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Introduction. Quantum error correcting codes (QECCs) are integral to quantum com-
putation. They also appear in high energy and condensed matter physics in various guises.
As one important example, QECCs capture aspects of bulk reconstruction in AdS-CFT [1].
Another notable case of a QECC in physics is the Toric code, a well-known model with
topological order [2]. QECCs have also unravelled the existence and properties of fractons [3].
More recently, QECCs were used to construct closed, simply connected manifolds [4].

In this work, we explore the relationship between conformal field theories (CFTs) in
two spacetime dimensions, associated 3d Chern-Simons (CS) theories, and QECCs. The
relationship between classical codes, their associated lattices, and holomorphic CFTs was
originally noted by Dolan, Goddard, and Montague [5]. Recently, a quantum version of
this relationship was discovered, where quantum stabilizer codes were associated with
certain Narain rational CFTs (RCFTs) [6, 7]. This construction does not exhaust all Narain
RCFTs and leads to several natural questions: (1) When do general Narain RCFTs admit a
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quantum code description? (2) How does one identify the n-qubit Hilbert space, the code
subspace and its complement, within the CFT Hilbert space? (3) What is the physical
meaning of this relation?

In this work we answer these questions using the general structure of Narain RCFTs.1
Our main results are:

• Any abelian CS theory with an even-order fusion group is related to a Narain RCFT
that admits a stabilizer code description. Orbifolding this RCFT by a chiral algebra-
preserving Q ' Zk2 0-form gauge group results in a Narain RCFT that continues
to admit a stabilizer code description whenever the corresponding 3d bulk 1-form
symmetry of the CS theory has vanishing ’t Hooft anomaly.

• All Narain RCFTs have abelian 0-form symmetries implemented by topological defects.
In the class of theories described in the previous bullet, topological defect endpoint
operators can naturally be mapped to the full Pauli group. The stabilizer subgroup
corresponds to genuine local CFT operators, which can be thought of as living at the
end of the trivial defect.

• Under this map, the RCFT Hilbert space corresponds to the code subspace and certain
defect Hilbert spaces correspond to the complement of the code subspace inside the
n-qubit Hilbert space.

This paper is organized as follows. In section 1, we start with a brief review of stabilizer
codes and Narain CFTs. We then show that Narain RCFTs with left and right movers
paired via charge conjugation can be naturally associated with quantum stabilizer codes.
We end section 1 by extending this map to orbifold theories and deriving a relationship
between vanishing ’t Hooft anomalies and stabilizer codes; along the way, we consider
various illustrative examples. In section 2, we study symmetries of Narain CFTs and show
that operators living at the ends of topological defect lines implementing these symmetries
give rise to the full Pauli group. We introduce the notion of a Verlinde subgroup and
discuss its role in determining the error detection capability of CFT symmetry currents. In
section 3, we propose a map between the n-qubit Hilbert space and states in the CFT. We
conclude with a discussion and future directions.

1 The stabilizer code/abelian RCFT map

Let us briefly review the basics of stabilizer codes and RCFTs with abelian fusion rules.
We then propose a natural map relating them.

A stabilizer code on n qubits is defined by an abelian subgroup, Sn, of the generalized
Pauli group on n qubits, Pn. Elements of Pn are defined by ~α, ~β ∈ Zn2 via

G(~α, ~β) := ν Xα1 ⊗ · · · ⊗Xαn ◦ Zβ1 ⊗ · · · ⊗ Zβn

= ν X~α ◦ Z ~β ∈ Pn , (1.1)
1In principle, our results apply to any RCFT with abelian fusion rules (what we call an “abelian RCFT”)

whether it admits a Narain description or not. In what follows, we will not attempt to distinguish between
Narain RCFTs and hypothetically more general abelian RCFTs.
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where the ith X and Z are the Pauli matrices acting on the ith qubit and ν is valued in
{±1,±i}. In the following discussion, when we have X ◦ Z or Z ◦ X acting on a qubit,
following standard notation, we replace this with a Y Pauli matrix action (where the signs
and factors of i are kept in track using ε). Pn has order 4n and is non-abelian

G(~α1, ~β1)G(~α2, ~β2) = (−1)ε G(~α2, ~β2)G(~α1, ~β1) , (1.2)

where ε(~α1, ~β1, ~α2, ~β2) := ~β1 · ~α2 − ~α1 · ~β2. The hallmark of a stabilizer subgroup is that
any two elements commute with each other. Clearly, if G(~α1, ~β1), G(~α2, ~β2) ∈ Sn, then
G(~α1 + ~α2, ~β1 + ~β2) ∈ Sn. In this sense, stabilizer codes are additive. Moreover, all elements
satisfy G(~αi, ~βi)2 = 1. The states in the n-qubit Hilbert space which are left invariant by
all G ∈ Sn (i.e., Gψ = ψ) are special: they form the “code subspace”.

The refined enumerator polynomial (REP) of an n qubit stabilizer code is defined as

W (x1, x2, x3, x4) :=
∑
G∈Sn

xωI1 xωX2 xωY3 xωZ4 , (1.3)

where ωI/X/Y/Z(G) count the number of I/X/Y/Z Pauli matrices in the stabilizer group
element G.

For our general construction below, it is useful to keep in mind that the description
above contains redundancies. In particular, two stabilizer codes are physically equivalent if
they are related by an action of the Clifford group — an outer automorphism of the Pauli
group [8]. This group includes all 3! permutations of Pauli generators acting on each qubit.

The stabilizer codes that play a role in [6] are self-dual. By definition, self-dual codes
have one-dimensional code subspace. The stabilizer group for a self-dual code satisfies
|Sn| = 2n. The self-dual codes in [6] are also real (in the sense that all elements of Sn in the
representation (1.1) are real-valued), but we will relax this latter condition in our general
construction. In the conventions of this paper, the map between the CFTs and stabilizer
codes introduced in [6] is related to our map by an X ↔ Y code equivalence.

The mapping between stabilizer codes and CFTs associates classes of CFT operators
with elements of Sn. Since the code is additive, we consider CFTs with additive (abelian)
fusion rules (i.e., those corresponding to a lattice)

φ~PL, ~PR × φ ~KL, ~KR = φ~PL+ ~KL, ~PR+ ~KR
, (1.4)

where the pair of vector indexes label left-moving and right-moving momenta valued
in a Narain lattice, Λ. We will use the terms “Narain theories” and “abelian CFTs”
interchangeably. Since there are infinitely many CFT operators and finitely many elements
of Sn, we must organize the CFT operators into finitely many equivalence classes. In the
context of abelian RCFT, this naturally happens since each φ~PL, ~PR in (1.4) satisfies

φ~PL, ~PR ∈ (NL, NR) , NL ∈ Rep(VL) , NR ∈ Rep(VR) , (1.5)

where NL (NR) are one of finitely many representations of the left (right) moving chiral
algebra, VL (VR). For simplicity, we will only consider CFTs with VL = VR = V .
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Specializing to VL = VR = V and satisfying some additional mild assumptions detailed
in [9], it turns out that any RCFT is a (generalized) orbifold of the “Cardy case” RCFT
for V . This latter RCFT, T , consists of operators built by pairing left and right movers
transforming in Rep(V ) that are related by charge conjugation.2 In the case of an abelian
RCFT, the orbifold is a standard group orbifold of T [11]. The T RCFT is sometimes
referred to as the “charge conjugation modular invariant”, and it has torus partition
function3

ZT (q) =
∑
~p

χ~p(q)χ̄~p(q̄) , ~p+ ~p = ~0 , N~p, N~p, N~0 ∈ Rep(VT ) . (1.6)

Here ~p is a vector labeling elements of Rep(V ) (not an element of Λ),4 we sum over
characters describing the operator content of the theory, and ~p labels the representation
conjugate to ~p.5

Rep(V ) is the set of representations of the chiral algebra V . Equivalently, elements in
Rep(V ) label the chiral primaries of the CFT. In the 3d Chern-Simons (CS) theory related
to the 2d RCFT in question, Rep(V ) labels Wilson lines (see figure 1). Wilson lines can
braid with each other and satisfy crossing symmetry. This is captured by a mathematical
structure called a modular tensor category (MTC) [14, 15]. It is known that Rep(V ) is an
MTC [16]. Since Rep(V ) and Wilson lines in CS theory both admit the structure of an
MTC, the classification of possible Rep(V ) for an abelian RCFT is the same as classification
of CS theories where the fusion of Wilson lines forms an abelian group. The full set of such
MTCs/CS theories related to our abelian RCFTs have been classified in [17] (see also [18]).
The result is that any such CS theory is a direct product of arbitrary combinations of the
following factors

A2r ∼ Z2r , Aqr ∼ Zqr , B2r ∼ Z2r ,

Bqr ∼ Zqr , C2r ∼ Z2r , D2r ∼ Z2r ,

E2r ∼ Z2r × Z2r , F2r ∼ Z2r × Z2r , (1.7)

where the labels on the lefthand sides of (1.7) denote CS theories as in [18] with fusion
rules for Wilson lines given by the abelian groups on the righthand sides, and q is an odd
prime number.6 Therefore, the same classification applies to Rep(V ). The upshot is that

2Given V , it turns out that the charge-conjugation modular invariant CFT exists on very general
grounds [10].

3Note that the construction in [11] takes as input left and right moving chiral algebras and produces an
RCFT valid on any genus surface.

4We use capital ~P to denote lattice momentum and lower case ~p to denote elements of Rep(V).
5This latter statement means that we have fusion of the form N~p ×N~p = N~0.
6Strictly speaking, since a given label on the lefthand side of (1.7) only specifies the statistics of a set of

line operators, it can correspond to different CS theories. Moreover, a CS theory that does not factorize in
the geometry with boundaries depicted in figure 1 with M trivial can correspond to a product of labels (e.g.,
U(1)6 CS theory, which corresponds to B2 ×B3). For simplicity in what follows, we will avoid this latter
possibility.
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W~p W~q

M

Σ Σ′

I

Figure 1. The pairing of 2d CFT left and right movers on Σ and Σ′ can be specified by an abelian
CS theory on X ' Σ× I with a surface operator, M , inserted in between [12, 13]. A local operator,
O(~p,~q), is specified by the Wilson lines W~p and W~q. Different M lead to different partition functions.
Topological defects in the 2d CFT correspond to Wilson lines parallel to Σ,Σ′ (see figure 2).

M

Σ Σ′

I

L~p

Figure 2. The endpoint of L~p on Σ gives a defect endpoint operator corresponding to a state in
the defect Hilbert space, HDefect

L~p
. We can think of L~p as generating a 3d 1-form symmetry or a 2d

0-form symmetry (when L~p is pushed to lie completely on Σ).

we should think of ~p ∈ Rep(V ) as valued in the following product group / lattice quotient

~p ∈
∏
r

(
Z
nA2r
2r × Z

nB2r
2r × Z

nC2r
2r × Z

nD2r
2r ×

[
Z2r × Z2r

]nE2r

×
[
Z2r × Z2r

]nF2r ×
∏
q

[
Z
nAqr
qr × Z

nBqr
qr

])
:= K , (1.8)

where nX is the number of independent factors of the CS theory X corresponding to the
CFT in (1.6) (see footnote 6).7 Physically, K is the 1-form symmetry group of the CS
theory and the 0-form symmetry subgroup of the RCFT that commutes with the full left and
right chiral algebras (see figure 2).

Now we will map the pair (~α, ~β), which specifies a stabilizer generator from Sn to a pair
(~p, ~p) representing a family of operators contributing to χ~pχ̄~p in (1.6). First we specify the

7Here we are thinking of ZN as an additive subgroup of Z modulo N .
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dimension of ~p: the most obvious choice is that ~α, ~β, and ~p are n-dimensional. Moreover, in
our map ~α and ~β are linearly related to ~p.

To begin with, let us neglect possible E2r and F2r CS theory factors. Then, T is a CFT
with n decoupled factors having fusion rules given by the n factors in (1.8).8 Indeed, by con-
struction, each of the n CFT factors is closed under fusion.9 It is therefore natural to associate
such a theory with an n-fold product of one-qubit codes. Up to code equivalence, all such
codes are generated by Z acting on individual qubits. Therefore, we set ~α = 0, and choose

~β = ~p , (1.9)

where (1.9) is the simplest natural choice.
However, note that for a CFT factor described by Aqr or Bqr , the simplest choice is to

make the resulting code factor trivial. The reason is that the corresponding component of
~p, pi, has order qs for 1 ≤ s ≤ r. In this case, multiple stabilizers would correspond to the
same (~p, ~̄p). We therefore ignore factors described by Aqr and Bqr from now on and map
corresponding CFT degrees of freedom to 0-qubit codes.

In summary, we learn that linearity and code redefinitions point to the relation{
O~p,~p

}
↔ Z~p , (1.10)

where we understand this map as meaning that the Z~p stabilizer corresponds to the collection
of operators in the (~p, ~p) representation of the left and right moving chiral algebras (i.e., the
primary and its descendants). Including factors of E2r and F2r and following logic similar
to the above leads to the map {

O~p,~p
}
↔ ZA~p , (1.11)

where A is block diagonal, with the following diagonal components corresponding to different
CFT factors

AA2r = AB2r = AC2r = AD2r = 1 , (1.12)

and, up to code equivalence,

AE2r = AF2r =
(

0 1
1 0

)
. (1.13)

Note that in writing (1.11), we allow for multiple families of operators to appear on the
lefthand side (see section 1.1 for some examples). Indeed, the exponent of Z on the r.h.s. is
only sensitive to A~p modulo two. Thus in the simple case of charge conjugation modular
invariant, we have the CFT to stabilizer code map

µ : T −→ ST := gen
{
ZA~ei | eij = δij

}
, (1.14)

8More explicitly, we have that

n =
∑
r

(
nA2r + nB2r + nC2r + nD2r +

∑
q

(
nAqr + nBqr

))
.

9If we relax the condition in footnote 6 and allow for CS theories like U(1)6, then we can also consider
charge conjugation modular invariants that do not decompose into n such CFT factors.
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where “gen {· · · }” means that the code is generated by the enclosed Pauli operators. Note
that this code is self-dual by construction. Moreover, µ is non-invertible. For example, the
SU(2) and E7 WZW models at level one are distinct but map to the same code.10

Given the set of theories of the form (1.6), we can construct all other Narain RCFTs
by orbifolding them by some non-anomalous 0-form symmetry subgroup QCK.11 Here
non-anomalous means that the associator of Verlinde lines implementing Q is trivial in
H3(Q,U(1)).12 Therefore, if Q is non-anomalous, F is a 3-coboundary satisfying

F (~h1,~h2,~h3) = τ(~h2,~h3)τ(~h1,~h2 + ~h3)
τ(~h1 + ~h2,~h3)τ(~h1,~h2)

∀~h1,~h2,~h3 ∈ Q , (1.15)

where τ is a 2-cochain. Then, the Q-orbifold torus partition function is

ZT /Q,[σ] =
∑
~g∈Q

∑
~p∈B~g

χ~p(q)χ̄~p+~g(q̄) , (1.16)

where [σ] is an equivalence class in H2(Q,U(1)) defining the discrete torsion (in the
condensed matter perspective, the 2d SPT we stack when gauging Q, or the B-field in [6]),
and

B~g :=
{
~p
∣∣∣ S~h,~p Ξ(~h,~g) = 1 , ∀~h ∈ Q

}
, (1.17)

where we define13

S~h,~p :=
θ~h+~p
θ~hθ~p

, Ξ(~g,~h) := R(~h,~g)τ(~h,~g)σ(~h,~g)
τ(~g,~h)σ(~g,~h)

. (1.18)

In (1.18), θ~p := exp(2πih~p), and h~p is the holomorphic scaling dimension of an operator in
representation ~p.14

In this paper we focus on the case

Q ' Zk2 . (1.19)
10The reason is that in both cases, ~p = p1 takes values in the same group.
11As we will see, the theories in [6] are all orbifolds of particular theories with partition functions of the

form (1.6). Note that we will only consider orbifolds with respect to symmetries which commute with the
full left and right chiral algebras. Orbifolds of this type take us from a Narain CFT to another Narain CFT,
while more general orbifolds may result in non-Narain CFTs.

12For the CFT with charge conjugation modular invariant, F can be written in terms of holomorphic
scaling dimensions as

F (~g,~h,~k) =
∏
i

{
1 if hi + ki < ni
θ(ei)gini if hi + ki ≥ ni

where ei is a basis for the cyclic factors in (1.8), and ~g =
∑

i
giei. Here ni is the order of the ith cyclic

factor, and θ~p := exp(2πih~p), where h~p is the holomorphic scaling dimension of an operator in representation
~p. The group Q is non-anomalous if and only if θO~h

~h
= 1 ∀~h ∈ Q, where O~h is the order of ~h in Q [11].

13Note that our S matrix differs from the unitary S matrix by an overall normalization (ours is
√
N times

bigger, where N is the number of Wilson lines in the CS theory associated with our RCFT).
14R(~h,~g) can be written in terms of θ~g as R(~h,~g) =

∏
i
(θei )higi

∏
i<j

(Sei,ej )higj , where ei is a basis for
the cyclic factors in (1.8), and ~g =

∑
i
giei. Note that both R(~h,~g) and τ(~g,~h) depend on a choice of basis

in Rep(V ), but Ξ(~g,~h) is basis independent.
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Such subgroups are the most universal in the sense that they are contained in any other
subgroups of K.15 More general cases can be treated in a similar fashion.

How should we include the data of states corresponding to ~g 6= ~0 in the code? Clearly,
the fields in the ~g = ~0 sector should still be captured by (1.11). Therefore, ~g must appear
in a linear relation with ~α, ~β such that setting ~g = ~0 recovers terms of the form (1.11).
Note that nontrivial components of any ~g ∈ Q have the form gi = 2ri−1 ∈ Z2ri (since
~g + ~g = ~0). Therefore, in order to contribute to the stabilizer, ~g must appear through M~g

(M is diagonal, and Mii := 21−ri).
At this point, we should ask what principle requires ~g to contribute to the stabilizers

at all. The answer is that orbifolding is an invertible procedure: when we gauge a discrete
0-form symmetry, Q, of a CFT, T ,16 there is an isomorphic dual Q′ ' Q symmetry we can
gauge in T /Q to return back to the original theory.17 We would like this invertibility to
extend to the map between codes.

If M~g only appears through a factor ZM~g, then our map between codes will not
generally be invertible. The simplest and most natural possibility is the following.18

CFT to stabilizer operator map:{
O~p,~g+~p

}
↔ XM~g ◦ ZA~p := G(M~g,A~p) . (1.20)

In the language of (1.14), we have

µ : T /Q −→ ST /Q := gen
{
XM~giZA~pJ

}
, (1.21)

where ~gi and ~pJ generate Q and K respectively.
Since Z is order two, the quantum code constructed above is only sensitive to A~pJ mod

2. Therefore, in general we will have multiple families of operators mapping to the same
element of the stabilizer group.

Recall that the stabilizer code associated with the charge conjugation modular invariant
is self-dual. Since orbifolding is invertible, the above map assigns a self-dual code to T /K
(see appendix B for an alternate argument).

Intriguingly, given the map in (1.20), the commutation relations of elements of ST /Q
are controlled by the S matrix of the RCFT. Indeed, it is a simple exercise to check that

G(~g1, ~p1)G(~g2, ~p2) = eπi[M~g2·A~p1−M~g1·A~p2]G(~g2, ~p2)G(~g1, ~p1)
= S~g2,~p1S~g1,~p2G(~g2, ~p2)G(~g1, ~p1)
= Ξ(~g2, ~g1)Ξ(~g1, ~g2)G(~g2, ~p2)G(~g1, ~p1)
= S~g1,~g2G(~g2, ~p2)G(~g1, ~p1) , (1.22)

15Recall that we are ignoring CFT factors involving primaries labeled by Aqr and Bqr .
16Note that to unambiguously refer to the orbifolded theory, we should also generally specify the discrete tor-

sion, [σ]. However, we will often be slightly imprecise and leave the discrete torsion implicit in our discussions.
17See [19, 20] as well as the more recent discussion in [21].
18We can also include an M~g contribution in Z. Then we have XM~g ◦ ZA~p+M~g = YM~g ◦ ZA~p which is

equivalent to the code XM~g ◦ ZA~p. Similarly, XM~g+A~p ◦ ZA~p is code equivalent to XM~g ◦ ZA~p.
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where, in the third equality, we have used (1.17). We have also used the expression for the S
matrix S~p,~q = e

2πi
2 ~pTMA~q which follows from (1.8) [18]. Therefore, ST /Q is a stabilizer code

if and only if S~g1,~g2 = 1. This latter statement can be reinterpreted as the vanishing of the
1-form anomaly for the Q 1-form symmetry in the bulk CS theory related to the T RCFT.

1.1 Examples

1.1.1 R = 1, 2 compact boson

The code CFTs in [6] are all orbifolds of charge conjugation modular invariants with
Rep(V ) = A

nA4
4 , for some integer nA4 > 0. That is, the fusion rules for the charge

conjugation modular invariants are given by the abelian group, K = (Z4)nA4 (all other nX
in (1.8) vanish). The theories discussed in [6] with non-trivial B-field correspond in our
language to orbifolds of the charge conjugation theories with discrete torsion turned on (or,
equivalently, a non-trivial 2D SPT in the Zk2 CZ

nA4
4 gauging process). As such, the CFTs

in [6] are a small subset of theories discussed here.
The simplest code CFT among these is the R = 1 compact boson, corresponding to

the choice nA4 = 1. The chiral algebra has the trivial, fundamental, spinor, and conjugate
spinor representations which we will denote by N0, N2, N1, N3, respectively. These form
the K = Z4 group under fusion. The scaling dimensions of chiral primaries in these
representations are

h0 = 0 , h2 = 1
2 , h1 = h3 = 1

8 . (1.23)

The Narain lattice for this theory is given by

PL := n+ m

2 , PR := n− m

2 , (1.24)

where m,n ∈ Z. In general, the vertex operators are given by

V(n,m) =: ei~pL ~XLei~pR ~XR : , (1.25)

where ~XL, ~XR are the left and right moving components of the field X describing the
compact boson. The partition function is

ZT = χ0χ̄0 + χ2χ̄2 + χ1χ̄3 + χ3χ̄1 , (1.26)

which is the charge conjugation modular invariant. The scaling dimensions of the primaries
are twice those in (1.23). Here χi is the character of Ni given by [20]

χp(q) = 1
η(q)

∑
n∈Z

q2(n+ p
4 )2

, (1.27)

where p = 0, 1, 2, 3 and η is the Dedekind eta function. Note that the partition function
can also be written in terms of the Narain lattice vectors as

ZT (τ, τ̄) = 1
|η(τ)|2

∑
(PL,PR)

q
P2
L
2 q̄

P2
R
2 , q = e2πiτ , q̄ = e−2πiτ̄ (1.28)
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The lattice vectors corresponding to a primary operator Op,p̄ can be found by requiring

P 2
L + P 2

R

2 = 2h~p (1.29)

where the R.H.S. is the scaling dimension of Op,p̄. In particular, the primary operators
O1,3,O3,1 correspond to the lattice vectors

(PL, PR) =
(1

2 ,−
1
2

)
,

(
− 1

2 ,
1
2

)
, (1.30)

while O2,2 corresponds to19

(PL, PR) = (1, 1)⊕ (1,−1)⊕ (−1, 1)⊕ (−1,−1) , (1.31)

and O0,0 = 1 to (0,0). We can assign each (PL, PR) lattice point to be in a particular {Op,p̄}
family by considering fusions of the above operators and imposing that fusions correspond
to momentum vector addition. Using (1.11), these operators map to the 1-qubit stabilizer
code generated by the Z Pauli matrix via

I ↔ {O0,0}, {O2,2} , Z ↔ {O1,3}, {O3,1} , (1.32)

where the map includes all descendants.
A topological line operator, denoted L2, labelled by ~p = 2 generates a Z2 0-form

symmetry. This symmetry acts by a shift φ→ φ− π, where φ := XL−XR
2 . The action on

the vertex operators is
V(n,m) → (−1)mV(n,m) (1.33)

In particular, the collections of operators {O1,3}, {O3,1} change sign under this symmetry
while {O0,0}, {O2,2} remain invariant. This symmetry is non-anomalous because h2 = 1

2 [11]
(see also the related discussion in [22] and footnote 12). Taking the Z2-orbifold,20 we get a
dual CFT with partition function (using (1.16), (1.17))

ZT /Z2 = χ0χ̄0 + χ2χ̄2 + χ1χ̄1 + χ3χ̄3 . (1.34)

This is the partition function of the R = 2 compact boson, which is T-dual to the R = 1
compact boson. Using (1.20), the stabilizer code corresponding to this CFT is the 1-qubit
code generated by Y via the map

I ↔ {O0,0}, {O2,2}; Y ↔ {O1,1}, {O3,3} . (1.35)

T-duality between these theories is captured by the fact that the 1-qubit code generated by
Y is equivalent to the code generated by Z [6] (recall that our conventions here differ from
those in [6] by an X ↔ Y code equivalence).

19The four states in (1.31) correspond to the fact that O2,2 transforms as a left-moving so(2) vector times
a right moving so(2) vector.

20H2(Z2,U(1)) ∼= Z1. Therefore, there is no discrete torsion.
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Using (1.3), we can compute the refined enumerator polynomials (REPs) for the codes
above, generated by Z and Y to get

Wgen(Z)(x1, x2, x3, x4) = x1 + x4 ,

Wgen(Y )(x1, x2, x3, x4) = x1 + x3 . (1.36)

Therefore, corresponding CFT torus partition functions can be written in terms of the
REPs by choosing

x1 = χ0χ̄0 + χ2χ̄2 ,

x4 = χ1χ̄3 + χ3χ̄1 ,

x3 = χ1χ̄1 + χ3χ̄3 . (1.37)

As a final note, let us comment that we obtain the same quantum codes using any
RCFT with Rep(V ) = A

nA4
4 . For any nA4 there are always infinitely many such RCFTs.

For example, we can take the product of the R = 1 compact boson with arbitrarily many
E8 WZW models at level one and trivial Rep(V ) (this latter theory is associated with a
0-qubit code). In this case, to get the partition function from the REP we have to input the
characters χpχ̄~pχ

′
0χ̄
′
0 into (1.36), where χ′0 is the vacuum character of the E8 WZW model

at level 1 factors.

1.1.2 R =
√

2 compact boson ∼ SU(2) level one WZW

The compact boson at the self-dual radius, or, equivalently, the SU(2) at level one WZW
model has Rep(V ) = A2. That is, the representations of the chiral algebra are the trivial
and fundamental representations, which we denote by N0, N1, respectively. They form a
K = Z2 group under fusion. We have chiral primaries with scaling dimensions

h0 = 0 , h1 = 1
4 . (1.38)

The Narain lattice for this theory is given by

PL := 1√
2

(n+m) , PR := 1√
2

(n−m) , (1.39)

where, n,m ∈ Z. The vertex operators are given by (1.25) with (1.39) inserted, and the
torus partition function is

ZT = χ0χ̄0 + χ1χ̄1 , (1.40)

where the characters are given by [20]

χp(q) = 1
η(q)

∑
n∈Z

q
(p+2n)2

4 , (1.41)

with i = 0, 1.
The non-trivial primary, O1,1, corresponds to the lattice vectors

(PL, PR) = ±
( 1√

2
,

1√
2

)
⊕±

( 1√
2
,− 1√

2

)
, (1.42)
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where the number of states follows from the fact that the primary transforms in the
fundamental representation of the left and right moving SU(2). We can assign any Narain
lattice vector to be a member in a {Op,p̄} family by considering fusions of the above primaries
and imposing that they correspond to lattice vector addition. Now, using (1.11), this CFT
corresponds to the 1-qubit stabilizer code generated by Z via the map

I ↔ {O0,0} , Z ↔ {O1,1} . (1.43)

Note that this is the same quantum code as in the case of the R = 1 compact boson. This
fact illustrates that, the map (1.20) can give the same quantum code for distinct CFTs.

The REP for this code is given by (1.36), and the torus partition function can be
written in terms of W by choosing

x1 = χ0χ̄0 , x4 = χ1χ̄1 . (1.44)

This CFT has a Z2 0-form symmetry generated by the topological line L2. However,
this Z2 is anomalous [11] (see footnote 12), and hence cannot be gauged (in a purely 2d
system).

Again, from our construction, we can consider arbitrary products of this theory and,
when we have at least two factors, orbifolds with and without discrete torsion.

1.1.3 Compact boson at R =
√

2k
`

Let us generalize the discussion above to compact boson at R =
√

2k
` , where k, ` are co-prime

integers. This RCFT has fusion rules given by the group K = Z2k`. The corresponding
bulk CS theory is U(1)2k`. Therefore, in this case Rep(V ) labels the Wilson lines in the
U(1)2k` CS theory. Rep(V ) decomposes as follows

Rep(V ) ' X2s ×
∏
i

(Yi)qrii ,K = Z2s ×
∏
i

Zqrii , (1.45)

where the qi’s are distinct odd primes, X ∈ {A,B,C,D}, and Yi ∈ {A,B}. Here the labels
must be chosen so that the topological central charge is equal to 1 modulo 8. Note that
this does not imply that the U(1)2k` CS theory or the associated CFT itself factorizes. The
decomposition (1.45) is an algebraic property of the set of representations of the chiral
algebra Rep(V ) (see footnote 6).

As discussed above, the odd factors contribute trivially to the code. For simplicity, we
will therefore consider ` = 2s−1 and k = 1 for some integer s > 0. In this case

U(1)2s CS ' A2s , K = Z2s . (1.46)

The representations of the chiral algebra are denoted by integers p ∈ Z2s . The scaling
dimensions for these chiral primaries are given by hp = p2

2s+1 if p ≤ 2s−1 and hp = p̄2

2s+1

if p > 2s−1.
The Narain lattice for this theory is given by

PL := n

R
+ mR

2 , PR := n

R
− mR

2 , R = 2
2−s

2 , (1.47)
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where m,n ∈ Z. The vertex operators are given by (1.25). The torus partition function is

ZT =
∑
p∈Z2s

χpχ̄p̄ , (1.48)

which is the charge conjugation modular invariant. The characters, χp(q), are given by [20]

χp(q) = 1
η(g)

∑
n∈Z

q2s−1
(
n+hp

2s
)2

. (1.49)

Non-trivial primaries, Op,p̄, with p < 2s−1 correspond to lattice vectors satisfying

1
2(P 2

L + P 2
R) = 2hp , PL > PR , (1.50)

while the charge conjugate corresponds to lattice vectors of the above type with PR > PL.
Finally, the non-trivial primary O2s−1,2s−1 corresponds to the lattice vectors satisfying

1
2(P 2

L + P 2
R) = 2s−2 . (1.51)

The quantum code corresponding to this CFT is the 1-qubit quantum code generated by Z,
where the operators are mapped to the code as

I ↔ {Op,p̄} , p = 0 mod 2 ,
Z ↔ {Op,p̄} , p = 1 mod 2 . (1.52)

A topological line operator, denoted L2s−1 , labelled by ~p = 2s−1 generates a Z2 0-form
symmetry. This symmetry acts by a shift φ→ φ− π, where φ := R(XL−XR)

2 . The action on
the vertex operators is

V(n,m) → (−1)mV(n,m) . (1.53)

This symmetry is non-anomalous and can be gauged. Taking the Z2-orbifold we get the
orbifold CFT with the partition function

ZT /Z2 =
∑

p=0 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s−1+p . (1.54)

Using (1.20), the operators in this CFT can be mapped to the stabilizer code generated by
X as

I ↔ {Op,p̄}, X ↔ {Op,2s−1+p} (1.55)

Note that the quantum code corresponding to the Z2 orbifold of the R = 1 compact
boson CFT is gen(Y ) while that for the Z2 orbifold of the R = 2 2−s

2 compact boson CFT
for s > 1 is gen(X). This difference is because, for s > 2, the chiral primary p = 2s−1 is
bosonic while, for s = 2, it is fermionic.

The REPs for the codes obtained above are

Wgen(Z)(x1, x2, x3, x4) = x1 + x4 ,

Wgen(X)(x1, x2, x3, x4) = x1 + x2 . (1.56)
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Therefore, the partition functions considered above can be written in terms of the REPs by
choosing

x1 =
∑

p=0 mod 2
χpχ̄p̄ ,

x4 =
∑

p=1 mod 2
χpχ̄p̄ ,

x3 =
∑

p=0 mod 2
χpχ̄2s−1+p . (1.57)

1.1.4 ̂Spin(16)1 CFT

The Spin(16)1 CFT has Rep(V ) = E2 (the “toric code” MTC). We denote the represen-
tations of the chiral algebra by N(0,0), N(0,1), N(1,0), N(1,1), and they form a K = Z2 × Z2
group under fusion. We have chiral primaries with scaling dimensions

h(0,0) = 0 , h(0,1) = h(1,0) = 1 , h(1,1) = 1
2 . (1.58)

The Narain lattice is
{(~PL, ~PR) ∈ ΛW × ΛW , ~PL − ~PR ∈ ΛR} (1.59)

where ΛW = {∑i niλi, ni ∈ Z} is the weight lattice, λi are the fundamental weights

λi = (1, · · · , 1, 0, · · · , 0), 1 ≤ r ≤ 6 (1 repeated i times)
λ7 = (1, 1, 1, 1, 1, 1, 1, 1), λ8 = (1, 1, 1, 1, 1, 1, 1,−1) ,

and ΛR = {∑i niαi, ni ∈ Z} where αi are the simple roots

αi = ei − ei+1 1 ≤ i ≤ 7, α8 = e8 + e7 . (1.60)

Here ei is the vector with components (ei)j = δi,j . It is easy to check that ΛR is the set of
8-component vectors such that the sum of its components is even.

The partition function is

ZT = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,1) + χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) , (1.61)

where the characters are given by [20]

χ(0,0) = (θ8
3 + θ8

4)
2η8 , χ(0,1) = χ(1,0) = θ8

2
2η8 ,

χ(1,1) = (θ8
3 − θ8

4)
2η8 . (1.62)

Here θ2, θ3, θ4 are Jacobi-Theta functions. The Dynkin labels for the representations
N(0,0), N(0,1), N(1,0) and N(1,1) are (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0)
and (1, 0, 0, 0, 0, 0, 0, 0), respectively. Therefore, the primary operators O(0,0),(0,0), O(0,1),(0,1),
O(1,0),(1,0) and O(1,1),(1,1), in turn, correspond to the lattice vectors

(λ8, λ8) , (λ7, λ7) , (λ6, λ6) , (λ1, λ1) . (1.63)
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Using (1.11), this CFT corresponds to the two-qubit stabilizer code generated by I⊗Z,Z⊗I
via the map

I ⊗ Z ↔ {O(1,0),(1,0)}, Z ⊗ I ↔ {O(0,1),(0,1)} . (1.64)

This CFT has three non-anomalous Z2 0-form symmetries, Q1, Q2, Q3, corresponding
to the topological lines L(0,1),L(1,0), and L(1,1). These symmetries act on the primary
operators (and the corresponding Narain lattice vectors) as

L(0,1) : O(1,0) → −O(1,0), O(1,1) → −O(1,1) ,

L(1,0) : O(0,1) → −O(0,1), O(1,1) → −O(1,1) ,

L(1,1) : O(0,1) → −O(0,1), O(1,0) → −O(1,0) . (1.65)

Actions of the symmetries on primaries not mentioned above are trivial. Orbifolding by
Q1, Q2, Q3, we get CFTs with partition functions (using (1.16), (1.17))

ZT /Q1 = χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(0,1)χ̄(0,0) + χ(0,1)χ̄(0,1) ,

ZT /Q2 = χ(0,0)χ̄(0,0) + χ(0,0)χ̄(1,0) + χ(1,0)χ̄(0,0) + χ(1,0)χ̄(1,0) ,

ZT /Q3 = χ(0,0)χ̄(0,0) + χ(1,1)χ̄(1,1) + χ(0,1)χ̄(1,0) + χ(1,0)χ̄(0,1) , (1.66)

respectively. Using (1.20), these CFTs can be mapped, in turn, to the stabilizer codes
specified by gen(Z ⊗ I, I ⊗X), gen(I ⊗ Z,X ⊗ I), and gen(Z ⊗ Z, Y ⊗X).

We can also orbifold by the full Q1 × Q2 symmetry of the CFT. We get partition
functions (using (1.16), (1.17))

ZT /Q1×Q2,[1] = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,0) + χ(0,0)χ̄(1,0) + χ(0,1)χ̄(1,0) ,

ZT /Q1×Q2,[σ] = χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(1,0)χ̄(0,0) + χ(1,0)χ̄(0,1) , (1.67)

where [1] and [σ] are the trivial and non-trivial elements of H2(Z2 ×Z2,U(1)), respectively.
Using (1.20), these CFTs can be mapped, in turn, to subgroups of the Pauli group specified
by gen(Z ⊗X,X ⊗ I) and gen(X ⊗ Z, I ⊗X).

The subgroup of the Pauli group generated by these elements is clearly not a stabilizer
code since it is non-abelian. For example, Z ⊗X and X ⊗ I anti-commute with each other.
This is expected from our general arguments above since Q1 and Q2 are related to 1-form
symmetries of the bulk Spin(16)1 Chern-Simons theory which have a mixed ’t Hooft anomaly.

Note that ̂Spin(16)1 CFT has central charge c = 8. The quantum codes associated
with c = 8 CFTs in [6] have 8 qubits. This is because in [6], the number of qubits in the
quantum code is fixed by the number of compact bosons, while in our construction it is
fixed by the fusion rules of chiral primaries.

2 Errors and the full Pauli group from defects

In the context of quantum codes, the elements of the Pauli group, Pn, that are not in
the stabilizer subgroup, Sn, are either called “logical operators” or “errors”, depending,
respectively, on whether they preserve the code subspace or map states from the code
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subspace to its complement. Since our codes are self-dual, we have no (non-trivial) logical
operators,21 and all elements of Pn that are not in Sn correspond to errors.

How can we see these errors in the CFT? An intuitive picture is provided by the toric
code [24]. There one finds that error operations correspond to string operators (defects)
that create anyonic pairs.22 When the anyons annihilate, the system returns to the code
subspace, implementing a logical operation. While the gapped toric code system is very
different from the CFTs considered in this paper, as we will see below, this geometric picture
of errors is still informative.

A more direct way to understand errors is to look at the fields in T /Q that contribute
the terms with ~g 6= 0 in (1.16). In the orbifolding procedure, we gauge Q in the charge-
conjugation modular invariant theory, T . The ~g 6= ~0 bulk fields of T /Q then come from
certain fields living at the end of Q topological defects of T . Therefore, the X-dependent
Pauli stabilizers of the T /Q theory appearing in (1.20) correspond to error operations in
the T theory. This discussion suggests error operations of the code related to T are given
by defect endpoint operators of the Q symmetries of T . In the language of quantum codes,
such orbifolding exchanges certain errors with stabilizers in an n-qubit self-dual code to
produce a new n-qubit self-dual code, see e.g. the examples in section 2.2.

With the motivation above, we are now ready to identify the full set of error operations,
i.e., to reconstruct the full Pauli group, from the defect fields. Since Q consists of order-
two defects which commute with the vacuum module, this suggests that we associate
error operations with fields living at the ends of such defects. Through a slight abuse
of terminology, we will refer to these and any other defects that preserve the maximal
chiral algebra of a theory as “Verlinde lines” (for further discussion of such lines, see for
example [26–30]).

To understand the spectrum of defect endpoint fields in the most general case, we
eventually want to consider CFTs in which the pairing of characters is given by

ZTM =
∑
~p,~q

M~p~qχ~p(q)χ̄~q(q̄) , (2.1)

whereM is a matrix commuting with S and T .23 As a technically simpler starting point,
let us first consider the case whenM~p~q is a permutation on the set of vectors. Such modular
invariants are called “permutation modular invariants”, and charge conjugation corresponds
to the caseM~p,~q = δ~p,~̄q. To avoid confusion below, we call theories of this type “maximal”
permutation modular invariants (MPMIs).24 As we will see, we can reconstruct the Pauli
group from Verlinde lines alone in any MPMI admitting a code description.

In MPMIs, we define Verlinde lines via25

L(~p,~pM) =
∑
~̀

S̄
~p~̀

S̄~0~̀
|~̀, ~̀M〉〈~̀, ~̀M| , (2.2)

21Note that the elements in Sn, are sometimes called “trivial” logical operators.
22For a pedagogical discussion, see section 11.3 of [25].
23Here, we have T~p,~q := e−πi(c/12)θ~pδ~p~q.
24More general permutation modular invariants will play a role below.
25In (2.2) and bellow, ~̀M = ~k is the unique vector such thatM~̀~k 6= 0.

– 16 –



J
H
E
P
0
3
(
2
0
2
3
)
0
1
7

where each |~̀, ~̀M〉〈~̀, ~̀M| is a projector on the primary state labeled by (~̀, ~̀M) together with
its descendants. Since this operator is a multiple of the identity within each representation
of the left and right chiral algebras, it commutes with the chiral algebras and is topological
(by construction, it commutes with the Virasoro sub-algebras). For convenience, we denote
L(~p,~pM) simply as L~p since the right-moving label is determined by ~p. Using the Verlinde
formula, it is easy to check that these lines satisfy the fusion rules of the RCFT

L~p × L~q = L~p+~q . (2.3)

When ~p is order two, we have

~p+ ~p = ~0⇒ S
~p~̀
/S~0~̀ ∈ {±1} . (2.4)

To proceed, we insert L~g in the torus partition function (i.e., we wrap it on the spatial
cycle of the torus) and perform a modular transformation so that it wraps time

ZTM(L~̀) =
∑
~p,~q

S̄~̀~p

S̄~0~̀
M~p~qχ~p(q)χ̄~q(q̄)

→
∑
~p,~q,~r,~s

S̄~̀~p

S̄~0~̀
M~p~qS~p~rS̄~q~sχ~r(q)χ̄~s(q̄)

=
∑
~q,~r,~s

N
~̀

~r~̄q
M~q~sχ~r(q)χ̄~s(q̄) := Z

~̀
TM(q, q̄) , (2.5)

where, in the last line, we have arrived at a definition for the partition function of fields
living at the end of the defect labeled by ~̀. In the second to last equality, we use the
Verlinde formula. In light of (2.3), we can simplify the fusion coefficients as N ~̀

~r~̄q
= δ

~̀
~r−~q.

Therefore, we have

Z
~̀
TM(q, q̄) =

∑
~r,~s

M
~r−~̀ ~sχ~r(q)χ̄~s(q̄)

=
∑
~p,~q

M~p~qχ~p+~̀(q)χ̄~q(q̄) . (2.6)

Specializing to the case of the charge conjugation modular invariant, we obtain

Z
~̀
T (q, q̄) =

∑
~p

χ
~p+~̀(q)χ̄~̄p(q̄) . (2.7)

When ~̀ ∈ Q ' Zk2, we get, using 2~̀= ~0,

Z
~̀
T (q, q̄) =

∑
~p

χ
~p+~̀(q)χ̄~̀+~p+~̀(q̄) . (2.8)

As expected, these are equivalent to the contributions in (1.16), only here they correspond
to defect operators in T rather than bulk operators in T /Q. Therefore, consistency with
the map in (1.20) demands {

O~̀
~p+~̀,~p

}
↔ XM~̀ ◦ ZA(~p+~̀) , (2.9)
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where
{
O~̀
~p+~̀,~p

}
should be understood as an ~̀-defect primary operator and its associated

descendants. If Q ' Zn2 , then (2.9) gives rise to the full Pauli group.26 More generally, we can
consider cases in which Q 6' Zn2 and some of the order-two Verlinde lines correspond to ~̀ 6∈ Q
(e.g., see the SU(2) at level one WZW model example in section 2.2). In this case we also
obtain the full Pauli group: ~̀ in (2.9) is any order-two element, and ~p is any representation
in the Narain theory. Therefore, the charge-conjugation modular invariant knows about the
full set of operations acting on the quantum code: the genuine local operators correspond
to stabilizers and the defect endpoint operators correspond to the errors.

It is straightforward to extend this picture to the most general MPMIs when these
CFTs admit a quantum code description. Clearly, to be an MPMI, we need every possible
~p and ~g + ~p to appear exactly once in (1.16). Therefore, as we sum over ~g and take all
~p ∈ B~g, we produce all possible ~p ∈ K. As a result, in the code we generate via (1.20), we
get all possible powers of Z. The powers of X are restricted since ~g ∈ Q, and Q is a proper
subgroup of K.

However, the fields living at the end of the order-two Verlinde defects precisely make
up the difference since (2.6) now becomes

Z
~̀
TM(q, q̄) =

∑
~g∈Q

∑
~p∈B~g

χ
~p+~̀(q)χ̄~p+~g(q)

=
∑
~g∈Q

∑
~p∈B~g

χ
~p+~̀(q)χ̄~g+~̀+~p+~̀(q̄) . (2.10)

As a result, our CFT-code map in (1.20) becomes{
O~̀
~p+~̀,~g+~p

}
↔ XM(~̀+~g) ◦ ZA(~p+~̀) . (2.11)

Since the fusion rules in (2.3) do not depend on the nature ofM, we see that the number
of order-two Verlinde defects is the same as in the charge-conjugation case. Therefore, upon
including all order-two Verlinde lines, we get all possible Pauli group elements, and the
corresponding errors that affect our stabilizer code.

Let us now consider the most general case (1.16), which we can always write as in (2.1)
with TM = T /Q (and discrete torsion [σ]). Note that in (2.1),M~p,~q is a matrix with entries
consisting of 0’s and 1’s (see appendix B), and it will not generally be a permutation (i.e.,
the CFT will not be an MPMI).

As we will see in the next subsection, we have a smaller number of Verlinde lines
when T /Q is not an MPMI. However, we can still define enough order-two symmetries
to recover the Pauli group from the corresponding defect fields (note that invertibility of
the orbifolding procedure guarantees that, for each symmetry we gauge, there is a dual
symmetry in the orbifolded theory).

To construct these extra symmetries, it suffices to associate signs with the primaries
compatible with fusion (then all local correlation functions are invariant). In the Verlinde
line case, we did this via (2.2) and (2.4).

26Note that the map (2.9) is insensitive to the ν ∈ {±1,±i} factors which are part of the definition of Pauli
group elements in (1.1). Therefore, the fusion of defect operators corresponds to the group multiplication of
the abelianised Pauli group P(ab)

n = Pn/Z4 ' Z2n
2 where the Z4 is generated by i ∈ Pn.
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Since we have orbifolded in a way that respects T ’s chiral algebra, T /Q respects the
fusion rules of T . More precisely, if we have operators in the orbifolded theory transforming
in representations (~p1, ~g1 + ~p1) and (~p2, ~g2 + ~p2), then we also have an operator transforming
as (~p1 + ~p2, ~g1 + ~g2 + ~p1 + ~p2). Technically, this statement follows from

S~h,~p1+~p2
Ξ(~h,~g1 + ~g2) = S~h,~p1

Ξ(~h,~g1) S~h,~p2
Ξ(~h,~g2)

= 1 , ∀~h ∈ Zk2 , (2.12)

where we have used the bicharacter property of both S and Ξ (see appendix A). Therefore,
(~p,~g + ~p) forms an abelian group under fusion (as it should since T /Q is a Narain theory).
Let us denote this group as F .

Now, after acting with some order-two symmetry, π (i.e., inserting the corresponding
topological defect, Dπ, along a spatial cycle and computing the torus partition function),
some of the 1 entries inM get flipped to −1 such that fusion is respected. Let us denote
the matrix so obtained asMπ.

As in (2.5), to calculate the defect partition function, we have to perform an S

transformation to get STMπS̄. All the characters that we get from the defect partition
functions for all possible order-two π correspond to the non-zero entries of the matrix

∑
π

STMπS̄ = ST
(∑

π

Mπ

)
S̄ := STMΣS̄ , (2.13)

where the sum is over all such symmetries, π.
Assigning signs to the primaries such that the fusion is respected is the same as choosing

an irreducible representation of F valued in ±1. The trivial representation acts trivially
on the primaries. Therefore, for each π, we associate an irrep, sign π. In order to find the
non-zero entries of ∑πMπ we have to understand when

σ(x) :=
∑

sign π

χsign π(x) , (2.14)

is non-zero. Here, the sum is over the irreducible representations, sign π, of F valued in
±1, and χsign π(x) is the character of sign π (not to be confused with the RCFT characters
appearing in the partition function!) evaluated on a given element x ∈ F (note that each
element in F represents a character combination χ~pχ̄~g+~p ∈ ZT /Q,[σ]; we will denote this
combination (~p,~g + ~p)).

To that end, suppose F has a decomposition in terms of cyclic groups given by

F ∼= Zn1 ⊗ . . .⊗Znl . (2.15)

Since we are treating CFT factors related to Aqr and Bqr as spectators, the ni are even.
We know that

F̂ = Ẑn1 ⊗ . . .⊗ Ẑnl , (2.16)

where F̂ is the group of irreducible representations of F . In particular, the sign representa-
tions of F are given by products of Zni sign representations. Choose a basis {e1, · · · , el}
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for the cyclic groups; then, an element of F is of the form (em1
1 , . . . , emll ) for some inte-

gers 0 ≤ mi ≤ ni − 1. Consider σ(x) for some x = (em1
1 , . . . , emll ) ∈ F . We know that

sign π = sign π1 ⊗ · · · ⊗ sign πl, where sign πi is a representation of Zni valued in ±1.
Therefore

σ(x) =
∑

sign π1,··· , sign πl

χπ1(em1
1 ) . . . χπl(e

ml
l )

=
∏
i

 ∑
sign πi

(χsign πi(ei))
m1

 . (2.17)

Since the ni are all even and sign πi is valued in ±1, we have χsign πi(ei) = ±1∀i. Therefore,
we find

σ(x) =
∏
i

(1mi + (−1)mi) =

2l , iff mi ∈ 2Z ∀i
0 , otherwise .

(2.18)

Now, suppose x = (em1
1 , . . . , emll ) is an element of the group F such that all mi are even.

Then there exists some other element y ∈ F such that y2 = x. Recall that an element of F
represents a character combination in the partition function denoted by (~p,~g + ~p). Adding
this element to itself gives (2~p, 2~p) (since ~g is order two). Therefore, if x ∈ F has only even
mi, x = (2~p, 2~p).

As a result, the matrixMΣ defined in (2.13) is a matrix with entries valued in {0, 2l},
where the only non-zero entries correspond to (2~p, 2~p). In other words∑

π

ZT /Q,[σ](Dπ) =
∑
π

Mπ;~p,~qχ~p(q)χ̄~q(q̄)

= 2l
∑
2~p
χ2~p(q)χ̄2~p(q̄) . (2.19)

Note that the case π = 1 gives the partition function without a defect. As a result, χ2~pχ̄2~p
is a term in this partition function, and we know that 2~p has to satisfy (1.17) for ~g = 0.
That is, the CS Wilson line corresponding to 2~p should braid trivially with all ~h ∈ Zk2.

We want to show that the sum of defect partition functions ∑π Z
π
T /Q,[σ] (coming from

applying a modular transformation to (2.19)) contains all possible characters of the form
χ~pχ̄~g+~p, where ~g is order two, so that we get the full Pauli group from it. To that end,
consider ∑

π

ZπT /Q,[σ] = 2l
∑
2~p

∑
~i,~j

S2~p,~iS̄2~̄p,~jχ~iχ̄~j

= 2l
∑
2~p

∑
~i,~j

S2~p,(~i−~j)χ~iχ̄~j

= 2l
∑
2~p

∑
~i,~j

S~p,2(~i−~j)χ~iχ̄~j
. (2.20)

It is clear that if (~i−~j) is order two, then S~p,2(~i−~j) = 1 ∀~p. Therefore, the character χ~iχ̄~̄j
contributes non-trivially to the sum for any ~i,~j satisfying the constraint that ~i−~j is order
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two. These characters correspond to

XM(~i−~j) ◦ ZA~i . (2.21)

Since ~i−~j is any order-two element, and ~i is arbitrary (though choosing ~i fixes ~j mod 2),
we find that these defect fields give the full Pauli group. This ends our proof and shows
that all code CFTs contain all possible errors via order-two defects.

2.1 Verlinde subgroup of the Pauli group

In this section, we define a “Verlinde subgroup” of Pn. This subgroup can be constructed
from any code RCFT. It is defined as follows.

Definition. The Verlinde subgroup, VT /Q, is the subgroup of PT /Q coming from all
stabilizers that are related to (1) CFT local fields and (2) fields living at the end of
order-two Verlinde lines.

Note that, by construction ST /Q ⊆ VT /Q ⊆ PT /Q. Physically, the ratio

rT /Q := 2−n
|PT /Q|
|VT /Q|

, 2−n ≤ r ≤ 1 , (2.22)

measures how well the continuous symmetries of the Narain CFT corresponding to an
n-qubit code are able to detect an error. For example, in the charge conjugation modular
invariant or any of the MPMIs, rT /Q = 2−n, which is the smallest value possible. This is
because the Verlinde subgroup corresponds to the full Pauli group. Any Verlinde line, L~̀,
commutes with the chiral algebra, since S̄~̀~0/S̄~0~0 = 1 in (2.2), and so the corresponding
continuous symmetry currents are acted upon trivially by the Verlinde lines. In this sense,
the continuous symmetry currents cannot detect errors associated with these defects.

What about more general theories? These theories are not MPMIs. However, it turns
out that, if we enlarge the chiral algebras as much as possible, any orbifold theory we can
construct using our methods above is a permutation modular invariant with respect to this
larger algebra (see appendix D). We can then define a Verlinde subgroup for any of our
orbifold theories. Moreover, as we show in appendix D, if we enlarge the chiral algebra, then,
rT /Q > 2−n, and the error detection ability of the continuous symmetry currents improves.
In the most extreme cases, we get CFTs that are products of left moving meromorphic and
right moving anti-meromorphic CFTs. These types of theories have rT /Q = 1, and their
continuous symmetries are able to fully detect errors.

2.2 Examples

2.2.1 Pauli group from R = 1 compact boson

The R = 1 compact boson has a charge conjugation partition function which is an MPMI.
Therefore, our general discussion on Pauli groups from MPMIs can be readily applied to
this case. To that end, consider

ZT = χ0χ̄0 + χ2χ̄2 + χ1χ̄3 + χ3χ̄1 . (2.23)
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Recall that the bulk operators are mapped to the 1-qubit stabilizer code, gen(Z). This CFT
has a Z2 symmetry generated by the Verlinde line, L2. Inserting this line in the partition
function, we can calculate the defect partition function using (2.8)

Z
~̀=2
T = χ0χ̄2 + χ2χ̄0 + χ1χ̄1 + χ3χ̄3 . (2.24)

Using (2.9), the defect operators are mapped to Pauli group elements as follows

X ↔ {O~̀=2
(0,2)}, {O

~̀=2
(2,0)} , Y ↔ {O

~̀=2
(1,1)}, {O

~̀=2
(3,3)} . (2.25)

Therefore, the bulk operators along with the defect operators give us the full Pauli group,
PT . Since the X and Y Pauli matrices correspond to defect operators living at the end of
an order-two Verlinde line, the Verlinde subgroup, VT , is the full Pauli group.

2.2.2 Pauli group from R =
√

2
2s−1 compact boson

Recall that the R =
√

2
2s−1 compact boson has the charge conjugation partition function

ZT =
∑
p∈Z2s

χpχ̄p̄ . (2.26)

We know that the CFT local operators are mapped to the qubit stabilier code generated by
Z. This CFT has a Z2 symmetry generated by the Verlinde line, L2s−1 . Inserting this line
in the partition function, we can calculate the defect partition function using (2.8)

Z
~̀=2s−1
T =

∑
p∈Z2s

χp+2s−1χ̄p̄ . (2.27)

Using (2.9), the defect operators are mapped to Pauli group elements as follows

X ↔ {O~̀=2s−1

p+2s−1,p̄} , p = 0 mod 2 ,

Y ↔ {O~̀=2s−1

p+2s−1,p̄} , p = 1 mod 2 . (2.28)

Therefore, the local operators along with the defect operators at the end of the order-two
Verlinde line L2s gives us the full Pauli group.

Now let us consider the CFT with partition function

ZT /Z2 =
∑

p=0 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s+p , (2.29)

obtained from the R = 2 2−s
2 CFT by orbifolding the Z2 symmetry generated by L2s−1 .

Recall that the genuine local operators in this CFT are mapped to the stabilizer code
generated by X (for s > 2).

This CFT has a Z2 symmetry generated by a line defect, say Dπ, which acts on the
primary operators as follows

{Ov,v̄} → {Ov,v̄}, {Ov,2s−1+v} → −{Ov,2s−1+v} (2.30)
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Using a modular S transformation, we can find the defect partition function

ZT /Z2(Dπ) =
∑

p=1 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s−1+p . (2.31)

Using (2.9), the defect operators are mapped to Pauli group elements as follows

Z ↔ {ODπp,p̄ }, Y ↔ {O
Dπ
p+2s−1,p̄} , (2.32)

where p = 1 mod 2. Therefore, we find that the local operators of the CFT along with the
defect operators give us the full Pauli group.

Note that the partition function (2.29) is clearly not an MPMI. In this case we get
the non-trivial group E = {0, 2s−1} defined in section 2.1. Therefore, using (D.4), we can
enlarge the chiral algebra as follows.

χ̃0 = χ0 + χ2s−1 , χ̃ρ = χρ + χρ+2s−1 (2.33)

where ρ is a representative of the orbit {v, v + 2s−1}, v = 0 mod 2, v ∈ Z2s . With respect
to this enlarged chiral algebra, we have the partition function

ZT /Z2 =
∑
ρ

χ̃ρ ¯̃χρ̄ . (2.34)

Therefore, we have Verlinde lines labelled by the primaries ρ. However, we don’t have
any non-trivial order-two Verlinde lines. Therefore, the Verlinde subgroup is same as the
stabilizer group.

2.2.3 Pauli group from ̂Spin(16)1 CFT

Recall that the ̂Spin(16)1 CFT has the charge-conjugation partition function

ZT = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,1) + χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) , (2.35)

and the bulk operators are mapped to the 2-qubit stabilizer code gen(I⊗Z,Z⊗I). This CFT
has Z2 ×Z2 0-form symmetry generated by the Verlinde lines L(0,1) and L(1,0). Inserting
these lines in the partition function, we obtain the following defect partition functions
via (2.8)

Z
(0,1)
T = χ(0,1)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(1,1)χ̄(1,0) + χ(1,0)χ̄(1,1) ,

Z
(1,0)
T = χ(1,0)χ̄(0,0) + χ(1,1)χ̄(0,1) + χ(0,0)χ̄(1,0) + χ(0,1)χ̄(1,1) ,

Z
(1,1)
T = χ(1,1)χ̄(0,0) + χ(1,0)χ̄(0,1) + χ(0,1)χ̄(1,0) + χ(0,0)χ̄(1,1) . (2.36)

Using (2.9), the defect operators are, in turn, mapped to Pauli group elements

Z ⊗X, I ⊗X,Z ⊗ Y, I ⊗ Y , (2.37)
X ⊗ Z, Y ⊗ Z,X ⊗ I, Y ⊗ I , (2.38)
Y ⊗ Y,X ⊗ Y, Y ⊗X,X ⊗X . (2.39)
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Therefore, the bulk operators along with the defect operators give us the full Pauli group
PT . Since all defect operators live at the end of order-two Verlinde lines, the Verlinde
subgroup, VT , is the full Pauli group.

Now let us consider the CFT with partition function

ZT /Q1 = χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(0,1)χ̄(0,0) + χ(0,1)χ̄(0,1) , (2.40)

obtained from the ̂Spin(16)1 CFT by orbifolding the Q1 symmetry generated by L(0,1).
Recall that the bulk operators are mapped to the 2-qubit stabilizer code gen(Z ⊗ I, I ⊗X).
This CFT has order-two symmetries generated by Dπ1 and Dπ2 . Dπ1 acts on the primaries as

{O(0,0),(0,1)} → −{O(0,0),(0,1)} ,
{O(0,1),(0,0)} → −{O(0,1),(0,0)} , (2.41)

and trivially on {O(0,0),(0,0)} and {O(0,1),(0,1)}. Dπ2 acts on the primaries as

{O(0,1),(0,0)} → −{O(0,1),(0,0)} and
{O(0,1),(0,1)} → −{O(0,1),(0,1)} , (2.42)

and trivially on {O(0,0),(0,0)} and {O(0,0),(0,1)}.
Using a modular S transformation, we can find the defect partition functions

ZT /Q1(Dπ1) = χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) + χ(1,1)χ̄(1,0) + χ(1,0)χ̄(1,1) ,

ZT /Q2(Dπ2) = χ(1,0)χ̄(0,0) + χ(1,0)χ̄(0,1) + χ(1,1)χ̄(0,0) + χ(1,1)χ̄(0,1) ,

ZT /Q3(Dπ1π2) = χ(0,0)χ̄(1,0) + χ(0,0)χ̄(1,1) + χ(0,1)χ̄(1,0) + χ(0,1)χ̄(1,1) . (2.43)

Using (2.21), the defect operators are, in turn, mapped to Pauli group elements

I ⊗ Z,Z ⊗ Z,X ⊗ Y, I ⊗ Y , (2.44)
X ⊗ Z,X ⊗ Y, Y ⊗ Y, Y ⊗ Z , (2.45)
X ⊗ I,X ⊗X,Y ⊗X,Y ⊗ I . (2.46)

Therefore, the bulk fields along with the defect fields give us the full 2-qubit Pauli group.
The Verlinde subgroup in this case is the same as the stabilizer group. To understand

this statement, note that the partition function (2.40) is clearly not an MPMI. In this
case we get the non-trivial group E = {(0, 0), (0, 1)} defined in section 2.1. Therefore,
using (D.4), we can enlarge the chiral algebra as follows.

χ̃~0 = χ(0,0) + χ(0,1) . (2.47)

With respect to this enlarged chiral algebra, we have

ZT /Q1 = χ̃~0̄̃χ~0 . (2.48)

We get a meromorphic RCFT times an anti-meromorphic RCFT. In this case we don’t
have any non-trivial Verlinde lines, and VT /Q1 = S2.
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|OLocal〉 ∈ HCFT

L~g

|OLocal〉 ∈ HCFT |ODefect〉 ∈ HDefect

~h

t

(i) (ii) (iii)

L~h

Figure 3. The CFT on S1 × R: (i) The code subspace maps to the CFT states corresponding to
genuine local operators (ii) A CFT logical operation: wrapping the spatial slice with a symmetry
defect, L~g, implements the symmetry on HCFT

Bulk (at the level of the code, the logical operation is
trivial). (iii) The complement of the code subspace in the n-qubit Hilbert space: a state in the
L~h-defect Hilbert space (here 2~h = ~0).

3 The qubit Hilbert space/CFT Hilbert space map

We have constructed a map that relates the stabilizers and error operations acting on
n qubits to an infinite number of genuine local and defect endpoint operators in very
general Narain RCFTs. How then should we map the n-qubit Hilbert space, Hn, to the
infinite-dimensional CFT Hilbert space?

Let us first consider the code subspace, Cn ⊂ Hn. It is defined as the space invariant
under the action of the stabilizer group. In our case it is one dimensional. To find the
corresponding CFT states, we look for the space which is closed under action of genuine
local CFT operators, since these operators correspond to stabilizers under the map µ (1.21).
By the state-operator correspondence, this is nothing but the CFT Hilbert space

µ(HCFT) = Cn . (3.1)

Note that, at the level of the CFT Hilbert space, logical operations are non-trivial, but they
become trivial after the action of µ (3.1).

Next, what are the 2n − 1 states in the complement of Cn inside the n-qubit Hilbert
space on the CFT side? The natural choice is that these correspond to the 2n − 1 different
defect Hilbert spaces, HDefect

i , associated with the defect endpoint fields we interpreted as
errors in section 2,

µ

(⊗
i

HDefect
i

)
= Ccn := Hn\ Cn . (3.2)

The basic property of Ccn is that error operations acting on Cn produce states in the
complement. This property is respected by µ: inserting a defect endpoint operator takes us
from the bulk CFT Hilbert space to the corresponding defect Hilbert space. We illustrate
our proposal (3.1) and (3.2) in figures 3 (i)–(iii).
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4 Discussion and conclusions

We have proposed a map from very general rational Narain CFTs (including defects), and
their associated CS theories, to stabilizer codes. This construction includes the theories
discussed in [6, 7] as a special case, and provides a CFT picture of the code space states
and errors reminiscent of the toric code construction [2].

Our CFT to stabilizer map works as follows. First, we pick a Narain theory with a
particular chiral algebra and construct the charge conjugation modular invariant. We then
consider all orbifolds by Q = Zk2 subgroups of the 0-form flavor symmetry that come from 3d
CS 1-form symmetries with vanishing ’t Hooft anomalies (this condition ensures the stabilizer
group is abelian (1.22)) and relate genuine local operators to stabilizer generators (1.20).
Under this map, operators sitting at the ends of line defects are mapped to Pauli operators
acting on physical qubits. Accordingly, the whole bulk CFT Hilbert space is mapped to the
code subspace (3.1), while defect Hilbert spaces are mapped to the complement of the code
subspace in the n-qubit Hilbert space (3.2).

Note that, while the map is unambiguous, it can lead to the same CFT having different
codes associated with it because certain CFTs can be considered rational with respect to
multiple chiral algebras. For example, the ̂Spin(16)1/Z2 orbifolds discussed in section 1.1
can be interpreted as corresponding to two different chiral algebras. If we run our map
with the smaller chiral algebra Vmin = V ̂Spin(16)1

, we produce the sequence of RCFT / code
relations discussed in the text. On the other hand, if we use maximal chiral algebra, Vmax,
described around (2.47), then the ̂Spin(16)1/Z2 orbifolds correspond to trivial 0-qubit codes,
as follows from triviality of Rep(Vmax), see the discussion below (2.47).

Within our construction, it is natural to ask if we can construct a CFT starting from
a given stabilizer code. Since there might be different CFTs related to that code, it is
clear that we need extra data. Starting from the stabilizers, we can choose a group Q,
and a 2-cocycle, σ ∈ H2(Q,U(1)), compatible with the code. To reconstruct the CFT
requires choosing a chiral algebra such that the charge conjugation modular invariant with
that chiral algebra admits a non-anomalous 0-form symmetry isomorphic to Q. Taking
the Q-orbifold of this CFT with discrete torsion, σ, gives a CFT corresponding to the
quantum code in question. An alternative approach is to define a Narain lattice starting
from a quantum code. One particular recipe is given by the “new Construction A” of [6],
which can be used to construct orbifolds of the charge conjugation modular invariant with
Rep(V ) = A

nA4
4 for arbitrary integer nA4 . There are, of course, other constructions leading

to other CFTs for the same or other codes. For example, the Narain lattice (1.39) for the
SU(2) WZW model at level one can be generalized to yield CFTs with Rep(V ) = A

nA2
2 for

arbitrary integer nA2 > 0.
Our work opens a number of new directions to explore:

• We have emphasized that different CFTs can be associated with the same code. It
is natural to ask if the space of CFTs related to a particular code admits additional
structure. One possible idea is to relate these theories by RG flow, or perhaps, some other
form of coarse-graining. More broadly, these theories may comprise deformation classes
reminiscent of topological modular forms in 2d N = (0, 1) theories, see e.g. [33–35].
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An alternative idea comes from the example discussed below (1.14), where different
CFTs mapping to the same code correspond to CS theories that are related by Galois
conjugation [31, 32]. A natural question to ask is if more general Galois transformations
always relate theories corresponding to the same code.
Finally, when a d-dimensional QFT is invariant under gauging a (d−2)/2-form symmetry,
one finds a non-invertible “duality” defect [44, 45]. In 2d, these defects arise when a
theory is invariant under gauging a zero-form symmetry, as in the case of the R = 1
compact boson (see also [23]). In this theory, we saw that the codes before and after
gauging the Q = Z2 symmetry are equivalent. The codes before and after gauging are
also equivalent for R =

√
2
k (for k > 2) even though the theories are not. This result begs

the question of whether code equivalences correspond, in the absence of an equivalence
under gauging, to the existence of more general defects.

• The construction of this paper can be extended in many possible ways. In the discussion
below (1.9), the factors of Aqr and Bqr in (1.8) are mapped into trivial (zero qubit) codes.
Quite naturally, these factors can be associated with qudit codes with d = q, where d = 2
is the qubit case [36]. Another possible generalization comes from the choice of orbifold
group, Q, in (1.19) and, implicitly, a choice of stabilizer in (1.20) for RCFTs corresponding
to CS theories with E2r and F2r factors. Yet another natural generalization would be
to include theories with non-abelian fusion rules. In this way, one may hope to extend
our construction to all RCFTs. Going in a different direction, general CFT relations to
codes are likely to extend beyond RCFTs to include non-rational “finite” theories [37].
The broad program we are advocating here is to identify a generalization of codes which
can be associated with general 2d CFTs.

• Relations to codes provide a powerful way to write CFT torus partition functions in
terms of code enumerator polynomials. This relation applies to all CFTs discussed in this
paper and can be extended to higher-genus partition functions [41]. In this way, modular
bootstrap constraints can be reformulated in terms of much simpler algebraic properties
of enumerator polynomials, leading to a new approach to the modular bootstrap [7]. Our
work emphasized the importance of defects in the context of codes. We therefore surmise
that codes will prove useful as a new tool for the program of bootstrapping CFTs with
defects (e.g., see [23]). Since defects are also closely related to boundaries, we expect
codes to have direct implications for bootstrapping in the presence of boundaries [42].
Intriguingly, conformal boundaries are also related to gapped boundaries of the bulk
TQFT [40]. Therefore, it will be interesting to explore the role of quantum codes in
describing and classifying gapped boundaries as in [43].

• The physical meaning of quantum codes outlined in our paper, namely that the code
subspace is related to the Hilbert space of CFT local operators, while errors correspond
to defect endpoint operators, has a natural holographic interpretation. Our theories are
dual to 3d CS, where the code subspace and errors have a clear geometric meaning. We
raise the question of making an explicit connection with the quantum codes, which define
the space of low-energy bulk states in the context of holographic quantum gravity [1].
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A S and Ξ are bicharacters

In this appendix, we will show that both S and Ξ are bicharacters. To prove this, we need
the following equations satisfied by F (~p, ~q, ~r) and R(~p, ~q).

F (~q, ~p, ~r)
F (~p, ~q, ~r)F (~q, ~r, ~p) = R(~p, ~q + ~r)

R(~p, ~q)R(~p, ~r) ,

F (~p, ~q, ~r)F (~r, ~p, ~q)
F (~p, ~r, ~q) = R(~p+ ~q, ~r)

R(~p, ~r)R(~q, ~r) . (A.1)

These are known as the Hexagon equations [14]. The modular S matrix can be written in
terms of R as

S~p,~q = R(~p, ~q)R(~q, ~p) . (A.2)

We have

S~p,~qS~p,~r = R(~p, ~q)R(~q, ~p)R(~p, ~r)R(~r, ~p)
= R(~p, ~q + ~r)R(~q + ~r, ~p) = S~p,~q+~r , (A.3)

where in the second equality we used (A.1). A similar argument can be used to show that
S~p,~rS~q,~r = S~p+~q,~r. This shows that the modular S matrix is a bicharacter.

Consider the expression for Ξ in terms of R, the 2-cochain τ and the 2-cocycle σ.

Ξ(~g,~h) = R(~g,~h)τ(~g,~h)σ(~g,~h)
τ(~h,~g)σ(~h,~g)

. (A.4)

Recall that Ξ is defined on a subgroup Q of K on which F is trivial in cohomology. In fact,
we can choose a gauge in which F (~g,~h,~k) = 1 ∀~g,~h,~k ∈ Q. Then τ(~g,~h) can be set to 1 for
all ~g,~h ∈ Q. Therefore, we have

Ξ(~g,~h)Ξ(~g,~k) = R(~g,~h)R(~g,~k)σ(~g,~h)
σ(~h,~g)

σ(~g,~k)
σ(~k,~g)

= R(~g,~h+ ~k)σ(~g,~h+ ~k)
σ(~h+ ~k,~g)

= Ξ(~g,~h+ ~k) , (A.5)
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where in the second equality above we used the property that for any 2-cocycle σ, σ(~g,~h)
σ(~h,~g)

is

a bicharacter. A similar argument can be used to show that Ξ(~g,~k)Ξ(~h,~k) = Ξ(~g + ~h,~k).
This shows that Ξ is a bicharacter.

B Properties of ZT /Q,[σ]

Let us discuss some properties of ZT /Q,[σ] which will be useful for our arguments. To that
end, consider the general expression for ZT /Q,[σ].

ZT /Q,[σ] =
∑
~g∈Q

∑
~p∈B~g

χ~p(q)χ̄~p+~g(q) , (B.1)

where
B~g :=

{
~p
∣∣∣ S~h,~p Ξ(~h,~g) = 1 , ∀~h ∈ Q

}
. (B.2)

A basic observation is that these partition functions are of the form

ZT /Q,[σ] =
∑
~p,~q

M~p~qχ~p(q)χ̄~q(q̄) , (B.3)

whereM~p~q is a modular invariant matrix with entries consisting of 0’s and 1’s. Indeed, if

χ~pχ̄~p+~g = χ~qχ̄
~q+~h

, (B.4)

then we should have ~p = ~q and ~p + ~g = ~q + ~h which implies that ~g = ~h. Therefore, the
non-trivial terms contribute to the partition function without multiplicity.

Now let us discuss some properties of the set B~g. For any ~g, the set B~g is non-empty.
To see this, let K be the group defined in equation (1.8). Let {ei} be a set of generators of
this group. Let ~h ∈ QCK be the vector denoting an element of K in the basis {ei}. Let
{fi} be a basis of Q. Then we have

fi =
∑
j

Lijej , (B.5)

for some integer matrix L with non-negative entries. We will focus on Q = Zk2. Therefore,
the non-trivial entries of Lij have the form 2rj−1. Let ~hQ be the vector ~h written in the
basis {fi}. Then we have

~h = LT~hQ . (B.6)

We introduced the basis {fi} because Ξ has a simple description in this basis. It can always
be written as

Ξ(~hQ, ~gQ) = eπi
~hTQXgQ , (B.7)

where X is a symmetric integer matrix with diagonal entries equal to 1 [11]. Now, we have

S~h,~p Ξ(~h,~g) = eπi
~hMA~peπi

~hTQXgQ = eπi
~hTQLMA~peπi

~hTQXgQ . (B.8)
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Therefore, the constraint (B.2) can be simplied to get

hTQ(LMA~p+X~gQ) = 0 mod 2 ∀~hQ ∈ Zk2 . (B.9)

We get
LMA~p = ~α−X~gQ , (B.10)

where ~α satisfies ~hQ · ~α = 0 mod 2 ∀~hQ ∈ Zk2. This equation always has a solution since
LMA is a full rank matrix. Therefore, we find that B~g is a non-empty set for all ~g.

Let us look at how B~g are related to B~0. For ~g = ~0, the constraint (B.2) reduces to

S~h,~p = 1 ∀~h ∈ Zk2 . (B.11)

B~0 is the set of solutions to this constraint. In the bulk TQFT, solutions to this constraint
are the Wilson lines which braid trivially with all ~h ∈ Zk2. Using Theorem 3.2 in [38],
we have

|B~0| =
|K|
2k . (B.12)

Now, given some solution ~p ∈ B~g, ~p+ ~q ∈ B~g where ~q ∈ B~0. Morevoer, given ~p1, ~p2 ∈ Bg,
we have

S~h,~p1
Ξ(~h,~g) = 1 = S~h,~p2

Ξ(~h,~g) ∀~h ∈ Zk2

=⇒ S~h,~p1−~p2
= 1 ∀~h ∈ Zk2 . (B.13)

Therefore, ~p1 − ~p2 belongs to B~0. This shows that given some ~p ∈ B~g, all other elements of
B~g are of the form ~p+ ~q where ~q ∈ B~0. Therefore, we have

|B~g| = |B~0| =
|K|
2k . (B.14)

This argument implies that the total number of terms in the partition function ZT /Q,[σ]

is always |Zk2| ⊗
|K|
2k = |K|. Therefore, the map (1.20) gives us a code with 2n elements.

Hence, the stabilizer code corresponding to the partition function ZT /Q,[σ] is self-dual.

C Permutation modular invariants and non-degenerate Ξ

In this appendix, we prove the following claim:

Claim. A code CFT is an MPMI if and only if Ξ(~g,~h), defined in (1.18), is non-degenerate.

To understand this claim, let us consider the general expression for the partition
function ZT /Q,[σ].

ZT /Q,[σ] =
∑
~g∈Q

∑
~p∈B~g

χ~p(q)χ̄~p+~g(q) , (C.1)

where
B~g :=

{
~p
∣∣∣ S~h,~p Ξ(~h,~g) = 1 , ∀~h ∈ Q

}
. (C.2)
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For the partition function to be given by a permutation modular invariant, we know that ~p
as well as ~g+ ~p should not repeat in the terms of the partition function. Moreover, ~p should
take values in all representations of the chiral algebra. Therefore, it is clear that we need to
satisfy the constraint B~g ∩B~h = ∅ for ~h 6= ~g ∈ Zk2.

Let us restrict our attention to the case of partition functions which admit a qubit
quantum code description. Then we know that the 1-form symmetry Q = Zk2 of the bulk
TQFT should be anomaly free. Therefore, if ~p ∈ Bg, then ~p+ ~g ∈ B~g. This follows from

S~h,~p+~g = S~h,~pS~h,~g = S~h,~p , (C.3)

where we have used the fact that S is a bicharacter and S~h,~g = 1 ∀~h since Zk2 is anomaly free.
Therefore, if B~g∩B~h = ∅ for ~h 6= ~g ∈ Zk2, then ~g+~p cannot be the solution to (C.2) for some
~h 6= g. Therefore, ~g + ~p also does not repeat for different terms in the partition function.
This fact, along with (B.14), then also guarantees that ~p takes values in all representations.

Therefore, we find that it is necessary and sufficient to satisfy the constraint

B~g ∩B~h = ∅ for ~h 6= ~g ∈ Zk2 (C.4)

to have a permutation modular invariant. It is clear from (C.2) that if Ξ(~h,~g) = Ξ(~h,~l) ∀~h ∈
Zk2, then B~g = ~B~l. Also, suppose ~p belongs to both B~g and B~l. Then using (C.2), we
find that Ξ(~h,~g) = Ξ(~h,~l) ∀ ~h ∈ Zk2. Therefore, satisfying (C.4) is the same as having a
non-degenerate Ξ(~g,~h).

D The Verlinde subgroup

Using the results in appendix C, we know that a non-permutation modular invariant
necessarily leads to states of the form (~0, ~̄g) where ~g 6= ~0. The states (~0, ~̄g) form a group
under fusion we call E ' Zt2. In this appendix, we will discuss how we can extend the chiral
algebra using E to get a permutation modular invariant. Then we will discuss how this gives
symmetries generated by Verlinde lines which are used to construct the Verlinde subgroup.

To that end, let ~γ denote a representative of the orbit {~γ +~b|~b ∈ E} and ~γ ∈ Q. Now,
since Ξ(~h,~a) = 1 for any ~a ∈ E and ~h ∈ Zk2, B~g = B~a+~g. That is, B~g only depends on the
E-orbit of ~g. Therefore

ZT /Q,[σ] =
∑
~γ

∑
~p∈B~γ

∑
~b∈E

χ~p(q)χ
~p+~γ+~b

(q̄) , (D.1)

where the subscript on B~γ indicates that the set of elements in B~g only depends on the
E-orbit of ~g.

For a given ~g and ~p ∈ B~g, ~p + ~a, for any ~a ∈ E, also belongs to B~g. This statement
follows from that fact that ~a,~g ∈ Q braid trivially with each other. Therefore, we can put
the elements of Bg in orbits under the action of E. Let ~ρ denote the representative of an
orbit {~p+ ~a|~a ∈ E} and ~p ∈ B~g. Then the partition function becomes

ZT /Q,[σ] =
∑
~γ

∑
~ρ∈B~γ

∑
~b∈E

∑
~a∈E

χ~ρ+~aχ
~ρ+~a+ ~G+~b

. (D.2)
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In writing this, we have split the sum over ~p for a given ~g into a sum over E orbits. We
know that ~a +~b is also an element of E. Since we are summing over all elements in the
group E, we can change variables and obtain

ZT /Q,[σ] =
∑
~γ

∑
~ρ∈B~γ

∑
~b∈E

∑
~a∈E

χ~ρ+~aχ
~ρ+~γ+~b

=
∑
~γ

∑
~ρ∈B~γ

(∑
~a∈E

χ~ρ+~a

)(∑
~b∈E

χ
~ρ+~γ+~b

)
. (D.3)

Therefore, we can enlarge the chiral algebra where the vaccum character of the new
chiral algebra is given by χ̃~0 := ∑

~a∈E χ~a and, more generally

χ̃~ρ :=
∑
~a∈E

χ~ρ+~a . (D.4)

Then the partition function becomes

ZT /Q,[σ] =
∑
~γ

∑
~ρ∈B~γ

χ̃~ρχ̃~ρ+~γ . (D.5)

In fact, this is again a permutation modular invariant. To see this, let ~δ and ~ε lie in
two distinct E-orbits. Then the sets B~δ and B~ε have no common elements since otherwise
(using the bi-character nature of Ξ)

Ξ(~h, ~δ) = Ξ(~h,~ε) , ∀~h ∈ Zk2 ⇒ Ξ(~h, ~δ + ~ε) = 1 . (D.6)

Therefore, ~δ + ~ε would be an element of E which would imply that ~δ and ~ε are in the same
E-orbit (a contradiction). Therefore, for every ~γ, the sum over ~ρ is over elements which do
not repeat for any ~η 6= ~γ. Also, we know that ~ρ+ ~γ ∈ B~γ if ~ρ ∈ B~γ . As a result, in (D.5),
the values of ~ρ+ ~γ do no repeat either. In other words, after enlarging the chiral algebra, we
end up with a permutation modular invariant theory with respect to this new chiral algebra.

It is now clear that we have Verlinde lines labelled by primaries with respect to the
enlarged chiral algebra. Then, consider the following defect partition function

Z
~ζ
T /Q,[σ] =

∑
~γ

∑
~ρ∈B~γ

χ̃
~ρ+~ζ χ̃~ρ+~γ . (D.7)

To get a map to the corresponding code elements, it is easier to use (D.4) and substitute

Z
~ζ
T /Q,[σ] =

∑
~γ

∑
~ρ∈B~γ

(∑
~a∈E

χ
~ρ+~ζ+~a

)(∑
~b∈E

χ
~ρ+~γ+~b

)
=
∑
~γ

∑
~ρ∈B~γ

∑
~a,~b∈E

χ(~ρ+~a)+~ζχ(~ρ+~a)+~γ+~a+~b . (D.8)

When we sum over ~a ∈ E, the term ~ρ+ ~a runs over the E-orbit of ~ρ ∈ B~γ . Also, the term
~a + ~b is just a permutation of ~b. Since we are summing over all ~b ∈ E as well, we can
simplify the expression above to get

Z
~ζ
T /Q,[σ] =

∑
~γ

∑
~p∈B~γ

∑
~b∈E

χ
~p+~ζχ~p+~γ+~b =

∑
~g

∑
~p∈B~g

χ
~p+~ζχ~p+~g . (D.9)
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Note that ~ζ need not be an order-two element of the MTC of the original chiral algebra,
even though it may be an order-two element in the MTC of the extended chiral algebra.
In fact, if ~ζ is not an order-two element of the original MTC, then we cannot relate the

defect operators
{
O~ζ
~p+~ζ,~p+~g

}
to a Pauli group element. If ~ζ is order two, then from the

terms in (D.9), we get the Pauli group elements{
O~ζ
~p+~ζ,~p+~g

}
↔ XM(~g+~ζ) ◦ ZA(~p+~ζ) . (D.10)

Note that here ~p ∈ B~g is not independent of ~g. In general, our RCFTs will have other sources
of order-two lines that furnish the remainder of the Pauli group (as discussed in section 2).
In the extreme example of theories that are modular-invariant holomorphic RCFTs times
modular-invariant anti-holomorphic RCFTs, all order-two lines are non-Verlinde lines.

Since the Verlinde subgroup VT /Q is formed by order two elements, it is isomorphic to
ZNv2 . Here Nv is the number of Pauli group elements obtained from the defect partition
functions (D.9). In general |VT /Q| will depend on the choice of the group Q by which we
orbifold the CFT with the charge-conjugation partition function to get ZT /Q,[σ]. But when
the group K defined in (1.8) is such that nA2 = nB2 = nC2 = nD2 = nE2 = nF2 = 0, then
we can find a general expression for |VT /Q|. This constraint is the same as imposing that
K does not have any Z2 factors. Note that we also ignore decoupled CFT factors described
by Aqr and Bqr .

Consider the general expression of the S matrix S~p,~q = e
2πi

2 ~pTMA~q. Consider an element
~p ∈ B~0 which satisfies

S~h,~p = 1∀~h ∈ Q = Zk2 =⇒ ~hTMA~p = 0 mod 2 . (D.11)

Note that since ~h is an order two vector, hTM is an integer vector. Moreover, ~h has even
components. A is also an integer matrix by definition. Let ~p be an order two vector. Then,
it has even components. This follows from our assumption that K does not have any
Z2 factors. Therefore, any order two vector satisfies the constraint (D.11). That is, all
the 2n distinct order two elements belong to B~0, where n is the number of qubits in the
corresponding quantum code or equivalently the length of the vector ~p.

When we enlarge the chiral algebra to obtain a permutation modular invariant, these
2n order two elements are put into orbits under the group E. Each such orbit defines a
Verlinde line whose defect partition function gives 2n Pauli group elements. This follows
form the fact that the partition function itself gives 2n distinct stabilizer elements, as we
showed in appendix B. Therefore, the size of the Verlinde subgroup is

2n−t × 2n , (D.12)

where |E| = 2t. If the Schellekens algebra gives a permutation modular invariant, t = 0 and
the Verlinde subgroup has size 2n × 2n = 4n. Therefore, we get the full Pauli group.
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