .

Just like before, we want to show that identifying the Hamiltonian (with probability ≥ 2/3),
which is equivalent to identifying the codeword x from which the Hamiltonian was constructed,
requires many samples. We claim that if we learn the Hamiltonian to ℓ2 error ε′ = 0.01

√
Nε, then

we can exactly identify the string x (with probability ≥ 2/3). This step converts learning with ℓ2
error to exact identification and this conversion dictates the value of ε in our definition of H1.

Consider the unknown Hamiltonian on the first pair of qubits, Hx1 . This has two unknown
coefficients, which are −1/2 + εx0 and −1/2 − εx0. Let’s only consider the problem of learning
the first of these coefficients for all our Hamiltonians Hxi . Now if we have learned the coefficients
to ℓ2 error ε′, it means we have a string λi that satisfies

√︁∑︁
i(λi + 1/2− εx0)2 ≤ ε′. By setting

yi = ε(λi + 1/2), this means we have a string y ∈ RN that satisfies
√︁∑︁

i(yi − xi)2 ≤ ε′/ε.
We now use the property that x is a codeword of an error correcting code with large distance, so

we can identify x given a close enough y. We know that any two codewords are at least N/10 apart
in Hamming distance. This means any two codewords are at least

√︁
N/10 apart in ℓ2 distance.

Hence if we have a point in RN (not just on the Boolean hypercube) that is ℓ2 distance strictly
less than

√︁
N/10/2 from a codeword x, it can be uniquely decoded to x. So, if we have a string

10In other words, let C be a set of 2Ω(N) length-N bitstrings such that any two elements of C differ in N/10 bits.
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y ∈ RN such that
√︁∑︁

i(yi − xi)2 ≤ 0.01
√
N , that will suffice. Thus we can choose ε to satisfy

ε′ = 0.01
√
Nε.

Now that we know that solving the Hamiltonian learning task allows us to exactly distinguish
this set of Hamiltonians, let’s show that distinguishing the Gibbs states of this set of Hamiltonians
requires many samples using Fano’s lemma.

To employ Fano’s lemma, we need to bound the pairwise KL divergences again. We now consider
2Ω(N) probability distributions px, each corresponding to the Gibbs state of the Hamiltonian
constructed from a codeword x ∈ C. Without loss of generality let us assume that x = 0N is part of
the code, and let p0 refer to the distribution corresponding to this Hamiltonian. As before, we let Px

be S copies of px. For any codeword x ̸= 0N , DKL(Px ∥ P0) = SDKL(px ∥ p0) ≤ SN DKL(q1 ∥ q0) ≤
8SNβ2ε2e−2β using the chain rule and Lemma 5.1. So we can choose the parameter α in Fano’s
lemma to be 8SNβ2ε2e−2β = O(Sβ2ε′2e−2β). Applying Fano’s inequality, we get

perror = 1− log(2) +O(S(e−2ββ2ε′2))
log(2Ω(N))

, (150)

which can be a small constant only if S = Ω
(︂

exp(2β)N
β2ε′2

)︂
.

6 Discussion

In this paper, we have addressed the Hamiltonian learning problem in a high-temperature regime.
We have analyzed an algorithm to show that it has optimal sample complexity and time complexity.
We were able to claim time optimality because our time complexity is simply linear in the sample
size, the number of qubits in the total of all samples used in the algorithm. The critical temperature
above which our algorithm is guaranteed to work depends only on the degree of the dual interaction
graph, which we have treated as a constant in the optimality claims for sample and time complexity.

Although our algorithm is optimal for any fixed d, it might be possible to enlarge the temperature
domain where our method works. The critical temperature to guarantee the convergence of the
Newton–Raphson method is higher than that to ensure the convergence of the β-series expansion
of ⟨Ea⟩; the former is O(d10) (Theorem 4.6) while the latter is O(d2) (Theorem 3.1). This rather
large discrepancy occurred when we used the “band-diagonal” property of the Jacobian of F , and
it will require finer understanding of these correlations to improve our bounds in terms of d. It is
also feasible to extend our algorithm beyond low-intersection Hamiltonians to local Hamiltonians,
where d need not be constant, since cluster expansion works in the more general setting where
one-spin energy is bounded. However, the number of monomials still scales exponentially in d, so
even writing down the truncated Taylor series expansion could be computationally expensive.

The problem of finding an efficient learning algorithm in the low-temperature regime remains
completely open. Our high-temperature expansion does not converge in general for large β since
there are systems that undergo phase transitions as we lower the temperature, where the partition
function is not analytically continued from the high-temperature domain. In fact, an efficient
algorithm for all temperatures, if it exists, should not attempt to evaluate partition functions since
low-temperature partition functions are generally (at least) NP-hard to compute. The classical
polynomial-time algorithms avoid evaluating partition functions using conditional independence
(the Markov property), but this does not hold in general for quantum noncommuting Hamiltonians.
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A Learning Hamiltonians from real time dynamics

Suppose we are given a blackbox that implements unitary time evolution

U = e−itH (151)

governed by a fixed, time-independent, unknown Hamiltonian H = {(a,Ea, λa) : a ∈ [M ]}. We
assume that the evolution time t is known to us, and the Hamiltonian follows the same normalization
as in the main text: Ea are distinct Pauli matrices and λa ∈ [−1, 1] for all a. The blackbox converts
any input state represented by a density matrix ρ to UρU †. Now, the learning problem is to
estimate λa to additive accuracy ε with as few uses of blackbox U as possible.

We consider a scenario where t is smaller than some constant tc that only depends on the
structure of Hamiltonian terms Ea but not on the coefficients λa. The learning algorithm and its
analysis will be very similar to that in the main text, so we will be brief. We restate the theorem
we will prove.

Theorem 1.3 (Real-time dynamics). Let H be a low-intersection Hamiltonian on N qubits and let
U = e−itH be a blackbox unitary with t < tc. Then we can learn the coefficients of H to ℓ∞ error ε
with success probability 1− δ, using U O

(︁ 1
tε2 log N

δ

)︁
times, with time complexity O

(︁
N
tε2 log N

δ

)︁
.

Remark A.1. In what follows below, we prove Theorem 1.3 with t replaced by t2. We can improve
this dependence from 1/t2 to 1/t by reducing to a setting where t is constant: by applying U
n = ⌊tc/t⌋ times, we can produce a black box for the unitary V = Un = exp(−iHt⌊tc/t⌋). Learning
parameters from V is the same problem as learning parameters from U , except the parameter t
becomes t⌊tc/t⌋ = Θ(tc), which is constant (determined only by d). So, we can use the algorithm
below with the unitary V , requiring O( 1

ε2 log N
δ ) applications of V , and therefore O( 1

tε2 log N
δ )

applications of U . The time complexity is also inflated by n = Θ(1/t) in a similar fashion.
Note that the complexity in the time parameter is optimal; two time-evolution operators I and

e−itZ on one qubit differ by O(t) in operator norm and hence also in completely bounded (diamond)
norm as quantum channels.

A.1 Series expansion of time-evolved operators

Similarly to Theorem 3.1 for the β-series expansion of Tr(Eae
−βH)/Tr e−βH , in this section we

prove properties about the t-series expansion of UPU † where P is a single-qubit Pauli operator.
The relevance of this quantity to the learning problem will be evident in the next subsection. In
the following theorem, the pink text indicates where it differs from Theorem 3.1; morally, the same
properties are proven, just for a different series. All of the quantitative bounds are at least as strong
as those in Theorem 3.1, and though we prove results for a matrix-valued polynomial, they are
indeed comparable when considering their trace against the operator Q, as defined in F(Q,P ).
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Theorem A.2. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]}. Then, for every single-qubit Pauli
operator P and L-qubit Pauli operator Q, we have a Taylor series expansion

UPU †=
∞∑︂

m=1
tmqm(λ1, . . . , λM ) (152)

F(Q,P ):= 1
D Tr(QUPU †) = 1

D

∞∑︂
m=1

Tr(Qqm(λ)) (153)

where equality holds whenever the series converges absolutely. For any m ∈ Z>0, the following hold:

1. qm ∈ CD×D[λ1, . . . , λM ] is a degree m homogeneous matrix-valued polynomial in the Hamilto-
nian term coefficients.

2. Let G(P ) denote the dual interaction graph among operators {E1, . . . , EM , P}, i.e., G(P ) is G
with an extra node p and an extra edge (p, a) if and only if Supp(Ea) ∩ Supp(P ) ̸= ∅. Then
qm involves λa only if the distance between p and a on G(P ), distG(P )(p, a), is at most m.

3. qm consists of at most max(L, d)ed(1 + e(d− 1))m−1 ≤ ed(1 + e(d− 1))m monomials.

4. The coefficient matrix in front of any monomial of qm has spectral norm at most 2m in
magnitude.

Suppose further that every Ea is a tensor product of Pauli matrices, supported on at most L qubits.
Then, after O(LMd log d) pre-processing time (see Remark 2.4), the following are true for every
m ∈ Z>0.

A. The list of monomials that appear in qm can be enumerated in time O(mdC), where C is the
number of monomials (so, in particular, in time O(md2(1 + e(d− 1))m)).

B. The truncated series of F(Q,P ), 1
D
∑︁m

ℓ=1 Tr(Qqℓ(λ)), can be computed exactly as a rational
polynomial in C(4m + L) poly(m) time.

To understand UPU †, we recall the well-known formula for square matrices A and B,

eABe−A =
∞∑︂

n=0

[A,B]n
n! (154)

where [A,B]k =
{︄
B (k = 0)
A[A,B]k−1 − [A,B]k−1A (k ≥ 1).

Since the nested commutator [A,B]n has norm upper bounded by 2n∥A∥n∥B∥, which grows only
exponentially with n, this series always converges absolutely for any finite dimensional matrices
over complex numbers. Applying it to our case, we have

UPU † =
∞∑︂

n=0

(−it)n

n! [H,P ]n = P − it[H,P ]− t2

2 [H, [H,P ]] + · · · (155)

=
∑︂
V

λV

V!DV(UPU †) (156)

where in the second line we re-express the t-series as a multivariate Taylor series in λa. This is our
series: Item A.2(1) follows from Eq. (155) upon taking qm(λ) := (−i)m

m! [H(λ), P ]m.
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We now examine a cluster derivative with respect to V, which has total weight n = |V|. Let
us enumerate all elements of V as a1, a2, . . . , an; this is a list of nodes of G with no particular
order and the elements aj are repeated as many times as their multiplicities. In this context, the
cluster derivative DV(UPU †) = [∂a1 · · · ∂anUPU

†]|λ=(0,...,0) is a constant matrix which comes from
evaluating a derivative at the origin of the λ-space [−1, 1]M .

DV(UPU †) = DV
(−it)n

n! [H, [H, · · · [H⏞ ⏟⏟ ⏞
n

, P ] · · · ] ] (157)

= (−it)n

n!
∑︂

σ∈Sn

[∂aσ(1)H, [∂aσ(1)H, · · · [∂aσ(n)H,P ] · · · ] ] by the Leibniz rule

= (−it)n

n!
∑︂

σ∈Sn

[Eaσ(1) , [Eaσ(1) , · · · [Eaσ(n) , P ] · · · ] ]

where Sn is the permutation group on {1, 2, . . . , n}. From Equation (157), the rest of Theorem A.2
will follow.

Lemma A.3. For any cluster V on G, if V⊔{(p, 1)} is disconnected on G(P ), then DV(UPU †) = 0.

Proof. Consider a term in Eq. (157), which we can label as [Ea1 , [Ea2 , · · · [Ean , P ] · · · ] ] without loss
of generality. If V⊔{(p, 1)} is disconnected, then there exists an k ∈ [n] such that ak is disconnected
from all of ak+1, . . . , an, p (otherwise, every ak would have a path to p by strong induction, making
the cluster connected). Consequently, Eak

commutes with the intermediate commutator Ck+1 =
[Eak+1 , · · · [Ean , P ] · · · ], which is supported on R = Supp(P ) ∪

⋃︁n
j=k+1 Supp(Eaj ). This means that

the next Ck = [Eak
, Ck] is zero and so the whole term [Ea1 , [Ea2 , · · · [Ean , P ] · · · ] ] is zero. This

argument applies to every term, so the whole sum, and the cluster derivative, must also be zero.

By this lemma, Item A.2(2) follows immediately, since λa is present in qm, then there must be a
cluster V of size m such that a ∈ V and V ⊔ {(p, 1)} is connected. This implies that the distance
between a and p is at most m. Similarly, the number of monomials of qm can be bounded by the
number of weight-m connected clusters in G neighboring p in G(P ). By Proposition 3.6, this can be
bounded by max(L, d + 1)ed(1 + e(d− 1))m−1, where the additional factor of max(L, d + 1) comes
from needing to count clusters that start at any of the terms adjacent to p. This gives Item A.2(3).
The lemma below gives Item A.2(4).

Lemma A.4. For any cluster V with |V| = n, we have ∥DV(UPU †)∥ ≤ 2n|t|n.

Proof. The norm of a nested commutator in the last line of Eq. (157) is at most 2n.

Finally, for the time complexity results, note the same algorithm for computing clusters works
in this setting, giving Item A.2(A). To compute the series qm, one could use the same approach
as Section 3.6, but we take a simpler and faster approach: we have an explicit form for the series,
Eq. (155), so all we need to do is compute the commutators [H,P ]n iteratively, for n from 1 to
m. We can maintain [H,P ]n as a sum over clusters of monomials λV with corresponding integer
matrices (where each integer is bounded by 2nn! by Item A.2(4)), of which faithful representations
can be maintained as done in Section 3.6. For each of these integer matrices X, one can compute
the corresponding commutator [H,X] in O(4n poly(n)) time, giving the matrices for the next
commutator [H,P ]n+1. This gives the specified runtime.
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A.2 Learning algorithm

Our learning algorithm in the “real-time dynamics” setting will be essentially the same as that of
learning from the “Gibbs state” setting. For each node a of G, choose Pa to be any single-qubit
Pauli that anticommutes with Ea, and let Qa = i[Pa, Ea] = 2iPaEa. Define Fa = F(Qa, Pa). Our
learning algorithm consists of two parts.

1. Find estimates F̃a such that
⃓⃓⃓
F̃a −Fa

⃓⃓⃓
≤ tε for all a ∈ [M ].

2. Approximately invert the function {λa} ↦→ {Fa} given F̃a.

Lemma A.5. Consider a Hamiltonian {(a,Ea, λa) : a ∈ [M ]} on N qubits. We can find estimates
F̃a such that

⃓⃓⃓
F̃a −Fa

⃓⃓⃓
≤ tε for all a ∈ [M ], with probability at least 1−δ, using only O( d

t2ε2 log(M
δ ))

applications of U and with time complexity O( Nd
t2ε2 log(M

δ )).

Proof. Recall that in Lemma 4.1, we argued that, from one copy of ρ, it’s possible to generate a
bounded random variable Ya ∈ [−1, 1] that is an unbiased esimator of Tr(Eaρ). Moreover, for a set
of terms S ⊂ [M ], it is possible to generate Za’s for all such a ∈ S from one copy of ρ, provided the
Ea’s are non-overlapping, or in other words, provided S is an independent set in the dual interaction
graph G. We will use this again here; the main challenge is that for each Ea we wish to measure
against a different Pa, so it’s not immediately clear how to use one application of U to produce
estimators for multiple different terms. We resolve this by thinking of ρ as a distribution over states,
and then conditioning on this distribution to measure expectations over what are effectively different
mixed states.

Consider the procedure of sampling a string s ∼ {0, 1,+,−, i,−i}N uniformly at random, and
then preparing the state ρ = |s1⟩⟨s1| ⊗ · · · ⊗ |sN ⟩⟨sN |. Notice that if we discard our initial string
s, thereby averaging over s, then ρ is the maximally mixed state; further, if we discard the entire
initial string apart from one qubit i, then ρ = I

2 ⊗ · · · ⊗
I
2 ⊗ |si⟩⟨si| ⊗ I

2 ⊗ · · · ⊗
I
2 . Note that, for

s = 0, 1,+,−, i,−i, 2|s⟩⟨s| − I is a Pauli matrix Z,−Z,X,−X,Y,−Y , respectively.
Suppose we apply U to ρ, measure it on the support of Ea to get the unbiased estimator Ya of

Tr(EaUρU
†), and define the following random variable.

Za =
{︄
Ya if sSupp(Pa) satisfies 2|sSupp(Pa)⟩⟨sSupp(Pa)| − I = Pa

0 otherwise

Here, we abuse notation by using Pa to refer both to the 1-qubit Pauli and the n-qubit tensor of
that Pauli with the identity matrix. The random variable Za is bounded in [−1, 1] because Ya is,
and furthermore,

E[Za] = Pr
s

[︂
2|sSupp(Pa)⟩⟨sSupp(Pa)| − I = Pa

]︂
E
s

[︂
Ya | 2|sSupp(Pa)⟩⟨sSupp(Pa)| − I = Pa

]︂
= 1

6 Tr
(︂
EaU

(︂
E[ρ | 2|sSupp(Pa)⟩⟨sSupp(Pa)| − I = Pa]

)︂
U †
)︂

= 1
6 Tr

(︂
EaU

(︂I
2 ⊗ · · · ⊗

I

2 ⊗
I + Pa

2 ⊗ I

2 ⊗ · · · ⊗
I

2
)︂
U †
)︂

= 1
12 Tr

(︂
EaUPaU

†
)︂

So, 12Za is an unbiased estimator for Fa, and the rest of the result follows exactly like it did in
Lemma 4.1: one can use one copy of ρ to get multiple estimators Za, provided their corresponding
terms do not overlap. Thus, in d + 1 rounds of O( 1

t2ε2 log M
δ ) applications of U each, one can get
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O( 1
t2ε2 log M

δ ) copies of Za for every a ∈ [M ]. By Chernoff bound, each rescaled average 12Z̄a will
then satisfy

⃓⃓⃓
12Z̄a −Fa

⃓⃓⃓
≤ ε with probability ≥ 1− δ/M , and so they all satisfy

⃓⃓⃓
12Z̄a −Fa

⃓⃓⃓
≤ ε

with probability ≥ 1− δ. The time complexity is the same, since the only change to the procedure
is doing one additional O(1)-time check per sample Za.

Finally, for the second, classical part of the algorithm, note that operators Pa and Qa are chosen
so that the leading term of Fa is a known constant multiple of λa:

F(Q,P ) = Tr
D (QP − itQ[H,P ] + · · · ) (158)

= t
Tr
D

(︄
[P,Ea]

∑︂
b

λb[Eb, P ] + · · ·
)︄

= 4tλa + · · ·

where the last line uses the orthonormality of the Hamiltonian terms. This observation implies that
the Jacobian is “band-diagonal”, and suffices, along with Theorem A.2, for the full analysis of the
Newton–Raphson method in Section 4.2 to go through identically. The only difference here is that
β is replaced with −4t, so this part takes time O(ML/ε) poly(d log(1/tε)). The time complexity of
the quantum part dominates.

Remark A.6. Since the series expansion in Eq. (158) is only shown to converge for t < tc where
tc = 1/ poly(d), we can only claim that our algorithm works for small enough t. In the learning
problem from Gibbs states, the analogous condition β ≤ 1/poly(d) is due to the fact that our
approach cannot handle arbitrarily low temperature; the sample complexity result [AAKS21] shows
that learning is feasible for all temperatures, at least in an information-theoretic sense. In contrast,
in the learning problem from real-time evolution, it is fundamental that we have to restrict the
evolution time to be smaller than some constant set by d; for a certain long time, the learning is
simply impossible. Consider a Hamiltonian H = −λI + λ(I + Z1)(I + Z2) · · · (I + Zn) on n qubits
where Zj is the Pauli Z on qubit j. This Hamiltonian is the sum of all nonidentity products of Z’s
with a uniform coefficient λ ∈ [−1, 1], and obeys our normalization conditions for Hamiltonians. The
intersection degree d is exponentially large in n. The eigenspectrum of H consists of just two values,
(2n − 1)λ and −λ. Hence, e−itH ∝ I if t = 2π/2nλ = Θ((dλ)−1). Since λ is unknown, we conclude
that no general algorithm can determine λ unless we restrict t to be smaller than 1/ poly(d).

B Algorithm for parameter learning of Markov random fields

In this section, we will prove a folklore result by giving a simple algorithm for parameter learning
of Markov random fields. By the Hammersley–Clifford theorem, a Markov random field D over
{−1,+1}N can be written as

Pr
Z∼D

[Z = z] ∝ exp(
∑︂

S⊂[N ]
ψS(zS))

for some functions ψS : R|S| → R, where zS = (zi)i∈S . Typically, the sum is restricted to be over
S with size at most some constant. By writing every ψS as a sum of products of variables, this
expression becomes

Pr
Z∼D

[Z = z] ∝ exp(
∑︂

S⊂[N ]
λSz

S),
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where zS :=
∏︁

i∈S zi. For the parameter learning problem, we assume we already know the structure
of the MRF, so suppose we are given a hypergraph G = (V = [N ], E) on N vertices such that

Pr
Z∼D

[Z = z] ∝ exp(−β
∑︂
S∈E

λSz
S).

Here, −β is a rescaling factor so that we can assume without loss of generality that λS ∈ [−1, 1]
for all S ∈ E. We will interpret the λ parameters as a vector in [−1, 1]|E| and β ∈ (0,∞). This
is precisely a Gibbs state of a classical Hamiltonian, following the definitions given in Section 2.1.
Further, this is the setting where each term is is a product of Paulis, since each zS is a product of
Pauli Z operators.

For a vertex i ∈ [N ], let Ei = {S ∈ E | i ∈ S} be the set of hyperedges containing i and let
Ni = (∪S∈EiS) \ {i} be the neighborhood of i. Our algorithm will depend on two parameters:
maximum degree d := maxi∈[N ]|Ei| and an “average order” parameter L := maxi∈[N ]

1
d |Ni ∪ {i}|.

We do not consider the empty graph, so that d, Ld ≥ 1.
We will need the following lemma.

Lemma B.1 (Version of Lemma 2.1, [Bre15]). For any node u ∈ V , subset S ⊂ V , and configuration
xS ∈ {±1}|S|,

min
b∈{−1,+1}

Pr[Xu = b | XS = xS ] ≥ 1
exp(2βd) + 1 ≥

1
2 exp(−2βd).

Proof. First, using the Markov property

|E[Xu | XV \{u} = xV \{u}]| = |
∑︁

xu
xu exp(−β(

∑︁
S∈E λSx

S))∑︁
xu

exp(−β(
∑︁

S∈E λSxS)) |

= |
∑︁

xu
xu exp(−β(

∑︁
S∈Eu

λSx
S\{u}xu))∑︁

xu
exp(−β(

∑︁
S∈Eu

λSxS\{u}xu))
|

= |
exp(−β(

∑︁
S∈Eu

λSx
S\{u}))− exp(β(

∑︁
S∈Eu

λSx
S\{u}))

exp(−β(
∑︁

S∈Eu
λSxS\{u})) + exp(β(

∑︁
S∈Eu

λSxS\{u}))
|

=
exp(β

⃓⃓⃓∑︁
S∈Eu

λSx
S\{u}

⃓⃓⃓
)− exp(−β

⃓⃓⃓∑︁
S∈Eu

λSx
S\{u}

⃓⃓⃓
)

exp(β
⃓⃓∑︁

S∈Eu
λSxS\{u}

⃓⃓
) + exp(−β

⃓⃓∑︁
S∈Eu

λSxS\{u}
⃓⃓
)

= 1− 2
exp(2β

⃓⃓∑︁
S∈Eu

λSxS\{u}
⃓⃓
) + 1

Further, by the tower property of conditional expectation and Jensen’s inequality,

|E[Xu | XS = xS ]|
= |E[E[Xu | XV \{u} = xV \{u}] | XS = xS ]|
≤ E[|E[Xu | XV \{u} = xV \{u}]| | XS = xS ]

= E
[︂
1− 2

exp(2β
⃓⃓∑︁

S∈Eu
λSxS\{u}

⃓⃓
) + 1

| XS = xS

]︂
= 1− 2

exp(2β
⃓⃓∑︁

S∈Eu
λSxS\{u}

⃓⃓
) + 1

≤ 1− 2
exp(2βd) + 1
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For a {±1}-valued random variable X, min{Pr[X = 1],Pr[X = −1]} = 1
2(1− |E[X]|), so

min
b∈{−1,+1}

{Pr[Xu = b | XS = xS ]} = 1
2(1− |E[Xu | XS = xS ]|) ≥ 1

exp(2βd) + 1 .

Define the sigmoid function σ(x) := ex

1+ex . We will need the following fact about the sigmoid:

Lemma B.2 (Claim 4.2, [KM17]). For all x, y, |σ(x)− σ(y)| ≥ exp(−|x| − 3) min(1, |x− y|).

Theorem B.3. Fix ε ∈ (0, 1). Given samples from the MRF X(1), . . . , X(T ) with T = Θ(exp(8βLd2+
2Ld) 1

β2ε2 log N
δ ), we can compute an estimate λ̂ such that ∥λ̂− λ∥∞ ≤ ε with probability ≥ 1− δ.

The algorithm takes O(TN(Ld2 + d2d)) time.

For low-intersection Hamiltonians (as defined in the introduction), L = O(1) and d ≤ d+1 = O(1).
For constant L and d, the sample complexity and time complexity of learning a classical Hamiltonian
to ℓ∞ error ε become

exp(O(β))
β2ε2 log N

δ
and exp(O(β))

β2ε2 N log N
δ
,

respectively.

Proof. First, fix a particular v ∈ [n], and consider conditioning on its neighbors Nv. The distribution
on xv after conditioning is

Pr[Xv = xv | XNv = xNv ] = σ(2β
∑︂

S∈Ev

λSx
S).

We now show that it suffices to be able to estimate such conditional probabilities, for a particular
setting of XN(v). Let q(v)

x be the argument inside the σ above, so

q(v)
x := σ−1(Pr[Xv = xv | XNv = xNv ]) = 2β

∑︂
S∈Ev

λSx
S .

Note that q(v)
x only depends on those xu where u ∈ Nv. We will argue below that we can get an

estimate of our conditional probability σ(q(v)
x ) to exp(−|q(v)

x | − 3) min(0.5, 2βε) error. We will invert
σ on this estimate to get an estimate q̂(v)

x for q(v)
x , so we denote the original estimate to be σ(q̂(v)

x ).
By Lemma B.2,

min(1, |q(v)
x − q̂(v)

x |) ≤ exp(|q(v)
x |+ 3)|σ(q(v)

x )− σ(q̂(v)
x )| ≤ min(0.5, 2βε)

so |q(v)
x − q̂(v)

x | ≤ min(0.5, 2βε) ≤ 2βε

So q̂(v)
x is an estimate for q(v)

x up to additive 2βε error. Now, we show that we can use these q̂(v)
x ’s

to get a good estimate of the parameters {λS}S∈E .
Suppose we want to know λS . Pick v ∈ S and consider all T ∈ Ev that are not S. If T ⊈ S,

then choose some vertex u ∈ T \ S and place it in a set Nout. Otherwise, T ⊊ S, so we choose
some vertex u ∈ S \ T and place it in a set Nin. Note that Nin ⊂ S and Nout ⊂ [N ] \ S, so they are
disjoint.11 We can get an estimate for λS by averaging q(v)

z over the coordinates of Nin and Nout in
11For some intuition, in the conventional setting where vertices are on a lattice and a term S is a connected piece of

the lattice, one can think of taking Nin to be S and Nout to be the neighborhood of S (or the boundary of Sc).
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a particular way; for a set of indices I ⊂ [n], let PI = {z ∈ {±1}N | zi = 1 for all i ̸∈ I} be a slice
of the Hamming cube.

1
2β E

z∼PNin∪Nout
[zNinq(v)

z ] =
[︂

E
zNin

E
zNout

[︂
zNin

∑︂
T ∈Ev

λT z
T
]︂]︂

z=1⃗

=
[︂

E
zNin

[︂ ∑︂
T ∈Ev

T ∩Nout=∅

λT z
NinzT

]︂]︂
z=1⃗

=
[︂ ∑︂

T ∈Ev
T ∩Nout=∅
T c∩Nin=∅

λT z
T \Nin

]︂
z=1⃗

=
[︂
λSz

S\Nin
]︂

z=1⃗
= λS

Suppose we have an estimate of q(v)
z , q̂(v)

z , to 2βε error. Then

| 1
2β E

z∼PNin∪Nout
zNin q̂(v)

z − λS | =
1

2β | E
z∼PNin∪Nout

zNin(q̂(v)
z − q(v)

z )|

≤ 1
2β E

z∼PNin∪Nout

⃓⃓⃓
zNin

⃓⃓⃓⃓⃓⃓
q̂(v)

z − q(v)
z

⃓⃓⃓
≤ 1

2β E
z∼PNin∪Nout

⃓⃓⃓
zNin

⃓⃓⃓
2βε

= ε

Note that |PNin∪Nout | = 2|Nin|+|Nout| ≤ 2d. So, now we just need to show how to estimate σ(q(v)
z ) =

Pr[Xv = zv | XNv = zNv ] to exp(−
⃓⃓⃓
q

(v)
x

⃓⃓⃓
− 3) min(0.5, 2βε) error for ≤ 2d+1 choices of zv, zNv , over

all M choices of S. Since
⃓⃓⃓
q

(v)
x

⃓⃓⃓
≤ 2βd always, it suffices to estimate to Θ(exp(−2βd) min(0.5, βε))

error.
Recall that estimating the probability p of an event occurring to α relative error with probability

≥ 1− δ requires Θ( 1
pα2 log 1

δ ) samples. (The estimator we use is simply the empirical probability
of the event over the samples, and the proof follows from a Chernoff bound). So, if we pull
Θ( 1

pminα2 log M2d+2

δ ) samples of our Markov random field, then we can get an estimate to any
particular choice of Pr[Xv = zv and XNv = zNv ] and Pr[XNv = zNv ] to α relative error that is
correct with probability ≥ 1− δ

M2d+2 , provided that pmin is chosen to be smaller than this probability.
By union bound, we can get an estimate to all the probabilities we would need to compute the C
conditional probabilities with probability ≥ 1− δ using this number of samples, provided pmin is
smaller than all the probabilities we wish to estimate. Also recall that by Lemma B.1,

Pr[XS = xS ] =
|S|∏︂
i=1

Pr[Xui = xui | Xuj = xuj for j < i] ≥ 2−|S| exp(−2β|S|d).

Since we want to compute these probabilities for S = Nv or S = Nv ∪ {v}, we can take pmin =
exp(−2β(Ld)d− Ld).

With these estimates, we can get good estimates to the conditional probabilities, assuming α is
sufficiently small:

Pr[Xv = zv and XNv = zNv ](1± α)
Pr[XNv = zNv ](1± α) ∈ Pr[Xv = zv and XNv = zNv ]

Pr[XNv = zNv ] (1±O(α))

= Pr[Xv = zv | XNv = zNv ](1±O(α))

We set α = Θ(exp(−2βd) min(0.5, βε)) < 0.5 to conclude. The number of samples we need is

T = Θ
(︂ exp(2β(Ld)d+ Ld)

(exp(−2βd) min(1, βε))2 log M2d+2

δ

)︂
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Using that 1
min(1,β2ε2) = 1

β2ε2 max(1, βε)2 ≤ 1
β2ε2 exp(2βε), this is

= Θ
(︂
d exp(2β(Ld)d+ Ld+ 4βd+ 2βε) 1

β2ε2 log M
δ

)︂
.

The bound in the theorem statement comes from simplifying and performing rough bounds on the
above expression. We can run this algorithm in time O(TM(Ld + 2d)), since for each term, we
can compute the 2d empirical conditional probabilities for it by taking Ld time per sample to sort
them into the various (disjoint) events. Classifying each sample only requires looking at the bits
corresponding to v and its neighbors, so checking all takes O(TMLd) time, and we need to do this
for all terms. The result in the statement comes from taking M ≤ Nd.
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