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Tensor network to learn the wave function of data
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Tensor network architectures have emerged recently as a promising approach to various tasks of machine

learning, both supervised and unsupervised. In this work we introduce a matrix product state-based network

that simultaneously accomplishes the following two tasks: classification (discrimination) and sampling of visual

data. We train the network using binary (black and white) version of MNIST, a data set of handwritten digits,

to recognize as well as to sample images of a particular digit. We show our trained network is qualitatively

representing the indicator function of the “full set” of all possible images of a given format depicting the

particular digit. While the notion of the full set is difficult to define from the first principles, our construction

provides a working definition, and we show that different ways to build and train the network lead to similar

results. We emphasize, this means the trained network learns the “wave function of data,” i.e., can be used to

characterize the data itself, providing a novel tool to study global properties of the data sets of interest. First,

using quantum mechanical interpretation we characterize the full set by calculating its entanglement entropy.

Then we study its geometric properties such as mean Hamming distance, effective dimension, and size. The

latter is the total number of images in binary black and white MNIST format which would be recognized as

depicting a particular digit. Alternatively, it is the number of images of a given digit one would need to sample

before the probability of sampling the same image twice would be of order one. While this number cannot be

defined completely rigorously, we show its logarithm is largely independent of the way the network is defined

and trained. We find that for different digits this number varies dramatically, from 222 for digit 1 to 292 for

digit 8.
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I. INTRODUCTION

Generalization is a remarkable ability of supervised learn-

ing algorithms to learn patterns underlying training data and

subsequently perform well on new data sets. It reflects both

potency of the algorithm but also certain simplicity of the

training data itself. Namely, presence of patterns that might be

apparent to a human eye but usually very difficult to quantify.

On the contrary, data sets without underlying patterns, such

as fully random or ad hoc ones can be learned but cannot be

generalized [1,2]. To better understand when generalization is

possible and inform development of more efficient supervised

learning algorithms, it would be important to characterize pat-

terns that underlie various data sets of interest. In this context

a training set should be thought of as a small subset of the

“full set of data,” which includes all possible hypothetical data

exhibiting given patterns. This picture serves as a motivation

for our work, which proposes a practical method to learn and

study the full set.

Published by the American Physical Society under the terms of the
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In this paper we introduce a novel tool, a tensor network

that simultaneously can perform sampling and discrimination

(classification) tasks. We argue this architecture learns the

“wave function of data”—qualitatively, the indicator function

of the full set, and thus provides new ways to quantitatively

study and characterize it.

To keep the presentation simple, in what follows we focus

on a particular example of MNIST, the data set of handwritten

digits. All ideas and techniques can be immediately extended

to other instances of supervised learning. MNIST contains

images measuring 28 by 28 pixels; we transform them from

grayscale to black and white for simplicity, such that there

are 2784 possible images in total. A standard task would be

to train a classifier to distinguish different digits. To further

simplify things, we can train the network to recognize a par-

ticular digit, say digit 3, by distinguishing it from images

of other digits, other symbols, or noise. Contemporary ar-

chitectures can achieve this discrimination task with a small

generalization error, which implies that among all possible

2784 images one can define the set of all images of digit

3, which our discriminator network would recognize. Good

quality of generalization exhibited by various machine learn-

ing architectures [3,4] suggests this full set can be defined with

a large degree of objectivity, essentially in the architecture-

independent way.

Practically the full set is unfathomably large and is never

available. In this work we propose a way to study it using
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FIG. 1. On both panels I is the set of all 2784 images and F is the full set of images of digit i. Left panel: When � is an ideal discriminator,

it recognizes all images of digit i but may also recognize as i images of other digits or noise. This means |�(x)2| � ε for all x ∈ F , as well as

for some set x ∈ R depicted in red. In other words, support of (1) includes the full set F . Right panel: When � is an ideal sampler, all sampled

images are images of i. This means � has the support on the subset of the full set S ⊂ F , while |�(x)|2 ≈ 0 for x /∈ S. When � simultaneously

accomplishes both discrimination and sampling tasks, left and right panels should be combined: the support of (1) coincides with the full set

R ≈ S ≈ F .

a tensor network, which mathematically is an L2-normalized

“wave-function” �(x), defined on the space I = Z
784
2 of all

NI = 2784 possible images. Qualitatively, function

P (x) :=

{

1, for |�(x)|2 � ε,

0, for |�(x)|2 < ε,
(1)

with some appropriate ε, is the indicator function of the full

set. To emphasize that � characterizes the data itself and its

properties exhibit robust independence of the tensor network

architecture we call it the wave function of data. Using quan-

tum mechanical interpretation of �(x) we can characterize the

full set by calculating its entanglement entropy. We also study

geometric properties of the full set such as mean Hamming

distance, effective dimension, and the size. The latter is simply

the approximate total number of images recognized by our

network as depicting the given digit. In contrast to the first

two properties, which can be studied using training set alone,

size is the global property of the full set.

Before we proceed with the results, we will explain why

tensor network sampler-discriminator/classifier is an appro-

priate architecture to define the full set via Eq. (1). We

consider a hypothetical situation that network �(x) accom-

plishes both tasks almost ideally and deduce what that means

for the support of �. In the recent years tensor networks,

such as matrix product states (MPS) and tensor trains, have

been actively used to build various classification [5–8] and

generative [9,10] algorithms. They demonstrate robust perfor-

mance on par with the advanced CNN architectures [7,11].

In our case, we train � for a particular digit i. Then the

value P (x) = 1 means � recognizes x as an image of i.1

Good quality of generalization means our network reliably

recognizes images i outside of the training set. Now, assume

� is an ideal discriminator network. In this case, when � has

1For the classification task one needs to train ten networks �i(x)

for each i. Classification is then performed by maximizing pi =

|�i(x)|2/
∑

j |� j (x)|2 over i; see Sec. IV.

perfect quality of generalization, all images of i are recognized

as such, but there still could be images of other digits or even

noise recognized by our network as i. This means the support

of � includes but could be larger than the full set of i. This

is illustrated in the left panel of Fig. 1. There gray square

region represents all possible NI = 2784 images. Red area R

represents images which our network “recognizes” as i, i.e.,

|�(x)|2 exceed ε for x from this area. The blue disk, denoted

as F , represents the full set of images depicting given digit i.

It is a subset of the red area R.

Next we proceed discussing �(x) as a sampler. It is

convenient to think of x = (x1, . . . , x784) as an array of bi-

nary variables xα . Tensor network architectures allow for an

efficient evaluation of |�(x)|2 as a function of some compo-

nents xα while values of other components xβ being fixed. It

therefore can be used for sampling: pixels are sampled con-

sequently, using conditional probability distribution specified

by �(x). This idea got traction recently and several such archi-

tectures were introduced in Refs. [9,10]. Clearly, only images

with large values of |�(x)|2 can be sampled. To quantify the

quality of sampling we train an auxiliary neural network of

Ref. [12], which determines probability for the given sampled

image of being the image of digit i. Provided our sampler �(x)

achieves a good quality, i.e., ideally all sampled images depict

i, we can think of �(x) as a function with the support on a

subset of the full set. This is illustrated in the right panel of

Fig. 1. There orange subset S of the blue disk represent images

x for which |�(x)|2 is sufficiently large to be sampled, while

for all other x /∈ S, |�(x)|2 ≈ 0.

The idea of the sampler-discriminator is to train an

MPS-based tensor network �(x) which simultaneously ac-

complishes both tasks. As we saw above, the support of an

ideal �(x) in this case would be equal to F , and (1) will be the

indicator function of the full set. Schematically the training

process looks as follows. We minimize the objective function

L = −
1

NT

∑

x∈T

ln |�(x)|2, (2)
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FIG. 2. (a) Quality of sampling by �3 with the bond dimension D = 100 during the training process. Quality is assessed by an auxiliary

CNN [12]. (b, c) Quality of classification and discrimination during the training process by �i and �3 correspondingly, with the same D = 100.

where T represents the training set—a set of NT images of

digit i. It is a small subset inside the full set F . Importantly,

our architecture enforces wave-function normalization

∑

x∈I

|�(x)|2 = 1, I = Z
784
2 . (3)

As a result decreasing of the loss function (2) automatically

decreases value of |�(x)|2 for x outside of T . Assuming T

is approximately uniformly distributed within F and �(x)

changes smoothly, we may expect |�(x)|2 to mostly decrease

outside of F , while inside F it would remain relatively large.

The latter behavior would assure generalization of discrimina-

tor: value of |�(x)|2 for x ∈ F would exceed certain threshold.

The former property, smallness of |�(x)|2 for x /∈ F , assures

good quality of sampling. We therefore tend to conclude that

a network trained this way will simultaneously accomplishes

both discrimination and sampling with high quality, and thus

will have a support on F , with Eq. (1) being its indicator

function.

In practice decreasing of the loss function during train-

ing process will eventually lead to overfitting when |�(x)|2

is large for x ∈ T but not necessarily for x ∈ F . We there-

fore stop training as soon as discrimination/classification

begins to reduce after reaching its maximal value. The logic

outlined above is schematic, we justify it a posteriori by

examining the quality of recognizing (classifying) and sam-

pling achieved by the trained �. Further details of the

network architecture and the training process are described in

Sec. IV.

Ideally, for the trained network P defined in Eq. (1) is

the indicator function of the full set: |�(x)|2 exceeds cer-

tain threshold for x ∈ F and plunges below it for x /∈ F .

It therefore reflects the data itself rather than peculiarities

of the architecture or the training process. To justify this

claim we show that certain properties of �(x), such as

quality of discriminating/classifying and sampling, typical

value of |�(x)|2 for x ∈ F , value of entanglement entropy

associated with �(x), etc., are not sensitive to MPS bond

dimension or initialization seed. This confirms our main

conclusion that the proposed architecture provides a novel

way to quantitatively characterize the data itself, rather

than peculiarities of the network design or the training

process.

II. RESULTS

The core of our construction is the matrix product state real

tensor network in the canonical form [13]. Mathematically

it is a real-valued function �(x) where xα is a vector of

282 = 784 binary variables. Canonical form imposes normal-

ization condition (3). We train the network by minimizing loss

function (2) via gradient descent, and the test set T is the set

of black and white MNIST images of digit i. Corresponding

tensor network is labeled �i.

As the learning process proceeds, quality of sampling by

�i gradually grows—the network remembers images from

the training set and tries to replicate them. This is shown in

the left panel of Fig. 2. The quality of recognizing digit i for

images from the test set (calibration of threshold ε is discussed

in Sec. IV) grows initially, but then may decay slightly due

to overfitting. Similar behavior is exhibited by the quality of

classification, for which all ten �i must be trained. This is

shown in the right and central panels of Fig. 2. Overfitting

becomes more pronounced when the bond dimension D of

the tensor network grows. To prepare the network of inter-

est, which would simultaneously accomplish both sampling

and discrimination/classification tasks, the training process is

stopped as soon as the quality of discrimination/classification

reaches its maximum. For the sufficiently large D � 100 this

happens already after a few epochs.

We now demonstrate that core properties of properly

trained �i are largely independent of the bond dimension

D, provided the latter is sufficiently large, D � 30. To begin

with we study how the quality of sampling and classification

depends on the bond dimension. The quality of classifica-

tion is the maximal value from the central panel of Fig. 2,

since we stop training at that point. Results for sampling and

classification for different D shown in Fig. 3 confirm that

quality remains essentially the same in a wide range of bond

dimensions. It is also not sensitive to the initial seed.

Next we discuss to what extent Eq. (1) defines characteris-

tic function of the full set of images of a given digit i. We also

address the question of the size NF of the full set—the global

property of the full set which cannot be deduced directly

from the training data set. In what follows we focus on i = 3

while results for other nine digits are qualitatively similar.

First we would like to understand how many different images

x ∈ I there are with the given value of |�(x)|2 and what

different values of |�(x)|2 represent. It would prove useful
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FIG. 3. Quality of sampling (a) and classification (b) by the trained �3 as a function of bond dimension.

to use the language of statistical mechanics and think about

different images x ∈ I as possible microstates of some aux-

iliary physical system.2 We define “energy” of a microstate

E (x) := − ln |�(x)|2 and entropy S(E ) such that eS(E )dE is

the number of microstates with the energy between E and

E + dE .3 Then
∫ ∞

0

eS(E )dE = NI . (4)

In these notations normalization condition (3) becomes unity

of the “partition function” at unit temperature

Z =

∫ ∞

0

eS(E )−E dE = 1. (5)

We first discuss the distribution of energies E (x) of the train-

ing set, which we denote ρtr(E )dE , shown in blue in Fig. 4.

Minimization of loss function (2) is the minimization of en-

ergy averaged over ρtr. The shape of ρtr is not robust and

the mean value of the loss function 〈E〉tr decreases with the

increase of D. What remains essentially the same is the energy

of the lowest states, which we define by averaging |�(x)|2

over the training set

E0 = − ln〈e−E 〉tr. (6)

The distribution ρtr should be compared with the distribution

of energies for images sampled by the network itself. The

probability of sampling an image x is equal |�(x)|2 and there-

fore the distribution of E for the sampled images is the Gibbs

distribution at unit temperature

ρsm = eS(E )−E . (7)

It is shown in red in Fig. 4. Naturally, 〈E〉sm is larger than

〈E〉tr, i.e., the value of the loss function averaged over the set

of sampled images is larger than the one for the training set.

The shape of Eq. (7) is also changing with D. At the same time

energy of the lowest states is robust and matches Eq. (6) with

2Familiarity with the basics of statistical mechanics are helpful but

not necessary in what follows.
3As in statistical mechanics since microstates are discrete eS is a

sum of delta-functions, which can be approximated by a smooth

function when the total number of states NI is large, NI � 1. In our

case NI = 2784 and this condition is well satisfied.

a good precision:

E0 ≈ − ln〈e−E 〉sm. (8)

Moreover, with good accuracy it is equal to energy of the

ground state E0 ≈ Eg ≡ minx E (x), were minimization can go

over training set x ∈ T or the set of sampled images x ∈ S.

From eS = ρsmeE we find that eS is growing rapidly with E , at

least for energies around E ∼ 〈E〉sm. In other words there are

exponentially more images x with larger values of E (x). As E

grows, quality of sampled images deteriorates. Qualitatively

we can explain this as follows. Low-energy states x with

E (x) ≈ E0 are the high quality “neat” images of digit 3, which

will be recognized as such with almost 100% confidence.

Each neat image gives rise to many more “corrupted” images,

which still can be recognized as 3, albeit with a smaller con-

fidence. These are the images with the larger values of E . As

the level of corruption grows, so is the total number of such

images, and their typical E increases. This is demonstrated

in Fig. 5, where we show typical sampled images with three

different values of E .

From this discussion it is clear there is no sharp value

of threshold ε to define the boundary of the full set. The

size of the full set, the total number of images x for which

P (x) = 1, is dominated by the images with E ≈ − ln ε, which

grows roughly as eE ≈ 1/ε.

FIG. 4. Normalized distributions ρ(E )dE of energies E (x) for

images x from the train (blue), sampled (red), and test (green) sets

correspondingly. Solid lines are kernel density estimations.
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FIG. 5. Typical images sampled with help of �3 with three different ranges of E , from left to right E = 60 ± 5, 85 ± 10, 125 ± 10.

To unambiguously define the size of the full set, we define

the latter it to include only neat images of 3, in which case

the threshold, which we will call ε, can be taken very close to

E0 ≈ Eg. We propose a way to fix ε in Sec. IV, but provided

�E = ε − Eg is small enough, at leading order the total size

of the full set will be given by the exponent, while �E will

control the subleading term,

NF =

∫ ε

Eg

eSdE , ln NF ≈ E0 + ln(ρsm(E0)�E ) ≈ E0. (9)

The number NF can be interpreted as both, the leading

exponent controlling the size of the full set—the total number

of neat images of 3,

NF ∼ eE0 ≡ 2V , V ≡ E0/ ln 2, (10)

as well as the number of images M ≈ NF which need to

be sampled before there would be repetitions, i.e., an image

sampled twice. The latter interpretation follows from equat-

ing the total number of sampled images with given energy

E , Mρsm(E ) and the total number of images eS(E ) with this

energy. Understood as the equation on M, it yields M = eE ,

where E should be larger than Eg ≈ E0. Minimization of

M over all possible value of E readily gives Eq. (10). An

immediate question is how robust the latter interpretation is,

given that ρsm depends on the network architecture. We test it

by sampling images with one trained network, with the bond

dimension D, and evaluating E (x) using another trained net-

work, with the bond dimension D′. Alternatively, we sample

images using properly trained GAN. In all cases resulting ρsm

have approximately the same value of E0 = − ln〈e−E 〉sm and

therefore NF ∼ M ∼ eE0 remain the same. The comparison

of E0 evaluated for �3 for different sets, training, test and

sampled with help of �3 itself and with an auxiliary GAN,

is shown in Fig. 6.

At this point, we conclude the energy of low-lying states

E0 is a robust characteristic of the full set which defines its

size, thus answering the question from the abstract. Here the

full set would be defined to include only neat images of 3

and similarly for other digits. The results for size V defined in

Eq. (10) for all ten digits are shown in Table I.

Yet a closer look reveals P (x) of a trained network is not

quite the characteristic function of the full set we hoped it

would be. Looking at the distribution ρtest of energies E (x)

for the images from the test set, we immediately find many

neat images of 3 with the energies of order 〈E〉test, which are

significantly larger than E0. This is clear from Fig. 4, where

ρtest is shown in green. This indicates not a conceptual flaw but

certain deficiency in how our network was trained. We argue

now, for an idealized properly trained network typical values

of E (x) for images from both training and test sets should be

around E0. To confirm this we retrain our network by doubling

the training set using GAN-generated images. As expected, as

the size of the training set NT increases both 〈E〉tr and 〈E〉test

decrease, but the value of E0 = − ln〈e−E 〉 defined with help of

any set, train, test, or sampled, remains robust. The resulting

picture is as follows. At leading order the total size of the

full set is given by Eq. (10) and is accessible by a network

trained with help of MNIST, while the number of neat images

of 3 which our network misclassifies by assigning P (x) = 0

is substantially smaller than eE0 .

To further characterize the full set geometrically, we eval-

uate its mean distance and the effective dimension, defined

with help of the Hamming distance. Individual images x are

binary strings and Hamming distance d (x1, x2), defined as the

number of distinct components of x1 and x2, provides a simple

FIG. 6. The value of V = E0/ ln(2) evaluated for different sets:

training and test sets as well as sets images sampled with � itself

and with help of an auxiliary GAN. All results are shown for trained

�3(x) as a function of bond dimension D.
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TABLE I. The table summarizes main properties of the full sets

associated with the digits of black and white MNIST. V , defined in

Eq. (10), controls the size of the full set. 〈dab〉 is the mean Hamming

distance. � is the full set effective (fractal) dimension. n is an

average number of black pixels for images of a given digit i. S̄ is

the (averaged) entanglement entropy.

i V 〈dab〉 � n S̄

0 90 ± 8 133 ± 3 13 138 ± 33 4.4 ± 0.2

1 22 ± 1 60 ± 25 4 60 ± 17 3.6 ± 0.1

2 84 ± 5 133 ± 27 12 118 ± 30 3.9 ± 0.2

3 72 ± 4 121 ± 29 12 112 ± 30 4.0 ± 0.1

4 69 ± 4 109 ± 26 11 96 ± 26 4. 1 ± 0.2

5 77 ± 4 127 ± 31 11 102 ± 30 3.8 ± 0.1

6 71 ± 4 115 ± 31 11 109 ± 30 3.8 ± 0.1

7 53 ± 2 99 ± 28 9 91 ± 24 3.7 ± 0.1

8 92 ± 4 124 ± 29 13 120 ± 31 4.0 ± 0.1

9 60 ± 5 105 ± 29 9 97 ± 26 3.8 ± 0.2

notion of distance between them. Clearly, Hamming distance

is primitive in the sense it does not reflect how similar or

different the essence of images would be to a human observer.

Nevertheless, the full set understood as a subset of vertexes x

of a unit cube equipped with the Hamming distance, satisfy-

ing P (x) = 1 exhibits well-defined coarse grained geometric

properties. The mean distance d (x1, x2) between two random

images of digit i, taken either from train/test or sampled sets

is substantially smaller than two completely random images

with the same mean value of black and white pixels. This

is demonstrated in Table I where we show results for all ten

digits.

To evaluate the full set effective dimension, we use the

standard approach of Refs. [14,15]. For a set of images xa we

define minimal distance

dmin(xa) = min
b

d (xa, xb) (11)

and then study how mean value d = 〈dmin(xa)〉, averaged over

the set of xa, scales with the set size K ,

d ∝ K−�. (12)

Here � is the effective (or fractal) dimension. Linear fit of

d (K ) in log-log coordinates is shown in Fig. 8. We focus on

neat images of digits i. Therefore, we consider a subset of

train/test and sampled sets for which E (xa) is close to E0.

In both cases we obtain similar results, indicating full sets

of digits have well-defined effective dimensions. The results

are shown in Table I. We note, unlike the size of the full set,

which is a global property requiring knowledge of the whole

full set, mean distance and the effective dimensions can be

inferred directly from the train/test set. Our results for � are

compatible with previous studies of the effective dimension

[14,15], which used Euclidean distance in conjunction with

the original MNIST. This suggests rendering images black and

white does not drastically affect geometries properties of the

full set.

As an application of our architecture, we evaluate en-

tanglement entropy (EE), by interpreting � as a quantum-

mechanical wave function. For a tensor network its maximal

EE determines its expressiveness. In the context of quantum

physics EE is a central quantity which measures the amount

of information shared between different parts of the system

[16]. In particular, it rigorously bounds classical mutual infor-

mation associated with a bipartition [17]

I (A, B) � SAB. (13)

Popularity of EE transcended physics into machine learning

with several different groups recently discussing it in the

context of tensor-based architectures [18–22]. For a MPS ar-

chitecture it is natural to discuss EE of bipartitions, Sk , where

all n = 784 pixels are split into two groups of k and n − k pix-

els correspondingly; see Sec. IV. Resulting Page curve4 is

shown in Fig. 9. We take EE averaged along the “plateau”

region of bipartitions with k ranging between 200 and 600,

for which Sk is approximately the same. This corresponds to

splitting image horizontally into two halves. Averaged EE,

which we denote by S̄, slowly grows with epoch, which is

expected: as the tensor network tries to better fit training data

it needs more expressiveness associated with larger entan-

glement. Notably, after a few epochs S̄ become essentially

independent of the initial seed. We stop training � when

it exhibits maximal quality of discrimination/classification.

Averaged S̄ for such � as a function of bond dimension is

4The name comes from the pioneering work evaluating EE of

random states [23].

FIG. 7. (a) Average entanglement S̄ of �3 as a function of bond dimension. (b) Average entanglement S̄ for each �i during training.
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FIG. 8. Log-log plot for d as a function of number of samples

K . Images are sampled with �3 with the bond dimension D = 100.

Only images with E (x) ≈ E0 are included.

shown in the left panel of Fig. 7. It quickly grows for small

D and becomes approximately constant for D � 100. Robust

independence of S̄ on D and the initial seed is a further

confirmation EE of a trained network is a characteristic of

the data itself, not of the network architecture. This is the

crucial difference between our work and previous studies of

the EE in the context of tensor network algorithms. Our value

of S̄ should be contrasted with the maximal EE Smax = 2 ln D

for a tensor network with the bond dimension D, and for a

random network with all MPS tensors drawn from the unitary

ensemble, Srandom 
 ln D; see Fig. 7.

Relatively small value of S̄, and hence of mutual informa-

tion between upper and lower halves of the images for all ten

digits indicates there is a small number of ways to continue the

image of a given digit, if a half of it is known. Schematically,

this means there is a finite number of styles to handwrite

any given digit i: once an upper part of the image is given,

it fixes the digit itself and its style within a range of a few

possibilities. This interpretation is corroborated by a positive

correlation between the value of the entanglement, shown in

Table I, and sizes of the full sets NF ; see Eq. (10). The logic

here being that a larger number of styles will be reflected by a

larger value of NF .

The EE provides an upper bound on mutual information,

an important information-theoretic properties characterizing

the data. Recently mutual information and the entanglement

entropy of data in the training set have been studied in

Refs. [22,24–26]. Our work provides an alternative concep-

tually better way to evaluate it, as it is based on the full set,

rather than the training set alone.

III. DISCUSSION

In this paper we introduced a tensor network architecture

to learn the wave function of data �. We introduced the notion

of “the full set of data”—the collection of all hypothetical

data exhibiting the same underlying pattern. As a main result,

our tensor network provides a practical way to learn and

subsequently characterize the full set by defining its indicator

function P (x); see Eq. (1). We have trained � using binary

(black and white) version of MNIST and demonstrated its core

properties are independent of the network parameters, which

confirms they are characteristics of the data itself. Using � we

have estimated the sizes of the full sets of individual digits,

i.e., the total number of black and white MNIST-style images

depicting a particular digit i. The results are shown in Table I.

To further illustrate utility of � as a vehicle to study the data

itself, we have calculated entanglement entropy, which upper

bounds mutual information, associated with splitting images

into two parts. The results are also shown in Table I. The

entanglement entropy/mutual information of binary (black

and white) MNIST images is small, which indicates relatively

small number of different styles of handwriting.

The full set is a concrete, learnable cousin of an ab-

straction called the manifold of data in the series of recent

papers [27–29]. The manifold of data, by definition, requires

idealized “infinite data limit” when the training set grows

indefinitely. This is in contrast with our approach suited for

practically available data sets. We have seen in the case of

MNIST digits, certain images from the train/test set fall out-

side of the full set defined via indicator function (1). We

argued, this problem goes away as the size of the training

set grows. In this case the distributions ρtr, ρsm, and ρtest

have smaller support and eventually, in the infinite data limit,

collapse to a narrow vicinity of E0. This is the limit in which

the full set, which would strictly include all images of a given

digit, would become the manifold of data of Refs. [27–29].5

The rate with which the value of the loss function 〈E〉tr − Eg

and 〈E〉test − Eg decreases with NT —the size of the training

set, as well its dependence on bond dimension D, should

presumably follow the universal scaling laws outlined in

Refs. [27–29]. To verify that would be an interesting problem.

One of the most important open questions of machine

learning is to understand why certain data sets admit gen-

eralizations, as is the case of virtually any visual data set

exhibiting a pattern recognizable by a human observer. It

would be a substantial step forward to quantitatively char-

acterize this phenomenon by explaining why generalization

is possible. The studies of mutual information/entanglement

entropy, initially motivated by a more narrow question of

gauging suitability of tensor network-based architectures, is

a first step in this direction. It is clear though, a much more

comprehensive characteristic of data is necessary to under-

stand if it admits generalization and the best way to achieve

it. Our network is a novel tool to characterize the full set of

data globally through the Boolean function P , in the present

case defined on a unit cube of the dimension n = 784. We

surmise that the Boolean function complexity [30] as well

as ideas developed in Ref. [31] could be the right language

to characterize possible efficiency of generalization in the

quantitative terms. Furthermore, drawing from the connection

with quantum mechanics, we believe circuit complexity of �

interpreted as a quantum-mechanical wave function could be

5In our case the space of images I is discrete, while the data

discussed in Ref. [28] is parametrized by vectors in R
n. Hence, the

full set in the infinite data limit will became a discrete version of the

manifold of data.
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FIG. 9. Page curve for �3 with the bond dimension D = 100.

an important characteristic of patterns, underlying the initial

data set.

IV. METHODS

A. MPS training procedure

We train a separate MPS |�i〉 (Fig. 10) for each label i in

the data set (i ∈ 0..9 in case of MNIST). Our training proce-

dure is similar to Refs. [9,10], with the key difference being

the use of tangent-space gradient optimization of Ref. [32].

We start by mapping training samples x to product states

|x〉 =
∏

⊗α |xα〉 by representing each black or white pixel xα

with “down” |0〉 and “up” |1〉 states. With this representation

of data samples we can define the probability of a given

sample in accordance with Born’s rules as

p(x) =
|〈x||�〉|2

〈�||�〉
. (14)

We train out network by minimizing values of the probabil-

ity distribution p(x) averaged over the training set T , while

keeping normalization condition (3) for the wave function

〈�||�〉 = 1. Namely, we minimize the negative-log likeli-

hood (NLL) loss function L during training,

L = −
1

NT

∑

x∈T

log p(x). (15)

The gradient of the NLL loss function can be found

analytically,

∂L

∂|�〉
= 2|�〉 −

2

NT

∑

x∈T

|x〉

〈x||�〉
. (16)

In practice we do not evaluate gradient with respect to

|�〉, instead we update each tensor of MPS independently via

DMRG [9,10] method with a two-site update.

FIG. 10. Matrix product state graph representation. Blue boxes

represent tensors (of rank 3) with αi external indices, associated with

pixel representation. Bond dimension D controls the maximum of

other two dimensions of the tensors, depicted by horizontal lines.

Gradient descent is carried out by TSGO [32] with rota-

tion angle (learning rate) η = π/36, which showed better and

faster convergence compared to Adam or SGD.

1. Sampling

Sampling from a trained � is carried via Born rule. Start-

ing from the first pixel, which corresponds to the state |x1〉,

one samples it with marginal probability p(x1) =
|〈x1||�〉|2

〈�||�〉
.

Here 〈x1||�〉 is a “state,” i.e., a tensor with N − 1 indexes

α2, α2, . . . , αN . The subsequent pixel is sampled condition-

ally: p(x2|x1) = p(x1 ∪ x2)/p(x1). To effectively calculate the

probabilities one needs to keep the MPS in the right canonical

form [9]. Typical examples of sampled images are shown in

Fig. 5.

2. Quality of sampling

To assess quality of sampling we trained an auxiliary CNN

to classify MNIST-like images on QMNIST [33], a data set

which extends MNIST with additional 50K images, which

allowed us to train CNN [12] on images never seen by our

MPS. We sampled images with MPS and passed them through

CNN which returned a probability of sampled image of, say,

three to be classified as three. This probability we interpret as

the quality of sampling, which is shown in the left panels of

Fig. 2 and Fig. 3.

3. Classification

To classify images we take ten MPS �i trained to minimize

the loss function (15) for each digit i separately. To predict

label for an image x we calculate arg max
i

|�i(x)|2. Accuracy

of such classification peaked at around 96% in our simula-

tions, which is not as high as contemporary supervised NN

architectures, but on par with common unsupervised methods.

4. Discrimination

Discrimination quality is the ability of a NN to distinguish

images of, say, threes from any other images. In our case, due

to normalization condition (3) the wave function �3 tends to

decrease outside of the set of threes. In our setup |�(x)|2 � ε

indicates that x is contained in the set of threes and x is outside

of the set of threes if |�(x)|2 < ε. Here we propose a simple

method to fix ε and estimate discrimination quality. While as-

sessment of discrimination quality in principle requires to test

MPS against the whole “space of images” I , in practice, most

of this space is irrelevant. Our model does not confuse threes
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with random images. The hardest examples to discriminate

are pictures which are structurally similar to threes, i.e., those

depicting other symbols. That is why we test �i on other digits

on MNIST. We split training test into two parts. One part is

used to train the model, while the other is used to fix ε such

that the balanced accuracy on the test set is maximized. The

resulting quality of discrimination is shown on the right panel

of Fig. 2.

5. Fixing ε

The value of ε, introduced around Eq. (9) should be fixed

to separate “neat” images of digit i from the “corrupted”

ones. There is no precise definition of “neat” or “corrupted.”

However, we can try to estimate ε as follows. First, we use

trained �i to sample the images of i and keep only those

with the value of E ≈ E0. With the help of auxiliary CNN,

we estimate sampling quality of each sample and calculate

mean and variance of the sampling quality distribution. Then,

we start looking into sampled images with larger values of

E > E0. For the given E we estimate mean and variance of the

sampling quality distribution. Thus for each E we have mean

value and variance. Now we are looking for E = E∗ which

is large enough such that corresponding sampling quality

distribution is sufficiently different from the one for E = E0,

namely, corresponding mean values are separated by at least

the standard deviation. This value of E∗ is taken to be ε = E∗.

We have checked numerically that ε obtained in this way

yields sub-leading contribution to NF ; see Eq. (10).

6. Further comments

We trained an auxiliary deep convolutional GAN to inde-

pendently sample additional MNIST-like images. With these

samples we doubled the amount of images and retrained MPS

on extended data. As a result the value of mean 〈E〉 averaged

over the test set decreased by 4%. Additionally, we used

GAN samples to verify our estimation of effective (fractal)

dimension for each digit. The results are in agreement with

values of � from the Table I.

B. Entanglement entropy

Entanglement entropy of a bipartition which splits a quan-

tum spin-chain into two parts A and B consisting of k “left”

and n − k “right” spins correspondingly is defined as

S(ρA) = −Tr(ρA log ρA) = −Tr(ρB log ρB) = S(ρB), (17)

where ρA = TrB(ρAB) and ρB = TrA(ρAB) are reduced density

matrices for each partition and ρAB = |�〉〈�| for a pure state.

For any pure state the entanglement entropy can be

expressed using the singular values of the Schmidt decom-

position of the state,

|�〉 =
∑

i

λi|ui〉A ⊗ |vi〉B, (18)

where |ui〉A and |vi〉B are orthonormal states of the subsystems

A and B separated. The entanglement entropy reduces to

S(ρA) = S(ρB) = −
∑

i

|λi|
2 log(|λi|

2). (19)

The advantage of the MPS is that we can bring network

to the form with the orthogonality center to be the bond be-

tween the subsystems A and B. Then Schmidt decomposition

(18) becomes singular value decomposition of the product of

two MPS tensors from the nodes adjacent to the orthogonality

center bond [13].
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