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1 Introduction

Conformal invariance in two dimensions is a very powerful tool which gives rise to many
non-pertubative relations constraining dynamics of 2d CFTs. Among them is universality
of stress-energy tensor sector [1], namely any correlation function which includes only
stress-energy tensor and its descendants depends only on central charge c but not on any
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other details of the theory. An analytic form of all such correlators can in principle be
found in a recursive form [2]. The stress-energy sector can be regarded as integrable, even
if the whole theory is understood to be chaotic [3]. This can be justified formally by noting
there is an infinite number of mutually commuting quantum KdV charges [4–6] — local
charges Q2n−1 of the form

Q2n−1 = 1
2π

∫ 2π

0
T2n(ϕ) dϕ, (1.1)

where the densities T2n are appropriately regularized polynomials in stress-energy tensor
T (ϕ) and its derivatives. First charge

Q1 = L0 −
c

24 = 1
2π

∫ 2π

0
T dϕ (1.2)

is the CFT Hamiltonian. (Here and below we consider 2d CFT on a cylinder. Because
of standard factorization into left and right-moving sectors we restrict the discussion
to one sector only.) Interest in integrable structure of 2d CFT stress-energy sector has
been reignited recently in the context of Eigenstate Thermalization Hypothesis (ETH) [7].
Following original works [8–16] it has been conjectured and confirmed in [17] that 2d CFTs
exhibit generalized ETH with the local equilibrium being described by qKdV Generalized
Gibbs Ensemble (GGE). Schematically the role of qKdV charges is as follows. The CFT
Hamiltonian (1.2) is highly degenerate with all CFT descendant states of the form

|E〉 = L−m1 . . . L−mk |∆〉,
k∑
i=1

mi = m (1.3)

sharing the same energy E = ∆ + m − c/24. Since all Q2n−1 commute, they can be
simultaneously diagonalized giving rise to mathematically unique “integrable” basis of
eigenstates. Unlike the energy eigenstates of the form (1.3), which fail the ETH, integrable
eigenstates carry specific values of Q2k−1-charges and obey generalized ETH. This novel role
of qKdV symmetries motivates the question of “solving” integrable structure, i.e. evaluating
spectrum of qKdV charges and finding integrable eigenstates, which would allow detailed
studies of generalized ETH and qKdV GGE thermodynamics.

In certain sense the question of finding qKdV spectra can be regarded as solved: there
is not one but two distinct ways to write an algebraic Bethe-ansatz reducing the problem of
finding spectra to a bunch of algebraic equations [18, 19]. In practice complexity of these
equations grows very rapidly with the level m (1.3), making this approach useless in the
context of ETH, at least so far. The ETH holds in thermodynamic limit, it may not and
does not hold beyond that regime. Thermodynamic limit assumes the length of the spatial
circle L goes to infinity, with the energy density E/L kept fixed. Using rescaling, one can
always bring the circle to unit radius, the notations we use throughout the paper. The
energy E then must go to infinity as L2 with L→∞ being an auxiliary parameter keeping
track of corrections to various ETH-related identities. For any given primary state |∆〉 this
essentially means the descendant level m must be taken to infinity, i.e. we arrive exactly at
the limit where algebraic Bethe equations become most difficult.
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A progress was achieved by taking an additional limit of large central charge. In this
case Q2k−1-eigenstates, akin to (1.3), can be parametrized by a set of natural numbers,
which can be conveniently combined into a Young tableau [16].1 It is most convenient to
use representation when nk ≥ 0 for k = 1, 2, . . . counts the number of rows of length k,

|ni〉 ≡ |n1, . . . 〉,
∞∑
k=1

k nk = m. (1.4)

We emphasize (1.4) are eigenstates of Q2n−1 and thus differ from (1.3). Corresponding
eigenvalues at leading order were conjectured in [22]2

Q2n−1|ni〉 = Q2n−1|ni〉, (1.5)

Q2n−1 = ∆̃n +
n−1∑
p=0

ξpn ∆̃n−1−p c̃p
( ∞∑
k=1

k2p+1nk + ζ(−2p− 1)
2

)
+O(c̃n−2),

ξpn = (2n− 1)
√
π Γ(n+ 1)

2 Γ(p+ 3/2)Γ(n− p) , ∆̃ = ∆− c̃, c̃ = c− 1
24 . (1.6)

Here we assume the scaling when c→∞ while ∆̃/c̃ = h is kept fixed. No thermodynamic
limit is assumed. This is the limit of holographic correspondence, when CFT is dual to
semiclassical gravity. The holographic picture provides an easy derivation for the leading
1/c terms in (1.6) and provides interpretation for nk as the boson occupation numbers of
the boundary gravitons, see appendix A. From the mathematical point of view simplicity of
eigenstates parametrization with help of Young tableaux as well as relatively simple form
of (1.6) can be readily understood from the semiclassical quantization of the co-adjoint
orbit of Virasoro algebra. Indeed, as is explained in [20] in the large c limit Virasoro algebra
can be understood in quasi-classical terms, as quantization of the Kirillov-Kostant-Souriau
symplectic form. Because of U(1) symmetry semiclassical quantization of Q1 is exact,

Q1 = ∆̃ +
( ∞∑
k=1

k nk −
1
24

)
= ∆ +m− c

24 , (1.7)

but for all higher Q2n−1, n > 1 it is not. It is a perturbation series in 1/c̃, which plays the
effective role of Planck constant. In this paper we develop a perturbative scheme to obtain
the spectrum of Q2n−1 as a series in 1/c̃ expansion and calculate first two non-trivial terms.
The result is summarized in (4.15).

In the strict c→∞ limit when the problem becomes classical, CFT stress-tensor T can
be substituted by an element of the co-adjoint orbit of Virasoro algebra 24

c u, where u is a
potential of an auxiliary periodic Schrödinger equation. Then quantum KdV charges (1.1)
reduce to conventional KdV Hamiltonians of the periodic problem

Q2n−1 = 1
2π

∫ 2π

0
(un + . . . ) dϕ, (1.8)

1Appearance of nk to parametrize the eigenstates can be understood from the Virasoro algebra, which in
the large c limit reduces to a product of Heisenberg algebras, with nk being the corresponding quantum
numbers [20, 21].

2Since ref. [22] was working in the regime of both large central charge and thermodynamic limit Q1 ∝ cL2,
it only conjectured the term linear in nk, as the nk-independent term is 1/L2 suppressed.
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which we denote the same as the quantum ones, as it clear from the constant which, classical
or quantum version, we had in mind. For the states with large but finite level m number of
non-zero nk will also be finite. At the classical level this corresponds to finite-zone potentials
u, which form a finite-dimensional symplectic manifold equipped with the structure of a
completely integrable system. Hamiltonians Q2n−1 can be re-expressed in terms of the
action variables Ik and the orbit invariant h,

Q2n−1 = hn +
∞∑
k=1

n−1∑
j=0

ξjn h
n−1−jk2j+1 Ik +O(I2) (1.9)

which at semiclassical level become integral quantum numbers Ik → nk/c̃. It is then easy
to see that (1.9) becomes (1.6), up to an overall factor c̃n and certain corrections. At each
power of 1/c̃ classical expression Q2n−1(h, Ik) predicts only leading power of nk while all
subleading powers are “quantum corrections” which must be fixed separately.

At leading 1/c̃ order quantum correction is just nk-independent constant term pro-
portional to ζ(−2p− 1)/2, see (1.6). It can be fixed trivially by introducing Maslov index
Ik → (nk + 1/2)/c̃, such that constant term can be formally rewritten as the vacuum energy
of “quantum oscillators” with frequencies ωk and occupation numbers nk

Q2n−1 = ∆̃n +
∞∑
k=1

(nk + 1/2)ωk +O(c̃n−2), ωk =
n−1∑
j=0

ξjn ∆̃n−1−j c̃j k2p+1. (1.10)

Unfortunately this simple trick fails beyond the leading order in 1/c̃. At 1/c̃2 order one has
to fix both constant and linear in nk terms, while simple Ik → (nk + 1/2)/c̃ substitution
leads to incorrect results.

We propose and verify up to 1/c̃2 order that the subleading “quantum correction” terms
can be unambiguously fixed starting from the analytic expression in terms of 1/c̃ pertubative
series of the eigenvalues Q0

2n−1 of Q2n−1 acting on the primary state |∆〉. For leading 1/c̃
term this statement is trivial — taking all nk = 0 yields the constant term, which is simply
leading 1/c̃ term in Q0

2n−1. At the 1/c̃2 order this statement is more nuanced: naively
Q0

2n−1 only fixes the constant term with all nk = 0, but we show linear in nk terms can
be also fixed starting from Q0

2n−1. As a result we obtain spectrum of Q2n−1 up to first
three orders in 1/c expansion, including the leading ∆n term. We then apply the obtained
result to evaluate thermal expectation values of Q2n−1, free energy of the KdV Generalized
Gibbs Ensemble, and the asymptotic expansion of the quantum transfer matrix acting on a
primary state |∆〉, all at first few leading orders in 1/c.

The paper is organized as follows. In section 2 we discuss classic completely integrable
system associated with the finite zone potentials and evaluate Q2n−1(h, Ik) as a perturbative
series in Ik. In section 3 we discuss analytic form of Q2k−1 acting on primary states. These
two pieces are combined in section 4 where we employ semiclassical quantization to obtain
the spectrum of qKdV charges in the first three orders of 1/c̃ expansion. We also perform
consistency checks, confirming our result. Section 5 is devoted to applications of the
obtained result. In section 5.1 we calculate thermal expectation values of Q2n−1 and fix
two leading orders in 1/c of the associated differential operator Dn

Tr∆(Q2k−1 q
Q1) = Dnχ∆, χ∆ ≡ Tr∆(qQ1). (1.11)
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In section 5.2 we discussed KdV Generalized Gibbs Ensemble and calculate its free energy
− lnZGGE,

ZGGE = Tr e−
∑

n
µ2n−1 Q2n−1 , (1.12)

at leading order in 1/c. In section 5.3 we use the asymptotic expansion to calculate the
quantum transfer matrix acting on a primary state at first two orders in 1/c expansion. We
use analytic continuation to extend the validity beyond the asymptotic regime, but notice
that certain non-pertubative terms are missing. We conclude with a discussion in section 6.
The paper also includes a number of appendices. Appendix A provides an easy derivation
of (1.6) by quantizing boundary gravitons of semiclassical gravity in AdS3. Appendix B
evaluates Q2n−1(h, Ik) at first two orders in Ik by explicitly introducing normal coordinates
at the origin of the co-adjoint orbit of the Virasoro algebra. Appendix C provides technical
details concerning Novikov’s one-zone potentials. Appendix D develops the technique of
dealing with the multi-zone potentials in the limit of the infinitesimally small zones. Finally,
appendix E provides the details of calculating the spectrum of Q2n−1 acting on primary
states based on ODE/IM correspondence.

2 Calculation of Q2n−1(h, Ik)

In this section our goal is to find expression for Q2n−1 in terms of the orbit invariant h and
action variables Ik, by expanding pertubatively up to cubic order in Ik,

Q2n−1 = hn +
∑
k

f
(n,1)
k Ik + f

(n,2)
k I2

k + f
(n,3)
k I3

k +
∑
k<`

f
(n,2)
k,` IkI` (2.1)

+
∑
k 6=`

f
(n,3)
k,` I2

kI` +
∑

k<`<p

f
(n,3)
k,`,p IkI`Ip +O(I4).

Coefficients f are h-dependent. First three f (n,1)
k , f

(n,2)
k , f

(n,3)
k will be found using one-

zone potentials in section 2.2. Using two-zone potentials we will find f (n,2)
k,` and f (n,3)

k,` in
section 2.3, while coefficient f (n,3)

k,`,p will be fixed using three-zone potentials in section 2.4.
An alternative brute-force derivation of (2.1) up to quadratic order in Ik is given in the
appendix B.

2.1 Finite zone potentials: an introduction

The starting point is the “Schrödinger” equation

− ψ′′ + u

4 ψ = λψ, (2.2)

with the periodic real-valued potential u(ϕ + 2π) = u(ϕ). For any real λ there are two
linearly-independent quasi-periodic solutions

ψ±(ϕ+ 2π) = e±2πi p(λ)ψ±(ϕ). (2.3)

Here quasi-momentum p(λ) could be either real or pure imaginary. Values of λ ∈ R
for which p(λ) is imaginary are called “forbidden zone.” At the end of forbidden zones
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p(λ) is integer or half-integer such that ψ± become periodic or antiperiodic and linearly
dependent. Normally, for such λ, another linearly independent singular solution appears.
Yet occasionally there are two linearly independent regular periodic or antiperiodic solutions
for the same λ. In this case forbidden zone degenerates and disappears, with p(λ) being
real everyone in the vicinity of that point. We provide examples below.

A general potential u would have an infinite number of forbidden zones, but there are
special classes when only a finite number of forbidden zones are non-degenerate, Such u are
called finite zone potentials. They were introduced in a famous work [23] and often refereed
to as Novikov potentials.

Example: zero zone potential. Let us consider a constant potential u = 4λ0 = Q1
with some real Q1. A solution to (2.2) can be readily found

ψ±(ϕ) = e±ip(λ)ϕ, p(λ) =
√
λ− λ0. (2.4)

For any λ > Q1/4 quasi-momentum is real, i.e. there are no forbidden zones, except for
λ ∈ (−∞;Q1/4). The solutions (2.4) are linearly independent, including λ = (Q1 +k2)/4 for
natural k, when ψ± are (anti)periodic. Values λ = (Q1 + k2)/4 mark the ends of degenerate
forbidden zones.

Example: “opening” a zone. Let us now consider the potential u = Q1 + ε cos(kϕ) +
O(ε2) where Q1 is a constant, k is positive integer, and ε is some infinitesimal parameter.
Using quantum mechanics perturbation theory we find at leading order that all eigenvalues
of periodic and anti-periodic problems remain the same and double-degenerate, except for
λk which splits into

λ±k = Q1 + k2

4 ± ε

2 . (2.5)

Hence now there are two forbidden zones, (−∞, Q1/4) and (λ−k , λ
+
k ).

Finite-zone potentials are characterized by the ends of non-degenerate zones λi. For
the zero-zone potential above there is only one parameter λ0 = Q1/4. After one zone is
opened, there are three parameters: “energy” of the ground state λ0, λ1 = λ−k and λ2 = λ+

k .
In general an m-zone potential is characterized by

λ0 < λ1 < · · · < λ2m, (2.6)

with the forbidden zones (−∞, λ0) and (λ2i−1, λ2i), i = 1,m. For each set {λi} we can
define a hyperelliptic curve

y2 =
2m∏
i=0

(λ− λi), (2.7)

while the quasi-momentum p being fixed in terms of its differential

dp = λm + rm−1λ
n−1 + . . . r0

2 y dλ, p(λ0) = 0. (2.8)

The latter is defined in such a way that the integrals of dp over a-cycles vanish∮
ai

dp = 2
∫ λ2i

λ2i−1
dp = 0. (2.9)

– 6 –
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This fixes m coefficients r0, . . . , rm−1. Furthermore for the potential associated with {λi}
to be 2π-periodic we must additionally require integrals over b-cycles

wi =
∮
bi

dp = 2
∫ λ2i−1

λ2i−2
dp (2.10)

to be integer-valued
wi = ki − ki−1. (2.11)

Here natural ki satisfying ki+1 > ki, k0 ≡ 0, label opened zones. These are additional m
constrains, which reduce the total number of independent parameters λi to m+ 1.

A given set {λi} which satisfies (2.9), (2.11), such that only m + 1 parameters are
independent, defines periodic potential u(ϕ), but in a non-unique way. Individual potentials
are labeled by points of the Jacobian of curve (2.7), with all of them sharing the same
spectrum. In other words isospectral potentials form an m-dimensional torus, while full
space of m-zone potentials is therefore 2m+ 1 dimensional.

At this point we would like to make a connection with the Virasoro algebra. Consider
Hill’s equation, which is “Schrodinger” equation (2.2) with λ = 0,

− ψ′′ + u

4 ψ = 0. (2.12)

One can re-parametrize the circle going from ϕ to ϕ̃(ϕ) such that ϕ̃(ϕ+ 2π) = ϕ̃(ϕ) + 2π.
Then wave-function and the potential also change accordingly

ψ̃(ϕ̃) = ψ(ϕ)
(
dϕ̃

dϕ

)−1/2
, (2.13)

ũ(ϕ̃) =
(
dϕ̃

dϕ

)−2
(u+ 2(Sϕ̃)(ϕ)) , (2.14)

where Schwarzian derivative

(Sθ)(ϕ) ≡ θ′′′

θ′
− 3

2

(
θ′′

θ′

)2
. (2.15)

From (2.14) it is clear that u is an element from the co-adjoint orbit of Virasoro algebra with
the Schwarzian derivative term appearing because of central extension [20]. All potentials
u(ϕ) related by circle reparametrizations, i.e. belonging to the same co-adjoint orbit share
the same invariant — quasi-momentum at zero,

ψ(2π)/ψ(0) = e2πip(0), (2.16)

which is evident from (2.13). In other words

− 4p(0)2 = h (2.17)

is the invariant of u characterizing the orbit itself. By choosing an appropriate ϕ̃ the
potential always3 can be brought to a constant form, in which case

ũ(ϕ̃) = h. (2.18)
3An implicit assumption here is that u belongs to the regular orbit diff(S1)/S1, which upon quantization,

becomes Verma module.
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The co-adjoint orbit is a symplectic space equipped with the Kirillov-Kostant-Souriau
bracket

c

24{u(ϕ), u(ϕ′)} = −2πDδ(ϕ− ϕ′), D = ∂u+ 2u∂ − 2∂3. (2.19)

Here, using linearity of symplectic form we introduce a formal parameter c, which later will
be identified with the CFT central charge. Any Hamiltonian flow defined by (2.19) leaves h
invariant.

There is an infinite tower of the so-called KdV Hamiltonians Q2k−1, which can be
defined recursively with help fo Gelfand-Dikii polynomials Rn,

Q2n−1 = 1
2π

∫ 2π

0
Rndϕ ∂Rn+1 = n+ 1

2n+ 1DRn, (2.20)

R0 = 1, R1 = u, R2 = u2 − 4
3∂

2u, R3 = u3 − 4u∂2u− 2(∂u)2 + 8
5∂

4u, . . .

Their Hamiltonian flows generate isospectral deformations of u

δu = c

24{Q2n−1, u} = (2n− 1)∂Rn, (2.21)

while they all remain in involution {Q2n−1, Q2`−1} = 0.
We now consider a space of all m-zone potentials sharing the same h. This is a 2m-

dimensional subspace within the orbit parametrized by h, which we will denote as Fm(h).
The pullback of the symplectic form on this space is non-degenerate, hence it is also a
symplectic manifold equipped with the Poisson bracket. Isospectral flows leave this manifold
invariant. Upon restricting to Fm(h), only first n KdV Hamiltonians remain algebraically
independent. The flows they generate move u along the Jacobian of (2.7), which is the
Liouvillian torus of a completely integrable dynamical system defined by Q2n−1, n ≤ m.
In other words the geometry of Fm(h) is a m-dimensional torus parametrized by angle
variables fibered above a base parametrized by m variables Q2n−1. Alternatively, one can
introduce m action variables Ik parameterizing the base and forming canonical conjugate
pairs with angle variables.

In terms of dp (2.8) values of KdV charges are given by an expansion at infinity

Q2n−1 = 2Γ(n+ 1)Γ(1/2)
Γ(n+ 1/2)

4n

2πi

∮
∞

dp λn−1/2, (2.22)

while the action variables are

Ik = i

π

∮
ak

p
dλ

λ
= 1
iπ

∮
ak

dp ln λ. (2.23)

Functional dependence of Q2n−1 for n > m on the first m ones readily follows from (2.22)
and the form of dp (2.8).

Our task is conceptually trivial: we want to learn an explicit change of variables on the
base of Fm(h) from Q2n−1 to Ik. The expressions for Q2n−1(h, Ik) is not available in the
closed form, we therefore will find first few orders by expanding it in powers of Ik. There is

– 8 –
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one notable exception, using Riemann bilinear relation with two one-forms dp and pdλ/λ
one can show in full generality

Q1 = h+
∑
k

k Ik. (2.24)

Our main approach will be based on parameterizing both Q2n−1 and Ik in terms of the
spectral curve i = 0,m, with the infinitesimal λ2i − λ2i−1, and then re-expressing Q2n−1 in
terms of Ik. There is an alternative straightforward approach, to parametrize the potential
u(ϕ) in terms of its Fourier modes u`, and then express both Q2n−1 and Ik in terms of u`.
We develop this method in the appendix B and confirm the expansion (2.1) up to second
order in Ik.

2.2 One-zone potentials

Before we consider one-zone potential in detail, we revisit the zero-zone potential u=Q1≡ 4λ0
and readily find differential

dp = dλ

2
√
λ− λ0

(2.25)

to be defined on a Riemann sphere. This is the simplest possible case. In this case p =√
λ− λ0, u(ϕ) = h = 4λ0 and the whole symplectic space F0(h) shrinks to a point. All KdV

Hamitonians are fixed by h, Q2n−1 = hn with all action variables identically equal to zero.
Next, we consider the differential

dp = (λ− r)dλ
2
√

(λ− λ0)(λ− λ1)(λ− λ2)
(2.26)

parameterized by λi, r0. It is defined on a torus — a Riemann curve of genus one. We
assume that (λ2, λ1) correspond to k-th zone. After satisfying (2.9) and (2.11), which
requires evaluating elliptic integrals, we find one-parametric family

λ2 =λ0+ k2

4 θ3(τ)4, λ1 =λ0+ k2

4 θ4(τ)4, r=λ0+ k2

4 θ4(τ)4
(

1+2∂ lnθ2
3(τ)

∂ lnm

)
, (2.27)

where m = θ4
2(τ)/θ4

3(τ) and τ = iτ2 with positive τ2. In what follows we use4 q = eiπτ such
that θ2 =

∑
n q

(n+1/2)2 , θ3 =
∑
n q

n2 , θ4 =
∑
n(−1)nqn2 .

To impose the orbit constraint −4p(0)2 = h it is more convenient to use the following
trick. First we evaluate

Q1 = 4(λ0 + λ1 + λ2)− 8r, (2.28)

which expresses λ0 in terms of Q1 and q expansion,

4λ0 =Q1−k2
(
θ4

2−4θ4
4
∂ lnθ2

3(τ)
∂ lnm

)
=Q1−32k2q2

(
1+2q2+4q4+4q6+. . .

)
, (2.29)

4Our definition of q is aligned with Wolfram Mathematica. In this section q denotes modular parameter
of the genus one elliptic curve y(λ). In section 5.1 we use q to denote modular parameter of the CFT
spacetime torus.
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and then use (2.23) to evaluate action variable perturbatively in q,

Ik = 2
π

∫ λ2

λ1

dλ(λ− r) log λ√
(λ− λ0)(λ− λ1)(λ2 − λ)

(2.30)

=
∞∑
n=1

2(−1)n(λ1 − λ0)n+1

n
√
λ2 − λ0λn0

F
(

3
2 ,

1
2 , 1;m

)
F
(

1
2 ,

1
2 , 1;m

)F (n+ 1
2 ,

1
2 , 1;m

)
− F

(
n+ 3

2 ,
1
2 , 1;m

) .

Here F ≡ 2F1 is the hypergeometric function such that F
(

3
2 ,

1
2 , 1;m

)
= θ2

3.

An infinite sum over n above has to be evaluated individually for each term in q

expansion. This gives Ik as a function of λ0 and q, Ik = 32k3q2

k2+4λ0
+O(q4), which with help

of (2.29) can be expressed as a function of Q1 and q,

Ik = 32k3

k2 +Q1
q2 + 64k3 (17k4 + 12k2Q1 + 3Q2

1
)

(k2 +Q1)3 q4 (2.31)

+ 128k3 (5k2 +Q1
) (

77k6 + 69k4Q1 + 27k2Q2
1 + 3Q3

1
)

(k2 +Q1)5 q6 +O(q8).

At this point we use (2.24), which is exact, Q1 = h + kIk. Using Ik given as a q-series
expansion with Q1-dependent coefficients (2.31), with help of (2.24) we express Q1 as
a series in q with h-dependent coefficients by iteratively substituting Q1 written as an
h-dependent series in q. Once we find Q1 = Q1(h, q), Ik can be deduced from (2.24),

Ik = 32k3

h+ k2 q
2 + 64

(
3h2k3 + 12hk5 + k7)

(h+ k2)3 q4

+ 128k3 (3h4 + 42h3k2 + 108h2k4 − 58hk6 + k8)
(h+ k2)5 q6 +O(q8). (2.32)

At this point it is straightforward to re-express q as a h-dependent power series in Ik,
q2 = h+k2

32k3 Ik +O(I2
k).

To obtain coefficients f (n,i) (2.1) we act as follows. From the definition (2.22) we can
find Q2n−1 as a polynomial in λi and r. Using expressions for λi, r (2.27) and (2.29), where
Q1 is understood as a function of h, q we write Q2n−1 as an h-dependent power series in q.
After that it is straightforward to use q2 = q2(h, Ik) to re-express Q2n−1 as an h-dependent
power series in Ik,

Q2n−1 = hn + f
(n,1)
k Ik + f

(n,2)
k I2

k + f
(n,3)
k I3

k +O(I4
k), (2.33)
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thus fixing f (n,i),

f
(n,1)
k =

n−1∑
j=0

√
π(2n−1)Γ(n+1)

2Γ(j+ 3
2)Γ(n−j)

hn−1−jk2j+1 =
n−1∑
j=0

ξjnh
n−1−jk2j+1, (2.34)

f
(n,2)
k =

n−1∑
j=0

√
π(2n−1)Γ(n+1)(j(2n+1)−2n+2)

16Γ
(
j+ 3

2

)
Γ(n−j)

hn−1−jk2j , (2.35)

f
(n,3)
k = (2n−1)n(n−1)

64k3 hn (2.36)

+
n−1∑
j=0

√
π(2n−1)Γ(n+1)p

1536Γ
(
j+ 5

2

)
Γ(n−j)

hn−1−jk2j−1,

p = 4j3(2n+1)(2n+3)−2j2(2n+1)(10n−21)−3j(2n+3)(10n−7)+36(n−1)(2n−1).

More technical details about the one-zone potential calculation can be found in appendix C.

2.3 Two-zone potentials

In case of two zones the differential

dp = (λ− r1)(λ− r2)dλ

2
√∏4

i=0(λ− λi)
(2.37)

depends on seven parameters subject to 4 constraints (2.9) and (2.11). Corresponding inte-
grals can not be evaluated analytically. We therefore proceed by expanding perturbatively,
assuming both zones, and hence corresponding action variables, are small. We introduce
two infinitesimal variables ε1, ε2 of the same order, such that λ2 − λ1 is of order ε1 and
λ4 − λ3 is of order ε2. Action variables are quadratic in εi, Ik ∼ ε21, I` ∼ ε22, where we
assumed (λ1, λ2) and (λ3, λ4) correspond to k-th and `-zones respectively. Our goal is to
find Q2n−1 up to third order in the pertubative expansion in Ik, I`. Hence in what follows
we must expand all quantities in εi up to sixth order. The details of this calculation can be
found in appendix D.

After satisfying (2.9) and (2.11) we find λi for i ≥ 1 and ri in terms of λ0 and ε1, ε2,
as a perturbative expansion in εi. Then, we evaluate Ik, h and Q2n−1 also as function of
λ0 and ε1, ε2, similarly expanding in εi up to and including sixth order. By matching both
sides of (2.1) we find coefficients f (m,n)

k,` , yielding

f
(n,2)
k,` =

n−1∑
j=1

√
π(2n−1)2Γ(n+1)

4Γ(n−j)Γ
(
j+ 3

2

) hn−1−j
j−1∑
s=0

k2(j−s)−1`2s+1, (2.38)

f
(n,3)
k,` = `

(k2−`2)2

−(2n−1)n(n−1)
4 hn+

n−1∑
j=0

√
π(2n−1)2Γ(n+1)

64Γ(n−j)Γ
(
j+ 5

2

) hn−1−j q

 , (2.39)

q =−4(2n+1)k
2j+4−`2j+4

k2−`2
+k2j+2(3+2j)(j(2n+1)−4n+5)+`2j+22(3j+n+5)

+k2j`2(3+2j)(j(2n+1)−2n+2)+k2`2j(3+2j)(4n−1).
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2.4 Three-zone potentials

Extending calculations of the previous section using the technique of appendix D to the
three-zone case we can fix

f
(n,3)
k,`,p =

n−3∑
j=0

√
π(2n− 1)3Γ(n+ 1)(n− 2− j)

8Γ(n− 1− j)Γ
(
j + 7

2

) hn−3−j
j∑

s1=0

j−s1∑
s2=0

k2j+1−2(s1+s2)`2s1+1p2s2+1.

(2.40)

2.5 Consistency check

In case of an m-zone potential we can parametrize the differential dp with help of λ0 and εi,
1 ≤ i ≤ m, cf. (D.1)–(D.6),

λi = λ0 + . . . , 1 ≤ i ≤ 2m, (2.41)
ri = λ0 + . . . , 1 ≤ i ≤ m, (2.42)

where dots stand for εi but not λ0-dependent terms. Similarly action variables Ik, charges
Q2n−1 and the orbit parameter h = −4p(0)2 will be some functions of λ0 and εi. While
dependence of Ik and h on λ0 is non-trivial, since Q2n−1 are the coefficients of 1/λ expansion
of p(λ) at infinity and λ0 is simply the shift of the argument of p(λ), we find

Q2n−1 =
n∑
k=0

Γ(n+ 1)
Γ(k + 1)Γ(n− k + 1)(4λ0)n−kQ0

2k−1. (2.43)

Here Q0
2k−1 are the charges evaluated with help of (2.22) taking λ0 = 0 in (2.41), (2.42).

Assuming we know Q2n−1(h, Ik) where h = h(λ0, εi) and Ik = Ik(λ0, εi), one can introduce
I0
k = Ik(0, εi) such that Q0

2k−1 = Q2k−1(0, I0
k). Here first argument is zero simply because

h(0, εi) = 0. Then both sides of equation (2.43) become functions of λ0 and εi, providing a
non-trivial check.

There is an alternative way to use (2.43) to check the consistency of the perturbative
expansion (2.1) with the coefficients found in the text. We can invert h = h(λ0, εi) and
Ik = Ik(λ0, εi) to express both λ0 and I0

k via h and Ik,

λ0 =h+
∑
k

−hIk
k

+h
(
h+5k2)I2

k

8k4 −h
(
5h2+30hk2+41k4)I3

k

128k7 +
∑
k<`

hIkI`
k`

+
∑
k 6=`

hI2
kI`
(
h2`2−h

(
k4−4k2`2+`4

)
−5k6+11k4l2−5k2`4

)
8k4`(k−`)2(k+`)2 −

∑
k<`<p

hIkI`Ip
k`p

+O(I4),

I0
k = Ik+hIk

k2 −
hI2

k

(
h+5k2)
8k5 +hI3

k

(
5h2+30hk2+41k4)

128k8 −
∑
6̀=k

hIkI`
(
h+k2)

k2`(k2−`2)

+
∑
` 6=k

hI2
kI`
(
2h2 (−k4+2k2`2+`4

)
+hk2 (7k4−14k2`2+15`4

)
+k4 (5k4−10k2`2+9`4

))
8k5l (k2−`2)3

+
∑
` 6=k

hIkI
2
`

(
h2 (k4+5k2`2−2`4

)
+h

(
k6+10k4`2−9k2`4+6l6

)
+k2`2

(
5k4−7k2`2+6l4

))
8k2`4 (k2−`2)3

+
∑

p 6=` 6=k

hIkI`Ip
(
2h2+3hk2+k4)

k2`p(k2−`2)(k2−p2) +O(I4).
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Now Q0
2n−1(0, I0

k(h, Ik)) is a function of h, Ik and (2.43) provides a non-trivial check for the
coefficients in (2.1).

This check also ensures that Q2n−1(h, Ik) satisfy another identity

1
n+ 1

∂Q2n+1
∂u0

= Q2n−1, (2.44)

which follows from the properties of Gelfand-Dikii polynomials (2.20). Here Q2n−1[u(ϕ)]
are understood as functionals of u(ϕ) and the derivative is with respect the zero Fourier
mode of u(ϕ), while all other Fourier modes are kept fixed. The shift of u0 with all other
modes intact is equivalent to a shift of the spectrum by a constant, hence(

∂

∂u0

)
u`

= 4
(
∂

∂λ0

)
εi

. (2.45)

Then (2.44) follows immediately from the right-hand-side of (2.43).
For an m-zone potential, all higher KdV charges Q2n−1 are some functions of first m+ 1

charges. Thus for one-zone potentials Q5, Q7, . . . are functions of Q1, Q3, see e.g. section 2.4
of [24] for details. For the three-zone potentials higher Q2n−1 would depend onQ1, Q3, Q5, Q7
In principle this provides additional consistency check for (2.1). In practice the dependence
is so complicated, it doesn’t provide a useful check even for the one-zone case.

3 “Energies” of primary states via ODE/IM correspondence

In the previous section we found classical expression for Q2n−1 in term of action variables
Ik and the orbit invariant h. Following the standard rules of semiclassical quantization Ik
should be promoted to an integer quantum number, while h will become the dimension of
the highest weight (primary) state ∆, marking representation of the Virasoro algebra. It is
easy to see, this naive receipt fails already for the values of Q2n−1 on a primary state |∆〉.
Indeed, taking all Ik to zero, we readily find Q2n−1 = hk, which upon the naive quantization
yields Q0

2n−1 = ∆n where
Q2n−1|∆〉 = Q0

2n−1|∆〉. (3.1)

This answer is missing c-dependent terms. Explicit values of Q0
2n−1 for n ≤ 8 were calculated

in [25] via brute-force approach, using explicit expressions for Q2n−1 in terms of free field
representation. The pattern is clear, while ∆n is indeed the leading term, full expression is
a polynomial in both ∆ and c of order n.

There is no known receipt to obtain exact Q0
2n−1 from the semiclassical quantization,

hence our strategy will be the following. We will combine exact expression for Q0
2n−1 in the

large c limit, which will be obtained in this section by a different method, with the classical
result of section 2, to find spectrum of excited states in the large c limit in next section.

To find Q0
2n−1 we use ODE/IM correspondence, initiated in [18, 26] and more recently

developed in [27] (also see [28]), which relates qKdV spectrum to solutions of an auxiliary
Schrödinger equation

∂2
xΨ(x) +

(
E − x2α − l(l + 1)

x2

)
Ψ(x) = 0, (3.2)
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where

(l + 1/2)2 = 4(α+ 1)∆̃, c̃ = − α2

4(α+ 1) . (3.3)

Equation (3.2) can be solved using WKB approximation by systematically expanding in
a small parameter. This leads to a quadratic ODE which can be solved iteratively. We
delegate all details to appendix E and only write down iterative relation which defines
coefficients c(n)

k for n ≥ 1, n ≥ k ≥ 0,

n∑
j=0

j∑
p=0

n−j∑
q=0

δp+q,kc
(j)
p c(n−j)

q −2
[
n−k−u−n−2

2α

]
c

(n−1)
k−1 +(2k−3n+4)c(n−1)

k = 0, (3.4)

and we formally assumed c(n)
−1 = c

(n)
n+1 = 0, u2 = −∆̃/c̃, and the starting values are

c
(0)
0 = − 1

α
, c

(1)
0 = −1

2 , c
(1)
1 = 1

2α − u. (3.5)

Coefficients c(n)
k determine values of Q2n−1 acting on primaries [27],

Q0
2n−1 = (2n−1)Γ(n+1)

√
πΓ(1− 2n−1

2α )4n(α+1)n
2n∑
k=0

c
(2n)
k Γ

(
k+ 3

2−3n
)

Γ
(

2n−k− 2n−1
2α

)
. (3.6)

Although this is not obvious, Q0
2n−1 given by (3.6) is a polynomial in terms of ∆̃ and c̃.

After some algebra we find leading order expansion

Q0
2n−1 = ∆̃n +

n−1∑
j=0

R̃
(1)
n,j∆̃

n−j−1 c̃j +
n−2∑
j=0

R̃
(2)
n,j∆̃

n−j−2 c̃j +
n−3∑
j=0

R̃
(3)
n,j∆̃

n−j−3 c̃j +O(c̃n−3),

(3.7)

where

R̃
(1)
n,j = (2n−1)

√
πΓ(n+1)

4Γ(j+ 3
2)Γ(n−j)

ζ(−2j−1) = ξjn
ζ(−2j−1)

2 , (3.8)

R̃
(2)
n,j = (2n−1)

√
πΓ(n+1)

24×4Γ(j+ 5
2)Γ(n−j−1)

(3.9)

×
{
−6ζ(−2j−3) (2j+3−(2n−1)y1(j+1))+3(2n−1)ζ2(j)

}
,

R̃
(3)
n,j = (2n−1)

√
πΓ(n+1)

242×4Γ(j+ 7
2)Γ(n−j−2)

{
62ζ(−2j−5)(2j2 +7j+5)−(2n−1)rn,j

}
,

rn,j = 12ζ3(j)+36ζ2(j+1)(y1(j+2)+j+2)+3
(
4j2 +18j+23

)
ζ(−2j−3)

+36ζ(−2j−5)
(
y2

1(j+2)+2(j+2)y1(j+2)+y2(j+2)
)

+(2n+1)pj . (3.10)

Functions ζ2, ζ3, y1, y3 are defined in the appendix E, where we also give values of pj for
0 ≤ j ≤ 17.
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4 Spectrum of quantum Q2k−1

At this point we are ready to combine classical pertubative expression for Q2n−1(h, Ik) (2.1)
with the “energies” of primary state (3.7) to obtain Q2n−1 up to first two non-trivial orders
in 1/c̃ expansion.

The naive semi-classical quantization would map the co-adjoint orbit invariant h and
the actions variables Ik on the classical side to dimension of the primary state ∆ and the
excited state quantum numbers nk correspondingly,

h→ 24∆
c
, Ik →

24nk
c

. (4.1)

Also classical charge Q2n−1 should be rescaled by (c/24)n. Starting from (2.1) this correctly
reproduces full quantum spectrum of Q1 and the leading ∆n term in Q2n−1. But it falls short
of reproducing sub-leading terms even for the primary state (3.7). The relation between
classical and quantum quantities (4.1) is only correct at the leading c order. In [22] we
observed that using c−1 as an expansion parameter leads to more elegant expressions. This
is confirmed by (3.7), which looks most naturally if written in terms of ∆̃ and c̃. We therefore
propose the following quantization map, which agrees with the naive one at leading order,

h→ ∆̃
c̃
, Ik →

nk
c̃
, ∆̃ = ∆− c̃, c̃ = c− 1

24 . (4.2)

This does not solve the problem of reproducing subleadig terms in Q0
2n−1, but this can be

fixed, at least at first subleading order, by introducing the Maslov index, nk → ñk = nk+1/2.
We thus arrive at the following map,

Q2n−1(h, Ik)→ Q2n−1 = c̃nQ2n−1(∆̃/c̃, (nk + 1/2)/c̃). (4.3)

Infinite sums due to Maslov index contributing to “vacuum energy” should be regularized
using zeta-function regularization. It is now straightforward to see that we immediately
reproduce the leading 1/c̃ term (3.8),

Q2n−1 = hn +
∑
k

f
(n,1)
k (h) Ik +O(I2)→ Q2n−1 = ∆̃n + c̃n−1∑

k

f
(n,1)
k (∆̃/c̃) ñk +O(c̃n−2)

= ∆̃n +
∑
k

n−1∑
j=0

ξjn ∆̃n−1−j c̃jk2j+1(nk + 1/2) +O(c̃n−2)

= ∆̃n +
n−1∑
j=0

ξjn ∆̃n−1−j c̃j
(∑

k

k2j+1nk + ζ(−2j − 1)
2

)
+O(c̃n−2) (4.4)

In other words, at first sub-leading order c̃n−1 the quantization prescription (4.3) leads
to (1.6) which passes all available tests: matches the spectrum of Q1, Q3, Q5, Q7 (see sec-
tion 4.1 below) and thermal expectation values for Q9, . . . , Q13 (see section 5.1 below) at
the order c̃n−1.

There is another way to write (4.4). We can express Q2n−1 as Q0
2n−1 plus the terms

from the classical Q2n−1 (2.1) which non-trivially depend on Ik using the substitution (4.2),
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i.e. without the Maslov index,

Q2n−1 = Q0
2n−1 + c̃n−1∑

k

f
(n,1)
k (∆̃/c̃)nk +O(c̃n−2). (4.5)

At c̃n−1 order it is the same as (4.4).
To obtain the quantum spectrum at next order c̃n−2, we could try the prescription (4.3),

apply the zeta-function regularization and notice that many but not all terms from (3.9)
are reproduced. Thus, we see that the quantization (4.3) is exact only at leading 1/c̃ order,
at higher orders the expression obtained from the classical Q2n−1 has to be modified as
well. Indeed, starting from the classical (2.1) and using substitution (4.2) we would find
that terms contributing at the order c̃n−p are homogeneous polynomials in nk of order
p. This is very restrictive and obviously incorrect. We already saw that even at the first
sub-leading order c̃n−1 the homogeneous (linear) in nk terms have to be amended by a
constant, i.e. (nk)0 term. This suggest the following “quantization rules”: to obtain the
quantum spectrum Q2n−1 in 1/c̃ expansion, one starts with the classical perturbation
expression (2.1) and make the substitution (4.2), together with the overall rescaling by c̃n.
As the order c̃n−p this fixes leading, homogeneous in nk terms of order p. These terms
should be amended by the sub-leading terms of order p− 1, p− 2, . . . , 0 in nk. These terms
should be regarded as quantum corrections and should be determined separately, they do
not follow from the classical answer in any simple way. More explicitly,

Q2n−1 = ∆̃n + c̃n−1
(∑

k

g
(1)
k nk + g(1)

)
+ c̃n−2

∑
k1,k2

g
(2)
k1,k2

nk1nk2 +
∑
k

g
(2)
k nk + g(2)


+ c̃n−3

 ∑
k1,k2,k3

g
(3)
k1,k2,k3

nk1nk2nk3 +
∑
k1,k2

g
(3)
k1,k2

nk1nk2 +
∑
k

g
(3)
k nk + g(3)

+ . . .

(4.6)

Here g(p) with different number of indexes denote different quantities. The leading terms
g

(p)
k1,...,kp

are given by classical expressions (2.1) upon the substitution (4.2)

g
(1)
k = f

(n,1)
k (∆̃/c̃), (4.7)

g
(2)
k` = 1

2f
(n,2)
k` , g

(2)
kk = f

(n,2)
k , (4.8)

g
(3)
k`m = 1

6f
(n,3)
k`m , g

(3)
kk` = 1

3f
(n,3)
k` , g

(3)
kkk = f

(n,3)
k , (4.9)

for k 6= ` 6= m and g(p) are given by (3.8), (3.9), (3.10). This is essentially the generalization
of (4.5) to higher orders in 1/c̃. Coefficients g(2)

k , g(3)
k` , g

(3)
k , etc. are quantum corrections

and a priory not known.
To fix g(2)

k we employ the following strategy, we will try to “salvage” the Maslov index
quantization (4.3) by adding minimal possible terms subleading in powers of nk,

Q2n−1 = ∆̃n+c̃n−1∑
k

g
(1)
k ñk+c̃n−2

∑
k1,k2

g
(2)
k1,k2

ñk1 ñk2 +
∑
k

g̃
(2)
k ñk+g̃(2)

+. . . (4.10)
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This expression is understood in terms of the zeta-function regularization and g̃
(2)
k , g̃(2)

are different from g
(2)
k , g(2). Our goal is to reproduce “vacuum energy” Q0

2n−1. There is
infinitely many ways to do that, for example by taking g(2)

k = 0, g̃(2) = g(2), but we will
additionally require that the zeta-functions from (3.9) will become the sums of the form∑
k k

p in (4.10). This leads to

g̃
(2)
k =

n−1∑
j=0

1
4ξ

j
n ((2n− 1)y1(j)− 2j − 1) ∆̃n−1−j c̃jk2j+1, (4.11)

and very simple

g̃(2) = −n(n− 1)(2n− 1)∆̃n−1

96c̃ . (4.12)

This term is necessary to subtract nk-independent ∆̃n−1c̃−1 term coming from
∑
k g̃

(2)
k ñk

to match Q0
2n−1 (3.7) which has no terms with the negative powers of c.

For convenience we give the full expression (4.10) explicitly

Q2n−1 = ∆̃n +
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

2Γ(j + 3
2)Γ(n− j)

∆̃n−1−j c̃jk2j+1ñk (4.13)

− n(n− 1)(2n− 1)∆̃n−1

96c̃

+
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

8Γ(j + 3
2)Γ(n− j)

((2n− 1)y1(j)− 2j − 1) ∆̃n−1−j c̃j−1k2j+1ñk

−
∑
k

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)(2nj + 2n− 3j − 2)

16 Γ
(
j + 3

2

)
Γ(n− j)

∆̃n−j−1c̃j−1k2jñ2
k

+ 1
2
∑
k,`

n−1∑
j=1

(2n− 1)2√π Γ(n+ 1)
4Γ
(
j + 3

2

)
Γ(n− j)

∆̃n−j−1c̃j−1
j−1∑
s=0

k2(j−s)−1`2s+1ñkñ` +O(cn−3).

We conjecture this is the full quantum spectrum of Q2n−1 up to c̃n−2 order and verify that
it passes all available checks.

From here it is now straightforward to find Q2n−1 in the representation (4.6). Coefficient

g
(2)
k =

n−1∑
j=0

(2n− 1)
√
π Γ(n+ 1)

8Γ
(
j + 3

2

)
Γ(n− j)

v(n, j, k)∆̃n−j−1c̃j−1, (4.14)

v(n, j, k) = (2n− 1)
j−1∑
s=0

ζ(2(s− j) + 1)k2s+1 + ((2n− 1)y1(j)− 2j − 1)k2j+1

− 1
2(2nj + 2n− 3j − 2)k2j
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is significantly more bulky than (4.11), while the full expression is

Q2n−1 = Q0
2n−1 +

∑
k

n−1∑
j=0

ξjn∆̃n−j−1c̃jk2j+1nk (4.15)

+
∑
k,`

n−1∑
j=1

ξjn
(2n− 1)

4 ∆̃n−j−1c̃j−1
j−1∑
s=0

k2(j−s)−1`2s+1nkn`

−
∑
k

n−1∑
j=0

ξjn
(2nj + 2n− 3j − 2)

8 ∆̃n−j−1c̃j−1k2jn2
k

+
∑
k

n−1∑
j=0

ξjn
v(n, j, k)

4 ∆̃n−j−1c̃j−1nk +O(cn−3).

To summarize, we have found the (conjectured) spectrum of all qKdV charges at first
two sub-leading orders in 1/c expansion (4.13), (4.15) and observed certain patterns which
may help fix the spectrum at higher orders. Let us spell the step to find the next 1/c̃3

order, i.e. fix the terms of order c̃n−3 in (4.6). The classical result for Q2n−1 in terms of
action variables Ik was calculated up to cubic order in (2.36), (2.39), (2.40). “Energies” of
primary states Q0

2n−1 were also calculated to this order, see eq. (3.10). Thus g(3)
k1k2k3

and
g(3) are known, and to find the spectrum one would only need to fix g(3)

k1k2
and g(3)

k . To do
that one would need to find g̃(3)

k1k2
and g̃(3)

k from the expansion (4.10) to reproduce (3.10)
via zeta-function regularization and minimal possible g̃(3), which presumably will only
include terms with negative powers of c̃. “Restoring” g̃(3)

k1k2
and g̃

(3)
k from R̃

(3)
n,j is not a

mathematically well-posed problem. We expect that all zeta-functions ζ(−2j − 1) in R̃(3)
n,j

to lead to the sums
∑
k k

2j+1ñk — the rule which successfully worked at second 1/c̃ order.
At third order this rule should be amended by others, as suggested by a non-polynomial
dependence on k in (2.39). In practice, restoring g̃(3)

k from R̃
(3)
n,j may require establishing

the analytic form of coefficients pj in (3.10) and then reverse-engineering corresponding
k1, k2, k3-dependent sums. Once hypothetical g̃(3)

k1k2
and g̃(3)

k , and accordingly g(3)
k1k2

and g(3)
k

are fixed, a non-trivial set of checks is provided by the spectrum of Q3, Q5, Q7 generated
by computer algebra, as well as the requirement that thermal expectation values 〈Q2n−1〉q
discussed in section 5.1 must have certain modular properties.

4.1 Computer algebra check

For n = 1 the expansion (4.15) reduces to (1.7) which is a simple check. A more sophisticated
check is provided by Q3, Q5 and Q7 which are known explicitly in terms of the Virasoro
algebra generators [4]

Q3 =
(
L2

0 −
c+ 2

12 L0 + c(5c+ 22)
2990

)
+ Q̃3, (4.16)

Q̃3 = 2
∞∑
k=1

L−kLk,

Q5 =
(
L3

0 −
c+ 4

8 L2
0 + (c+ 2)(3c+ 20)

576 L0 −
c(3c+ 14)(7c+ 68)

290304

)
+ Q̃5, (4.17)
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Q̃5 =
∞∑

k,l=0
L−k−lLkLl + 2

∞∑
k=1,l=0

L−kLk−lLl +
∞∑

k,l=1
L−kL−lLk+l+

+
∞∑
n=1

(
c+ 2

6 n2 − c

4 − 1
)
L−nLn − L3

0, (4.18)

and [29]

Q7 =
∞∑

k,l,m=1
L−kL−lL−mLk+l+m +

∞∑
k,l,m=0

L−k−l−mLkLlLm

+ 3
∞∑

k,l=1
m=0

L−kL−lLk+l−mLm + 3
∞∑
k=1
l,m=0

L−kLk−l−mLlLm

+ 8 + c

3

 ∞∑
k,l=1

(k + l)lL−kL−lLk+l +
∞∑
k=1
l=0

(k − l)kL−kLk−lLl



+ 8 + c

3

 ∞∑
k,l=0

(k + l)kL−k−lLkLl +
∞∑
k=0
l=1

(k − l)kL−lLl−kLk


+
∞∑
n=1

(
c2 − c− 141

90 n4 − 7c+ 59
18 n2

)
L−nLn −

( 1
48c

2 + 53
360c+ 19

90

)
Q̃3

−
(1

6c+ 1
)
Q̃5 −

c+ 6
6 L3

0 + 15c2 + 194c+ 568
1440 L2

0

− (c+ 2)(c+ 10)(3c+ 28)
10368 L0 + c(3c+ 46)(25c2 + 426c+ 1400)

24883200 . (4.19)

Using computer algebra spectrum of Q3, Q5, Q7 for all descendants at a small levels m can
be evaluated explicitly, as an expansion in powers of 1/c. The resulting expressions can be
compared with the spectrum following from (4.15), which we will write in terms of quantum
numbers nk packaged as follows

mp,r ≡
∑
k

kpnrk, mp ≡ mp,1, m ≡ m1, h = ∆̃/c̃, (4.20)

Q3 = ∆̃2 + ∆̃
(

6m1 −
1
4

)
+ c̃

(
4m3 + 1

60

)
(4.21)

+
(
m3 −

3
2m2 −

1
4m1

)
− 3

2m2,2 + 3m2
1 + 3

2h(2m1 −m0 −m0,2) + 3
320 +O(1/c̃),

and similarly

Q5 = ∆̃3+
(

15m1−
5
8

)
∆̃2+∆̃ c̃

(
20m3+ 1

12

)
+c̃2

(
8m5−

1
63

)
(4.22)

+∆̃
( 5

12(−5m1−42m2+44m3)− 35
2 m2,2+25m2

1+ 15
2 h(2m1−m0−m0,2)+ 23

192

)
+c̃
( 1

12(m1−10m3−120m4+64m5)−10m4,2+20m1m3−
85

6048

)
+O(c̃0),
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and

Q7 = ∆̃4+∆̃3
(

28m1−
7
6

)
+∆̃2 c̃

(
56m3+ 7

30

)
+∆̃ c̃2

(224
5 m5−

4
45

)
+c̃3

(64
5 m7+ 2

75

)
+∆̃2

(7
6 (−7m1−66m2+76m3)−77m2,2+98m2

1+21h(2m1−m0−m0,2)+ 259
480

)
+∆̃ c̃

( 7
75 (7m1−70m3−960m4+688m5)− 448

5 m4,2+ 784
5 m1m3−

167
1080

)
+c̃2

( 2
225(−10m1+21m3−210m5−3780m6+1704m7)

−168
5 m6,2+ 112

5 (2m1m5+m2
3)+ 77

2160

)
+O(c̃1). (4.23)

We checked, these expressions are in agreement with the computer algebra generated
spectrum for m ≤ 12, which serves as a non-trivial consistency check of (4.15).

5 Miscellaneous results

Explicit expression for the spectrum of quantum Q2n−1 in large c limit opens the opportunity
to make progress in a number of adjacent directions. In this section we discuss several
applications of our results.

5.1 Thermal expectation values of Q2n−1

Our first application is toward thermal exaction value of Q2n−1, i.e. averaged over the
CFT Gibbs ensemble 〈Q2n−1〉q ≡ Tr(qL0−c/24Q2n−1). This question appears naturally,
though in a more complicated form, to calculate the averaged value of Q2n−1 over the
KdV Generalized Gibbs Ensemble (see section 5.2 below), if one wants to match the GGE
chemical potentials to describe equilibration endpoint of some initial state. The expectation
value 〈Q2n−1〉q, which is essentially the one-point function of T2n (1.1) on the torus, exhibits
modular properties and can be represented as a covariant differential operator acting on the
CFT torus partition function [30]. In fact, one can average Q2n−1 over a particular Verma
module, 〈Q2n−1〉∆ ≡ Tr∆(qL0−c/24Q2n−1), where sum goes over all Virasoro descendants of
the primary state |∆〉. This sum too is a modular object and can be evaluated with help of
the same differential operator

〈Q2n−1〉∆ = Dnχ∆, χ∆ ≡ Tr∆(qL0−c/24) = q∆̃− 1
24 /η, (5.1)

Dn = Dn +
n−1∑
j=1

P jn(c, q)Dn−j−1, Dn = D2(n−1) . . . D2D0, (5.2)

and Dr = q∂q − r
12E2 is Serre derivative. Each P jn is a degree j polynomial in c with each

coefficient being a modular form of weight 2j + 2,

P jn(c, q) =
j+1∑
k=1

P
(k)
n,j c̃

j−k+1E
(n,k)
2j+2(q). (5.3)
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Here P (k)
n,j are numerical coefficients and E

(n,k)
2j+2 is some modular form, which is a linear

combination of Ea4Eb6 with 4a+ 6b = 2j + 2 for non-negative integer a, b, normalized such
that E(n,j)

2j+2 = 1 + O(q). For j = 1, 2, 3, 4, 6 there is a unique modular form of the weight
2(j + 1) and therefore for these j, independently of n and k, E(n,k)

2j+2 = E2j+2 where

E2n = 1 + 2
ζ(1− 2n)σ2n−1, σp =

∞∑
k=1

kpqk

1− qk . (5.4)

For instance, in the simplest case of Q3 the operator D2 is given by

〈Q3〉∆ = D2χ∆ =
[
D2 + c

1440E4

]
χ∆. (5.5)

In this case P (1)
2,1 = 1/60 and P (2)

2,1 = 1/1440. Explicit expressions for Dn for n ≤ 7 were
found in [30]. For higher n the modular form E

(n,j)
2i+2 and coefficients P (k)

n,j are not known.
Strictly speaking (5.1), (5.2) is an unproven ansatz proposed in [30]. We find it to

be consistent with the large c spectrum of Q2n−1 (4.15) and fix two leading in c terms in
P jn. To compare with (5.1), we need to calculate 〈Q2n−1〉∆ starting from (4.15). Here the
following straightforward identities will be helpful

〈
∞∑
k=1

nkk
p〉∆ = σpχ∆, 〈

∞∑
k=1

n2
kk

p〉∆ = (2q∂qσp−1 − σp)χ∆, (5.6)

〈
∞∑
k=1

nkk
p
∞∑
`=1

n``
p′〉∆ =

(
q∂qσp+p′−1 + σpσp′

)
χ∆, (5.7)

where by nk we mean the quantum numbers (1.4). Then (1.6) immediately yields

〈Q2n−1〉∆ = ∆̃nχ∆ +
n−1∑
j=0

∆̃n−p−1c̃pξpn

(
σ2p+1 + ζ(−2p− 1)

2

)
χ∆ +O(c̃n−2), (5.8)

where we assumed the usual limit, h = ∆̃/c̃ is kept fixed while c̃ → ∞. Comparing this
with (5.1), we immediately see that the leading ∆̃n term is coming from (we drop χ∆ for
simplicity)

Dn → (q∂q)n → ∆̃n. (5.9)

Similarly we can trace origin of all c̃n−1 terms,

Dn→ (q∂q)n−
n(n−1)

12 E2(q∂q)n−1→ ∆̃n−1n

(
σ1−

1
24

)
−∆̃n−1n(n−1)

12 E2 =−n(2n−1)
24 E2,

which agrees with (5.8), and

P
(1)
n,j c̃

jE
(n,1)
2j+2D

n−j−1 → P
(1)
n,j c̃

jE
(n,1)
2j+2(q∂q)n−j−1 → P

(1)
n,j ∆̃n−j−1c̃jE

(n,1)
2j+2, (5.10)

for n− 1 ≥ j > 0. From here immediately follows

P
(1)
n,j = R̃

(1)
n,j , E

(n,1)
2j+2 = E2j+2, n− 1 ≥ j ≥ 1. (5.11)
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To fix P
(2)
n,j it is convenient to take q → 0 limit and compare 〈Q2n−1〉∆ with (3.7),

yielding

P
(2)
n,1 = R̃

(2)
n,0 −

n(n− 1)(12n2 − 16n− 1)
3456 = n(n− 1)(12n2 − 38n+ 31)

8640 ,

P
(2)
n,j = R̃

(2)
n,j−1 + (n− j)(2(n− j)− 1)

24 P
(1)
n,j−1, n− 1 ≥ j ≥ 2.

Evaluation of E(n,2)
2j+2 is a more challanging task and requires first using (5.6), (5.7) and

then combining pieces into modular forms to match (5.1), (5.2). We note, there are terms
in (4.15) proportional to ∆̃n−1c̃−1, but (5.1) has no negative powers of c. Hence these terms
must vanish after averaging, which follows from the identity q∂qσ−1 − σ1 = 0 and serves as
a consistency check. The final expression reads

P
(2)
n,jE

(n,2)
2j+2 = (2n−1)

√
πΓ(n+1)

8Γ(j+3/2)Γ(n−j) (5.12)

×

((2n−1)y1(j)−2j−1)ζ(−2j−1)
2 E2j+2−(n−1−j)ζ(−2j+1)D2jE2j

+ (2n−1)
4

j−2∑
s=1

ζ(−2s−1)ζ(−2(j−s)+1)E2s+2E2(j−s)

 .
It is valid for n − 1 ≥ j ≥ 2. For j = 1, there is a unique modular form E

(n,2)
2j+2 = E4.

Also, as was mentioned above E(n,2)
2j+2 = E2j+2 for j = 2, 3, 4, 6, which can be checked

straightforwardly. Because of the identities between modular forms there are other ways to
write (5.12).

Explicit form of Q0
2n−1 up to c̃n−3 order allows us, in principle, to calculate P (3)

n,j ,
although calculation of E(n,3)

2j+2 would require first extending (4.15) to the next 1/c order.
Given involved form of P (2)

n,j and E(2)
n,j we do not expect the answer to be simple.

5.2 Generalized Gibbs Ensemble

Spectrum of Q2n−1 can help understand the qKdV generalized Gibbs ensemble (GGE)

ρGGE = e−
∑

n
µ2n−1 Q2n−1 , ZGGE = Tr ρGGE, (5.13)

and corresponding (generalized) partition function and free energy. Earlier attempts to
evaluate KdV generalized free energy include [15, 16, 22, 31]. The GGE describes local
equilibrium in a state carrying specific values of qKdV charges. It is expected on general
grounds that most initial states, upon equilibration, can be locally described by the GEE
with the appropriate values of chemical potentials µ2n−1 [32]. From the mathematical
point of view, it is of great interest to investigate modular properties of ZGGE, generalizing
modular invariance of the conventional torus partition function µ2n−1 = 0, for n > 1.

The explicit spectrum of Q2n−1 in the large c limit allows in principle to calculate the
generalized sum over a particular Verma module

Tr∆ e
−
∑

n
µ2n−1Q2n−1 (5.14)
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in the “holographic limit”: h = ∆̃/c̃, tn := µ2n−1/c̃
n−1 fixed, c̃ → ∞, by expanding

the answer in powers of 1/c. In practice sums of exponents of quadratic or higher order
expressions in nk ∑

nk

eO(n2) (5.15)

can not be evaluated, and we restrict our analysis to first non-trivial 1/c order,

Tr∆ e
−
∑

n
µ2n−1Q2n−1 = e−c̃

∑
n
tnhn e

−
∑

n
tn
∑n−1

p=0 h
n−1−pξpnζ(−2p−1)/2∏∞

k=1

(
1− e−k

∑
n

(2n−1)n tn hn−12F1(1,1−n,3/2,−k2/h)
) .

From here generalized partition function can be evaluated using Cardy formula (we are
only writing explicitly the chiral part),

ZGGE = ec̃f0+f1+O(1/c̃), (5.16)

f0 =
∞∑
n=1

(2n− 1) tn hn, (5.17)

h1/2 = 1
2π

∞∑
n=1

tn nh
n, (5.18)

f1 = −
∞∑
k=1

ln
(
1− e−γ

)
−
∞∑
n=2

tn h
n−1

n−1∑
p=0

ξpn h
−p ζ(−2p− 1)

2 − n

24

 , (5.19)

γ(k) = k
∞∑
n=1

(2n− 1)n tn hn−1
2F1(1, 1− n, 3/2,−k2/h). (5.20)

Here ZGGE is understood to be a function of tn ≡ µ2n−1c̃
1−n, while h is a function of

tn satisfying (5.18). For (5.16)–(5.20) to be valid, resulting ∆̃ = c̃ h should be in the
regime of validity of Cardy formula. There are at least two limits when this assumption
is controllable. First, (5.16) is valid for any large c theory in the thermodynamic limit.
We introduce the spatial circle radius L (we kept L = 1 in the paper so far) and inverse
temperature β, µ1 = t1 = β/L. By taking L→∞, while all other chemical potentials scale
as µ2n−1 ∝ tn ∼ L1−2n to ensure that values of all Q2n−1 ∝ L are extensive, we find the
saddle point value h ∼ L2 and f0, f1 ∼ Ł. (The scaling of f1 follows by substituting the
sum over k in (5.19) by an integral over κ = k2/h.) In this limit second term in (5.19),
the sum over n, is sub-extensive and can be neglected. We therefore arrive at the leading
(extensive) contribution to f0 and f1 found in [22].

Second case when (5.16)–(5.20) can be trusted is in holographic theories, i.e. large c
theories satisfying HKS sparseness condition [3]. From the holographic point of view f0 is the
free energy of BTZ black hole in the Euclidean classical theory of gravity with the deformed
boundary conditions such that the dual CFT Hamiltonian isH =

∑
n µ2n−1Q2n−1 [17, 24, 33].

The leading correction f1 can be interpreted as the one-loop contribution coming from the
boundary gravitons. Different solutions of (5.18) means Euclidean path integral could have
numerous BTZ saddles and the condition h(tn) > 1/12 necessary for the validity of Cardy
formula would come automatically as the requirement of smoothness of bulk geometry.
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It is possible to fine-tune chemical potentials tn such that γ(k) (5.20) for some k will
vanish. That will render f1 divergent, indicating higher order 1/c corrects are necessary
to make free energy finite. Schematically, the spectrum Q2n−1 is an expansion in nk/c̃.
For the higher order corrections to contribute at the leading order, the quantum numbers
nk should be of order c̃. In terms of the classical problem of section 2, action variables
Ik should be of order one rather than infinitesimal. In other words, leading contribution
would come from a non-trivial saddle when classical u(ϕ) is not a constant but some
solitonic solution. Such saddles, describing black holes, which are geometrically different
from the BTZ configurations, were constructed in [24] and it was shown that for certain
parameters µ2n−1 they give leading contribution to generalized free energy. We dubbed
these configurations “KdV-charged” black holes to emphasize that higher KdV charges
Q2n−1, even at leading order in c, are different from Qn1 , unlike for BTZ configurations for
which u(ϕ) = u0 is a constant and Q2n−1 ∼ un0 .

Theoretical control over generalized free energy in the large c limit can be used to probe
modular properties of ZGGE. The currents T2n (1.1) have no anomalous dimension and
therefore naively ZGGE should be invariant under modular transformation t1 → t′1 = (2π)2/t1
accompanied by

tn → (−1)n
(2π
t1

)2n
tn, n > 1. (5.21)

This only holds to linear order in tn, n > 1, i.e. at the level of thermal expectation values
〈Q2n−1〉q discussed in section 5.1. At higher orders invariance is broken due to colliding
T2n [30]. To restore invariance of ZGGE, while working in the c→∞ limit one may require f0
given by (5.17), (5.18) to be invariant under the hypothetical transformation tn → t′n(tn, t1),
n > 1. More accurately, in addition to BTZ black holes described by (5.17), (5.18) we
should include vacuum (thermal AdS3) and KdV-charged black holes to the list of possible
saddles. Given a non-trivial diagram of the Hawking-Page phase transitions, to match
leading saddles, the hypothetical transformation tn → t′n(tn, t1) should be very complicated,
with numerous branches of continuity. This may indicate that in the presence of higher KdV
charges modular invariance of ZGGE is not mathematically natural. Similar conclusion is
recently reached in [34], which evaluated ZGGE explicitly in the case of c = 1/2 free fermion
model. They found that to reproduce ZGGE in the dual channel, one needs to sum over
not one but three fermion Hilbert spaces, schematically ZGGE(t1, t3) ∝ Z1(t′1)Z2(t′1)Z3(t′1),
a mathematical observation (conjecture), which so far has no physical interpretation.
To summarize, failure to establish invariance of ZGGE(t) under modular transformation
supplemented by an appropriate map tn → t′n in both infinite c limit and for c = 1/2
model may suggest that it is not mathematically natural and instead covariance of ZGGE(t)
under (5.21) should be investigated.

5.3 Transfer matrix

In the classical case, as follows from (2.22), charges Q2n−1 encode asymptotic expansion of
the quasi-momentum p(λ). The quasi-momentum controls the eigenvalues e±2πip(λ) of the
monodromy matrix of the differential equation (2.2). Instead of p(λ) one can consider the
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trace of monodromy matrix
T (λ) = 2 cos(2πp(λ)). (5.22)

In case of the constant potential u(ϕ) = h this becomes T (λ) = 2 cos(2π
√
λ− h/4).

In quantum case T (λ) becomes the transfer matrix, which is related to qKdV charges
via an asymptotic expansion [4]

lnT = κµ1/2 1−
∑
n

Cn µ
1/2−nQ2n−1, µ→∞, (5.23)

where

κ =
2
√
πΓ
(

1
2 −

ξ
2

)
Γ
(
1− ξ

2

) (
Γ
(
1− β2

))1+ξ
, (5.24)

Cn =
√
π(1 + ξ)β2nΓ

(
(n− 1

2)(1 + ξ)
)

Γ(n+ 1)Γ
(
1 + (n− 1

2)ξ
) (

Γ
(
1− β2

))−(2n−1)(1+ξ)
, (5.25)

β ≡
√

1− c
24 −

√
25− c

24 , ξ ≡ β2

1− β2 . (5.26)

Variable µ will become spectral parameter −λ in the classical limit. The original paper [4]
introduces another variable λ, defined as µ ≡ λ2(1+ξ). We use this definition in the reminder
of this section.

We are interested in the limit c→∞, or β → 0. Following [4] we introduce p2 = β2∆̃
which remains finite in this limit finite, p2 → −∆̃/4c̃ = −h/4. (This is, obviously, a
different quantity from the quasi-momentum p(λ) mentioned above.) We would like to find
T by summing the asymptotic expansion (5.23) while expanding it in powers of β2 which
corresponds to 1/c expansion. In principle we can use the spectrum (4.15) to calculate ln T
acting on an excited state, but resort to a simpler calculation for ln T acting on a primary
state. In this case Q2n−1 in (5.23) should be substituted by Q0

2n−1, which we expand in
powers of β2 ∝ 1/c (3.7). The calculation is tedious and we only give the final expression

(ln T )asympt|∆〉 = 2πi
√
p2 − λ2Φ(λ, p)|∆〉, (5.27)

Φ(λ, p) = 1 + β2Ψ− β4

48λ2(p2 − λ2)3

[
3λ4p2 + 2π2λ4(p2 − λ2)(4p2 − 3λ2)

]
+ β4

2λ2

[
(2p2 + λ2)Ψ2 − 2(p2 − λ2)λΨdΨ

dλ

]
+O(β6), (5.28)

Ψ(λ, p) = λ2

λ2 − p2

[
γ + 1

2ψ
(

2
√
p2 − λ2

)
+ 1

2ψ
(
−2
√
p2 − λ2

)]
. (5.29)

Here ψ is the polygamma function.
Given analytic form of (5.27) it is tempting to extend its validity from the asymptotic

regime λ→∞ to the vicinity of λ = 0. This is clearly wrong as even in the strict classical
limit β → 0 we do not recover correct classical expression for the trace of monodromy
matrix simply from e(lnT )asympt . Yet in the limit β → 0 the correct answer is reproduced by
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the following simple conjectural expression (we implicitly assume this is an eigenvalue of T
acting on |∆〉),

Tguess(λ, β, p) = e(lnT )asympt + e−(lnT )asympt , (5.30)

and we would like to check if it could be valid beyond the strict β = 0 limit. To that end
we expand (5.30) in powers of β (amended by an expansion in λ), to find

Tguess = 2cos
(

2π
√
p2−λ2

)
+β2

[
2π sin(2πp)

p
(2γ+ψ(2p)+ψ(−2p))λ2

+
(
−2π2 cos(2πp)

p2 [2γ+ψ(2p)+ψ(−2p))

+ π sin(2πp)
p3

(
2γ+ψ(2p)+ψ(−2p)−2pψ(1)(2p)+2pψ(1)(−2p)

))
λ4+O(λ6)

]

+β4
[
π sin(2πp)

12p3

[
3+8π2p2+12p2 (2γ+ψ(2p)+ψ(−2p))2

]
λ2+O(λ4)

]
+O(β6).

Small λ expansion of the actual T is given in [4] in the explicit form in terms of the integrals
of free field correlators. A comparison with Tguess reveals that, besides the classical β0 term,
which matches the classical expression (5.22) for a constant potential u = h, only β2λ2

term coincides with, while β2λ4 and β4λ2 terms do not match the correct result. We thus
conclude that the conjectural expression (5.30) is missing non-perturbative terms, which
are not captured by the asymptotic expansion (5.23).

6 Discussion

In this paper we obtained spectrum of quantum KdV charges Q2n−1 in first two non-trivial
orders in 1/c expansion. Our result (4.13) and (4.15) is valid in the semiclassical limit of large
central charge c→∞ with the ratio of ∆/c kept fixed. This limit is inspired by holographic
correspondence, when CFT is dual to weakly coupled gravity. Accordingly, dynamics of
stress-energy sector becomes semiclassical, with the leading (classical) contribution governed
by integrable dynamics on the co-adjoint orbit of the Virasoro algebra. Under semiclassical
quantization classical action variables Ik are promoted to integer quantum numbers nk,
and the spectrum of Q2n−1 looks most elegant in terms of variables ∆̃ and c̃ (4.2). At
each order in 1/c̃ the quantum answer is a polynomial in nk. Classical calculation fixes
the leading term with the highest power of nk, while all other terms should be regarded as
“quantum corrections.” We have seen that semiclassical quantization, combined with the
values of qKdV charges Q2n−1 acting on primary states, is sufficient to completely fix these
quantum corrections and obtain the spectrum of excited states at least in first two orders
in 1/c. We conjecture this quantization scheme can be extended to higher orders in 1/c.
We laid the groundwork for the next order 1/c3 by calculating classical Q2n−1(h, Ik) as well
as “energies” on primary states Q0

2n−1, albeit in the latter case not all terms are known
analytically. To complete the job one would need to find analytic expressions for Q0

2n−1
and develop a dictionary that maps each term to an infinite sum, yielding this term back
via zeta-function regularization.
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It is tempting to interpret quantization of Q2n−1 holographically, as a semiclassical
quantization of boundary gravitons in AdS3. We develop this picture at first 1/c order
in the appendix A, but holographic picture does not provide any immediate insight into
“quantum corrections” appearing at higher orders in 1/c.

The obtained spectrum has several immediate applications. First, in section 5.1 we
calculated two leading terms in large c expansion of the “thermal expectation values”
〈Q2n−1〉∆ ≡ Tr∆(qL0−c/24Q2n−1), where sum goes over a particular Verma module, and
compared them with the predictions of [30]. Covariance under modular transformation of
〈Q2n−1〉∆ in each order in 1/c serves as a non-trivial check of our main result (4.15). We
also fixed two leading terms in the differential operator Dn yielding thermal expectation
values via 〈Q2n−1〉∆ = DnTr∆(qL0−c/24), see (5.11) and (5.12). Second, in section 5.2 we
calculated first 1/c correction to generalized free energy of the qKdV Generalized Gibbs
Ensemble

ZGGE = Tr e−
∑

n
µ2n−1Q2n−1 . (6.1)

The latter describes local equilibrium of a 2d CFT in a state carrying specific values of
qKdV charges. It is of great interest to further investigate mathematical properties of
ZGGE, in particular covariance under modular transformation. Third, in section 5.3 using
asymptotic expansion we calculated quantum transfer matrix acting on a primary state
in first two non-trivial orders in 1/c expansion. Unfortunately the obtained expression is
lacking terms non-perturbative in spectral parameter, which can not be fixed from the
knowledge of spectrum of Q2n−1 alone.

There are several potential applications of our results, which we hope to address in the
future. The obtained spectrum of Q2n−1 will be helpful to study generalized Eigenstate
Thermalization Hypothesis of 2d CFTs [17] at the subleading order in 1/c. We also expect
the semiclassical quantization approach developed in this paper could be helpful in the
context of Intermediate Long Wave hierachry, which is closely related to qKdV problem.
More generally, it would be interesting to bridge the gap between the semiclassical approach
of this work with the Bethe anzatz approach of [19] by taking “holographic” limit c→∞
with fixed h = ∆̃/c̃ of the appropriate Bethe anzatz equations.
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A Spectrum of linear perturbations from AdS3

In the classical (infinite central charge) limit gravity in AdS3 can be described in terms
of two functions u(t, ϕ) and ū(t, ϕ) living at the boundary and satisfying EOM, u̇ = ∂ϕu

and ˙̄u = −∂ϕū. That is in the conventional case, when the dual CFT’s Hamitlonian is
H = Q1 + Q̄1 = L0 + L̄0 − c/12. Should the Hamiltonian be chosen to be one of the higher
qKdV charges, H = Q2n−1 + Q̄2n−1, functions u, ū will be satisfying higher KdV equations

u̇ = c

24{Q2n−1, δu} = (2n− 1)∂Rn, (A.1)

and similarly for ū [24, 33, 35]. In this case the spectrum of Q2n−1 is the spectum of small
fluctuations of u above the constant backgroun u = u0, that corresponds to unpertubed
metric in AdS3. In other words, to quantize Q2n−1 we consider linearized EOM for small
fluctuations u = u0 + δu, where δu ∝ eiεt+ikϕ is a flat wave. We want to find energy ε of
the flat wave which satisfies the equation of motion (A.1)

iεnδu = (2n− 1)δ∂Rn. (A.2)

For example in the case n = 1 we have ε1 = k, in case n = 2 we have ε2 = 2u0n+ 4
3k

3 and
so on. In general we can get from (2.20)

δ∂Rn+1 = n+ 1
2n+ 1δ(∂u+ 2u∂ − 2∂3)Rn = i

n+ 1
2n+ 1(kRn(u0) + 2(u0 + k2)δ∂Rn). (A.3)

Hence we find the following iterative relation for εn

εn+1 = (2n− 1) n+ 1
2n+ 1

[
2(u0 + k2)εn + kun0

]
, (A.4)

where we have used that Rn(u0) = un0 . Each εn is a polynomial of the form

εn =
n−1∑
p=0

ξpn k
2p+1un−1−p

0 , (A.5)

where ζpn satisfy

ξpn+1 = (2n− 1)2(n+ 1)
2n+ 1

(
ξpn + ξp−1

n

)
, (A.6)

and we defined ξ−1
n ≡ 1/2. The solution is easy to find, cf. (1.6),

ξpn = (2n− 1)Γ(n+ 1)Γ(1/2)
2Γ(p+ 3/2)Γ(n− p) . (A.7)

To match the spectrum of individual bosons εn(k, u0) with the spectrum of quantum
Q2n−1 we need to restore powers of c̃ and make the following identification

Q2n−1 = ∆̃n + c̃n−1∑
k

(
nk + 1

2

)
εn(k, u0) + . . . (A.8)

where nk are boson occupation numbers of boundary gravitons and u0 = ∆̃/c̃. This
reproduces the spectrum of Q2n−1 at two first leading orders in 1/c and provides physical
interpretation of nk. Unfortunately the holographic picture provides no clear path to
compute higher 1/c corrections to (A.8).
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B Brute-force pertubative calculation

A straightforward but a laborious approach to evaluate Q2n−1 in terms of action variables
Ik would be to use Fourier modes uk of u,

u(ϕ) =
∑
k

uke
ikϕ, (B.1)

to parametrize the co-adjoint orbit of Virasoro algebra, i.e. the space of potentials u sharing
the same orbit invariant h (2.17). To that end u0 should be understood as a function of
uk [20]. Then Q2n−1 and Ik can be expressed in terms of uk, and consequently in terms of
each other.

In terms of the Fourier modes the Poisson bracket is

i
c

24{uk, u`} = (k − `)uk+` + 2k3δk+`. (B.2)

This coincides with the Virasoro algebra upon u0 is shifted by a constant. At this point we
introduce the orbit invariant h(uk) and express it in terms of uk by expanding in power
series

h = u0 +
∞∑
n=2

Un, Un = 1
n!

∑
p1,··· ,pn

p1+···+pn=0, pk 6=0

hp1,··· ,pnup1 · · ·upn . (B.3)

After imposing c
24{h(u), uk} = 0 for any k we find

hp1,p2 =− p2
1+p2

2+2h
4(p2

1+h)(p2
2+h)

,

hp1,p2,p3 = p2
1+p2

2+p2
3+6h

8(p2
1+h)(p2

2+h)(p2
3+h)

,

hp1,p2,p3,p4 =−15h4−25h3q2+h2(13q2
2−9q4)+h(−3(q3

2 +q2
3)+8q2q4)+q2

2q4−q2q
2
3−4q2

4
den

,

where

q2≡ p1p2+p1p3+p2p3+p1p4+p2p4+p3p4 =−1
2
∑

p2
k, (B.4)

q3≡ p1p2p3+p1p2p4+p1p3p4+p2p3p4 = 1
3
∑

p3
k, (B.5)

q4≡ p1p2p3p4 =−1
4
∑

p4
k+ 1

2q
2
2, (B.6)

den= [(p1+p2)2+(p3+p4)2+2h][(p1+p3)2+(p2+p4)2+2h][(p1+p4)2+(p2+p3)2+2h]

×
4∏

k=1
((p2

k+h). (B.7)

Now we can get rid of u0 = h−
∑∞
n=2 Un and express the Poisson brackets in terms of uk,

k 6= 0,

i
c

24{uk, u`} = δk+`(2k)
(
k2 + h−

∞∑
n=2

Un

)
+ (1− δk+`)(k − `)uk+`. (B.8)
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Our next goal is to find symplectic form associated with the Poisson brackets

ω = c

24 ×
i

2
∑

k 6=0,` 6=0
ωk,` duk ∧ du`, ωk,` =

∞∑
n=0

ω
(n)
k,` , (B.9)

where ω(n)
k,` is an order n homogeneous polynomial in uk. We find, order by order in uk,

ω
(0)
k,` = − 1

2k(k2 + h)δk+`, (B.10)

ω
(1)
k,` = −(1− δk+`)

k − `
4k`(k2 + h)(`2 + h)u−k−`, (B.11)

ω
(2)
k,` = − 1

8k`(k2 + h)(`2 + h)
∑
m 6=0

[
kδk+`
m2 + h

umu−m (B.12)

+ (1− δk−m)(1− δ`+m)(k +m)(`−m)
m(m2 + h) u−k+mu−`−m

]
(B.13)

We now would like to introduce (rescaled) normal coordinates zk near the origin uk = 0
(which corresponds to constant u(ϕ) = h), such that

24
c
ω = i

2
∑
k 6=0

−1
2k(k2 + h)dzk ∧ dz−k, i

c

24{zk, z`} = δk+`(2k)(k2 + h). (B.14)

We find

zk =uk+ 1
4

∑
p1+p2=k
pi 6=0

1
p1p2

up1up2 + 1
24

∑
p1+p2+p3=k

pi 6=0,k

p1p2+p2p3+p3p1
p1p2p3(p1+p2)(p2+p3)(p3+p1)up1up2up3

− 1
8
∑
6̀=0,±k

2`2+h
`2(k2−`2)(`2+h)uku`u−`−

2k4−k2h+h2

32k4(k2+h)2 u
2
ku−k+O(u4). (B.15)

This expression can be inverted

uk = zk−
1
4

∑
p1+p2=k
pi 6=0

1
p1p2

zp1zp2 + 1
24

∑
p1+p2+p3=k

pi 6=0,k

k2

p1p2p3(k−p1)(k−p2)(k−p3)zp1zp2zp3

+ 1
2

∑
p1+p2=0
pi 6=0,k

h

p1p2(k−p1)(k−p2)[(p1−p2)2+4h]zp1zp2zk−
h(5k2+h)

32k4(k2+h)2 z
2
kz−k+O(z4).

(B.16)

We are now ready to introduce action and angles variables Ik,θk such that 24
c ω=

∑
k dIk∧dθk,

zk√
2k(k2 + h)

=
√
Ike
−iθk . (B.17)
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This leads to

Ik = 1
2k(k2 + h)zkz−k (B.18)

= 1
2k(k2 + h)uku−k + 1

8k(k2 + h)
∑

p1+p2=k
pi 6=0

1
p1p2

up1up2u−k

+ 1
8k(k2 + h)

∑
p1+p2=−k

pi 6=0

1
p1p2

up1up2uk +O(u4).

At this point we can go back to u0 = h−
∑∞
n=2 Un are represent it in terms of action

variables (by expressing both sides as a series in zk),

Q1 ≡ u0 = h+
∑
k=1

kIk +O(z5). (B.19)

This matches the exact relation (2.24) up to the fifth order in zk, reflecting the expansion
order in (B.16).

To find Q2n−1 in terms of Ik we first write an iterative relation for the Fourier modes
of Gelfand-Dikii polynomials, which satisfy (2.20),

Rn,k ≡
1

2π

∫
dϕ e−ikϕRn, (B.20)

Rn+1,k = n+ 1
2n+ 1

2(k2 + u0)Rn,k +Q2n−1uk + 1
k

∑
`6=0,k

(2k − `)u`Rn,k−`

 , (k 6= 0).

Then, using the relation between Q2n−1 and Rn

Rn,k = 1
ik(2n− 1)

c

24{Q2n−1, uk} (B.21)

we find

c

24{Q2n+1, uk} = ik(n+ 1)Q2n−1uk + 2(n+ 1)(k2 + u0)
2n− 1

c

24{Q2n−1, uk}

+ n+ 1
2n− 1

∑
` 6=0,k

2k − `
k − `

u`
c

24{Q2n−1, uk−`}. (B.22)

We use the following ansatz for Q2n−1 in terms of uk,

Q2n−1 = hn + 1
2!

∑
p1+p2=0
pi 6=0

q(n)
p1,p2up1up2 + 1

3!
∑

p1+p2+p3=0
pi 6=0

q(n)
p1,p2,p3up1up2up3 (B.23)

+ 1
4!

∑
p1+p2+p3+p4=0

pi 6=0

q(n)
p1,p2,p3,p4up1up2up3up4 +O(u5),
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and the iterative relation (B.22) becomes the iterative relation for q(n)
p1,...,pi for i = 2, 3, 4,

q
(n+1)
k,−k = 2(n+ 1)(k2 + h)

2n− 1 q
(n)
k,−k + (n+ 1)hn

2(k2 + h) , (B.24)

q(n+1)
p1,p2,p3 = 2(n+ 1)(p2

1 + p2
2 + p2

3 + 3h)
3(2n− 1) q(n)

p1,p2,p3 −
(n+ 1)hn(p2

1 + p2
2 + p2

3 + 6h)
8(p2

1 + h)(p2
2 + h)(p2

3 + h)
(B.25)

− n+ 1
3(2n− 1)

[(
p1 − p2
p2

+ p1 − p3
p3

)
q

(n)
p1,−p1 + symmetric w.r.t. p1, p2, p3.

]
(B.26)

These can be solved as follows

q
(n)
k,−k = (h+ k2)n−2(2n)!!

4(2n− 3)!!

n−1∑
m=0

(2m− 1)!!
(2m)!!

(
h

h+ k2

)m
, (B.27)

q(n)
p1,p2,p3 = (2n)!!

8(2n− 3)!!p1p2p3

n−1∑
m=0

(2m− 1)!!
(2m)!! hm

×
[
p1(p2

1 + h)n−m−2 + p2(p2
2 + h)n−m−2 + p3(p2

3 + h)n−m−2
]
.

Our goal would be to match (B.23)with the expansion

Q2n−1 = hn +
∑
k=1

(f (n,1)
k Ik + f

(n,2)
k I2

k) + 1
2
∑
k,`=1
k 6=`

f
(n)
k,` IkI` +O(I3), (B.28)

by expressing Ik in terms of uk using (B.18). This leads to

f
(n,1)
k = 2k(k2 + h)q(n)

k,−k (B.29)

and the relations for f (n,2)
k , f

(n)
k` in terms of q(n)

p1,...,pi . To fix f (n,2)
k , f

(n)
k` , we would not need

q
(n)
p1,p2,p3,p4 with arbitrary p1, . . . , p4, but only q(n)

k,−k,`,−`, including the case of k = `,

q
(n)
k,−k,`,−` =

f
(n)
k,`

4k`(k2+h)(`2+h) + 1
8k2`2

 f
(n,1)
k+`

(k+`)[(k+`)2+h] +
f

(n,1)
k−`

(k−`)[(k−`)2+h]


− 1

4k2`2(k2−`2)(k2+h)(`2+h)
[
k(2`2+h)f (n,1)

k −`(2k2+h)f (n,1)
`

]
, (B.30)

and

q
(n)
k,k,−k,−k = f

(n,2)
k

k2(k2 + h)2 −
(2k4 − k2h+ h2)f (n,1)

k

8k5(k2 + h)3 + f
(n,1)
2k

16k5(4k2 + h) . (B.31)

The iterative relation for q(n)
k,−k,`,−` is cumbersome. Instead, it is more convenient to work

directly with the iterative relation in terms of f (n,2)
k and f (n)

k`

f
(n+1,2)
k = 2(n+ 1)(k2 + h)

2n− 1 f
(n,2)
k + (n+ 1)(k2 + h)

2(2n− 1) [(4n− 1)k2 − 3h]q(n)
k,−k, (B.32)
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and

f
(n+1)
k,` = 2(n+1)(k2+h)

2n−1 f
(n)
k,` (B.33)

+ 2(n+1)(k2+h)k`
(2n−1)(k2−`2)

[
2(k2+h)2q

(n)
k,−k+(`2+h)(2(k2−`2)n−k2−`2−2h)q(n)

`,−`

]
.

Once everything combined together we find

f
(n,1)
k = (2n)!!k(h+ k2)n−1

2(2n− 3)!!

n−1∑
m=0

(2m− 1)!!
(2m)!!

(
h

h+ k2

)m
, (B.34)

f
(n,2)
k = −(2n)!!(h+ k2)n−2

16(2n− 3)!!

n−1∑
m=0

(3h+ k2 − 4k2m)
m−1∑
j=0

(2j − 1)!!
(2j)!!

(
h

h+ k2

)j
, (B.35)

and

f
(n)
k,` = (2n)!!k`

4(2n− 3)!!(k2 − `2)

n−1∑
j=0

(n− 1− j)(2j − 1)!!hj

(2j)!!
[
(h+ k2)n−j−1 − (h+ `2)n−j−1

]

+ (2n)!!k`
4(2n− 3)!!

n−1∑
m=0

m−1∑
j=0

m(2j − 1)!!hj

(2j)!!

×
[
(h+ k2)m−j−1(h+ `2)n−m−1 + (h+ `2)m−j−1(h+ k2)n−m−1

]
. (B.36)

Although written in a different form, this result is in agreement with (2.34), (2.35),
and (2.38).

C One-zone potentials: details

One-zone potentials u can be found from the condition {Q3 +αQ1, u} = 0 for some constant
α. From here we immediately find, see section 2.4 of [24],

λ0 = − α

24 −
k2

12(θ3(τ)4 + θ4(τ)4), (C.1)

λ1 = − α

24 −
k2

12(θ2(τ)4 − θ4(τ)4), (C.2)

λ2 = − α

24 + k2

12(θ2(τ)4 + θ3(τ)4). (C.3)

Pertubatively, i.e. in the limit of small q = eiπτ , corresponding potential is

u = h+ 32k4

k2 + h
q2 − 16k2q cos(kϕ)− 32k2q2 cos(2kϕ) +O(q3). (C.4)

There are useful relations involving Jacobi elliptic functions and hypergeometric func-
tion,

m := θ4
2(τ)/θ4

3(τ), F

(1
2 ,

1
2 ,1;m

)
= θ3(τ)2,

F
(

1
2 ,

1
2 ,1;1−m

)
F
(

1
2 ,

1
2 ,1;m

) =− 1
π

logq,

F
(

3
2 ,

1
2 ,1;m

)
F
(

1
2 ,

1
2 ,1;m

) = 1+2∂ lnθ2
3(τ)

∂ lnm , −16
∞∑
n=0

q2n+1

(1−q2n+1)2 +2θ3(τ)4−2θ4(τ)4
F
(

3
2 ,

1
2 ,1;m

)
F
(

1
2 ,

1
2 ,1;m

) = 0.
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We also list here more terms of the q-expansion of Ik,

Ik = 32k3q2

h+k2 + 64q4 (3h2k3+12hk5+k7)
(h+k2)3 + 128k3q6 (3h4+42h3k2+108h2k4−58hk6+k8)

(h+k2)5

+ 128k3q8 (7h6+156h5k2+1083h4k4+1232h3k6−4035h2k8+788hk10+k12)
(h+k2)7 +O(q10).

With help of Q1 = h+ kIk immediately yields Q1 as an h-dependent q expansion. Together
with (2.29) this yields q expansion of λ0,

λ0 = h

4−
8hk2

k2+hq
2− 16hk2(h2−9k4)

(k2+h)3 q4− 32hk2(h4+2h3k2−32h2k4−98hk6+63k8)
(k2+h)5 q6+O(q7).

The relation for Ik in terms of q can be solved for q in terms of Ik iteratively,

q2 =
(
h+ k2)
32k3 Ik −

(
3h2 + 12hk2 + k4)

512k6 I2
k +

(
15h3 + 87h2k2 + 105hk4 + k6)

8192k9 I3
k

−
(
187h4 + 1402h3k2 + 3012h2k4 + 1606hk6 + k8)

262144k12 I4
k +O(I5

k).

D Perturbative calculation for finite-zone potentials

We start with the two-zone case and parametrize corresponding differential dp with help of
two infinitesimal parameters ε1, ε2 and λ0,

λ1 = λ0 + k2

4 + ε1 + a1ε
2
1 + b1ε1ε2 + c1ε22 + . . . , (D.1)

λ2 = λ0 + k2

4 − aε1 + a2ε
2
1 + b2ε1ε2 + c2ε22 + . . . , (D.2)

λ3 = λ0 + `2

4 + ε2 + a3ε
2
1 + b3ε1ε2 + c3ε22 + . . . , (D.3)

λ4 = λ0 + `2

4 − bε2 + a4ε
2
1 + b4ε1ε2 + c4ε22 + . . . , (D.4)

r1 = λ0 + k2

4 + d1ε
2
1 + e1ε1ε2 + f1ε

2
2 + . . . , (D.5)

r2 = λ0 + `2

4 + d2ε
2
1 + e2ε1ε2 + f2ε

2
2 + . . . (D.6)

The parametrization is redundant, with different choices related by redefinitions of ε1, ε2.
We assume ε1 ∼ ε2 are of the same order and in what follows we refer to expansion in ε1, ε2
simply as ε expansion. While keeping two-zone case in mind for concreteness, most of the
discussion below applies to m-zone case with arbitrary m.

D.1 a-cycles

To impose a1-cycle constraint (2.9), we need to integrate from λ1 to λ2. By introducing x via

λ = λ2 + λ1
2 + x

λ2 − λ1
2 , (D.7)
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and then expanding in powers of ε we reduce the integral to standard integrals of the form∫ 1

−1

dxx2n
√

1− x2
=
√
πΓ(n+ 1/2)
Γ(n+ 1) . (D.8)

Provided we want to find Q2n−1 in terms of Ik by expanding up to p-th power, we would
need to keep 2p terms in ε-expansion, up to and including ε2p. This method works for any
a-cycle integral and any number of zones.

D.2 b-cycles

We start with the b1-cycle, which goes from λ0 to λ1, and introduce another variable x

λ = λ1 − x(λ1 − λ0). (D.9)

We can use the proximity of λ4 to λ3 to expand
√

(λ− λ3)(λ− λ4) in ε. Now the integral
of interest reduced to a sum of integrals of the form∫ 1

0

dxP (x)√
x(1− x)(16w + x)(x− c)r

(D.10)

where 16w is a small parameter of order ε,

16w = λ2 − λ1
λ1 − λ0

, (D.11)

P (x) is some polynomial and c = 1− `2/k2 (we assumed ` > k). The integral (D.10) can
be related to

Jn(c) :=
∫ 1

0

dxxn√
x(1− x)(16w + x)(x− c)

(D.12)

by differentiating over c. To evaluate it, it is helpful to first introduce the integral

In :=
∫ 1

0

dxxn√
x(1− x)(16w + x)

=
∞∑
m=0

am(n)wm +
∞∑
m=n

bm(n)wm lnw, (D.13)

which can be expressed as formal series in w. Coefficients am(n) for n > m and bm(n) for
any n,m can be found analytically

am(n) =
(−16)mΓ

(
m+ 1

2

)
Γ(n−m)

Γ(m+ 1)Γ
(
−m+ n+ 1

2

) , n > m, (D.14)

bm(n) =
16m(−1)n+1Γ

(
m+ 1

2

)
Γ(m+ 1)Γ(m− n+ 1)Γ

(
−m+ n+ 1

2

) . (D.15)

To find am(n) for m ≥ n we can use the iterative relation

In = (1− 2n)(In − In−1)− 1
8∂w(In+1 − In), (D.16)
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which follows from the integration by parts, and am(0) which can be found directly
from (D.13) since the corresponding integral can be evaluated analytically. For example we
find the following iterative relation for an(n),

am+1(m+ 1) = (−1)m22m+3Γ(2m+ 1)
Γ(m+ 2)2 − 8(2m+ 1)am(m)

m+ 1 , a0(0) = 0. (D.17)

So far we are interested only in first 2p powers of w, we only need to worry about am(n)
with m ≤ 2p. In our case p = 3 and we simply tabulate values of am(n) for 0 ≤ m ≤ 6 and
m ≥ n for convenience

am(n) =



0
8 8
−84 −104 −112
2960

3 1152 4288
3

4736
3

−37310
3 −42040

3 −16368 −60992
3 −68224

3
820008

5 180656 203584 1189248
5

1478144
5

1666048
5

−11153912
5 −12097344

5 −7995904
3 −9011456

3 −17549824
5 −65468416

15 −74166272
15


.

Going back to (D.12), we can expand (x− c) in the denominator into power series in
x, thus reducing the integral to a sum of (D.13). Provided n > 2p and so far we are only
interested in terms of order wr and wr lnw with r ≤ 2p, only relevant contributions would
come from am(n)wm term in (D.13) with m < n. Corresponding coefficients are known
analytically, (D.14), and can be re-summed yielding,

Jn(c) = −
2p∑
m=0

(−16)mωmΓ
(
m+ 1

2

)
Γ(l −m) 2F1

(
1, l −m; l −m+ 1

2 ; 1
c

)
cΓ(m+ 1) +O(w2p+1).

Here 2F1 is regularized hypergeometric function and this expression is only valid for n > 2p.
To extend it to smaller n we use the iterative relation, which follows from the integration
by parts,

Jn = Jn+1 − In
c

. (D.18)

This completes technical preliminaries as now integral over b1 cycle can be reduced to a
number of integrals Jn and their derivatives, so far we are only interested in terms of order
wr with r ≤ 2p. Clearly, the approach above can be used to evaluate integrals over b1 when
there are more than two zones. In this case one would need to evaluate integrals∫ 1

0

dxxn√
x(1− x)(16w + x)

∏m−1
i=1 (x− ci)

, (D.19)

where m is the number of zones. This can be reduced to (D.12) by noting

m−1∏
i=1

1
(x− ci)

=
m−1∑
i=1

αi
x− ci

, (D.20)

with the appropriate coefficients αi.
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To evaluate the integral over b2-cycle from λ2 to λ3 is more challenging because in the
ε→ 0 limit there are singularities appearing at both boundaries. There is a straightforward
but complicated way. By appropriately changing variables and expanding in ε all terms
except for

√
(λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4) we reduce the calculation to the integral

∫ 1

0
dx

xn√
x(1− x)(16w + x)(1 + 16u− x)

(D.21)

for positive small w, u. The indefinite integral of this kind can be evaluated analytically.
Then the definite integral above can be integrated by expanding it powers of w, u (which
both are of order ε), and keeping terms up to order 2p. This is an involved exercise and
instead one can use one of the following shortcuts.

In the particular case of two-zone potential, instead of evaluating integral over b2, one
can combine the integral over b1 and b2 such that the contour would enclose λ0, . . . , λ3.
Now one can deform the contour to go from λ4 to infinity, if necessary accompanied by a
circle at infinity. At this point integrand can be expanded in ε such that brunch-cut from λ1
to λ2 disappears, yielding pole singularities at λ = λ0 + k2/4. At this point corresponding
integral can be rewritten as

∮ −16w

−∞
dx

P (x)√
x(1− x)(x+ 16w)(x− c)r

, (D.22)

where P (x) is some polynomial and 0 ≤ c ≤ 1. We also emphasize that to render this
integral finite, one may need to close the contour at infinity. This integral can be decomposed
into a sum of integrals of the form

∮ −16w

−∞
dx

xn√
x(1− x)(x+ 16w)

, (D.23)

and ∮ −16w

−∞
dx

1√
x(1− x)(x+ 16w)(x− c)

, (D.24)

and its derivatives. First integral can be reduced to (D.13) by deforming the contour to go
from 0 to 1. Last integral can be reduced to J0 and J1 with help of modular transformation
mapping ∞ to 1, −16w to 0, and 0 to −16w.

x→ x+ 16w
x− 1 . (D.25)

This shortcut works for two-zone case, but with more zones present it is not applicable.
Neveftheless there is a very simple trick which make evaluation of b2 and other b-cycles
unnesessary. Indeed, to satisfy (2.9) and (2.10) for all cycles, it is sufficient to satisfy (2.9)
for all cycles and (2.10) for b1 and also impose that the expansion (D.1)–(D.6), and its
generalizations for the case of more than two zones, is invariant under permutation of
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indexes and ki defined in (2.11). Say, for two zones we find

λ1 = λ0 + k2

4 − ε1 + 3ε21
k2 + 4ε22k2

`2(k2 − `2) +O(ε3), (D.26)

λ2 = λ0 + k2

4 + ε1, (D.27)

r1 = λ0 + k2

4 + ε21
2k2 + 2ε22k2

`2(k2 − `2) +O(ε3), (D.28)

and λ3,4, r2 related to λ1,2, r1 by the exchange ε1 ↔ ε2 and k ↔ `. The same logic with the
permutation symmetry works for any number of zones.

Above we only explicitly wrote terms up to ε2, while evaluating all terms up to ε6. The
simple form of λ2 above is a parametrization choice. With this choice taking ε2 = 0 does
not close the second zone. One can check that taking

ε2 = − 2`2ε21
k2 (k2 − `2) + . . . (D.29)

such that λ4 = λ3 would make I` dicussed below vanish. Alternatively one could chooe εi
to control the size of λ2i − λ2i−1, but with this choice both all λi would depend on all εi.

D.3 Evaluation of Ik, h and Q2n−1

Evaluation of action variables Ik as a pertubative series in εi is straightforward. It is an
integral over a-cycle and therefore can be evaluated along the lines discussed above. The
only difference, in comparision with the discussion in subsection D.1, is the term ln λ, which
needs to be expanded in powers of ε yielding polynomials in x in the numerator of (D.8),

Ik = 2ε21
k(λ0 + k2/4) +O(ε3). (D.30)

Again, we only keep terms up to ε2 for simplicity.
Evaluation of h is also straightforward. To that end one needs to calculate p(0), given

by an integral from 0 to λ0. After expanding the integrand in powers of ε it becomes the
integral which can be evaluated in a closed form, yielding

h/4 = λ0 + λ0

(
2ε21

k2(λ0 + k2/4) + 2ε22
`2(λ0 + `2/4)

)
+O(ε3). (D.31)

Finally, evaluation of Q2n−1 for any given n is also straightforward since λi are known
explicitly. As a result we obtain Ik, h,Q2n−1 as functions of λ0 and εi. One can then
reverse-engineer coefficients in (2.1) such that it is satisfied.

E Spectrum of Q2n−1 acting on primaries

In this appendix we outlined calculation of Q0
2n (3.6) following [27]. Starting from the

Schrödinger equation (3.2), one introduces the following change of variables

Ψ(x) = El(l−3/2)/4αw(l−3/2)/4y(w), x = E
1

2αw
1
2l , (E.1)
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such that (3.2) becomes

− ε2∂2
wy + Z(w)y = 0, Z(w) = w, ε = E−

α+1
2α . (E.2)

Taking ε as a formal small parameter this equation can be solved via WKB expansion,

y(w) = e
1
ε
S(w), −εS′′ − S′2 + Z = 0, S(w) =

∞∑
n=0

εnSn. (E.3)

The resulting Riccati equation can be rewritten as the iterative relation to find S′n with
S′0 = −

√
Z(w). It is more convenient for what follows to make another change of variables

z = wα/(l+1/2) and introduce the polynomial ansatz

S′n = i
α

2l + 1z
1− l+1/2

α S̃n, S̃n =
n∑
k=0

inc
(n)
k z−k+(n−1)(1−1/2α)(1− z)k−(3n−1)/2 (E.4)

The Ricatti equation rewritten in terms of c(n)
k gives rise to (3.4), which can be used together

with (3.5), to iteratively find c(n)
k . The first few c

(n)
k read

c
(2)
0 = 5

8α, c
(2)
1 = 1

4(2α−1), c
(2)
2 =− 1

8α(4u2α2−1). (E.5)

c
(3)
0 =−15α2

8 , c
(3)
1 =−9α2

4 + 9α
8 , c

(3)
2 = 1

2α
2
(
u2−1

)
+ 3α

4 −
3
8 , c

(3)
3 =− 1

8α(4u2α2−1).

(E.6)

To obtain Q0
2n−1 one needs to integrate S̃2n(w(z)) over a Pochhammer contour γP ,

Q0
2n−1 = (−1)n

Γ
(

3
2 − n−

2n−1
2α

)
√
πΓ
(
1− 2n−1

2α

) (2n− 1)Γ(n+ 1)
4n(α+ 1)n Ǐ2n−1(α, l̂), (E.7)

Ǐ2n−1 = 1

2
(

1− e
−iπ(2n−1)

α

) ∫
γP

dz S̃2n(z). (E.8)

This integral can be evaluated using,

(1− e2πia)(1− e2πib)B(a, b) =
∫
γP

dz za−1(1− z)b−1, (E.9)

where B(a.b) is the Euler beta function. Combining everything together yields (3.6).
Evaluating Q0

2n−1 explicitly, using computer algebra to solve for c(n)
k iteratively, for

small and moderate n is an easy task. To obtain 1/c expansion of λ0
2n−1 for arbitrary n

requires knowing corresponding c(n)
k in 1/c expansion, i.e. in the limit of large α. This

proved to be a difficult task. We obtained first three non-trivial terms of λ0
2n−1 in 1/c̃

expansion (3.7), with the first two terms (3.8), (3.9) in closed analytical form. Functions yi
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and ζi there are defined as follows

y1(j) =
j∑
`=0

1
2`+ 1 , (E.10)

y2(j) =
j∑
`=0

1
(2`+ 1)2 , (E.11)

ζ2(j) =
∑

j1+j2=j
ζ(−2j1 − 1)ζ(−2j2 − 1), (E.12)

ζ3(j) =
∑

j1+j2+j3=j
ζ(−2j1 − 1)ζ(−2j2 − 1)ζ(−2j3 − 1), (E.13)

where sum goes only over non-negative j1, j2, j3. Third term (3.10) was fixed up to one
coefficient pj , with the first several values for 0 ≤ j ≤ 17 given below

pj =
(
− 31

224 ,
103
576 ,−

7883
21120 ,

868487
748800 ,−

505639
100800 ,

394694297
13708800 ,−

68117454019
321753600 ,

4929720750223
2540160000 ,

− 199232137825687
9180864000 ,

48745030162337923
167650560000 ,−618684597383137

134534400 ,
7442737871872435019

87783696000 ,

− 1420749127340184137621
788237049600 ,

46636700018927407368821
1065512448000 ,−198277953077778046100039

164670105600 ,

21869843836862719834306038469
587058612940800 ,−31428771773709445918185916879

24404109649920 ,

4187283526052269558397574465940213
84663488093184000 , . . .

)
.
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