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1 Introduction

Conformal modular bootstrap program aims to establish universal constraints on two-
dimensional CFTs and elucidate properties of those special theories which saturate these
constraints. One of the central goals of the modular bootstrap is to study theories maximizing
the value of spectral gap for given fixed value of central charge [1], as these theories for
large central charge are expected to be dual to weakly coupled gravity [2]. To simplify this
obviously challenging task one can restrict attention to a class of Narain theories, i.e. CF'Ts
exhibiting U(1)¢ x U(1)¢ symmetry. In this case large spectral gap theories are not sparse
(in the sense of [2]), and their holographic description is less clear [3]. Nevertheless study of
such theories is well motivated by both holography and the modular bootstrap, with the



latter relating solutions of spinless bootstrap constraints to densest sphere packings [4].!

Narain theories were studied in [6] and [7] using spinless and full modular bootstrap, with
the hypothetical optimal theories being identified for ¢ < 8. Here, following [8] we say
optimal to denote CF'Ts maximizing spectral gap for given c.

A relation between quantum codes and Narain CFTs, proposed in [9], generalizes chiral
constructions of [10]. Starting from a code it constructs corresponding Narain lattice and
expresses CFT torus partition function in terms of the code enumerator polynomial (for
higher genus generalization see [11, 12]). In this way constraints of modular invariance
reduce to two algebraic constrains at the level of enumerator polynomial. The relation to
quantum codes was recently extended and interpreted in terms of CFT Hilbert space in [13].
There are also “bottom-up” generalizations when the connection with codes is perceived
as a tool to solve modular bootstrap constraints and construct interesting CFTs [14, 15],
also see [16, 17] for the subsequent developments. In this paper we use this approach and
introduce the umbrella construction which generalizes and encompasses the constructions
of [14, 15]. In particular we show that all (conjecturally) optimal Narain theories for ¢ < 8
identified in [7] are in fact code theories, by providing an explicit way to construct these
theories from codes.

Our construction should be understood as an infinite family of similar but distinct
constructions. We consider codes over abelian groups G = Z,, x Z, equipped with particular
scalar product and map even self-dual codes C C G¢ to Narain lattices using a suitable
generalization of the Construction A of [18]. The same group G might be mapped into
lattices in several different ways, each way defining a particular construction. Then an
appropriate generalization of the code Hamming distance (we explain what this is latter in
the text), modulo certain subtleties, defines CFT spectral gap A* such that “better” codes
with larger Hamming distance corresponds to larger A*. In each case, the resulting Narain
lattice necessarily has vectors of particular length which is independent of ¢. Hence any
given construction can only yield CF'Ts with bounded spectral gap that doesn’t grow with c.
Nevertheless by considering a sequence of constructions parametrized by ¢ one can obtain a
family of Narain theories with the spectral gap growing linearly with ¢. For ¢ > 1 finding
optimal codes, i.e. those maximizing corresponding Hamming distance, is a challenging
task, but one can average over a family of codes with the given c¢. From here we find that
random code CFT, drawn from a particular ensemble, has spectral gap

A*:%, ¢ — 00, (1.1)
which was conjectured in [3] to be asymptotically largest possible value. Thus, we conclude
that certain code CF'T are optimal for ¢ >> 1 or at least give spectral gap with the conjectured
maximal asymptotic value of A*/c.

The paper is organized as follows. In section 2 we outline our main construction mapping
codes to Narain CFTs and then express their partition functions in terms of enumerator

'Here we are speaking of a density of states satisfying (some subset) of modular bootstrap constraints,
with no regard to whether there is an actual CFT yielding this density of states. Similarly, speaking of
densest sphere packings, we in fact refer to a solution to Cohen-Elkies linear program constraints [5], with
no regard to whether there are actual associated sphere packings.



polynomials in section 3. We then use these results to construct optimal theories for ¢ < 8
in section 4. We proceed by considering the case of asymptotically large ¢ and a family of
associated constructions in section 5. We conclude in section 6.

Note: recently a paper [16] appeared which has an overlap with the square lattice
construction discussed in sections 2.3, 3.2.

2 Additive codes and Lorentzian lattices

The main ingredient of our construction is a 2-dimensional even lattice A € RY!, which
we call a glue lattice. Starting from such a lattice, we define an additive group G, which
serves as the alphabet of the code. Then standard Construction A maps a code C C G into

a lattice
A® - @dACAcCAt®.. At C RS (2.1)
ctimes ctimes

When C satisfies additional conditions, the lattice A¢ is even and self-dual, thus defining a
Narain theory.

2.1 Even lattices in R1:1

We equip R? with a Lorentzian metric

9= (? 3) , (22)

thus turning it into R, A two-dimensional “glue” lattice A C RY! is called integral if
vIgu € Z for any u,v € A. A lattice called even if vT gv € 27 for any v € A. Any even
lattice is automatically integral.

It is convenient to parametrize a lattice by a generating matrix A, such that v = An,
n € 72 generates all lattice vectors. Here we abuse the notations by using A to denote both
the lattice and its generating matrix. The generating matrix is not unique, obviously A
and AS for S € SL(2,Z) generate the same lattice. So far we are only interested in the
scalar product defined by (2.2), we can identify all lattices related by O(1,1), A ~ OA for
0 € 0(1,1).

By dual lattice A~ we understand all vectors v € A~ ¢ RY! such that v"gu € Z for
any vector u € A. At the level of generating matrix A+ = g(A~H)7.

We can parametrize all even lattices in Rb! as follows. In full generality

2m k

gA:ATgA:<k 5 ),n,m,k:EZ, (2.3)
n

assuming det(A) = vVk? — 4mn > 0. Then using SL(2,Z) we can bring n,m, k to satisfy
(see chapter 15 of [18])

0 <k < VEk?—4nm < min(k 4 2|n|, k + 2|m|), (2.4)
unless k? — 4nm is a full square, in which case one can choose new n,m, k such that

n =0, —k<m<Ek. (2.5)



With the help of an appropriate O(1, 1) transformation the corresponding generating
matrix can be brought to the form

Az(1 Z), a:%(k+\/k2—4mn). (2.6)

m a

Since A is integral, it is contained in its dual A+ D A. We call the following quotient the
“glue group”
G=A"/A=77/gp =Ly x L. (2.7)

Here

where |G| is the order of the group. This follows from the invariant factor decomposition of
finitely generated abelian groups.

G| = | det(A)/ det (AL) | = k? — 4mn, (2.9)

One possible parametrization of the elements of G is as pairs g = (a, b) of integer numbers
0<a<p, 0<b<q. Another useful parametrization is as integer vectors ¢(g) € Z? modulo
columns of gp. An explicit map between these two parametrizations may be nontrivial.

The metric on Rb! induces a scalar product on G, which we denote by 7. It is defined
up to shifts by integer numbers, which reflects different choices of representatives in the
quotient A+/A. One can consider codes over G, namely additive linear subspaces C C G°.
A code would be called even if the norm of each element defined with 7 is even

ne.) =3 n(ene) =3 Ke)Tor ele) €22, c=(g1...g)eC.  (210)
=1 =1

Despite that 7 is defined only up to certain integer shifts, whether (g, g) is even does not
depend on the representative of g. With help of 7 one can also define dual code C*, as the
group of all elements c¢; € C+ C G¢ satisfying n(cy,c2) € Z for any c3 € C. A code is called
self-dual when C = C*+.

2.2 Construction A

Starting from a code C C G¢, Construction A associates to it the lattice A¢,

A® - ®ACACA @ A CR, (2.11)
———— —_———
ctimes ctimes

defined as the set of vectors in A+ @ --- @ A+ mapped into C C G¢ under (2.7). Then it is
straightforward to see that an even C would give rise to an even lattice A¢ and a self-dual C
to a self-dual A¢, both understood with respect to Lorentzian scalar product g, = g®---Bg
in R%¢,

To define a Narain theory, besides Lorentzian scalar product, even self-dual lattice
should also be equipped with the Euclidean scalar product. For each A defined in previous



section there is O(1, 1) ambiguity how it can be embedded in R?. Thus, very explicitly we
can write

O(AY0y + Aky)
v = : € Ac, (¢1,...,0.) €C, ki € 72, (2.12)
O(A1, + Ak,)

where in (2.12) we parametrize elements of G = Z? /g, by vectors £. Matrix O is an arbitrary
element from O(1,1). In principle we can introduce ¢ different transformations O; € O(1,1)
acting in each R? plane. In this case most of the construction remains intact, but the
permutation of factors of G in C C G€ which is conventionally considered to be a code
equivalence, would no longer yield physically equivalent lattices. In what follows we assume
that all factors O are the same.

The main result of this section is as follows. For any glue group G defined via (2.7)
with the help of an appropriate even lattice A C Rb!, any even self-dual code C C G€ via
Construction A defines Narain lattice A¢ (2.12) and hence a Narain CFT. We will call such
CFTs code theories.

2.3 Example: square glue lattice

Consider the following glue lattice generating matrix

A=\/py, peN. (2.13)

The dual lattice is generated by At = I/ /P- Clearly this is the case of n =m =0,k =p
and the glue group G = Z,, x Z, is parametrized by g = (a,b) € G, 0 < a,b < p and

Ug) = (a,b)". (2.14)
It is convenient to write codewords ¢ = (g1,...,8.) € C C G° as
c=(a,...,aclbi,...,b;) € Z2*. (2.15)

A code can be defined with a 2¢ x d generating matrix G¢ such that
c=Ger, r ez, (2.16)

where d depends on p. For prime p generating matrix is 2¢ x ¢ and using permutations can
always be brought to the form
Ge=(I1B"), (2.17)

where B is an integer values antisymmetric ¢ X ¢ matrix defined mod p,
BT = —B mod p, (2.18)

and B;; = 0. Applying Construction A to such codes leads to Narain lattices generated by

he = (pé i)/@, 91 = (f g) (219)

associated with the Lorentzian scalar product gr. Here I. is a c-dimensional identity matrix.



The form of A¢ provides a clear interpretation — corresponding Narain theory describes
c scalars compactified on a c-dimensional cube of size 1/,/p in presence of B-field B.

The construction described above is a straightforward generalization of the original
construction of [9, 14], which considered the case of p = 2. It has been recently introduced
independently in [16].

2.4 Generalization: isodual codes

Permutation of factors S : G¢ — G°

Si(gry-r8) = (irs- - 8i) (2.20)

is the simplest example of code equivalences, defined as a linear transformation S : G¢ — G°
which preserves scalar product 5. Provided dual code is equivalent to the original one

ct=15(C), (2.21)

such a code is called isodual. From this follows S? = 1, i.e. when S is a permutation, it is a
pair-wise permutation, with the corresponding matrix satisfying ST = S.

We can introduce evenness as the condition for all codeword (g, ...,g.) € C C G° to
have even scalar product with its permuted self,

> n(gi gsw)) € 2Z. (2.22)
=1

An even, isodual code C with respect to some pairwise permutation S, via Construc-
tion A (2.12) gives rise to an even lattice, which is self-dual with respect to Lorentzian
scalar product

gL =g ®=s. (2.23)

In this way isodual codes also can be used to define Narain lattices and code CFTs.

2.5 CFT spectral gap and code modified Hamming distance

The capacity of a code to preserve information is rooted in the ability to unambiguously
restore ¢ € C in case it got corrupted during transmission process. Speaking colloquially,
the code is better (stronger), provided all codewords are maximally distinct from each other.
To quantify that coding theory uses Hamming distance d(c,c’), defined as the number of
different components of c, ¢’. For the binary linear code, when the components of c are
either zero or one, d(c,c’) = |c—c’|; = [c—c/|3. When the code is not binary, there could be
various generalizations of Hamming distance, relevant for different practical scenarios. Thus,
if the transmission error changes a codeword component’s value randomly, with the new
value being unrelated to the original one, then Hamming distance defined as the number of
distinct components is still relevant. Yet, in many practical settings the nature of errors are
such that the new values tend to be closer to old ones, which suggest using various metrics.
In particular in case of codes over Z, one often defines

[

de,c) = le— B =3 |ai — alf? (2.24)
i=1
c:(al,...,ac)ECCZg, 0<a; <p. (2.25)



For a linear code, the code distance is

d(C) = i d(ci,cj) = min d(0,c). 2.26
(€) L (circj) = min, d(0,c) (2.26)
The value w(c) := d(0, c) is usually called the weight of c.
Construction A (2.12) relates each codeword c € C to a family of vectors v(c). We
define the weight of ¢ to be the minimal length square among all such v,

w(e) = min_ o/, (2.27)

v=(01+Aky,... le+ Ak, c=(l1,....0) €CCG, G=17%qgy.

The weight w(d) is closely related to the norm of ¢ calculated with the scalar product 7
inherited from R! on G.

Clearly, from this definition follows that code theory spectral gap A*, defined as the
length-squared of the shortest non-zero vector divided by two, is simply related to code’s
generalized Hamming distance A* = @. This relation is transparent, but there is one
caveat: zero codeword ¢ = 0 is mapped into the origin of A¢, as well as many vectors of the
form A(ki,...,kc). The origin is excluded from the consideration, while minimizing over k;

yields shortest vector of A. We thus have
A* = min (), [val?) (2.28)

where by |vp| we denoted the length of shortest non-trivial vector of A. This length depends
non-trivially on the choice of n,m, k and the O(1,1) factor (which we absorbed into the
definition of A), but an upper bound (2.31) is readily available, see below.

For the square lattice of subsection 2.3 we find that d(c, c’) is given by (2.24) where by
/‘2

la — a'|* with 0 < a,d’ < p we understand

la —d|? = %1612 (a —a' + pk)?, (2.29)

and |vp]? = p.

To obtain the upper bound on the length, in the sense of Fuclidean norm, of the
shortest vector vy belonging to (2.12) we consider all ¢; = 0, arbitrary k; and k; = 0 for
¢ > 1. Then the Euclidean norm of corresponding two-dimensional vectors is

v|*> = kT ATOTOAE;, (2.30)

which defines a positive-definite scalar product in R?. The shortest vector will necessarily
be shorter than |vy|? < 2|G\1/ 2/4/3, see appendix A, and therefore corresponding code CFT
would have the spectral gap not exceeding

Vk? —4Anm

This is a standard weakness of the Construction A lattices; they always include short vectors

A*

IN

(2.31)

of a certain length, which does not increase with ¢. Therefore to construct large spectral
gap CFTs with A* scaling linearly with ¢ we would need to consider a cascade of different
constructions by adjusting k,n, m together with c.



3 Torus partition function of code theories

3.1 Enumerator polynomial and theta-series

One of the central properties of code theories which make them interesting is that their
torus partition function can be expressed in a compact way in terms of the so-called code
enumerator polynomial which characterizes the corresponding code. Generalization of this
result to higher genus partition function is also possible [11, 12].

We first define the full enumerator polynomial of a code C as a vehicle to count how
many times each element g € G appears in each codeword of C,

Po({zg}) = Z ]___[ Tg;- (3.1)
(g17"'7gc)ec i=1
This is a degree n homogeneous polynomial of |G| variables xg.
The polynomial of the dual code C' is related to the polynomial of C by the
MacWilliams identity

Per({Zg}) = Pe({wg}), (3:2)
where
- 1 L.
= g g;exp(—?mn(g, 8))zg. (3.3)

In particular, this means that the enumerator polynomial of a self-dual code is invariant
under the above transformation.

The torus partition function of a code CEF'T, associated with A¢ obtained by Construction
A, is given in terms of Pg,

Ze(1) = Pe({¥g(7)}), (3.4)
where
—# exp (il Qu
0 = g 2o () &
v=AY+ Ak Q= (”2 ,Tl> , (3.6)
T1 179

T = T + i72 is the torus modular parameter and in (3.5) we parametrize elements of G with
help of vectors £ € Z?/g5. We also absorbed O € O(1,1) into the definition of A.
The modular group, generated by T': 7 — 7+ 1 and S : 7 — —1/7, transforms 2

as follows
ToQ=Q+yg, (3.7)
SoQ=-Q1 (3.8)
Functions vy transform accordingly
Totpy(T) =1)e(T+1) =exp (z'm)Tgv) Ye(T), v=A"(, (3.9)
Sothy(T) =1e(—1/7) = L Z exp (—27riuTgU) Yo (1), u=A0. (3.10)

VIG 0EG=72/g



Evenness and self-duality of C ensure that Z¢(7) is invariant under 7" and S respectively.
Indeed, since the code is even, for any (¢1,...,¢,) € C we have >, E?g;l& € 27, and
therefore T is a symmetry of Pc({¢¢}), while it is invariant under (3.10) because of self-
duality (3.2), (3.3).

3.2 Example: theta series for square glue lattice

For the lattice (2.13) functions vz defined in (3.5) read

wab:% T o F (St ktka)” 2B (5 —ka) (3.11)
I\ ez

where (a,b) € G =Z, x Z,. This can be written as follows

7*%ab = OuttpOu—bp + Outt—ppOa—t—pp: (3.12)
where
m 2
Oy = 3 ") (3.13)
nez

These functions are the chiral algebra characters of free boson compactified at
radius R = v2k.
Note, if we perform O(1,1) rotation on the lattice A, functions 4, will change. Let

A = 0y/py, 0= (3 A01> : (3.14)

Then

_ 2 _ 2
’n’2w - Z qg(ka-&-;\ lb+>\k§1+A71kJ2) qg()\a—;\ 1b+Ak1—)\71k2) (3 15)
ab — . .
k1,ko€Z

For A = ,/q with ¢ € N, we can again decompose 4 as follows

q—1

nl*Pap = Z Ogar+bkp.apOga—b—kpap + 9q(&—p)+b+kp,qpéq(r:1—p)—@—kp,qpv (3.16)
k=0

where the functions ©,,,, above are now characters of compactified boson at

radius R = v/2pq.
Finally, if A = \/q/r with g, r are co-prime, we can again perform the same decomposi-
tion to obtain a more general result

r—1 gq—1
) _
0l ab = Z Z661(a+pv1)+T(b+pv2)7qu®q(a+pv1)—T(b+pv2),pqr+

v1=0v2=0

(3.17)

) S)

q(a+pv1)+r(b+pv2)—pgr,pgr~ q(atpv1) —r(b+pv2) —pgr,pqrs

where the functions ©,, ¢ above are characters of compactified boson at radius R = /2pgr.



3.3 Partition function in case of isodual codes

In case of isodual codes satisfying (2.21) with pairwise permutation S, the codeword
c = (g1,-..,8c) € C should be understood as consisting of r pairs (g;, g;) with S mapping
1 <> j, while the remaining ¢ — 2r “letters” remain intact. It is convenient to introduce new

notation for ¢ which is related to the previous one by permutation,

c= ((gimgﬁ)v sy (gingr)vg?TJrla ) gc) eC. (318)

With this notation we define an extended enumerator polynomial, which will depend on
both C and S. It is a function of |G|* variables yg, g, and |G| variables z,

FE ({Ygig.}- {26}) = > lvee, II 2 (3.19)

(8118515 (8ir+8jr )182r+1,--,8c)EC k=1 i=2r+1

The CFT partition function is given by

Ze(r) = PP ({vgiea (1)} {vg(T)]), (3.20)
where
1 , .
Yo,0,(T) = TOR Z exp (Z?T(’Ul,’l)g)TQ(Ul,Ug)> , (3.21)
NN 4y kaez2
0= (”2[2 ng ) . vi=AY Ak (3.22)
T1g 21>
Under modular transformations 7': 7 — 7+ 1 and S : 7 — —1/7, this function changes
as follows
ToQ=Q+¢g®yg, (3.23)
SoQ=-071 (3.24)
and
T o)y e, = exp (2i7rvipgv2> Ve, 0y v = ATl (3.25)
1 .
S o, = al Z exp (217r(u1Tgvl + uggvg)) Ve ey, u; = At (3.26)

| | 0 0,eG=12/gp

Clearly when C is even in the sense of (2.22) and isodual in the sense of (2.21), the
identities (3.25), (3.26) respectively ensure modular invariance of (3.20).

4 Examples: optimal Narain theories for small c

In this section we consider a number of explicit examples of code theories. In particular we
discuss optimal theories, i.e. those with the largest spectral gap, for ¢ < 8 identified in [7],
and show they all are codes theories, in the sense defined in this paper.

~10 -



4.1 c=1

We first consider the simplest case of n = m = 0, when

9A=<2§>- (4.1)

In this case the group G = Zj, x Zj, is parametrized by vectors ¢ = (a,b) for 0 < a,b < k.
Let’s consider a self-dual code C = C* and demand it to be even and self-dual. When
k is prime the only such two codes consist or vectors (a,0) and (0,a) for 0 < a < k
correspondingly. Using appropriate O(1,1) transformation we can bring corresponding
Narain lattice to the form

Ac 3 (“;\}%E) . abeZ. (4.2)

At this point we recognize Narain lattice of a compact boson of radius R? = 2k. Choosing
k = 1 will yield boson at self-dual radius, which has largest possible spectral gap

w1
A= (4.3)

The corresponding enumerator polynomial is simply P = zqg, giving rise to torus
partition function via (3.4) and (3.5),

_ 1 (m+n)2 _(m—n)? 05(27) |2 + |65(27)]?
;«;C(T,T):q;o’o:W )N _ 16527)[" + [62(27) [

(4.4
nmez ’n‘Q )

Clearly, an appropriate O(1,1) transformation will turn A¢ to any other Narain lattice
in RV, or, equivalently, change the compact boson radius R to any desired value. In other
words, together with the O(1,1) factor our code construction is versatile enough such that
any ¢ = 1 Narain theory is a code theory. This emphasizes the bottom-up nature of our
approach. While codes are expected to reflect some algebraic properties of the underlying
CFTs in the top-down constructions [13], in our construction certain non-rational CFTs
without obvious algebraic properties which would make them “finite” also can be obtained
from codes.

4.2 c=2
We start with m = 2,n = —1,k = 2, which satisfies (2.4) and the glue lattice generated by

gA:ATgA:<§_Z>, A:R2<é\}§?2>, R:Gll)/ﬁ. (4.5)

From the Euclidean point of view this is a hexagonal (triangular) lattice with the lattice
vectors of length 2, rotated by /2. Using equivalence transformation

0 1
P = <_1 1) € SL(2,7Z) (4.6)

- 11 -



we can bring gyn = ATgA to the diagonal form

—20
= PTg,P, 4.7
( 0 6) gA (4.7)

which makes decomposition G = Zs X Zg manifest, with the map

a

g=(a,b)€G, 0<a<2,0<b<6, ((g)= (P! <b> € 72/ gy.

We consider a code C generated by the following three codewords

3 = ((07 0)7 (07 2))7 (4‘10)

in the notations ¢ = (g1, g2) = ((a1,b1), (a2, b2)). This codes is iso-dual, C+ = S(C), where
S is the permutation of two elements. Corresponding lattice A¢ obtained via (2.12)

2%k
AL(PTY1 0 6k 2
Ac = l ET: iCi s i €L, k;€el.
¢ ( o AP )T ok | | ;” @
6ky

In this expression above we should understand codewords ¢; as regular vectors in Z*. This
lattice is a Narain lattice with respect to the Lorentzian metric (2.23)

w=(55) s=(20) )

By an orthogonal transformation g; can be brought to conventional form

1100
0 I 1 o0o01-1
0g;. 07 = 0O=—— 4.12
gL <120>’ 2l o011 | (4.12)
~110 0

such that A¢ becomes equivalent to the Narain lattice A.—o defining SU(3); WZW theory

(v By by (1t b (01
Ac: ~ OA 5 Ac: = ) = e ) B =7 )
2 C 2 < 0 v v ta \O to ba \=10

where t1 + ity = by + iby = (1 + Z\/g)/2
The code enumerator polynomial of C is

Pcs = Y00,00+¥00,02+Y00,04 +¥10,01 +Y10,03+Y10,05 +Y03,10+Y03,12+Y03,14+Y13,11 +¥13,13+Y13,15,

which yields partition function via (3.20). Shortest lattice vector with ¢7' = cy or £ = c3
and k; = 0 has length |v|?> = 4/3, hence corresponding CFT has spectral gap A* = 2/3.

- 12 —



4.3 c¢=3,4,5

Optimal theories for ¢ = 3,4, 5 were constructed from codes in [14]. They correspond to
k =2 and n,m = 0 with

A:ﬁ(?é), gA:2<(1](1)>, At =1/V2. (4.13)

In this case G = Zs X Zs which as an additive group is equivalent to Fy. As discussed
in section 2.3 these codes are parametrized by B-matrix controlling the B-field of the
Narain compactification, BT = B mod 2, see (2.19). The case of k = 2 is special because
antisymmetric BT = —B mod 2 and symmetric matrices B are equivalent.

For the optimal theories with ¢ = 3,4,5 the symmetric B-matrices, which can be
interpreted as graph adjacency matrix, describes the maximally connected graph

L
Bij = {0’ L7, (4.14)
, =

Their enumerator polynomials and partition functions can be found in [14]. Here we only
point out that for p=2and 0 < a,b<p

1 L2 _ 2 -
Yap = —5 > g0 BGENS G —aqom, b=b42m, (4.15)
| | n,mez
03 (1) % + |04 (1) |?
Vo0 = 65 )|2|77||2 )] ) (4.16)
05 (1) 1% = |04 (1) |?
1= 163 ( )|2|77||2 Sl (4.17)
6, (1) |?
o1 =10 = |2;|(77|)2| (4.18)
in full agreement with [14]. The spectral gaps are A* = 3/4,1,1 for ¢ = 3,4,5
correspondingly.
4.4 c=6,7

Optimal theories for ¢ = 6, 7 were found in [15] to be related to codes, where a construction,

different from [9, 14], relating codes over Fy to CFTs was introduced. Here we show this

construction is a particular case of a more general construction introduced in this work.
Let us consider the glue matrix

1 1 -1
A:?M(_ﬁ_ﬁ). (4.19)

This corresponds to m = —1,n =1,k = 0 case as follows from

ga = <_02 g) : (4.20)
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Clearly G = Zy x Zs which can be parametrized by ¢ = (a,b), 0 < a,b < 2. As in the
previous section we can identify G with Fy via the Gray map
(a,b) = c(a,b) :=aw+bw, (4.21)
where Fy = {0,w, w, 1}.
The scalar product inherited from on G from (2.2) reads

biby — ajas
5 .

Since the scalar product is defined up to integer shits, orthogonality with respect to 7 is

n((a1,b1), (a2,b2)) = {1 gy 'l = (4.22)

equivalent to orthogonality with respect to
aiaz + bibs mod 2 = cicy + ¢, (4.23)

where the right-hand-side uses notations (4.21). This is different from the conventional
Hermitian scalar product on Fj

(c1,¢2) = 162 + Cico, (4.24)

by an additional conjugation. Thus a code C € G iso-dual with respect to scalar product
on G inherited from (2.2) and pairwise permutation S, C* = S(C), will be isodual to its
conjugate, C+ = S(C), with respect to Hermitian scalar product (4.24). This is exactly the
isoduality condition outlined in [15].

Similarly, the evenness condition (2.22), written in coordinates

C

bibs(iy — aias(
3 S()QMS() mod 2 = 0, (4.25)
=1

matches precisely with the evenness condition of [15].
To complete the comparison with [15] we note that under Construction A (2.12) group
elements ¢ = (a,b) will be mapped to

1 1
v=Al, A:(\/g %) (4.26)
2 2

which is exactly the map from ¢ = aw + bw € Fy to R? used in [15]. In other words, we
have shown that the construction of [15] is exactly the construction of this paper with the
glue matrix taken to be (4.19).

We notice the choice m = —1,n =1,k = 0 is not the canonical one. By an appropriate
GL(2,Z) transformation we can bring it to m = 1,n = 0, k = 2, satisfying (2.5). The new
form of the glue lattice generating matrix is then

2 (41

which is a hexagonal (triangular) lattice with the basic vector length 2/3%/4.

The codes leading to optimal ¢ = 6 and ¢ = 7 theories, the hexacode and the “septacode”
are rather bulky and we do not repeat them here. Let us just mention that in both cases
the resulting spectral gap is A* = /4/3.
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4.5 c¢c=38

We consider the n = m = 0,k = 4 case with the glue lattice

0 24 04 N 2l/4
A:2<21/4 0 ) gA:<40>’ A=1o o) /2 (4.28)

In this case G = Z, x Z, parametrized by g = (a,b), 0 < a,b < 4 and ¢T = (a,b). Let us
consider the code C € G® generated by rows of the following matrix

0002200000000000
0000220000000000
0000022000000000
1111111100000000
2000200000000000
Go = 3100310022000000 (4.29)

0310031002200000
0031003100220000
3003100300022000
1300310000002200
0130031000000220

0o0o0111111111111

in the notations ¢ = (ay,...,ag|bi,...,bs) € C. This code is even and self-dual with
respect to
0 Ig
= 4. 4.30
: (IS : ) / (4.30)
Accordingly the lattice
12V 0 T 12 16

is a Narain lattice with respect to

01
gL = (Is 08> (4.32)

The lattice shortest vector has length |v|> = 2/2 yielding A* = /2. This follows from the
lattice theta series, which can be readily obtained from the code enumerator polynomial.
The code in question has 2'¢ codewords and enumerator polynomial Pe(z4) is too large to
be written explicitly here. Upon substituting x,, — ¥4, where

Y= Y g2, v=A(0+ 1K), (T = (a,b). (4.33)
keZ?

(this definition is different from (3.5) in two ways: i) there is no |n(7)| in the denominator
because we are interested in the lattice theta-function rather than the CFT partition
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function ii) 14, depends on ¢ but not ¢ as we are interested in the Euclidean structure
only), we obtain

Pe(tbap) = 1 + 4320¢% + 61440t3 + 522720t* + 2211840¢° + O (tﬁ) . t=g
which is exactly the theta-function of the Barnes-Wall lattice. This is in agreement with [19]
who identified optimal ¢ = 8 theory to be based on a rescaled Barnes-Wall lattice, equipped
with the Lorentzian metric and understood as a Narain lattice.

5 Asymptotically large c

When ¢ > 1 asymptotic behavior of spectral gap is not known. Spinless modular bootstrap
bounds A*/c to be less than or equal to 1/7% (with this value being obtained numerically) [6],
while the full set of bootstrap constraints is likely to significantly decrease this value.
Averaging over the whole moduli space of Narain theories provides a lower bound on A*/c
to be 1/(2me) [19]. Ref. [3] conjectured this value to be asymptotically saturated,

(5.1)

For this to be true, i.e. for the mean value to (asymptotically) be the largest possible value,
the distribution of spectral gaps on the Narain moduli space for large ¢ must be very sharply
peaked around the mean without outliers. Thus, for consistency, as a necessary condition,
variance should be very small. Using the ensemble of code CFTs, as well as chiral cousins
of Narain theories, ref. [3] has shown the variance of density of states distribution to be

exponentially suppressed ~ e~

, the conclusion consequently confirmed for the Narain
theories in [20]. This does not constitute a proof of (5.1) as variance is not sensitive to
possible outliers.

The conjecture of [3] is based on similarity between the ensemble of codes, ensemble
of sphere packings, and the ensemble (space) of CFTs, and the problems of maximizing
code Hamming distance, density of sphere packing and CFT spectral gap. Specifically for
codes, there is an expectation that the Gilbert-Varshamov bound (the value resulting from
averaging over all codes) would asymptotically yield the best value of Hamming distance
to code size ratio [21, 22]. Similar expectation holds for the maximal density of lattice
sphere packing: the densest packing to asymptotically saturate the Minkowski bound, which
is simply averaged value over all possible lattices. (For sphere packings of general kind
stronger asymptotic value is expected [23].) While we leave validity of (5.1) for future
studies, here we show there are codes theories achieving this value of A* for large c.

The Construction A used in this paper has a fundamental limitation: the corresponding
lattices have vectors of certain length no matter how big the dimension c¢ is. This is
formalized in equation (2.31), which provides an upper bound on A*. Thus, to obtain A*
scaling linearly with ¢ one has to adjust n, m, k together with ¢ such that |G| grows as or
faster than c. Here for simplicity we focus on the square gluing lattice n = m = 0, with prime
k = p, discussed in sections 2.3, 3.2. The spectral gap is given by (2.28) with |va| = /P,

A* = %min (d(C), p). (5.2)
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The best (maximal) generalized Hamming distance d beyond small ¢ values is not known.
One nevertheless can bound d from below by consider ensemble averaging, the so-called
Gilbert-Varshamov bound. Then, similarly to the case of binary linear codes one may
expect best d/c to asymptotically approach the bound when ¢ — co.

By averaged polynomial P({z4,}) we mean enumerator polynomial averaged over all
p(e=1/2 possible codes parametrized by B, see (2.17). From the CFT point of view this is
the calculation of averaged torus partition function. So far we are interested only in d, or
alternatively only in mass but not spin of the lightest non-trivial state, we can consider
torus parameter to be purely imaginary 7 = ¢79. Then function 3.2 factorizes

1

¢ab(i7'2) = ¢a¢ba 1/}(1 - @2a,p(i7'2/2) = Z e*ﬂ"l’z(tH*kp)Q/p. (53)

2
()| 2

Going back to enumerator polynomial, instead of variables z,, we use
Zab = talp, to =1t—aq, (54)

where the last property reflects ¢, = ¥_,. We conjecture the form of corresponding averaged
enumerator polynomial based on invariance under MacWilliams identity and explicit checks
for sufficiently small n and prime p, for which direct evaluation of P({tt;}) using computer
algebra is feasible,

P({tats}) = ~m7s 32 Pec({tats}) =
B

C

p=1 [p—1p—1 ¢ p—1
> (z > cos (2rhat) tatb> — pi§ <zota>
a=

k=0 \a=0 b=0
2+

g (5.5)

Now we are ready to analyze this expression to deduce the lower bound on A*. For large
¢, the main contribution to (5.5) comes from k = 0, leading to the averaged partition function

p—1 2c 2c
1 < Zo %) 1 < ZZ 6_mn2/p>
Z ~ 2¢ — c = 2¢ “ C : (56)
ul p il p

Interpreted as sum over lattice points, the numerator is simply the sum over 2¢c-dimensional
square lattice of size 1/,/p. On the length scales of ~ 1/,/p or larger this is just the
homogeneous distribution of points with the averaged density 1/(1/ \/]32‘3) = p°. This factor
exactly cancels p© in the denominator of (5.6) and we find density of states

(27r)cAcfl

p(A) = (o)

(5.7)

valid on scales A 2 1/,/p. This is exactly the density of states of “U(1)-gravity” — Narain
theory averaged over the whole moduli space. Accordingly, the threshold for the density
to become of order one is A = ¢/(2me), which is our Gilbert-Varshamov bound. For this
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result to be valid we must require p/2 > ¢/(2me), otherwise shortest vector of A¢ would
have length /p.

To conclude, for sufficiently large p we find that the averaged density of states (with
zero chemical potential for spin) of n = m = 0, and prime k = p code theories is the same
as the averaged density of states for all Narain theories. In particular in the limit ¢ — oo,
for p > ¢/(me) there are code theories with A*/c = 1/(2me). Provided the conjecture of [3]
is correct, it would mean similar conjecture applies to n = m = 0, prime k = p codes, in
the sense that their averaged Hamming distance is asymptotically the best one.

6 Discussion

In this paper we proposed a family of constructions mapping additive codes over abelian
groups G = Z, x Z4 to Narain lattices and hence Narain CFTs. Each construction is
parametrized by a triple of integer numbers n, m, k and an element from O(1, 1) parameter-
izing an even “glue” lattice A C RY!. The resulting Narain lattice A¢ associated with a
code C C G¢ obeys

AD---@ACAcC At - DAt C RO (6.1)
ctimes ctimes

We call this glue construction following [18]. This construction generalizes and encompasses
those of [9, 14, 15] and [16]. We call the CFTs obtained from codes “code theories.” Their
torus partition functions Z¢ are given in terms of the so-called code enumerator polynomials,
which are multi-variable polynomials satisfying certain algebraic identities, which guarantee
modular invariance of Zz. In this way one can construct many new solutions to modular
bootstrap constraints.

We have shown that all conjectural optimal Narain theories for ¢ < 8 identified in [7],
meaning those with the largest spectral gap of U(1)¢ x U(1)¢ primaries are code theories.
Furthermore we have shown there are code theories with the spectral gap A* scaling linearly
with ¢ > 1, A* « ¢/(2me), with the coefficient which has been conjectured in [3] to be
maximal possible. The message of our work is clear: we conjecture that optimal Narain
theories for any c¢ are code theories, either following from the constructions outlined in this
paper, or their possible generalizations.

Speaking of the latter, one can straightforwardly generalize our construction by starting
with a glue lattice A € R?3 or in fact A C R™" for any r > 2. Another important direction
would be to connect the bottom-up approach of this paper with the top-down approach of [13]
where quantum codes were given an interpretation in terms of CFT Hilbert space extended
by defect operators. Finally, given our conjecture that optimal theories are code theories, it
would be interesting to develop our approach into a practical way of constructing optimal
theories with ¢ > 8, thus complementing conventional modular bootstrap. This would be
an important but challenging task because there is no known efficient methods to construct
“good” codes with largest or even large (generalized) Hamming distance. And though there
is a finite number of codes for any given G and ¢, their number grows exponentially with c.
Furthermore, there is an infinite number of constructions, i.e. infinite number of different
G and A, making the problem seemingly incomprehensible. This pessimistic assessment
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could be too naive, we expect only finite number of constructions to be relevant for any
given c¢. The inequality (2.31) as well as the results of section 5 clearly indicate |G| can

1/2 > qe, for ¢ > 1 with some positive constant a. We also strongly

not be too small, |G|
suspect large generalized Hamming distance, for given ¢, would require |G| not be too large.
We conjecture this may come from the linear programming constraints stemming from the
algebraic identities satisfied by code enumerator polynomial (the MacWilliam identity and
the condition due to code evenness), i.e. generalization of Delsarte’s bounds [24] to the
types of codes of interest. For ¢ > 1 we expect the bound to have the form |G]1/ 2 < be
with some b > a. Thus for large but finite ¢ we expect large but finite number of glue
groups satisfying be > |G|'/2 > ac. This form of the bound on |G| is merely a guess; the
important point here is the expectation that the problem of identifying the code with largest
generalized Hamming distance can be reduced to an optimization problem over a finite
set. Of course even for moderate ¢ naive brute-force approaches such as going through all
possible codes very quickly becomes unfeasible. The resulting optimization problem over a
discrete set would be NP-hard, but novel quantum platforms promise an exciting hope of
solving medium-sized discrete optimization problems in real time, the avenue we hope to
pursue in the future [25].

To conclude, we would like to point out another very important direction for future
work — to extend the connection between codes and CFTs beyond the Narain theories.
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A Shortest vector bound

Let us consider a two-dimensional Euclidean lattice A with the scalar product g2. Using
rotation and up to an overall rescaling basis vectors can be chosen to be 1 and 7 = 7 + @79,
where we introduced complex coordinates on R2. In other words

g2 = NTA, /\:a<1ﬁ>, (A1)
0 7

and « is some scalar factor. Using GL(2,Z) transformations, together with an appropriate
rotation and rescaling, we can bring 7 to belong to fundamental domain

|m| <1/2, T2 > 0, 7] > 1. (A.2)

In this case the shortest vector is a(1,0)7 and its norm is a?. From (A.1) we find
a* = detgy /73 and from (A.2) we know 75 > 3/4. We therefore find the bound

< \% /detgs, (A.3)

which in many cases is conservative. Applying that to (2.30) we obtain (2.31).

2
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