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1 Introduction

Conformal invariance in two dimensions is a very powerful tool which gives rise to many
non-pertubative relations constraining dynamics of 2d CFTs. Among them is universality
of stress-energy tensor sector [1], namely any correlation function which includes only
stress-energy tensor and its descendants depends only on central charge ¢ but not on any



other details of the theory. An analytic form of all such correlators can in principle be
found in a recursive form [2]. The stress-energy sector can be regarded as integrable, even
if the whole theory is understood to be chaotic [3]. This can be justified formally by noting

there is an infinite number of mutually commuting quantum KdV charges [4-6] — local
charges (2,1 of the form
1 2
Qanl = 27 TZTL((P) dgp, (11)
™ Jo

where the densities T5,, are appropriately regularized polynomials in stress-energy tensor
T(p) and its derivatives. First charge

c 1 27

Qi=lo—5=5 [ Tds (1.2)
is the CFT Hamiltonian. (Here and below we consider 2d CFT on a cylinder. Because
of standard factorization into left and right-moving sectors we restrict the discussion
to one sector only.) Interest in integrable structure of 2d CFT stress-energy sector has
been reignited recently in the context of Eigenstate Thermalization Hypothesis (ETH) [7].
Following original works [8-16] it has been conjectured and confirmed in [17] that 2d CFTs
exhibit generalized ETH with the local equilibrium being described by qKdV Generalized
Gibbs Ensemble (GGE). Schematically the role of qKdV charges is as follows. The CFT
Hamiltonian (1.2) is highly degenerate with all CFT descendant states of the form

|E) = L_yy ... L_m, |A), Zm =m (1.3)

sharing the same energy £ = A + m — ¢/24. Since all Q2,1 commute, they can be
simultaneously diagonalized giving rise to mathematically unique “integrable” basis of
eigenstates. Unlike the energy eigenstates of the form (1.3), which fail the ETH, integrable
eigenstates carry specific values of Qo 1-charges and obey generalized ETH. This novel role
of gKdV symmetries motivates the question of “solving” integrable structure, i.e. evaluating
spectrum of qKdV charges and finding integrable eigenstates, which would allow detailed
studies of generalized ETH and qKdV GGE thermodynamics.

In certain sense the question of finding qKdV spectra can be regarded as solved: there
is not one but two distinct ways to write an algebraic Bethe-ansatz reducing the problem of
finding spectra to a bunch of algebraic equations [18, 19]. In practice complexity of these
equations grows very rapidly with the level m (1.3), making this approach useless in the
context of ETH, at least so far. The ETH holds in thermodynamic limit, it may not and
does not hold beyond that regime. Thermodynamic limit assumes the length of the spatial
circle L goes to infinity, with the energy density E/L kept fixed. Using rescaling, one can
always bring the circle to unit radius, the notations we use throughout the paper. The
energy F then must go to infinity as L? with L — oo being an auxiliary parameter keeping
track of corrections to various ETH-related identities. For any given primary state |A) this
essentially means the descendant level m must be taken to infinity, i.e. we arrive exactly at
the limit where algebraic Bethe equations become most difficult.



A progress was achieved by taking an additional limit of large central charge. In this
case (Q9_1-eigenstates, akin to (1.3), can be parametrized by a set of natural numbers,
which can be conveniently combined into a Young tableau [16].! It is most convenient to

use representation when ng > 0 for k = 1,2,... counts the number of rows of length k,
oo
In:) = |ni,...), ank:m. (1.4)
k=1

We emphasize (1.4) are eigenstates of Q2,—1 and thus differ from (1.3). Corresponding
eigenvalues at leading order were conjectured in [22]

Qan—1/ni) = Qan—1|n4), (1.5)
n—1 e’}
Quno1 = A"+ > AP (Z kP n, + C(_2§ — 1)> + 0 2),
p=0 k=1
e - (2n—1)/mT(n+1) A-a_g é:c—l (1.6)

" 2T(p+3/2)T(n—p)’ 24

Here we assume the scaling when ¢ — oo while A /¢ = h is kept fixed. No thermodynamic
limit is assumed. This is the limit of holographic correspondence, when CFT is dual to
semiclassical gravity. The holographic picture provides an easy derivation for the leading
1/c terms in (1.6) and provides interpretation for n; as the boson occupation numbers of
the boundary gravitons, see appendix A. From the mathematical point of view simplicity of
eigenstates parametrization with help of Young tableaux as well as relatively simple form
of (1.6) can be readily understood from the semiclassical quantization of the co-adjoint
orbit of Virasoro algebra. Indeed, as is explained in [20] in the large ¢ limit Virasoro algebra
can be understood in quasi-classical terms, as quantization of the Kirillov-Kostant-Souriau
symplectic form. Because of U(1) symmetry semiclassical quantization of @)y is exact,

- 0 1 c
Ql—A+<kZ::1k‘nk24>—A+m24, (1.7)

but for all higher Q2,—1,n > 1 it is not. It is a perturbation series in 1/¢, which plays the
effective role of Planck constant. In this paper we develop a perturbative scheme to obtain
the spectrum of Q2,1 as a series in 1/¢ expansion and calculate first two non-trivial terms.
The result is summarized in (4.15).

In the strict ¢ — oo limit when the problem becomes classical, CFT stress-tensor 1" can
be substituted by an element of the co-adjoint orbit of Virasoro algebra Q—fu, where u is a
potential of an auxiliary periodic Schrédinger equation. Then quantum KdV charges (1.1)
reduce to conventional KdV Hamiltonians of the periodic problem

1 2m
Q2n—1 = % /0 (un +.. ) d@’ (18)

! Appearance of ny, to parametrize the eigenstates can be understood from the Virasoro algebra, which in
the large c¢ limit reduces to a product of Heisenberg algebras, with nj being the corresponding quantum
numbers [20, 21].

2Since ref. [22] was working in the regime of both large central charge and thermodynamic limit Q1 oc cL?,
it only conjectured the term linear in ng, as the nig-independent term is 1/L2 suppressed.



which we denote the same as the quantum ones, as it clear from the constant which, classical
or quantum version, we had in mind. For the states with large but finite level m number of
non-zero nj will also be finite. At the classical level this corresponds to finite-zone potentials
u, which form a finite-dimensional symplectic manifold equipped with the structure of a
completely integrable system. Hamiltonians (2,1 can be re-expressed in terms of the
action variables I and the orbit invariant h,

oco n—1

Qan—1=h"+>_ > &I [ 4+ O(1?) (1.9)
k=1 j=0
which at semiclassical level become integral quantum numbers I, — ny/¢. It is then easy
to see that (1.9) becomes (1.6), up to an overall factor ¢" and certain corrections. At each
power of 1/¢ classical expression Qa,—1(h, I}) predicts only leading power of nj while all
subleading powers are “quantum corrections” which must be fixed separately.

At leading 1/¢ order quantum correction is just ng-independent constant term pro-
portional to ((—2p — 1)/2, see (1.6). It can be fixed trivially by introducing Maslov index
I, — (nr +1/2) /¢, such that constant term can be formally rewritten as the vacuum energy
of “quantum oscillators” with frequencies wy and occupation numbers ny

00 n—1
Q1 = A"+ (e +1/2) wp + 0@ 2), w=> & A1 & g2, (1.10)
k=1 Jj=0

Unfortunately this simple trick fails beyond the leading order in 1/&. At 1/& order one has
to fix both constant and linear in ny terms, while simple I, — (ng + 1/2)/¢ substitution
leads to incorrect results.

We propose and verify up to 1/ order that the subleading “quantum correction” terms
can be unambiguously fixed starting from the analytic expression in terms of 1/¢ pertubative
series of the eigenvalues QY,,_; of Qa2,—1 acting on the primary state |A). For leading 1/é
term this statement is trivial — taking all n; = 0 yields the constant term, which is simply
leading 1/¢ term in QY,, ;. At the 1/ order this statement is more nuanced: naively
QY,,_; only fixes the constant term with all n; = 0, but we show linear in nj, terms can
be also fixed starting from QY, ;. As a result we obtain spectrum of Q2,1 up to first
three orders in 1/c expansion, including the leading A™ term. We then apply the obtained
result to evaluate thermal expectation values of QQo,_1, free energy of the KdV Generalized
Gibbs Ensemble, and the asymptotic expansion of the quantum transfer matrix acting on a
primary state |A), all at first few leading orders in 1/c.

The paper is organized as follows. In section 2 we discuss classic completely integrable
system associated with the finite zone potentials and evaluate Q2,—1(h, I1) as a perturbative
series in Ir. In section 3 we discuss analytic form of (Qo;_1 acting on primary states. These
two pieces are combined in section 4 where we employ semiclassical quantization to obtain
the spectrum of qKdV charges in the first three orders of 1/¢ expansion. We also perform
consistency checks, confirming our result. Section 5 is devoted to applications of the
obtained result. In section 5.1 we calculate thermal expectation values of Q2,1 and fix
two leading orders in 1/c of the associated differential operator D,,

Tra(Qar-19%") = Daxa, xa = Tra(¢9). (1.11)



In section 5.2 we discussed KdV Generalized Gibbs Ensemble and calculate its free energy
—InZgge,
Zooe = Tre™ >, H2n—1 Q2n71’ (1.12)

at leading order in 1/c. In section 5.3 we use the asymptotic expansion to calculate the
quantum transfer matrix acting on a primary state at first two orders in 1/¢ expansion. We
use analytic continuation to extend the validity beyond the asymptotic regime, but notice
that certain non-pertubative terms are missing. We conclude with a discussion in section 6.
The paper also includes a number of appendices. Appendix A provides an easy derivation
of (1.6) by quantizing boundary gravitons of semiclassical gravity in AdSs;. Appendix B
evaluates Qa2,—1(h, It) at first two orders in I by explicitly introducing normal coordinates
at the origin of the co-adjoint orbit of the Virasoro algebra. Appendix C provides technical
details concerning Novikov’s one-zone potentials. Appendix D develops the technique of
dealing with the multi-zone potentials in the limit of the infinitesimally small zones. Finally,
appendix E provides the details of calculating the spectrum of (2,1 acting on primary
states based on ODE/IM correspondence.

2 Calculation of Q2,1 (h, I})

In this section our goal is to find expression for ()2,,_1 in terms of the orbit invariant A and
action variables Iy, by expanding pertubatively up to cubic order in I,

Qon1 = I + Z FFy R R D N s (1, (2.1)
k<t
- ka" VR S YL, + o).
-y, k<t<p

Coeflicients f are h-dependent. First three f(n b ,fén’Z), f,gn’g) will be found using one-

zone potentials in section 2.2. USlng two-zone potentials we will find f,g?m and f,gi;’g) in

section 2.3, while coefficient fk K " ) will be fixed using three-zone potentials in section 2.4.
An alternative brute-force derivation of (2.1) up to quadratic order in Ij is given in the
appendix B.

2.1 Finite zone potentials: an introduction

The starting point is the “Schrédinger” equation
— v+ ¥ =, (22)

with the periodic real-valued potential u(p + 27) = u(y). For any real A there are two
linearly-independent quasi-periodic solutions

Yi(p +2m) = 2PNy (). (2.3)

Here quasi-momentum p(A) could be either real or pure imaginary. Values of A € R
for which p()\) is imaginary are called “forbidden zone.” At the end of forbidden zones



p(A) is integer or half-integer such that 11 become periodic or antiperiodic and linearly
dependent. Normally, for such A, another linearly independent singular solution appears.
Yet occasionally there are two linearly independent regular periodic or antiperiodic solutions
for the same A. In this case forbidden zone degenerates and disappears, with p(\) being
real everyone in the vicinity of that point. We provide examples below.

A general potential u would have an infinite number of forbidden zones, but there are
special classes when only a finite number of forbidden zones are non-degenerate, Such u are
called finite zone potentials. They were introduced in a famous work [23] and often refereed
to as Novikov potentials.

Example: zero zone potential. Let us consider a constant potential u = 4\g = Q1
with some real Q1. A solution to (2.2) can be readily found

Vi (p) = PPN p(N) = VA= Ao (2.4)

For any A > @)1/4 quasi-momentum is real, i.e. there are no forbidden zones, except for
A € (—00; Q1/4). The solutions (2.4) are linearly independent, including A = (Q1 +k?)/4 for
natural k, when 11 are (anti)periodic. Values A = (Q1 + k?)/4 mark the ends of degenerate
forbidden zones.

Example: “opening” a zone. Let us now consider the potential u = Q1 + e cos(ky) +
O(€?) where Q1 is a constant, k is positive integer, and e is some infinitesimal parameter.
Using quantum mechanics perturbation theory we find at leading order that all eigenvalues
of periodic and anti-periodic problems remain the same and double-degenerate, except for
Ar which splits into )
AE = Ql%k + g (2.5)
Hence now there are two forbidden zones, (—oo, @1/4) and (A, A)).

Finite-zone potentials are characterized by the ends of non-degenerate zones \;. For
the zero-zone potential above there is only one parameter A\g = @1/4. After one zone is
opened, there are three parameters: “energy” of the ground state A\g, Ay = A,/ and Ao = )\g.

In general an m-zone potential is characterized by
Ap <AL < - < Ay, (2.6)

with the forbidden zones (—o0, Ag) and (Ag;—1, A2;), @ = 1, m. For each set {\;} we can

define a hyperelliptic curve
2m

y> =[] =), (2.7)
i=0
while the quasi-momentum p being fixed in terms of its differential
AT+ T A" L. 1o
= 2y

The latter is defined in such a way that the integrals of dp over a-cycles vanish

A2;
j{dp = 2/ dp = 0. (2.9)
z A2i—1

d\,  p(Xo) = 0. (2.8)

dp



This fixes m coefficients r, ..., r,—1. Furthermore for the potential associated with {\;}
to be 2w-periodic we must additionally require integrals over b-cycles

A2i—1
wj :j{ dp = 2/ dp (2.10)
b; A

21—2
to be integer-valued
w; = kil — ]{31;1. (211)

Here natural k; satisfying k; 11 > k;, kg = 0, label opened zones. These are additional m
constrains, which reduce the total number of independent parameters A; to m + 1.

A given set {\;} which satisfies (2.9), (2.11), such that only m + 1 parameters are
independent, defines periodic potential u(y), but in a non-unique way. Individual potentials
are labeled by points of the Jacobian of curve (2.7), with all of them sharing the same
spectrum. In other words isospectral potentials form an m-dimensional torus, while full
space of m-zone potentials is therefore 2m + 1 dimensional.

At this point we would like to make a connection with the Virasoro algebra. Consider
Hill’s equation, which is “Schrodinger” equation (2.2) with A = 0,

— ¥+ 74 =0. (2.12)

One can re-parametrize the circle going from ¢ to @(¢) such that @(¢ + 27) = @(¢) + 2.
Then wave-function and the potential also change accordingly

S\ —1/2
Y(B) = v(ep) (Zi) : (2.13)

S\ =2
(@) = (j:j) (u+2(58)(9)) (2.14)

where Schwarzian derivative

7 1 2
(50)(p) = %, - g (99,) : (2.15)

From (2.14) it is clear that w is an element from the co-adjoint orbit of Virasoro algebra with
the Schwarzian derivative term appearing because of central extension [20]. All potentials
u(y) related by circle reparametrizations, i.e. belonging to the same co-adjoint orbit share
the same invariant — quasi-momentum at zero,

W (27) /1(0) = >0, (2.16)
which is evident from (2.13). In other words
—4p(0)> =h (2.17)

is the invariant of u characterizing the orbit itself. By choosing an appropriate ¢ the
potential always® can be brought to a constant form, in which case

@W(@) = h. (2.18)

3 An implicit assumption here is that u belongs to the regular orbit diff(S')/S', which upon quantization,
becomes Verma module.



The co-adjoint orbit is a symplectic space equipped with the Kirillov-Kostant-Souriau
bracket

i{u(g@), u(@)} = —2rD(p — &), D = Ou + 2ud — 20°. (2.19)

Here, using linearity of symplectic form we introduce a formal parameter ¢, which later will
be identified with the CFT central charge. Any Hamiltonian flow defined by (2.19) leaves h
invariant.

There is an infinite tower of the so-called KAV Hamiltonians ()or_1, which can be
defined recursively with help fo Gelfand-Dikii polynomials R,

1 2 n+1
n—1 = 5 n nt1 = 5 —— DRy, 2.2
Qan 1 2W/O Rodg OR,1 = 5——DR (2.20)
4
Ro=1, Ri=u, Ry=1u%- §82u, Rs = u® — 4ud?u — 2(8u)2 + %84% e

Their Hamiltonian flows generate isospectral deformations of u
Su = i{QQn_l,u} = (2n — 1)0R,, (2.21)

while they all remain in involution {Q2,-1,Q2-1} = 0.

We now consider a space of all m-zone potentials sharing the same h. This is a 2m-
dimensional subspace within the orbit parametrized by h, which we will denote as F,(h).
The pullback of the symplectic form on this space is non-degenerate, hence it is also a
symplectic manifold equipped with the Poisson bracket. Isospectral flows leave this manifold
invariant. Upon restricting to F,,(h), only first n KdV Hamiltonians remain algebraically
independent. The flows they generate move u along the Jacobian of (2.7), which is the
Liouvillian torus of a completely integrable dynamical system defined by Qon—_1, n < m.
In other words the geometry of F,,(h) is a m-dimensional torus parametrized by angle
variables fibered above a base parametrized by m variables QQ2,_1. Alternatively, one can
introduce m action variables I parameterizing the base and forming canonical conjugate
pairs with angle variables.

In terms of dp (2.8) values of KAV charges are given by an expansion at infinity

2I'(n 4+ 1)I'(1/2) 4™ ~1/2
— — n , 2.22
Qo1 = =P 717 2m %dpA (2.22)
while the action variables are
7 d\ 1
ag ag

Functional dependence of Q2,—1 for n > m on the first m ones readily follows from (2.22)
and the form of dp (2.8).

Our task is conceptually trivial: we want to learn an explicit change of variables on the
base of F,,,(h) from Q2,—1 to I;. The expressions for Q2,—1(h, I}) is not available in the
closed form, we therefore will find first few orders by expanding it in powers of I. There is



one notable exception, using Riemann bilinear relation with two one-forms dp and pd\/\
one can show in full generality

Qu="h+> kI (2.24)
k

Our main approach will be based on parameterizing both Q2,1 and Ij in terms of the
spectral curve ¢ = 0, m, with the infinitesimal Ag; — \o;_1, and then re-expressing Q2,1 in
terms of Ij. There is an alternative straightforward approach, to parametrize the potential
u(yp) in terms of its Fourier modes uy, and then express both Q2,—1 and Ij in terms of wuy.
We develop this method in the appendix B and confirm the expansion (2.1) up to second
order in I}.

2.2 One-zone potentials

Before we consider one-zone potential in detail, we revisit the zero-zone potential u =Q1=4X\g

and readily find differential

d\
dp= ——2— 2.25
N e (2.25)

to be defined on a Riemann sphere. This is the simplest possible case. In this case p =

VA = Xo, u(p) = h = 4\ and the whole symplectic space Fo(h) shrinks to a point. All KAV

Hamitonians are fixed by h, Q2,—1 = h" with all action variables identically equal to zero.
Next, we consider the differential

B (A — r)dA
B 2= M= )

(2.26)

parameterized by A;, 9. It is defined on a torus — a Riemann curve of genus one. We
assume that (A2, A1) correspond to k-th zone. After satisfying (2.9) and (2.11), which
requires evaluating elliptic integrals, we find one-parametric family

2 2

2 1 2
do =Xt s M =dot ) r= ot o) <1+2‘W3<T)

Olnm

) . (2.27)

where m = 05(7)/05(7) and T = imy with positive 75. In what follows we use* ¢ = ¢ such

that 92 = Zn q(n+1/2)27 93 = Zn qn27 94 = Zn(il)nqn2
To impose the orbit constraint —4p(0)? = h it is more convenient to use the following

trick. First we evaluate
Q1 =4(Xo + A1+ A2) — 8, (2.28)

which expresses Ao in terms of ()1 and ¢ expansion,

48ln0§(7)

4)\() = Ql—kZ <6§_49481mn

) = Q1 —32k%¢” (1+2q2—|—4q4+4q6—|—. ) : (2.29)

4Our definition of ¢ is aligned with Wolfram Mathematica. In this section g denotes modular parameter
of the genus one elliptic curve y(A). In section 5.1 we use ¢ to denote modular parameter of the CFT
spacetime torus.



and then use (2.23) to evaluate action variable perturbatively in g,

2 [ dA(A —r)log A
™ J)\ \/(/\—)\0)()\—)\1)()\2—)\)
o) 2(—1)"(A1 _ )\O)nJrl

a nz::l nvAz = AoAg

I, =

Here F' = o F is the hypergeometric function such that F (%, %, 1; m) = 0§.
An infinite sum over n above has to be evaluated individually for each term in ¢

expansion. This gives I} as a function of A\g and ¢, I = lffﬁgi + O(q*), which with help

of (2.29) can be expressed as a function of 1 and ¢,

32K 5 64Kk3 (17K + 12K2Q1 + 3Q3) /

I, = + 2.31
TR (k2 + Q1) (231)
128k3 (5k2 + T7kS + 69K4Q1 + 27k2Q% 4 3Q3
PRl (R +Q )5Q1 UL 1o 4 o).
1

At this point we use (2.24), which is exact, Q1 = h + k. Using I} given as a g-series
expansion with QQ1-dependent coefficients (2.31), with help of (2.24) we express @1 as
a series in ¢ with h-dependent coefficients by iteratively substituting ()1 written as an
h-dependent series in ¢g. Once we find Q1 = Q1(h,q), I can be deduced from (2.24),

32k o 64 (3n%K3 + 12hk5 +K7)

I =
F et T (h+ k2)
128k3 (3h* + 42h3k% + 108h%k* — 58hkS + KkB)
+ +0O(g%). 2.32
(1 2 q (@) (2.32)

At this point it is straightforward to re-express ¢ as a h-dependent power series in Iy,
2
q2 = %;53 I + O(Ilg)

To obtain coefficients f(™% (2.1) we act as follows. From the definition (2.22) we can

find Q2,1 as a polynomial in A; and r. Using expressions for \;,r (2.27) and (2.29), where

(1 is understood as a function of h, ¢ we write (2,1 as an h-dependent power series in q.
After that it is straightforward to use ¢® = ¢?(h, I}) to re-express Qa,_1 as an h-dependent
power series in I,

Qon1 = h"+ f"V L 4 (D12 4 g 4 o, (2.33)

~10 -



thus fixing (9,

\FQTL 1 (n+1) n—1—j 2‘+1_n_1 j pn—1—3571.25+1
Z:\F2n 1) (n+1)('(2n+1)—2n+2)hn—1—jk2j, (2.35)
16F(]+ )F(n—j)
(n3) _ (2n Dn(n-1)
J Unin 1)) (2.36)

+n_1 VT(2n—1)T(n+1)p
7=0 15361 (j+3) T(n—3)
p=453(2n+1)(2n+3)—25%(2n+1)(10n—21)—35j(2n+3)(10n—7)+36(n—1)(2n—1).

n—1-751.27—1
primig2i-1

More technical details about the one-zone potential calculation can be found in appendix C.

2.3 Two-zone potentials
In case of two zones the differential
()\ — Tl)(A — T'Q)d)\

24/TTi—o(A = A)

depends on seven parameters subject to 4 constraints (2.9) and (2.11). Corresponding inte-

dp = (2.37)

grals can not be evaluated analytically. We therefore proceed by expanding perturbatively,
assuming both zones, and hence corresponding action variables, are small. We introduce
two infinitesimal variables €1, €5 of the same order, such that Ao — A\; is of order ¢; and
A4 — Ag is of order es. Action variables are quadratic in €;, I ~ 6%,][ ~ 6%, where we
assumed (A1, A2) and (A3, A4) correspond to k-th and ¢-zones respectively. Our goal is to
find Q2,1 up to third order in the pertubative expansion in Iy, Iy. Hence in what follows
we must expand all quantities in ¢; up to sixth order. The details of this calculation can be
found in appendix D.

After satisfying (2.9) and (2.11) we find A; for ¢ > 1 and r; in terms of \g and €, €2,
as a perturbative expansion in ¢;. Then, we evaluate I, h and QQ2,_1 also as function of
Ao and €1, €2, similarly expanding in €; up to and including sixth order. By matching both
sides of (2.1) we find coefficients fk(:'g’n), yielding

CVa2n—1)T(n+1) 2(j=s)=1p25+1
F2 R0 T 21 25t (2.38)
k.t le AT (n— j)F(]+ ) SZO
/ 2n—1)n(n—1) , < y7(2n—1)T(n+1) , |
) — — h h Tq], 2.39
Tt (k?W( [ " 6ar(n—j)r (j+3) q) >

R2HA g2t .
g TR 42 (204 1) — dn+5) +7T22(3j +n+5)

+E¥2(3427)((2n+1)—2n+2) + k20 (3+25) (4n—1).

q=—4(2n+1)
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2.4 Three-zone potentials

Extending calculations of the previous section using the technique of appendix D to the
three-zone case we can fix

k723) Z f 27’L — 1)3F(7’L + 1)(” )hn 3—j Z ]ZSI k,23+1 2(51+52)£251+1 282+1
P =0 SF(n_l_])F<]+%) 51=052=0
(2.40)

2.5 Consistency check

In case of an m-zone potential we can parametrize the differential dp with help of Ag and ¢;,
1 <i<m,cf (D.1)-(D.6),
Ai=X+..., 1 <4 < 2m, (2.41)
ri=MX=+..., 1<t <m, (2.42)
where dots stand for ¢; but not Ag-dependent terms. Similarly action variables I, charges
Q2n—1 and the orbit parameter h = —4p(0)? will be some functions of A\ and ¢;. While

dependence of I, and h on \g is non-trivial, since Q2,1 are the coefficients of 1/\ expansion
of p(A) at infinity and A¢ is simply the shift of the argument of p()\), we find

- F(n+1) n—k 0
Q1= > (420)"* QY. (2.43)
T STk DO —k+ 1) 2h—1

Here QY are the charges evaluated with help of (2.22) taking Ao = 0 in (2.41), (2.42).
Assuming we know Q2,—1(h, I,) where h = h(\g, €;) and I, = I;(Ao, €;), one can introduce
IY = I,(0,¢;) such that QY ; = Qar—_1(0,I))). Here first argument is zero simply because
h(0,€;) = 0. Then both sides of equation (2.43) become functions of A\g and ¢;, providing a
non-trivial check.

There is an alternative way to use (2.43) to check the consistency of the perturbative
expansion (2.1) with the coefficients found in the text. We can invert h = h(\g,€;) and
I = Ix(Xo, &) to express both \g and I via h and I,

hIk h(h+5k2) 12 h(5h2+30hk?+A41k%) I} hILI,
AO_MZ kA B 128k7 D

k<t ke
hf Iy (h20% —h (kK = 4k 02 04) — 5ES 4 11542 — 5k2 04 hI Il
i ( ( 8k4e(k—£)2()k+e)2 ) > g, o,
ot k<t<p
0_7 +@_hl,§ (h+5k?) +h1,§ (5h%+30hk?+41k") ¥ hIIy (h+k?)
k=T 8k 12883 K20 (k2—02)

£k
S hIZIp (202 (—k*4+-2K2 02+ 04) + h? (Th* — 14K2 02+ 150%) +k* (5k* — 10k202 +-904))
pord 8K5I (k2 —¢2)°
+Zh[,€]€2 (h? (k*+5k202 —20%) +h (KO +10k10%2 — 9k2 01+ 61°) + k2 0% (5k* — Tk2 (2 +611))
= 8k204 (k2 —¢2)°
3 hIpIoI, (2h+3hk? 4+ k*)
k2tp (k*—£2) (k*—p?)

+0O(I").
ALk
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Now Q3,,_1(0,I2(h, I};)) is a function of h, I}, and (2.43) provides a non-trivial check for the
coefficients in (2.1).
This check also ensures that Qa,—1(h, I) satisfy another identity

1 a62271-1-1
n+1 é)uo

= Qan—1, (2.44)

which follows from the properties of Gelfand-Dikii polynomials (2.20). Here Qa2p—1[u(¥)]
are understood as functionals of u(y) and the derivative is with respect the zero Fourier
mode of u(y), while all other Fourier modes are kept fixed. The shift of ug with all other
modes intact is equivalent to a shift of the spectrum by a constant, hence

(). ).

Then (2.44) follows immediately from the right-hand-side of (2.43).

For an m-zone potential, all higher KdV charges (Q2,,—1 are some functions of first m+1
charges. Thus for one-zone potentials @05, (7, ... are functions of ()1, @3, see e.g. section 2.4
of [24] for details. For the three-zone potentials higher Q2,,—1 would depend on @1, @3, @5, Q7
In principle this provides additional consistency check for (2.1). In practice the dependence
is so complicated, it doesn’t provide a useful check even for the one-zone case.

3 “Energies” of primary states via ODE/IM correspondence

In the previous section we found classical expression for Q2,1 in term of action variables
I, and the orbit invariant h. Following the standard rules of semiclassical quantization I
should be promoted to an integer quantum number, while h will become the dimension of
the highest weight (primary) state A, marking representation of the Virasoro algebra. It is
easy to see, this naive receipt fails already for the values of Q2,1 on a primary state |A).
Indeed, taking all I, to zero, we readily find Qa,_1 = h¥, which upon the naive quantization
yields Q9,,_; = A" where

Qan-11A) = Q9 _1]A). (3.1)

This answer is missing c-dependent terms. Explicit values of QJ, ; for n < 8 were calculated
in [25] via brute-force approach, using explicit expressions for Q2,1 in terms of free field
representation. The pattern is clear, while A™ is indeed the leading term, full expression is
a polynomial in both A and ¢ of order n.

There is no known receipt to obtain exact QY,_; from the semiclassical quantization,
hence our strategy will be the following. We will combine exact expression for Q3,_; in the
large ¢ limit, which will be obtained in this section by a different method, with the classical
result of section 2, to find spectrum of excited states in the large ¢ limit in next section.

To find Q3,,_; we use ODE/IM correspondence, initiated in [18, 26] and more recently
developed in [27] (also see [28]), which relates KdV spectrum to solutions of an auxiliary
Schrodinger equation

02V (x) + (E — 2%~ l(l;; 1)> U(z) =0, (3.2)

~13 -



where

o?

1+1/2)? =4(a+ 1A, é=—— 0. 3.3
(127 =4+ DA, o= (33)
Equation (3.2) can be solved using WKB approximation by systematically expanding in
a small parameter. This leads to a quadratic ODE which can be solved iteratively. We
delegate all details to appendix E and only write down iterative relation which defines

coefficients c,({:n) forn>1,n>k>0,

"L j ] -2 n— n—
2225p+q7kc;7)cg"_7)—2 n—k:—u—nzT c,(c_ll)—l-(2/~c—3n+4)c,(€ 1):0, (3.4)
j=0p=0g=0

and we formally assumed c(_nl) = 07(:21 =0, u? = —A /¢, and the starting values are

0 1 1 1 1 1
Wol ol opll, o

Coefficients cl({n) determine values of Q2,1 acting on primaries [27],

0 2n—D0(n+1) & @ < 3 ) ( 2n—1>
= [ (k+S—3n)0(2n—k— . (36
Q2n—1 ﬁf(l— 2721‘;1)4n(a—|—]_)n kz:;JCk + 9 n n ( )

Although this is not obvious, QY,, ; given by (3.6) is a polynomial in terms of A and .
After some algebra we find leading order expansion
Q) =AY RUATITTE L Y REATI2E 4 N RUATIE 4 0@ ),
j=0 j=0 j=0
(3.7)

where
1) @2n—1)y/al(n+1) . o

=2 (2n-1)y/7l(n+1)
Rn,j - 24X4F(j—|—%)f‘(n—j—1) (3.9)

C(_Zg_l), (3.8)

x {—64(—2.7—3) (2j43 - (2n—1)y1(j+1)+3(2n—1)¢(j) }
a6 (@n-1)yrl(n+1)

™ 242 x AL (j+ )T(n—j—2)

P = 12G3(5) +36Go(+ 1) (y.(+2) +5+2) +3 (457 +18) +23) ¢(=2j - 3)

+36¢(~2—5) (12 +2) +2+2Dn(+2) +92(/+2)) + 2n+ ;. (3.10)

{626(—%' —5)(22+7j+5) — (2n— 1)rn,j},

Functions (2, (3,¥1,¥y3 are defined in the appendix E, where we also give values of p; for
0<j5<17.
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4 Spectrum of quantum Qq5_1

At this point we are ready to combine classical pertubative expression for Qa,—1(h, Ix) (2.1)
with the “energies” of primary state (3.7) to obtain Qa,—1 up to first two non-trivial orders
in 1/¢ expansion.

The naive semi-classical quantization would map the co-adjoint orbit invariant A and
the actions variables I on the classical side to dimension of the primary state A and the
excited state quantum numbers n; correspondingly,

24A 24
h— —, I, — Ly (4.1)
C Cc

Also classical charge Q2,1 should be rescaled by (¢/24)™. Starting from (2.1) this correctly
reproduces full quantum spectrum of ()1 and the leading A™ term in QQ2,—1. But it falls short
of reproducing sub-leading terms even for the primary state (3.7). The relation between
classical and quantum quantities (4.1) is only correct at the leading ¢ order. In [22] we
observed that using ¢ — 1 as an expansion parameter leads to more elegant expressions. This
is confirmed by (3.7), which looks most naturally if written in terms of A and & We therefore
propose the following quantization map, which agrees with the naive one at leading order,

c—1
24

N

h— =, Iy — —, A=A-¢ ¢ =

(4.2)

o P

This does not solve the problem of reproducing subleadig terms in Q9,,_;, but this can be
fixed, at least at first subleading order, by introducing the Maslov index, ny — fy = ng+1/2.
We thus arrive at the following map,

Qon—1(h, 1) = Qon—1 = & Qan_1(A/E, (nj, +1/2)/2). (4.3)

Infinite sums due to Maslov index contributing to “vacuum energy” should be regularized
using zeta-function regularization. It is now straightforward to see that we immediately
reproduce the leading 1/¢ term (3.8),

Qo1 ="+ 3 f"V () I+ O(1%) = Qopor = A"+ &1 fV(A/8) iy + O(E2)
k k

n—1
= A"+ 3N G ATITIERA  (ny, 4+ 1/2) + O(E*7?)
k =0
n—1 .
- S , (=25 -1) o
=A"+ Z & A" 1=jg (Z K2, + Ty +0(&"?) (4.4)
7=0 k
In other words, at first sub-leading order é"~! the quantization prescription (4.3) leads
to (1.6) which passes all available tests: matches the spectrum of Q1,Q3,Q5, Q7 (see sec-
tion 4.1 below) and thermal expectation values for Qg, ..., Q13 (see section 5.1 below) at
the order & 1.
There is another way to write (4.4). We can express Qa,—1 as QJ,,_; plus the terms

from the classical Q2,1 (2.1) which non-trivially depend on I using the substitution (4.2),
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i.e. without the Maslov index,

Quno1 = Qg + @Y £V (AJE) g + 0@ ). (4.5)
k

At &1 order it is the same as (4.4).

To obtain the quantum spectrum at next order &2

, we could try the prescription (4.3),
apply the zeta-function regularization and notice that many but not all terms from (3.9)
are reproduced. Thus, we see that the quantization (4.3) is exact only at leading 1/¢ order,
at higher orders the expression obtained from the classical QQ2,,—1 has to be modified as
well. Indeed, starting from the classical (2.1) and using substitution (4.2) we would find
that terms contributing at the order ¢"~P are homogeneous polynomials in nj; of order
p. This is very restrictive and obviously incorrect. We already saw that even at the first
sub-leading order é"~! the homogeneous (linear) in nj terms have to be amended by a
constant, i.e. (ng)? term. This suggest the following “quantization rules”: to obtain the
quantum spectrum Qg,—1 in 1/¢ expansion, one starts with the classical perturbation
expression (2.1) and make the substitution (4.2), together with the overall rescaling by ¢".
As the order ¢" P this fixes leading, homogeneous in nj terms of order p. These terms
should be amended by the sub-leading terms of order p — 1, p—2, ..., 0 in ng. These terms
should be regarded as quantum corrections and should be determined separately, they do
not follow from the classical answer in any simple way. More explicitly,

Qon1 = A"+ &7} (ng nk+9(1> (Z gkleHklnszrzg ny, + g )

k k1,k2

~)— 3 3 3
A Y g’(ﬂ)v’fz,ksnklnbnka + 2 gél?kgnklnm +3 g+ 9@ )+
kl,k’z,kg kl,k‘Q L

(4.6)

Here ¢(®) with different number of indexes denote different quantities. The leading terms

(p)

k,....k, are given by classical expressions (2.1) upon the substitution (4.2)

) e, t
g2 = Sf D g gD (48)
2 ) ) .
3 1,3 3 n,3 3 n,3
gl(cEZn =5 lgém)7 gl(ck)z = gfigz ) gl(ck)k = fk(; ) (4.9)

for k # £ # m and g®) are given by (3.8), (3.9), (3.10). This is essentially the generalization
of (4.5) to higher orders in 1/¢. Coefficients gk2), 915;12)7 g,g ), etc. are quantum corrections
and a priory not known.

To fix g,(f) we employ the following strategy, we will try to “salvage” the Maslov index

quantization (4.3) by adding minimal possible terms subleading in powers of ny,

Qaon— I—An+cn 1ng g+ 2 (Z Iky, kznklnk2+zgk nk+g( ))+ . (410)
k1, k2
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This expression is understood in terms of the zeta-function regularization and §,(€2), g@
are different from g,&z), g . Our goal is to reproduce “vacuum energy” QY,,_1. There is

infinitely many ways to do that, for example by taking glg ) = 0, 3@ = ¢@ but we will
additionally require that the zeta-functions from (3.9) will become the sums of the form
>, kP in (4.10). This leads to

Z i (2n — Dy (j) — 27 — 1) An LI @ g2+t (4.11)

and very simple

B n(n —1)(2n — 1)An—!
52 = )(966 )A" (4.12)

This term is necessary to subtract ng-independent A" 171 term coming from )", g,(f)ﬁk
to match QY,, ; (3.7) which has no terms with the negative powers of c.

For convenience we give the full expression (4.10) explicitly

n \fr(n—i_l) n—1—j 2]+1~
Qon-1=A +zka% 21 3T (=) A Jk (4.13)
J
B n(n —1)(2n )A" 1
96¢

nfl
+ 2 Y BN (G () - 27 - 1) At

e
n—1 1 ]
S Z (2n l)fl“(n + )(2nj - 2@ 3j 2)An—j—1éj—1k2jﬁ%
nfl o . Rt .
+ %Z Z 2n 1 fr(n + )A’nfj*léjfl Z ]{:2(]73)71523+1ﬁkﬁZ + O(cnfB)'

kit j=1 4T (] + ) F(n - j) s=0

We conjecture this is the full quantum spectrum of Qa,_1 up to ¢"~2 order and verify that
it passes all available checks.

From here it is now straightforward to find Q2,1 in the representation (4.6). Coefficient

n—1
USEDY o~ 1)\3/7?r(n U (g, A1, (4.14)
=0 8T (j +3)(n - )
v(n, j k) = (2n —1) Zc s —J) + DE*H 4 (20— Dy (5) — 25 — DEYH

1 .
—5(2nj +2n —3j - 2)k%
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is significantly more bulky than (4.11), while the full expression is

n—1
Qon-1= an,1 + Z Z E%Anijiléjk%drlnk (415)
k 3=0
7—1
+ZZ€n An J— 107 1Zk2] s) 1628+1nkné
kl j=1 5=0
. (2n7 +2n — 37 — 2) ~ . . .
_ZZggL( nj + n8 3] )Anfjfléjflk%nz
k j=0
o ’U(najvk)~ —j—1~—1 -3
DD G AT i+ O ).
k j=0

To summarize, we have found the (conjectured) spectrum of all gKdV charges at first
two sub-leading orders in 1/c expansion (4.13), (4.15) and observed certain patterns which
may help fix the spectrum at higher orders. Let us spell the step to find the next 1/
order, i.e. fix the terms of order &3 in (4.6). The classical result for Qg,—1 in terms of
action variables I} was calculated up to cubic order in (2.36), (2.39), (2.40). “Energies” of
primary states QY,,_; were also calculated to this order, see eq. (3.10). Thus gk:)l’ koky 0

¢®) are known, and to find the spectrum one would only need to fix g,(cﬁz and g,(:’). To do

that one would need to find LE],(C‘?),Q and g,(f) from the expansion (4.10) to reproduce (3.10)
via zeta-function regularization and minimal possible §(3), which presumably will only

include terms with negative powers of ¢. “Restoring” §,EJ?1’),€2 and g,(f’)

from Rf’i is not a
mathematically well-posed problem. We expect that all zeta-functions ¢(—2j — 1) in RS}
to lead to the sums 3, k%17, — the rule which successfully worked at second 1/¢ order.
At third order this rule should be amended by others, as suggested by a non-polynomial
dependence on k in (2.39). In practice, restoring g,(f’) from RS’; may require establishing
the analytic form of coefficients p; in (3.10) and then reverse-engineering corresponding
k1, ka2, k3-dependent sums. Once hypothetical 915- L and g( ). and accordingly glg L and g( )
are fixed, a non-trivial set of checks is provided by the spectrum of @3, )5, Q7 generated
by computer algebra, as well as the requirement that thermal expectation values (Q2n—1)q
discussed in section 5.1 must have certain modular properties.

4.1 Computer algebra check

For n = 1 the expansion (4.15) reduces to (1.7) which is a simple check. A more sophisticated
check is provided by @3, Qs and Q7 which are known explicitly in terms of the Virasoro
algebra generators [4]

c+2 c(5c + 22)

= (12— L
@s (0 12 0T 5900

) +Qs, (4.16)

oo
Q3=2> L_Lg,
k=1

c+4 5  (c+2)(3¢+20) c(3c+14)(7c + 68)
8 576 290304

Qs = (Lg - ) + Qs (4.17)
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oo o0 o
=> Ly Lpli+2 Y LgLpLi+ Y L_xL_Ly+
k,1=0 k=1,1=0 k=1

X fc+2 c
+Z< 5 n2—4—1>L_nLn—Lg, (4.18)

n=1
and [29]

oo e}
> LogLolemLitiem+ Y LopimmIrLiLlm
k,l,m=1 k,l,m=0

oo oo
+3> Ll Lippi—mLm +3 Y L_yLg——mLiL,
k=1 k=1

m=0 l,m=0
8+c¢c | &
+—3 > (k+1)IL_xL_ lLk+l+Z —DEL_p Ly Ly
k=1 =1
L lO
84+¢ | & e
- > (k+DkL Ll + > (k= DkL_Li_Ly
3
| =0 k=0
=1
—c—141 4 Te+59 , (1 , 53 19) -
L_yLy — et —
+Z< 18 ”) nln = (8¢ T 360¢ T 90 ) 9
1 c+6 15¢% + 194c + 568 _,
- <GC + 1) Qs — Lo+ 1440 Lo
2 10 3 28 3¢ + 46)(25¢2 + 426¢ + 1400
_ (e+2)(c+10)(3c + )L0+c( ¢+ 46)(25¢* + 426¢ + ) (4.19)
10368 24883200

Using computer algebra spectrum of @3, Q5, Q7 for all descendants at a small levels m can
be evaluated explicitly, as an expansion in powers of 1/c. The resulting expressions can be
compared with the spectrum following from (4.15), which we will write in terms of quantum

numbers ny packaged as follows

My, = Z kPnj., mp = Mmp1, m=m, h=A/e, (4.20)
e
T 1 B 1
Q3 =A"+A 6m1—1 +c 4m3+% (4.21)
+< 5 : > S gs + 3 2+3h(2 )+ = + O(1/é)
mg— —mg——-mj | —=m mi + =h(2m; —mg —m — ¢
3~ M2~ 7™ 5™M2.2 115 1 0 02) + 355 ;

and similarly

. - 1 1
Qs =A%+ <15m1 - Z) A?+A¢ <20m3+12> +-&2 <8m5 - 63) (4.22)

~ (b 35 15 23
+A (12(—5m1 —42ms —|—44TH3) — ?m272—|—25m%+ ?h(le —my —m072)+m>

1 85 0
—10m3—12 4ms)—1 2 -2 G
+é (12(m1 0ms 0my+64ms) —10mg 2+20mymg 6048>+O( )
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and

o . 224 4 4 2
Qr=A'+A3 (28m1—2> +A25<56m3+370>+A~2 <m5—> +63<6 mr+— >

5 45 75
1 259
+A% (& (=Tm1—66ma+76ms) — 7,2 +98m7 +21h(2my —mo— mo2)+ o5
o 448 784 167
—|—A6<75 (7m1—7Om3—960m4+688m5)—?m4 2+5m1m3—1080)
2
+& (225(—10m1+21m3—210m5—3780m6+1704m7)
A o 2 2mim +m2)+77)
5 o2y TR T o160
Lo, (4.23)

We checked, these expressions are in agreement with the computer algebra generated
spectrum for m < 12, which serves as a non-trivial consistency check of (4.15).

5 Miscellaneous results

Explicit expression for the spectrum of quantum (J9,,—1 in large c limit opens the opportunity
to make progress in a number of adjacent directions. In this section we discuss several
applications of our results.

5.1 Thermal expectation values of Q2,1

Our first application is toward thermal exaction value of QJ2,—1, i.e. averaged over the
CFT Gibbs ensemble (Q2p—1)q = Tr(qho=¢/?4Qy,_1). This question appears naturally,
though in a more complicated form, to calculate the averaged value of Q2,1 over the
KdV Generalized Gibbs Ensemble (see section 5.2 below), if one wants to match the GGE
chemical potentials to describe equilibration endpoint of some initial state. The expectation
value (Q2n—1)q, which is essentially the one-point function of 75, (1.1) on the torus, exhibits
modular properties and can be represented as a covariant differential operator acting on the
CFT torus partition function [30]. In fact, one can average (Qa2,,—1 over a particular Verma
module, (Qap—1)aA = Tra (qLO_C/ 24Q9n_1), where sum goes over all Virasoro descendants of
the primary state |A). This sum too is a modular object and can be evaluated with help of
the same differential operator

_ AL
(Qan—1)a = Dnxa, Xa = Tra(qhom/?) =g 2y, (5.1)
n—1
D, =D"+> Pl(c,)D" 77!, D" = Dyy_y)... DDy, (5.2)
j=1

and D, = q0, — {52 is Serre derivative. Each PJ is a degree j polynomial in ¢ with each
coefficient being a modular form of weight 25 + 2,

ZP Wa-k+1E R (q). (5.3)
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Here PT(L j) are numerical coefficients and Eé? +2) is some modular form, which is a linear

combination of EZEg with 4a 4 6b = 25 + 2 for non-negative integer a, b, normalized such

that Eé?ﬁ% =1+ 0(q). For j =1,2,3,4,6 there is a unique modular form of the weight
(n,k)

2(j + 1) and therefore for these j, independently of n and k, Ej 2 = E2jy2 where

B 2 X kPgF 4
2n +<(1—27’L)0-2n 1, O-p k;l_qk ( )
For instance, in the simplest case of Q3 the operator Dy is given by
c
= Doxa = |D? E : 5.5
(@s)a = Daxa { + 1140 4} XA (5.5)

In this case P2(711) = 1/60 and P2(,21) = 1/1440. Explicit expressions for D,, for n < 7 were

found in [30]. For higher n the modular form Eé?_g and coefficients P,(ij)

Strictly speaking (5.1), (5.2) is an unproven ansatz proposed in [30]. We find it to

are not known.

be consistent with the large ¢ spectrum of Q2,—1 (4.15) and fix two leading in ¢ terms in
PJ. To compare with (5.1), we need to calculate (Qa,_1)a starting from (4.15). Here the
following straightforward identities will be helpful

<Z ngk?) A = opxa, (Z n%kp>A = (29040p-1 — 0p) XA, (5.6)
k=1 k=1
oo [ee] ,
(O kP> nel? ) A = (4040 pip—1 + 0pop) XA, (5.7)
k=1 =1

where by nj we mean the quantum numbers (1.4). Then (1.6) immediately yields

X i 1 ((=2p—1)
(Qan—1)a = A"xa + Z AP EPeh (02p+1 + 5

) xa+0@E ), (58)
=0

where we assumed the usual limit, h = A /¢ is kept fixed while ¢ — co. Comparing this
with (5.1), we immediately see that the leading A" term is coming from (we drop xa for
simplicity)

D" — (qd,)" — A" (5.9)

Similarly we can trace origin of all é"~! terms,

n(n—1) -1 _, An-1 ( 1 ) in_1n(n—1) n(2n—1)
D" 0g)" — Es(qd,)" A" - | -A"" ' ———Fy=—————F
= (00" ==y Balad)™ T = AT oo 12 24 Y
which agrees with (5.8), and
P B D1 o PO B (q0,)" 7 — PY) A B, (5.10)
for n —1 > j > 0. From here immediately follows
P =R, B =Eas,  n—12j>1 (5.11)
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To fix PT(LZJ) it is convenient to take ¢ — 0 limit and compare (Q2,—1)a with (3.7),

yielding
P _ pe) n(n—1)(12n* —16n —1)  n(n—1)(12n* — 38n + 31)
wl om0 3456 B 8640 :
@ _ 52 (n—j4)2mn—-7)—-1) ;0 .
Pn7j_Rn,j71+ 24 Pn,jfl’ n—12322

Evaluation of Eg?ﬁ% is a more challanging task and requires first using (5.6), (5.7) and
then combining pieces into modular forms to match (5.1), (5.2). We note, there are terms
in (4.15) proportional to A"1e1 but (5.1) has no negative powers of ¢. Hence these terms
must vanish after averaging, which follows from the identity ¢d,0_1 — o1 = 0 and serves as
a consistency check. The final expression reads

p@ pn2) _ 2n=1)yrl(n+1)
IR 8T (j+3/2)0 (n— )

(5.12)

¢(=2j-1)

5 Eajio—(n—1—7)C(—2j+1)Dg;Ea;

X (((2n—1)y1(j)—2j—1)

s=1

j—2
+ (2n4_ 2 > C(—=2s=1)¢(—2(j—s) +1)E2s+2E2(j—s)) :

It is valid for n — 1 > 5 > 2. For j = 1, there is a unique modular form ng% = FEj.
Also, as was mentioned above Eg;f% = Fyjio for j = 2,3,4,6, which can be checked
straightforwardly. Because of the identities between modular forms there are other ways to
write (5.12).

Explicit form of Q9, ; up to &3 order allows us, in principle, to calculate pB)

n)j ’
although calculation of ng% would require first extending (4.15) to the next 1/c order.

Given involved form of PT(L2J) and E,(L2J) we do not expect the answer to be simple.

5.2 Generalized Gibbs Ensemble
Spectrum of Q2,1 can help understand the gKdV generalized Gibbs ensemble (GGE)

paGE = € 2on Han-1 Q21 Zack = TrpgaE, (5.13)

and corresponding (generalized) partition function and free energy. Earlier attempts to
evaluate KdV generalized free energy include [15, 16, 22, 31]. The GGE describes local
equilibrium in a state carrying specific values of qKdV charges. It is expected on general
grounds that most initial states, upon equilibration, can be locally described by the GEE
with the appropriate values of chemical potentials po,—1 [32]. From the mathematical
point of view, it is of great interest to investigate modular properties of Zqag, generalizing
modular invariance of the conventional torus partition function ps,—1 =0, for n > 1.

The explicit spectrum of ()9,—1 in the large c limit allows in principle to calculate the
generalized sum over a particular Verma module

Tra e Yo H2n—1Q2n—1 (5.14)
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in the “holographic limit”: h = A/é, tn = fion_1/E" ! fixed, & — oo, by expanding
the answer in powers of 1/c. In practice sums of exponents of quadratic or higher order

Y0 (5.15)

Nk

expressions in ng

can not be evaluated, and we restrict our analysis to first non-trivial 1/c order,

o Lontn Yopsy hn I TPERC(—2p-1) /2

TI'A 67 Zn MQn—lQ2n—l — e*EZn tnh™ — 5 .
2, (1 . eszn(anl)ntnh 2F1(1,1-n,3/2,—k /h))

From here generalized partition function can be evaluated using Cardy formula (we are
only writing explicitly the chiral part),

ZaoE = 65f0+f1+0(1/5)7 (5.16)
fo=Y (2n—1)t, A", (5.17)
n=1
1 o0
Y2 = =N "t nh" 1
o nz::l nh", (5.18)

= - o n—1 o D 7pC(_2p — 1) n
flz—kz::lln(l—e )—nz::ztnh ;)gnh 5 | (5.19)
v(k) =k i(Qn — Dnt, """ 19F (1,1 —n,3/2,—k*/h). (5.20)
n=1

1= while h is a function of

Here Zagg is understood to be a function of ¢, = po,_1¢

t, satisfying (5.18). For (5.16)-(5.20) to be valid, resulting A = &h should be in the
regime of validity of Cardy formula. There are at least two limits when this assumption
is controllable. First, (5.16) is valid for any large ¢ theory in the thermodynamic limit.
We introduce the spatial circle radius L (we kept L = 1 in the paper so far) and inverse
temperature 3, pu1 = t; = 5/L. By taking L — oo, while all other chemical potentials scale
as fop—1 X ty ~ L'=2" to ensure that values of all Q2,1 o L are extensive, we find the
saddle point value h ~ L? and fo, fi ~ L. (The scaling of f; follows by substituting the
sum over k in (5.19) by an integral over x = k?/h.) In this limit second term in (5.19),
the sum over n, is sub-extensive and can be neglected. We therefore arrive at the leading
(extensive) contribution to fp and f; found in [22].

Second case when (5.16)—(5.20) can be trusted is in holographic theories, i.e. large ¢
theories satisfying HKS sparseness condition [3]. From the holographic point of view fy is the
free energy of BTZ black hole in the Euclidean classical theory of gravity with the deformed
boundary conditions such that the dual CFT Hamiltonian is H = Y, plon—1Q2n—1 [17, 24, 33].
The leading correction f1 can be interpreted as the one-loop contribution coming from the
boundary gravitons. Different solutions of (5.18) means Euclidean path integral could have
numerous BTZ saddles and the condition A(t,) > 1/12 necessary for the validity of Cardy
formula would come automatically as the requirement of smoothness of bulk geometry.
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It is possible to fine-tune chemical potentials ¢,, such that v(k) (5.20) for some k will
vanish. That will render f; divergent, indicating higher order 1/c corrects are necessary
to make free energy finite. Schematically, the spectrum Qg,—1 is an expansion in ng/é.
For the higher order corrections to contribute at the leading order, the quantum numbers
ny, should be of order ¢é. In terms of the classical problem of section 2, action variables
I, should be of order one rather than infinitesimal. In other words, leading contribution
would come from a non-trivial saddle when classical u(y) is not a constant but some
solitonic solution. Such saddles, describing black holes, which are geometrically different
from the BTZ configurations, were constructed in [24] and it was shown that for certain
parameters po,—1 they give leading contribution to generalized free energy. We dubbed
these configurations “KdV-charged” black holes to emphasize that higher KdV charges
Q2n—1, even at leading order in ¢, are different from Q7, unlike for BTZ configurations for
which u(y) = ug is a constant and Qap,—1 ~ ug.

Theoretical control over generalized free energy in the large ¢ limit can be used to probe
modular properties of Zggg. The currents T5, (1.1) have no anomalous dimension and
therefore naively Zgag should be invariant under modular transformation t; — ¢} = (27)2/t;
accompanied by

2n

t, — (=1)" (?) tn, n>1 (5.21)
This only holds to linear order in t,,n > 1, i.e. at the level of thermal expectation values
(Q2n—1)q discussed in section 5.1. At higher orders invariance is broken due to colliding
T5,, [30]. To restore invariance of Zggg, while working in the ¢ — oo limit one may require fj
given by (5.17), (5.18) to be invariant under the hypothetical transformation ¢,, — t] (tn,t1),
n > 1. More accurately, in addition to BTZ black holes described by (5.17), (5.18) we
should include vacuum (thermal AdS3) and KdV-charged black holes to the list of possible
saddles. Given a non-trivial diagram of the Hawking-Page phase transitions, to match
leading saddles, the hypothetical transformation ¢, — ¢, (¢,, t1) should be very complicated,
with numerous branches of continuity. This may indicate that in the presence of higher KdV
charges modular invariance of Zggg is not mathematically natural. Similar conclusion is
recently reached in [34], which evaluated Zggp explicitly in the case of ¢ = 1/2 free fermion
model. They found that to reproduce Zggg in the dual channel, one needs to sum over
not one but three fermion Hilbert spaces, schematically Zggr(t1,t3) o< Z1(t)) Za(t)) Zs(t)),
a mathematical observation (conjecture), which so far has no physical interpretation.
To summarize, failure to establish invariance of Zggg(t) under modular transformation
supplemented by an appropriate map t, — t,, in both infinite ¢ limit and for ¢ = 1/2
model may suggest that it is not mathematically natural and instead covariance of Zggg(t)
under (5.21) should be investigated.

5.3 Transfer matrix

In the classical case, as follows from (2.22), charges QQ2,—1 encode asymptotic expansion of
the quasi-momentum p(A). The quasi-momentum controls the eigenvalues eF2mP(N) of the
monodromy matrix of the differential equation (2.2). Instead of p(A) one can consider the
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trace of monodromy matrix
T(N\) = 2cos(2mp(N)). (5.22)

In case of the constant potential u(¢) = h this becomes T'(\) = 2 cos(2m\/A — h/4).
In quantum case T'(\) becomes the transfer matrix, which is related to gKdV charges
via an asymptotic expansion [4]

InT = “M1/2 1- Z Cn N1/2_n Q2n—17 B — 00, (5'23)
where

27T (% - %) (F (1—B2)>1+§,

K= (5.24)
=
_Vrd+gpHT ((n=3H+9) —(2n—1)(1+6)
Cn = P(n+ 1T (1+ (n— e (r(-5)) ’ :29)
B= \/l_c—\/%_c, 551?262' (5.26)

Variable p will become spectral parameter —\ in the classical limit. The original paper [4]
introduces another variable X, defined as p = A204€) . We use this definition in the reminder
of this section.

We are interested in the limit ¢ — oo, or 8 — 0. Following [4] we introduce p? = [32A
which remains finite in this limit finite, p?> — —5/46 = —h/4. (This is, obviously, a
different quantity from the quasi-momentum p(\) mentioned above.) We would like to find
T by summing the asymptotic expansion (5.23) while expanding it in powers of 3? which
corresponds to 1/c expansion. In principle we can use the spectrum (4.15) to calculate In T
acting on an excited state, but resort to a simpler calculation for InT acting on a primary
state. In this case Q2,—1 in (5.23) should be substituted by QQn 1> which we expand in
powers of 32 oc 1/c (3.7). The calculation is tedious and we only give the final expression

(In T )asympt |A) = 271/ p? — A2D (A, p)|A), (5.27)

54

_ 2

(N, p) =1+ B0 — B =3 [
64

v o [(2p FO202 — 2(p? —AQ)wflﬂ +O(8%, (5.28)
2

U\ p) = )\2>\p2 {7 + %1/) (2\/]}2 - A2) + %zp (—2\/])2 - A?)] . (5.29)

Here v is the polygamma function.

31 + 2m20 (p? — N?)(4p? — 302)]

Given analytic form of (5.27) it is tempting to extend its validity from the asymptotic
regime A — oo to the vicinity of A = 0. This is clearly wrong as even in the strict classical
limit 8 — 0 we do not recover correct classical expression for the trace of monodromy

(InT)

matrix simply from e asympt . Yet, in the limit S — 0 the correct answer is reproduced by
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the following simple conjectural expression (we implicitly assume this is an eigenvalue of T
acting on |A)),
Tguess(Av ,B,p) = e(lnT)asympt + ei(lnT)aSympta (530)

and we would like to check if it could be valid beyond the strict f = 0 limit. To that end
we expand (5.30) in powers of 5 (amended by an expansion in \), to find

Tgness = 208 <27T \ p2_)‘2> +B2 l%ﬂr;w (27+4(2p) +(—2p)) A2

2COS T
+ (—W [27+1(2p) +1(—2p))

msin(2mp
+ p(g) (2v+¢<2p>+w<—2p>—2pw<”<2p)+2pw“><—2p))) A4+0<A6>]
msin(27mp
+p* [12(pg> [3+8n2p2+12p2 (2’y+1/1(2p)+¢(—2p))2} /\2+O(>\4)] +0(8Y%).
Small A expansion of the actual 7" is given in [4] in the explicit form in terms of the integrals
of free field correlators. A comparison with Tgyess reveals that, besides the classical (Y term,
which matches the classical expression (5.22) for a constant potential v = h, only £2)\?
term coincides with, while 52\* and %A% terms do not match the correct result. We thus
conclude that the conjectural expression (5.30) is missing non-perturbative terms, which

are not captured by the asymptotic expansion (5.23).

6 Discussion

In this paper we obtained spectrum of quantum KdV charges Q2,1 in first two non-trivial
orders in 1/c expansion. Our result (4.13) and (4.15) is valid in the semiclassical limit of large
central charge ¢ — oo with the ratio of A/c kept fixed. This limit is inspired by holographic
correspondence, when CFT is dual to weakly coupled gravity. Accordingly, dynamics of
stress-energy sector becomes semiclassical, with the leading (classical) contribution governed
by integrable dynamics on the co-adjoint orbit of the Virasoro algebra. Under semiclassical
quantization classical action variables I; are promoted to integer quantum numbers ny,
and the spectrum of Qg,_1 looks most elegant in terms of variables A and & (4.2). At
each order in 1/¢ the quantum answer is a polynomial in ng. Classical calculation fixes
the leading term with the highest power of ng, while all other terms should be regarded as
“quantum corrections.” We have seen that semiclassical quantization, combined with the
values of qKdV charges Q2,1 acting on primary states, is sufficient to completely fix these
quantum corrections and obtain the spectrum of excited states at least in first two orders
in 1/c. We conjecture this quantization scheme can be extended to higher orders in 1/c.
We laid the groundwork for the next order 1/¢3 by calculating classical Qa,—1(h, Ix) as well
as “energies” on primary states QY, i, albeit in the latter case not all terms are known
analytically. To complete the job one would need to find analytic expressions for QJ, ;
and develop a dictionary that maps each term to an infinite sum, yielding this term back
via zeta-function regularization.
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It is tempting to interpret quantization of QQ2,—1 holographically, as a semiclassical
quantization of boundary gravitons in AdSs. We develop this picture at first 1/c order
in the appendix A, but holographic picture does not provide any immediate insight into
“quantum corrections” appearing at higher orders in 1/c.

The obtained spectrum has several immediate applications. First, in section 5.1 we
calculated two leading terms in large ¢ expansion of the “thermal expectation values”
(Qan—1)a = TrA(qLO*C/Man_l), where sum goes over a particular Verma module, and
compared them with the predictions of [30]. Covariance under modular transformation of
(Q2n—1)a in each order in 1/c serves as a non-trivial check of our main result (4.15). We
also fixed two leading terms in the differential operator D,, yielding thermal expectation
values via (Qon_1)a = D, Tra(gh0=/?*), see (5.11) and (5.12). Second, in section 5.2 we
calculated first 1/c correction to generalized free energy of the gKdV Generalized Gibbs

Ensemble

Zage = Tre™ Zn l"Qn—lQQn—l‘ (6.1)

The latter describes local equilibrium of a 2d CFT in a state carrying specific values of
gKdV charges. It is of great interest to further investigate mathematical properties of
ZGGeE, in particular covariance under modular transformation. Third, in section 5.3 using
asymptotic expansion we calculated quantum transfer matrix acting on a primary state
in first two non-trivial orders in 1/c expansion. Unfortunately the obtained expression is
lacking terms non-perturbative in spectral parameter, which can not be fixed from the
knowledge of spectrum of (J2,—1 alone.

There are several potential applications of our results, which we hope to address in the
future. The obtained spectrum of Q2,1 will be helpful to study generalized Eigenstate
Thermalization Hypothesis of 2d CFTs [17] at the subleading order in 1/c. We also expect
the semiclassical quantization approach developed in this paper could be helpful in the
context of Intermediate Long Wave hierachry, which is closely related to gKdV problem.
More generally, it would be interesting to bridge the gap between the semiclassical approach
of this work with the Bethe anzatz approach of [19] by taking “holographic” limit ¢ — oo
with fixed h = A /¢ of the appropriate Bethe anzatz equations.
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A Spectrum of linear perturbations from AdS;

In the classical (infinite central charge) limit gravity in AdS3 can be described in terms
of two functions u(t, p) and u(t, ) living at the boundary and satisfying EOM, @ = d,u
and U4 = — L. That is in the conventional case, when the dual CFT’s Hamitlonian is
H = Q1+ Q1 = Lo+ Lo — ¢/12. Should the Hamiltonian be chosen to be one of the higher
qKdV charges, H = Q25,1 + Qan_1, functions u, @ will be satisfying higher KdV equations

i = i{an_l,au} = (2n— 1)9R,, (A1)

and similarly for u [24, 33, 35]. In this case the spectrum of Qg,_1 is the spectum of small
fluctuations of u above the constant backgroun u = ug, that corresponds to unpertubed
metric in AdS3. In other words, to quantize Q2,1 we consider linearized EOM for small
iet+ike

fluctuations v = ug + du, where du < e is a flat wave. We want to find energy ¢ of

the flat wave which satisfies the equation of motion (A.1)
iendu = (2n — 1)00R,,. (A.2)

For example in the case n = 1 we have €1 = k, in case n = 2 we have €9 = 2ugn + %k‘?’ and
so on. In general we can get from (2.20)
n+1

n+1 3 _

Hence we find the following iterative relation for e,

§0R, 11 = (kR (ug) + 2(ug + k*)0OR,).  (A.3)

n-+1
2n+1

i1 = (2n —1) [2(u0 + k?)en + ku| (A.4)

where we have used that R,,(ug) = ugj. Each ¢, is a polynomial of the form

n—1

En =y kP Tug P, (A.5)
p=0
where (F satisfy
2(n+1) _
P _ _ P p—1
ha =@ -5 o (@), (A.6)

and we defined &, ! = 1/2. The solution is easy to find, cf. (1.6),

(2n — 1)I(n+ 1)I(1/2)
2'(p+3/2)I'(n — p)

To match the spectrum of individual bosons &, (k, up) with the spectrum of quantum

& =

(A7)

Q2n,—1 we need to restore powers of ¢ and make the following identification

~ 1

Q1 =A"+&""1>" (nk + 2) en(k,up) + ... (A.8)
k

where nj are boson occupation numbers of boundary gravitons and wug = A/é. This

reproduces the spectrum of Q9,1 at two first leading orders in 1/c and provides physical

interpretation of ni. Unfortunately the holographic picture provides no clear path to

compute higher 1/c corrections to (A.8).
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B Brute-force pertubative calculation

A straightforward but a laborious approach to evaluate Q2,1 in terms of action variables
I, would be to use Fourier modes uy of u,

u(p) = upe’™?, (B.1)
k

to parametrize the co-adjoint orbit of Virasoro algebra, i.e. the space of potentials u sharing
the same orbit invariant h (2.17). To that end up should be understood as a function of
ug [20]. Then Q2,—1 and Ij can be expressed in terms of uy, and consequently in terms of
each other.

In terms of the Fourier modes the Poisson bracket is

. C
i luk, ey = (k = Oupe + 2k> S0 (B.2)

This coincides with the Virasoro algebra upon wug is shifted by a constant. At this point we
introduce the orbit invariant h(ug) and express it in terms of uy by expanding in power
series -
h=ug+ Y U,  U,=— > Ry vee pupy * * * U - (B.3)
n=2

p17'” ’pn
p1+-+pn=0, pr7#0

After imposing 57{h(u),us} = 0 for any k we find

A pi+ps+2h
PP A(pR+h) (p3+h)
. _ piHp3+pi+6h
PR 8(pE+h) (P3 ) (3 +h)
15h* —25h%q2+h* (13¢5 —9q4) +h(—3(q5+3) +8q2q4) +¢394 — 4243 — 443

hm,pz P304 T den
where
1 2
G2 =P1P2+P1P3+Paps-+P1pa-tpapatpspa =5 > i, (B.4)
1
03 = P1P2P3 +P1D2P4+P1D3PA+P2P3PA = 3 D P (B.5)
1 1
G4 =Pp1papspa=—7 Zpﬁ—l—iq%, (B.6)
den=[(p1+p2)>+(p3+ps)*+2h][(p1+p3) >+ (p2+p1)* +20] [(p1 +pa) >+ (p2+p3) > +2h]
4
< [[ ((i+h). (B.7)
k=1

Now we can get rid of ug = h — >_,> 5 U,, and express the Poisson brackets in terms of wuy,
k #0,

ii{Uk’ ug}h = Opyo(2K) <k2 +h— i Un> + (1 = 8pqe) (k — O)uppo- (B.8)

n=2
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Our next goal is to find symplectic form associated with the Poisson brackets

C 1
w:ﬂxi Z whgduk/\duz, wkg—Zwké, (B.9)
k40,00

(n)

where Wy ¢ Is an order n homogeneous polynomial in ug. We find, order by order in uy,

Wl(c?g = —%(k,gl+h)5k+éy (B.10)
W$:=—“_5“”4M@¥i;ﬁ@+hf“”% (B.11)
wgz:_8Muﬂ+ZXW+h)g%{£?12%“Lm (B.12)

(=B ) P, (B.13)

We now would like to introduce (rescaled) normal coordinates zj near the origin u; = 0
(which corresponds to constant u(p) = h), such that

— - Z dzk ANdz_g, ii{zk, Zg} = 5k+g(2k‘)(k§2 + h) (B.14)
2k(k 24
k;éo
We find
1 1 1 P1p2+p2p3+p3p1
2 =Uk+— —— Up, Upy +— Uy, Upy U
mg;:k pipe TP p1+p§p3:k p1p2p3(p1+p2)(p2+ps)(ps+p1) 7P
pi7#0 pi#0,k
2£2+h 2k*—k?h+h? A
Z 2 2 2 ukugu,g—ﬁuku,k—i—(?(u ) (B15)
e;ﬁo ik@ —02)(2+h) 32k (k*+h)
This expression can be inverted
1 3 1 +1 3 k2
U =2k — ZmAp2 T 5 Zp1*p2~ps3
4 oa_ P1P2 24 e P1p2pa(k—p1)(k—p2)(k—ps)
pi#0 pi#0,k
1 h h(5k%+h) o

+ 2iz p+0(2Y).
2 p1+p2=0 p1p2

(k—p1) (k—pa)[(p1—pa)2+4h] P P27 3okA (k2 h)2

(B.16)

We are now ready to introduce action and angles variables I}, 0, such that %w =3 Al NdOy,

2 —10
S S— S B.17
2%(K2 + h) ke (B.17)
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This leads to

1
T 2k(E2+h)
L Upl_f + ! ! Up, Upy U
= 51712 L N WkU—k T s T ——Up; UpyU—E
2k(k% + h) 8k(k% + h) plﬂ;zozkplpz
Di

I L2k (B.18)

1 1

S = O(u).
Sk(k2 + h) m%:_k prpg ek T OL)
pi7#0

+

At this point we can go back to ug = h — > o2, U, are represent it in terms of action
variables (by expressing both sides as a series in zy),

Qi=uo=h+>_ kI +0(z°). (B.19)
k=1

This matches the exact relation (2.24) up to the fifth order in zj, reflecting the expansion
order in (B.16).

To find Q2,1 in terms of I}, we first write an iterative relation for the Fourier modes
of Gelfand-Dikii polynomials, which satisfy (2.20),

1 .
Ror = —/dcp e kPR, (B.20)
k 2
n+1 9 1
Ry = 2(k* + uo) Rugy + Qan—1u + — > (2k — OugRy |, (k#0).
2n +1 k ’
20,k
Then, using the relation between Q2,1 and R,
By = o Q1 0} (B.21)
mh T k(2n — 1) 24 Lo Uk ‘

we find

2
2(n+1)(k +u0)264{Q2n—17Uk}

c .
Q{szb ur} = ik(n + 1)Qan—1uy +

2n —1
n+1 2k—0¢ ¢
— - ¢} B.22
+2n_1€§0:k 1 U 1 @21, ur—c} (B.22)
We use the following ansatz for QQ2,—1 in terms of wg,
g (n) ! (n)
Qon-1 = 1"+ 21 D Gy lntp + 31 D G o Una g (B.23)
" p1+p2=0 " p1+p2+p3=0
pi#0 pi#0
1
- ] Z qz()?,)pz,pg,,pzzuplum Upy i, + O(u®),
" p1+p2+p3+pa=0
pi#0
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and the iterative relation (B.22) becomes the iterative relation for ql(,?,)m,pi for i =2,3,4,

(n+1) _ 2(n + 1)(1(:2 +h) (n) (n+1)h"
k—k 2n — 1 D=k T 912 4 1)’ (B.24)
e I e 1)(pi +p3 +p3 + ) 1)h"(p? + p3 + p3 + 6h) (B.25)
PP 3(2n —1) Pepsrs 8(pt + h)(p3 4+ h) (03 + h) '
n+1 PL—DP2  PL—DP3\ (n) .
— 32n 1) K P + s ) Qp,,—p, T Symmetric w.r.t. p1,p2, p3.
(B.26)
These can be solved as follows
— n—1 m
m _ (h+EH"2(2n)! (2m — 1! ( h ) B
_ 27
=k 42n -3 =" em!l \hik2) (B.27)
(n) _ (2n ” 2m — 1
% [pl(pl + h)n7m72 +p2(p2 + h)nfmf2 +p3(p§ + h)nfmfﬂ )
Our goal would be to match (B.23)with the expansion
Qon1 ="+ S (A" I+ [ + 5 Z feTle+O(%),  (B.28)
= M 1
|
by expressing Ij in terms of uy using (B.18). This leads to
170 = 2k(k? + gl (B.29)
and the relations for f; (n2) , f,gZ) in terms of q;(,?,)m,pi. To fix f, (n2) , f,gy), we would not need
qz(ol?pz,pg’m with arbitrary pi,...,ps, but only q,(fzkyeﬁg, including the case of k = ¢,
(n) n,l n,l
Nol I N 1 f1§+e) n fzgfe)
kbl 4L0(k2+h) (2 +h) | 8K22 \ (k+0)[(k+0)2+h] | (k—0)[(k—0)2+h]
1 n,1) (n,1)
- k(202 +0) Y — 0282 - h) £ B.
22— ) () (1) FEEER LMY R £Y] (B.30)
and
q(n) _ flgn’Q) B (2]€4 — th + h2)f]§n71) + fQ(ZJ) (B 31)
Rk, =k =k k2(k2 + )2 8k5 (k2 + h)3 16k5(4k% + h) ‘

The iterative relation for q,gnz v —p 18 cumbersome. Instead, it is more convenient to work

directly with the iterative relation in terms of f]gn,2) and f]g?)

(n+1)(k* +h)

fn12) _ 20+ D + 1)
K B 2(2n — 1)

P [(4n — 1)k = 3hlgy",,  (B.32)

flgn,Q) +
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and

nr1) 2(n+1)(E24h) (n
zif) o1 f,ﬁ,g) (B.33)

2(n+1)(k®>+h)kl
(2n—1)(k2—12)
Once everything combined together we find

(1) _ (20)Wk(h + k%)" 1 Yom-1)/ B \™
" 2= 2, ) <h+k:2> ’

208 1)l () 20k ) k22— 2m)gl”, .

(B.34)
m=0

1 2yn—2 n-1 m— 1 — 1\ J
o = Bkt E) Bhot k2 - aktm) S G DR AT g g
k

16(2n — 3)!! 0 ]:0 (25" h + k2
and
n—1
(n) (277,)”1{36 M h /‘6‘2 n—j—1 h EQ n—j—1
Tni = 4(2n — 3)1(k2 — £2) jz:(:) 2! [( ) e+ }
(2n)Nke nz:l mzjl (25 — DA
4(2n —3 '!mOJO (29)!
% {(h_i_ k?)m—j—l(h +€2)n—m—1 + (h+€2)m_j_1(h+ kQ)"_m_l} . (B.36)

Although written in a different form, this result is in agreement with (2.34), (2.35),
and (2.38).

C One-zone potentials: details

One-zone potentials u can be found from the condition {Q3+ aQ1,u} = 0 for some constant
a. From here we immediately find, see section 2.4 of [24],

a  k? 4
o= -0 = 15 (0s(r )t 4 04(1)Y), (C.1)
« k:2
M= =g = 15 (0a(n)! = 0a(7)"), (G-2)
o /~c2 4 4
Ao = o1 + (02(7-) + 603(7)%). (C.3)
Pertubatively, i.e. in the limit of small ¢ = €™, corresponding potential is
2k4
=h+ k3 n hq — 16k?q cos(kyp) — 32k%¢* cos(2ky) + O(g?). (C4)
There are useful relations involving Jacobi elliptic functions and hypergeometric func-
tion,
11
11 F(3.5151-m)
A 4 T _ 2 _ 4
mim6(r)/63(r),  F (5o kim) =6a(r), P(LLim) R
27994
F(2,31;m In 62 o0 2n+1 F(2,11;m
(2 2 ):14—26 n 3(7')7 —162 q - 2—1—293(7)4—294(7)4 (2 2 ):0.
F(%,%,l;m) dlnm n—0 (1-q ) F(%,%,l;m)
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We also list here more terms of the g-expansion of Iy,

_ 32k3%¢% 64¢* (3R*KP+12hK°+K7)  128k3¢C (3h* +42h3 k% +108R%k* — 58k +k®)
~ Rz ' (o k2)° (h+k2)°
N 128k3¢8 (7ThS+156h°k2 +1083h1k* +1232R3K° — 4035h2 k% + 788 K10 4 k12)
(h+k2)"

I,

+0(¢").
With help of @1 = h + kI, immediately yields (1 as an h-dependent ¢ expansion. Together
with (2.29) this yields ¢ expansion of A,

_ b 8hk* 5 16hk*(R*—9k") , 32hk*(h'+2h°k* —32h%k" —98hKO +63k®)
Ty k! k2+h)3 ! (K24 1)

*+0(q").

The relation for I in terms of ¢ can be solved for ¢ in terms of I} iteratively,

o (h+K?) (30 + 121K + k) I’e (15h3 + 87h2k?* + 105hk* + KkF) "
7= gk 512)5 k 81929 K
(187h* + 1402R3k?* 4 3012h%k* + 16061k5 + K°)

4 5
B 262144k12 Iy + OLy)-

D Perturbative calculation for finite-zone potentials

We start with the two-zone case and parametrize corresponding differential dp with help of
two infinitesimal parameters €1, €2 and Ag,

]C2

A1 :)\g—i-z—i-el+a16%+b16162+61€%—|—..., (D.l)
]€2

Ao :)\0+Z—ael+a26%+b26162+c2e§+..., (D.2)
62

A3 = /\0+Z+eg+a36%+bgqeg+c3e§+..., (D.3)
EQ

A= N+ i bes + a4e% + baereg + 0463 + ..., (D.4)
k:Q 2 2

r = )\O—I—Z—i-dlel +€16162—|—f162—|—..., (D.5)
£2 2 2

r9 = \o + s + do€] + ea€r€ea + f262 + ... (D.6)

The parametrization is redundant, with different choices related by redefinitions of €1, €.
We assume €1 ~ €9 are of the same order and in what follows we refer to expansion in €1, €9
simply as € expansion. While keeping two-zone case in mind for concreteness, most of the
discussion below applies to m-zone case with arbitrary m.

D.1 a-cycles

To impose a;i-cycle constraint (2.9), we need to integrate from A; to Ay. By introducing = via

:)\2+)\1+ A2 — A\

A
9 Ty

(D.7)
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and then expanding in powers of € we reduce the integral to standard integrals of the form

Udza® /al(n+1/2)
1yV1-22  T(n+1)

Provided we want to find (J2,—1 in terms of I by expanding up to p-th power, we would

(D.8)

need to keep 2p terms in e-expansion, up to and including €??. This method works for any

a-cycle integral and any number of zones.

D.2 b-cycles

We start with the bi-cycle, which goes from Ay to A1, and introduce another variable z

A= )\1 — 33()\1 - )\0) (Dg)

We can use the proximity of Ay to A3 to expand /(A — A3)(A — A\4) in €. Now the integral
of interest reduced to a sum of integrals of the form

1 dxP
/ zP(z) (D.10)
0 Vz(l—2)(16w + z)(x — c)"
where 16w is a small parameter of order e,
Ao — A1
16w = D.11
W=y (D.11)

P(z) is some polynomial and ¢ = 1 — £2/k? (we assumed ¢ > k). The integral (D.10) can
be related to

1 dx z™
Jn(c) := / D.12
(c) 0 Vz(1—2)(16w + z)(x — ¢ ( )
by differentiating over c. To evaluate it, it is helpful to first introduce the integral
I, = /1 do " = i am (n)w™ + i b (n)w™ Inw (D.13)
i 0 \/Ji(l - x)(16w + J") m=0 " m=n " ’ .

which can be expressed as formal series in w. Coefficients a,,(n) for n > m and by, (n) for
any n, m can be found analytically

am(n) = (o™ (m i %> tn - m), n>m, (D.14)
T(m+ 1T (=m+n+ 1)

) — 16™(~1)"*1T (m + §) D15
" _F(m—i—l)I‘(m—n—i—l)F(—m—i—n—F%). .

To find a,,(n) for m > n we can use the iterative relation

I = (1= 2n)(In — Tn_1) — éaw([n+1 _ 1), (D.16)
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which follows from the integration by parts, and a,,(0) which can be found directly
from (D.13) since the corresponding integral can be evaluated analytically. For example we
find the following iterative relation for a,(n),

(—=1)m22m 30 (2m + 1) 8(2m + 1)am,(m)

Gnet1(m +1) = T(m + 2)2 a m+1 ’

ap(0) = 0. (D.17)
So far we are interested only in first 2p powers of w, we only need to worry about a,,(n)
with m < 2p. In our case p = 3 and we simply tabulate values of a,,(n) for 0 < m < 6 and
m > n for convenience

0
8 8
—84 —104 —112
am(n) = | 20 1152 &% 456
37310 42040 60992 68224
87310 _ 42000 _jG36g 60992 G522
820008 180656 203584 1189248 1478144 1666048

5 5
_ 11153912 _ 12097344 _ 7995904 _ 9011456 _ 17549824 _ 65468416 _ 74166272
5 5 3 3 5 15 15

Going back to (D.12), we can expand (z — ¢) in the denominator into power series in
x, thus reducing the integral to a sum of (D.13). Provided n > 2p and so far we are only
interested in terms of order w” and w” Inw with r < 2p, only relevant contributions would
come from a,,(n)w™ term in (D.13) with m < n. Corresponding coefficients are known
analytically, (D.14), and can be re-summed yielding,

2p (—16)™w™T (m + %) I'(l —m)oF (Ll —m;l—m+ %; %)

2p+1
c'(m+1) + O™,

Jn(c) = —

m=0

Here 2F} is regularized hypergeometric function and this expression is only valid for n > 2p.
To extend it to smaller n we use the iterative relation, which follows from the integration

by parts, p ;
n+1 — in

C

T = (D.18)

This completes technical preliminaries as now integral over b; cycle can be reduced to a
number of integrals J,, and their derivatives, so far we are only interested in terms of order
w” with r < 2p. Clearly, the approach above can be used to evaluate integrals over b; when
there are more than two zones. In this case one would need to evaluate integrals

1 n
/0 Va(l - x)(lGijim:c) m g —c) (D-19)
where m is the number of zones. This can be reduced to (D.12) by noting
m-1 mol
gnggg_@a (D.20)

with the appropriate coefficients «;.
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To evaluate the integral over bs-cycle from Mg to Az is more challenging because in the
€ — 0 limit there are singularities appearing at both boundaries. There is a straightforward
but complicated way. By appropriately changing variables and expanding in € all terms
except for /(A — A1)(A — A2)(A — A3) (A — \g) we reduce the calculation to the integral

x?’l

1
/0 T =) (6w £ o) (1 16u —2)

(D.21)

for positive small w, u. The indefinite integral of this kind can be evaluated analytically.
Then the definite integral above can be integrated by expanding it powers of w,u (which
both are of order ¢), and keeping terms up to order 2p. This is an involved exercise and
instead one can use one of the following shortcuts.

In the particular case of two-zone potential, instead of evaluating integral over bs, one
can combine the integral over b; and by such that the contour would enclose Ay, ..., As.
Now one can deform the contour to go from A4 to infinity, if necessary accompanied by a
circle at infinity. At this point integrand can be expanded in € such that brunch-cut from Ay
to Ay disappears, yielding pole singularities at A = \g + k%/4. At this point corresponding
integral can be rewritten as

—16w P(x)
74—00 TG+ B0 o (D.22)

where P(z) is some polynomial and 0 < ¢ < 1. We also emphasize that to render this
integral finite, one may need to close the contour at infinity. This integral can be decomposed
into a sum of integrals of the form

—16w "
ﬁoo da V(1 —z)(z + 16w)’ (D.23)
and
BN ! (D.24)
7{00 Vel —z)(z + 16w)(z —¢)’ '

and its derivatives. First integral can be reduced to (D.13) by deforming the contour to go
from 0 to 1. Last integral can be reduced to Jy and J; with help of modular transformation
mapping oo to 1, —16w to 0, and 0 to —16w.

x + 16w
z—1 "

(D.25)

This shortcut works for two-zone case, but with more zones present it is not applicable.
Neveftheless there is a very simple trick which make evaluation of by and other b-cycles
unnesessary. Indeed, to satisfy (2.9) and (2.10) for all cycles, it is sufficient to satisfy (2.9)
for all cycles and (2.10) for b; and also impose that the expansion (D.1)-(D.6), and its
generalizations for the case of more than two zones, is invariant under permutation of
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indexes and k; defined in (2.11). Say, for two zones we find

k2 3e2 4e3k? 3
_ Mo it ST A D.2
A1 = Ao+ 1 a9t +€2(k2—£2)+0(6 ) (D.26)
k‘2
Ay = Ao + Z + €1, (D.27)
k2 2 2 2k2 .
r1=MA+—+ I © +0(e%), (D.28)

4 T2k T (k= e

and A3 4,72 related to A1 2,71 by the exchange €1 <+ €2 and k <+ ¢. The same logic with the
permutation symmetry works for any number of zones.

Above we only explicitly wrote terms up to €2, while evaluating all terms up to €. The
simple form of As above is a parametrization choice. With this choice taking es = 0 does
not close the second zone. One can check that taking

20%¢2

€ =
such that A4 = A3 would make I; dicussed below vanish. Alternatively one could chooe ¢;
to control the size of Ag; — Ag;_1, but with this choice both all A; would depend on all ¢;.

D.3 Evaluation of I, h and Q2,1

Evaluation of action variables I, as a pertubative series in ¢; is straightforward. It is an
integral over a-cycle and therefore can be evaluated along the lines discussed above. The
only difference, in comparision with the discussion in subsection D.1, is the term In A, which
needs to be expanded in powers of € yielding polynomials in x in the numerator of (D.8),

2
2¢1

i=— 1
T k(o + k2/4)

+O(e%). (D.30)
Again, we only keep terms up to €2 for simplicity.

Evaluation of h is also straightforward. To that end one needs to calculate p(0), given
by an integral from 0 to A\g. After expanding the integrand in powers of € it becomes the
integral which can be evaluated in a closed form, yielding

2¢? 263 + oo 3)
k2o + k2/4) (N + £2/4) <)

h/4 = Ao+ Ao ( (D.31)

Finally, evaluation of Q2,—1 for any given n is also straightforward since \; are known
explicitly. As a result we obtain I, h,Q2,—1 as functions of Ay and ¢. One can then
reverse-engineer coefficients in (2.1) such that it is satisfied.

E Spectrum of @, 1 acting on primaries

In this appendix we outlined calculation of QJ, (3.6) following [27]. Starting from the
Schrodinger equation (3.2), one introduces the following change of variables

1

U(z) = BIU=3/D/40,(=3/D/4y () 5 = Braw, (E.1)
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such that (3.2) becomes
— 202y + Z(w)y =0, Z(w)=w, €=FE 2. (E.2)

Taking € as a formal small parameter this equation can be solved via WKB expansion,
1 [o¢]
y(w) =e5™ —e§" 87+ 7=0, Sw)=) €S, (E.3)
n=0

The resulting Riccati equation can be rewritten as the iterative relation to find S, with
Sy = —+v/Z(w). It is more convenient for what follows to make another change of variables
z = w®(41/2) and introduce the polynomial ansatz

S =i a zl_ﬁgn, S, = Z i”c,(gn)z_k+(”_1)(1_1/2a)(1 — 2)k=Gn=1)/2 - (F 1)
k=0

The Ricatti equation rewritten in terms of cfgn) gives rise to (3.4), which can be used together

with (3.5), to iteratively find ngn). The first few c,(c") read

1 1
C(()Z) = ga, c§2) = Z(Qa—l), 052) = —@(41}(12—1). (E.5)
3 15a% (3 9a? 9a (3 1 3 3 3 1
cé):——8 , cg):—T T cg)zioﬂ(uQ—l)JrZ—g, cg):—%(4u2az—1).

(E.6)

To obtain QY, ; one needs to integrate Sa,(w(z)) over a Pochhammer contour yp,

r <§ —n— 2”_1) _
o _ bl 50 ) (20— Dl(n+1); X
Q) =(~1 o (1 - 2%1) ot Ion—1(o, 1), (E.7)
an—l = ! dz S'Qn(z) (ES)

9 (1 _ e—m(in—n) b

This integral can be evaluated using,

(1 — 2™ (1 — ¢27) B(q, b) = / dz 221 (1 — )b, (E.9)

TP

where B(a.b) is the Euler beta function. Combining everything together yields (3.6).
Evaluating Q9,, ; explicitly, using computer algebra to solve for c,(cn) iteratively, for
small and moderate n is an easy task. To obtain 1/c expansion of A9, ; for arbitrary n
requires knowing corresponding c,(gn) in 1/c expansion, i.e. in the limit of large a. This
proved to be a difficult task. We obtained first three non-trivial terms of A3, ; in 1/¢

expansion (3.7), with the first two terms (3.8), (3.9) in closed analytical form. Functions y;
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and (; there are defined as follows

J 1
) = , E.10
y1(5) ZZ:;) T (E.10)
oyt (E.11)
Yya(J _ZZO (26_’_1)27 .
Gj) = ¢(—2j1 — 1)¢(—242 — 1), (E.12)
Ji+j2=j3
GE) = > (=251 — 1)¢(—2j2 — 1)¢(—245 — 1), (E.13)
J1t+jo+is=j

where sum goes only over non-negative ji, j2,j3. Third term (3.10) was fixed up to one
coefficient p;, with the first several values for 0 < j < 17 given below

< 31 103 7883 868487 505639 394694297 68117454019 4929720750223
pj=

2247576 21120° 7488007 100800 13708800 = 321753600 ° 2540160000
_199232137825687 48745030162337923  618684597383137 7442737871872435019

9180864000 167650560000 134534400 87783696000 ’
 1420749127340184137621 46636700018927407368821  198277953077778046100039
788237049600 ’ 1065512448000 ’ 164670105600 ’
21869843836862719834306038469  31428771773709445918185916879
587058612940800 ’ 24404109649920 ’
4187283526052269558397574465940213 >
84663488093184000 )
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