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Tensor network architectures have emerged recently as a promising approach to various tasks of machine
learning, both supervised and unsupervised. In this work we introduce a matrix product state-based network
that simultaneously accomplishes the following two tasks: classification (discrimination) and sampling of visual
data. We train the network using binary (black and white) version of MNIST, a data set of handwritten digits,
to recognize as well as to sample images of a particular digit. We show our trained network is qualitatively
representing the indicator function of the “full set” of all possible images of a given format depicting the
particular digit. While the notion of the full set is difficult to define from the first principles, our construction
provides a working definition, and we show that different ways to build and train the network lead to similar
results. We emphasize, this means the trained network learns the “wave function of data,” i.e., can be used to
characterize the data itself, providing a novel tool to study global properties of the data sets of interest. First,
using quantum mechanical interpretation we characterize the full set by calculating its entanglement entropy.
Then we study its geometric properties such as mean Hamming distance, effective dimension, and size. The
latter is the total number of images in binary black and white MNIST format which would be recognized as
depicting a particular digit. Alternatively, it is the number of images of a given digit one would need to sample
before the probability of sampling the same image twice would be of order one. While this number cannot be
defined completely rigorously, we show its logarithm is largely independent of the way the network is defined
and trained. We find that for different digits this number varies dramatically, from 2% for digit 1 to 2°> for

digit 8.

DOI: 10.1103/PhysRevResearch.4.043111

I. INTRODUCTION

Generalization is a remarkable ability of supervised learn-
ing algorithms to learn patterns underlying training data and
subsequently perform well on new data sets. It reflects both
potency of the algorithm but also certain simplicity of the
training data itself. Namely, presence of patterns that might be
apparent to a human eye but usually very difficult to quantify.
On the contrary, data sets without underlying patterns, such
as fully random or ad hoc ones can be learned but cannot be
generalized [1,2]. To better understand when generalization is
possible and inform development of more efficient supervised
learning algorithms, it would be important to characterize pat-
terns that underlie various data sets of interest. In this context
a training set should be thought of as a small subset of the
“full set of data,” which includes all possible hypothetical data
exhibiting given patterns. This picture serves as a motivation
for our work, which proposes a practical method to learn and
study the full set.
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In this paper we introduce a novel tool, a tensor network
that simultaneously can perform sampling and discrimination
(classification) tasks. We argue this architecture learns the
“wave function of data”—qualitatively, the indicator function
of the full set, and thus provides new ways to quantitatively
study and characterize it.

To keep the presentation simple, in what follows we focus
on a particular example of MNIST, the data set of handwritten
digits. All ideas and techniques can be immediately extended
to other instances of supervised learning. MNIST contains
images measuring 28 by 28 pixels; we transform them from
grayscale to black and white for simplicity, such that there
are 2784 possible images in total. A standard task would be
to train a classifier to distinguish different digits. To further
simplify things, we can train the network to recognize a par-
ticular digit, say digit 3, by distinguishing it from images
of other digits, other symbols, or noise. Contemporary ar-
chitectures can achieve this discrimination task with a small
generalization error, which implies that among all possible
278 images one can define the set of all images of digit
3, which our discriminator network would recognize. Good
quality of generalization exhibited by various machine learn-
ing architectures [3,4] suggests this full set can be defined with
a large degree of objectivity, essentially in the architecture-
independent way.

Practically the full set is unfathomably large and is never
available. In this work we propose a way to study it using
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FIG. 1. On both panels [ is the set of all 278 images and F is the full set of images of digit i. Left panel: When W is an ideal discriminator,
it recognizes all images of digit i but may also recognize as i images of other digits or noise. This means |¥(x)?| > € for all x € F, as well as
for some set x € R depicted in red. In other words, support of (1) includes the full set F. Right panel: When W is an ideal sampler, all sampled
images are images of i. This means W has the support on the subset of the full set S C F, while |[W(x)|*> ~ 0 for x ¢ S. When W simultaneously
accomplishes both discrimination and sampling tasks, left and right panels should be combined: the support of (1) coincides with the full set

R~S~F.

a tensor network, which mathematically is an L,-normalized
“wave-function” W(x), defined on the space I = Z;S“ of all
N; = 278 possible images. Qualitatively, function

1, for W) >,

Px) = {o, for |W(x)|? < e, M

with some appropriate €, is the indicator function of the full
set. To emphasize that W characterizes the data itself and its
properties exhibit robust independence of the tensor network
architecture we call it the wave function of data. Using quan-
tum mechanical interpretation of W(x) we can characterize the
full set by calculating its entanglement entropy. We also study
geometric properties of the full set such as mean Hamming
distance, effective dimension, and the size. The latter is simply
the approximate total number of images recognized by our
network as depicting the given digit. In contrast to the first
two properties, which can be studied using training set alone,
size is the global property of the full set.

Before we proceed with the results, we will explain why
tensor network sampler-discriminator/classifier is an appro-
priate architecture to define the full set via Eq. (1). We
consider a hypothetical situation that network W(x) accom-
plishes both tasks almost ideally and deduce what that means
for the support of W. In the recent years tensor networks,
such as matrix product states (MPS) and tensor trains, have
been actively used to build various classification [5-8] and
generative [9,10] algorithms. They demonstrate robust perfor-
mance on par with the advanced CNN architectures [7,11].
In our case, we train W for a particular digit i. Then the
value P(x) =1 means ¥ recognizes x as an image of i.'
Good quality of generalization means our network reliably
recognizes images i outside of the training set. Now, assume
W is an ideal discriminator network. In this case, when W has

For the classification task one needs to train ten networks W;(x)
for each i. Classification is then performed by maximizing p; =
|W; (x)|?/ 3 1, (x)|* over i; see Sec. IV.

perfect quality of generalization, all images of i are recognized
as such, but there still could be images of other digits or even
noise recognized by our network as i. This means the support
of W includes but could be larger than the full set of i. This
is illustrated in the left panel of Fig. 1. There gray square
region represents all possible N; = 278 images. Red area R
represents images which our network “recognizes” as i, i.e.,
|W(x)|? exceed e for x from this area. The blue disk, denoted
as F, represents the full set of images depicting given digit i.
It is a subset of the red area R.

Next we proceed discussing W(x) as a sampler. It is
convenient to think of x = (x!,...,x’%) as an array of bi-
nary variables x“. Tensor network architectures allow for an
efficient evaluation of |W(x)|? as a function of some compo-
nents x* while values of other components x? being fixed. It
therefore can be used for sampling: pixels are sampled con-
sequently, using conditional probability distribution specified
by W(x). This idea got traction recently and several such archi-
tectures were introduced in Refs. [9,10]. Clearly, only images
with large values of |¥(x)|? can be sampled. To quantify the
quality of sampling we train an auxiliary neural network of
Ref. [12], which determines probability for the given sampled
image of being the image of digit i. Provided our sampler W(x)
achieves a good quality, i.e., ideally all sampled images depict
i, we can think of W(x) as a function with the support on a
subset of the full set. This is illustrated in the right panel of
Fig. 1. There orange subset S of the blue disk represent images
x for which |W(x)|? is sufficiently large to be sampled, while
for all other x ¢ S, |W(x)|> &~ 0.

The idea of the sampler-discriminator is to train an
MPS-based tensor network W(x) which simultaneously ac-
complishes both tasks. As we saw above, the support of an
ideal W(x) in this case would be equal to F', and (1) will be the
indicator function of the full set. Schematically the training
process looks as follows. We minimize the objective function

__1 2
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FIG. 2. (a) Quality of sampling by W3 with the bond dimension D =

Epoch
(b) (c)

o
o

10.0 125 150 175 0 2 4 6 8 10 12 14 16 18

Epoch

100 during the training process. Quality is assessed by an auxiliary

CNN [12]. (b, ¢) Quality of classification and discrimination during the training process by W; and W5 correspondingly, with the same D = 100.

where T represents the training set—a set of Ny images of
digit i. It is a small subset inside the full set F. Importantly,
our architecture enforces wave-function normalization

Z )PP =1, 1=2%. (3)

xel

As a result decreasing of the loss function (2) automatically
decreases value of |W(x)|> for x outside of T. Assuming T
is approximately uniformly distributed within F and W(x)
changes smoothly, we may expect |W(x)|? to mostly decrease
outside of F', while inside F it would remain relatively large.
The latter behavior would assure generalization of discrimina-
tor: value of |W(x)|? for x € F would exceed certain threshold.
The former property, smallness of |W(x)|? for x ¢ F, assures
good quality of sampling. We therefore tend to conclude that
a network trained this way will simultaneously accomplishes
both discrimination and sampling with high quality, and thus
will have a support on F, with Eq. (1) being its indicator
function.

In practice decreasing of the loss function during train-
ing process will eventually lead to overfitting when |W(x)|?
is large for x € T but not necessarily for x € F'. We there-
fore stop training as soon as discrimination/classification
begins to reduce after reaching its maximal value. The logic
outlined above is schematic, we justify it a posteriori by
examining the quality of recognizing (classifying) and sam-
pling achieved by the trained W. Further details of the
network architecture and the training process are described in
Sec. IV.

Ideally, for the trained network P defined in Eq. (1) is
the indicator function of the full set: |W(x)|> exceeds cer-
tain threshold for x € F' and plunges below it for x ¢ F.
It therefore reflects the data itself rather than peculiarities
of the architecture or the training process. To justify this
claim we show that certain properties of W(x), such as
quality of discriminating/classifying and sampling, typical
value of |W(x)> for x € F, value of entanglement entropy
associated with W(x), etc., are not sensitive to MPS bond
dimension or initialization seed. This confirms our main
conclusion that the proposed architecture provides a novel
way to quantitatively characterize the data itself, rather
than peculiarities of the network design or the training
process.

II. RESULTS

The core of our construction is the matrix product state real
tensor network in the canonical form [13]. Mathematically
it is a real-valued function W(x) where x“ is a vector of
282 = 784 binary variables. Canonical form imposes normal-
ization condition (3). We train the network by minimizing loss
function (2) via gradient descent, and the test set T is the set
of black and white MNIST images of digit i. Corresponding
tensor network is labeled ;.

As the learning process proceeds, quality of sampling by
W; gradually grows—the network remembers images from
the training set and tries to replicate them. This is shown in
the left panel of Fig. 2. The quality of recognizing digit i for
images from the test set (calibration of threshold € is discussed
in Sec. IV) grows initially, but then may decay slightly due
to overfitting. Similar behavior is exhibited by the quality of
classification, for which all ten ¥; must be trained. This is
shown in the right and central panels of Fig. 2. Overfitting
becomes more pronounced when the bond dimension D of
the tensor network grows. To prepare the network of inter-
est, which would simultaneously accomplish both sampling
and discrimination/classification tasks, the training process is
stopped as soon as the quality of discrimination/classification
reaches its maximum. For the sufficiently large D 2 100 this
happens already after a few epochs.

We now demonstrate that core properties of properly
trained W; are largely independent of the bond dimension
D, provided the latter is sufficiently large, D 2 30. To begin
with we study how the quality of sampling and classification
depends on the bond dimension. The quality of classifica-
tion is the maximal value from the central panel of Fig. 2,
since we stop training at that point. Results for sampling and
classification for different D shown in Fig. 3 confirm that
quality remains essentially the same in a wide range of bond
dimensions. It is also not sensitive to the initial seed.

Next we discuss to what extent Eq. (1) defines characteris-
tic function of the full set of images of a given digit i. We also
address the question of the size Ny of the full set—the global
property of the full set which cannot be deduced directly
from the training data set. In what follows we focus on i = 3
while results for other nine digits are qualitatively similar.
First we would like to understand how many different images
x €1 there are with the given value of |¥(x)|*> and what
different values of |W(x)|*> represent. It would prove useful
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FIG. 3. Quality of sampling (a) and classification (b) by the trained W5 as a function of bond dimension.

to use the language of statistical mechanics and think about
different images x € I as possible microstates of some aux-
iliary physical system.> We define “energy” of a microstate
E(x) := —In |¥(x)|*> and entropy S(E) such that eSE)dE is
the number of microstates with the energy between E and
E + dE.? Then

o0
/ SEJE = N;. 4)
0

In these notations normalization condition (3) becomes unity
of the “partition function” at unit temperature

o0
Z= / SEEJE = 1. ®)
0

We first discuss the distribution of energies E (x) of the train-
ing set, which we denote p(E)dE, shown in blue in Fig. 4.
Minimization of loss function (2) is the minimization of en-
ergy averaged over p;. The shape of py is not robust and
the mean value of the loss function (E), decreases with the
increase of D. What remains essentially the same is the energy
of the lowest states, which we define by averaging [ (x)|?
over the training set

Ep = —In(e ™). (6)

The distribution p, should be compared with the distribution
of energies for images sampled by the network itself. The
probability of sampling an image x is equal | ¥(x)|? and there-
fore the distribution of E for the sampled images is the Gibbs
distribution at unit temperature

Psm = eS(E)_E~ @)

It is shown in red in Fig. 4. Naturally, (E)sy, is larger than
(E)y, 1.e., the value of the loss function averaged over the set
of sampled images is larger than the one for the training set.
The shape of Eq. (7) is also changing with D. At the same time
energy of the lowest states is robust and matches Eq. (6) with

2Familiarity with the basics of statistical mechanics are helpful but
not necessary in what follows.

3As in statistical mechanics since microstates are discrete e’ is a
sum of delta-functions, which can be approximated by a smooth
function when the total number of states &, is large, N; > 1. In our
case N; = 27% and this condition is well satisfied.

a good precision:
Ep~ —In(e™" ). ®)

Moreover, with good accuracy it is equal to energy of the
ground state £y ~ E, = min, E(x), were minimization can go
over training set x € T or the set of sampled images x € S.
From 5 = pgmef we find that e’ is growing rapidly with E, at
least for energies around E ~ (E)qy. In other words there are
exponentially more images x with larger values of E(x). As E
grows, quality of sampled images deteriorates. Qualitatively
we can explain this as follows. Low-energy states x with
E(x) =~ Ey are the high quality “neat” images of digit 3, which
will be recognized as such with almost 100% confidence.
Each neat image gives rise to many more “corrupted” images,
which still can be recognized as 3, albeit with a smaller con-
fidence. These are the images with the larger values of E. As
the level of corruption grows, so is the total number of such
images, and their typical E increases. This is demonstrated
in Fig. 5, where we show typical sampled images with three
different values of E.

From this discussion it is clear there is no sharp value
of threshold € to define the boundary of the full set. The
size of the full set, the total number of images x for which
P(x) = 1, is dominated by the images with E ~ —In €, which
grows roughly as e ~ 1/e.
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FIG. 4. Normalized distributions p(E)dE of energies E(x) for
images x from the train (blue), sampled (red), and test (green) sets
correspondingly. Solid lines are kernel density estimations.
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FIG. 5. Typical images sampled with help of W5 with three different ranges of E, from left to right £ = 60 + 5, 85 £ 10, 125 £ 10.

To unambiguously define the size of the full set, we define
the latter it to include only neat images of 3, in which case
the threshold, which we will call &, can be taken very close to
Eq ~ E,. We propose a way to fix ¢ in Sec. IV, but provided
AE = ¢ — E, is small enough, at leading order the total size
of the full set will be given by the exponent, while AE will
control the subleading term,

&€
Ny = / SAE, Ny ~ Ey + In(pan(EAE) ~ Ey. (9)
E",
The number Ny can be interpreted as both, the leading
exponent controlling the size of the full set—the total number
of neat images of 3,

N~ =2" V=E)/In2, (10)

as well as the number of images M =~ Ny which need to
be sampled before there would be repetitions, i.e., an image
sampled twice. The latter interpretation follows from equat-
ing the total number of sampled images with given energy
E, Mpy,(E) and the total number of images ¢5&) with this
energy. Understood as the equation on M, it yields M = eF,
where E should be larger than E, ~ Ey. Minimization of
M over all possible value of E readily gives Eq. (10). An
immediate question is how robust the latter interpretation is,
given that pg, depends on the network architecture. We test it
by sampling images with one trained network, with the bond
dimension D, and evaluating E(x) using another trained net-
work, with the bond dimension D’. Alternatively, we sample
images using properly trained GAN. In all cases resulting o,
have approximately the same value of Ey = — In{e F)¢, and
therefore Np ~ M ~ ¢Fo remain the same. The comparison
of Ey evaluated for Ws for different sets, training, test and
sampled with help of W; itself and with an auxiliary GAN,
is shown in Fig. 6.

At this point, we conclude the energy of low-lying states
E, is a robust characteristic of the full set which defines its
size, thus answering the question from the abstract. Here the
full set would be defined to include only neat images of 3
and similarly for other digits. The results for size V defined in
Eq. (10) for all ten digits are shown in Table 1.

Yet a closer look reveals P(x) of a trained network is not
quite the characteristic function of the full set we hoped it
would be. Looking at the distribution pes of energies E(x)

for the images from the test set, we immediately find many
neat images of 3 with the energies of order (E ), which are
significantly larger than Ey. This is clear from Fig. 4, where
Prest 18 shown in green. This indicates not a conceptual flaw but
certain deficiency in how our network was trained. We argue
now, for an idealized properly trained network typical values
of E(x) for images from both training and test sets should be
around Ej. To confirm this we retrain our network by doubling
the training set using GAN-generated images. As expected, as
the size of the training set Ny increases both (E)q and (E )est
decrease, but the value of Ey = — In{e~%) defined with help of
any set, train, test, or sampled, remains robust. The resulting
picture is as follows. At leading order the total size of the
full set is given by Eq. (10) and is accessible by a network
trained with help of MNIST, while the number of neat images
of 3 which our network misclassifies by assigning P(x) =0
is substantially smaller than e,

To further characterize the full set geometrically, we eval-
uate its mean distance and the effective dimension, defined
with help of the Hamming distance. Individual images x are
binary strings and Hamming distance d(x, x,), defined as the
number of distinct components of x; and x,, provides a simple

100
90
80
> [}
70 - -
—e— train
test
601 —e— MPS sampled
—e— GAN sampled
50 .

50 1(‘)0 1%0 2(')0 2_"‘)0
bond dimension D

FIG. 6. The value of V = E;/In(2) evaluated for different sets:
training and test sets as well as sets images sampled with W itself
and with help of an auxiliary GAN. All results are shown for trained
Ws(x) as a function of bond dimension D.
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TABLE I. The table summarizes main properties of the full sets
associated with the digits of black and white MNIST. V, defined in
Eq. (10), controls the size of the full set. (d,;) is the mean Hamming
distance. A is the full set effective (fractal) dimension. n is an
average number of black pixels for images of a given digit i. § is
the (averaged) entanglement entropy.

i 14 (dab) A n S

0 90 =+ 8 133 £ 3 13 138 + 33 44 £ 02
1 22 £ 1 60 + 25 4 60 £ 17 3.6 £ 0.1
2 84 £ 5 133 £ 27 12 118 £+ 30 39 £02
3 72 £ 4 121 + 29 12 112 + 30 4.0 £ 0.1
4 69 £+ 4 109 + 26 11 96 £ 26 4.1+ 02
5 77 £ 4 127 £ 31 11 102 £+ 30 38 £ 0.1
6 71 £ 4 115 + 31 11 109 + 30 3.8 £ 0.1
7 53 £2 99 £ 28 9 91 £+ 24 37 £ 0.1
8 92 £ 4 124 £ 29 13 120 £ 31 4.0 £ 0.1
9 60 £ 5 105 + 29 9 97 £+ 26 38 £ 02

notion of distance between them. Clearly, Hamming distance
is primitive in the sense it does not reflect how similar or
different the essence of images would be to a human observer.
Nevertheless, the full set understood as a subset of vertexes x
of a unit cube equipped with the Hamming distance, satisfy-
ing P(x) = 1 exhibits well-defined coarse grained geometric
properties. The mean distance d(x, x;) between two random
images of digit i, taken either from train/test or sampled sets
is substantially smaller than two completely random images
with the same mean value of black and white pixels. This
is demonstrated in Table I where we show results for all ten
digits.

To evaluate the full set effective dimension, we use the
standard approach of Refs. [14,15]. For a set of images x, we
define minimal distance

Y

dmin (-xa) = mbin d(xav xb)

and then study how mean value d = (dyin(x,)), averaged over
the set of x,, scales with the set size K,
d o K78, (12)

Here A is the effective (or fractal) dimension. Linear fit of
d(K) in log-log coordinates is shown in Fig. 8. We focus on
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o

neat images of digits i. Therefore, we consider a subset of
train/test and sampled sets for which E(x,) is close to E.
In both cases we obtain similar results, indicating full sets
of digits have well-defined effective dimensions. The results
are shown in Table I. We note, unlike the size of the full set,
which is a global property requiring knowledge of the whole
full set, mean distance and the effective dimensions can be
inferred directly from the train/test set. Our results for A are
compatible with previous studies of the effective dimension
[14,15], which used Euclidean distance in conjunction with
the original MNIST. This suggests rendering images black and
white does not drastically affect geometries properties of the
full set.

As an application of our architecture, we evaluate en-
tanglement entropy (EE), by interpreting W as a quantum-
mechanical wave function. For a tensor network its maximal
EE determines its expressiveness. In the context of quantum
physics EE is a central quantity which measures the amount
of information shared between different parts of the system
[16]. In particular, it rigorously bounds classical mutual infor-
mation associated with a bipartition [17]

I(A, B) < Sap- (13)

Popularity of EE transcended physics into machine learning
with several different groups recently discussing it in the
context of tensor-based architectures [18-22]. For a MPS ar-
chitecture it is natural to discuss EE of bipartitions, S;, where
all n = 784 pixels are split into two groups of k and n — k pix-
els correspondingly; see Sec. IV. Resulting Page curve® is
shown in Fig. 9. We take EE averaged along the “plateau”
region of bipartitions with k ranging between 200 and 600,
for which Sj is approximately the same. This corresponds to
splitting image horizontally into two halves. Averaged EE,
which we denote by S, slowly grows with epoch, which is
expected: as the tensor network tries to better fit training data
it needs more expressiveness associated with larger entan-
glement. Notably, after a few epochs § become essentially
independent of the initial seed. We stop training W when
it exhibits maximal quality of discrimination/classification.
Averaged § for such W as a function of bond dimension is

“The name comes from the pioneering work evaluating EE of
random states [23].
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FIG. 7. (a) Average entanglement S of W5 as a function of bond dimension. (b) Average entanglement § for each W; during training.
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FIG. 8. Log-log plot for d as a function of number of samples
K. Images are sampled with W3 with the bond dimension D = 100.
Only images with E (x) ~ E, are included.

shown in the left panel of Fig. 7. It quickly grows for small
D and becomes approximately constant for D 2 100. Robust
independence of S on D and the initial seed is a further
confirmation EE of a trained network is a characteristic of
the data itself, not of the network architecture. This is the
crucial difference between our work and previous studies of
the EE in the context of tensor network algorithms. Our value
of S should be contrasted with the maximal EE Sy, = 21nD
for a tensor network with the bond dimension D, and for a
random network with all MPS tensors drawn from the unitary
ensemble, Sindom == In D; see Fig. 7.

Relatively small value of §, and hence of mutual informa-
tion between upper and lower halves of the images for all ten
digits indicates there is a small number of ways to continue the
image of a given digit, if a half of it is known. Schematically,
this means there is a finite number of styles to handwrite
any given digit i: once an upper part of the image is given,
it fixes the digit itself and its style within a range of a few
possibilities. This interpretation is corroborated by a positive
correlation between the value of the entanglement, shown in
Table I, and sizes of the full sets Nr; see Eq. (10). The logic
here being that a larger number of styles will be reflected by a
larger value of Ng.

The EE provides an upper bound on mutual information,
an important information-theoretic properties characterizing
the data. Recently mutual information and the entanglement
entropy of data in the training set have been studied in
Refs. [22,24-26]. Our work provides an alternative concep-
tually better way to evaluate it, as it is based on the full set,
rather than the training set alone.

III. DISCUSSION

In this paper we introduced a tensor network architecture
to learn the wave function of data W. We introduced the notion
of “the full set of data”—the collection of all hypothetical
data exhibiting the same underlying pattern. As a main result,
our tensor network provides a practical way to learn and
subsequently characterize the full set by defining its indicator
function P(x); see Eq. (1). We have trained W using binary

(black and white) version of MNIST and demonstrated its core
properties are independent of the network parameters, which
confirms they are characteristics of the data itself. Using W we
have estimated the sizes of the full sets of individual digits,
i.e., the total number of black and white MNIST-style images
depicting a particular digit i. The results are shown in Table I.
To further illustrate utility of W as a vehicle to study the data
itself, we have calculated entanglement entropy, which upper
bounds mutual information, associated with splitting images
into two parts. The results are also shown in Table I. The
entanglement entropy/mutual information of binary (black
and white) MNIST images is small, which indicates relatively
small number of different styles of handwriting.

The full set is a concrete, learnable cousin of an ab-
straction called the manifold of data in the series of recent
papers [27-29]. The manifold of data, by definition, requires
idealized “infinite data limit” when the training set grows
indefinitely. This is in contrast with our approach suited for
practically available data sets. We have seen in the case of
MNIST digits, certain images from the train/test set fall out-
side of the full set defined via indicator function (1). We
argued, this problem goes away as the size of the training
set grows. In this case the distributions py, Psm, and Peese
have smaller support and eventually, in the infinite data limit,
collapse to a narrow vicinity of Ey. This is the limit in which
the full set, which would strictly include all images of a given
digit, would become the manifold of data of Refs. [27-29].°
The rate with which the value of the loss function (E), — E
and (E).s — E; decreases with Ny—the size of the training
set, as well its dependence on bond dimension D, should
presumably follow the universal scaling laws outlined in
Refs. [27-29]. To verify that would be an interesting problem.

One of the most important open questions of machine
learning is to understand why certain data sets admit gen-
eralizations, as is the case of virtually any visual data set
exhibiting a pattern recognizable by a human observer. It
would be a substantial step forward to quantitatively char-
acterize this phenomenon by explaining why generalization
is possible. The studies of mutual information/entanglement
entropy, initially motivated by a more narrow question of
gauging suitability of tensor network-based architectures, is
a first step in this direction. It is clear though, a much more
comprehensive characteristic of data is necessary to under-
stand if it admits generalization and the best way to achieve
it. Our network is a novel tool to characterize the full set of
data globally through the Boolean function P, in the present
case defined on a unit cube of the dimension n = 784. We
surmise that the Boolean function complexity [30] as well
as ideas developed in Ref. [31] could be the right language
to characterize possible efficiency of generalization in the
quantitative terms. Furthermore, drawing from the connection
with quantum mechanics, we believe circuit complexity of W
interpreted as a quantum-mechanical wave function could be

In our case the space of images I is discrete, while the data
discussed in Ref. [28] is parametrized by vectors in R”. Hence, the
full set in the infinite data limit will became a discrete version of the
manifold of data.

043111-7



ANATOLY DYMARSKY AND KIRILL PAVLENKO

PHYSICAL REVIEW RESEARCH 4, 043111 (2022)

EN
L

w
L

Entanglement

o
L

0 100 200 300

400 500 600 700 800

Bipartition coordinate

FIG. 9. Page curve for W3 with the bond dimension D = 100.

an important characteristic of patterns, underlying the initial
data set.

IV. METHODS

A. MPS training procedure

We train a separate MPS |W;) (Fig. 10) for each label i in
the data set (i € 0..9 in case of MNIST). Our training proce-
dure is similar to Refs. [9,10], with the key difference being
the use of tangent-space gradient optimization of Ref. [32].
We start by mapping training samples x to product states
|x) = [1gq 1x*) by representing each black or white pixel x*
with “down” |0) and “up” |1) states. With this representation
of data samples we can define the probability of a given
sample in accordance with Born’s rules as

| (x| W) 2

PO =y

(14
We train out network by minimizing values of the probabil-
ity distribution p(x) averaged over the training set 7', while
keeping normalization condition (3) for the wave function
(W||W) = 1. Namely, we minimize the negative-log likeli-
hood (NLL) loss function L during training,

1
L= N ;log p(x). (15)

The gradient of the NLL loss function can be found
analytically,

oL 2 |x)
— =2|¥) — — . 16
97 = Y 8 L G 1o

In practice we do not evaluate gradient with respect to
|W), instead we update each tensor of MPS independently via
DMRG [9,10] method with a two-site update.

(0% Q2 a3 anN—_1 N

FIG. 10. Matrix product state graph representation. Blue boxes
represent tensors (of rank 3) with ¢; external indices, associated with
pixel representation. Bond dimension D controls the maximum of
other two dimensions of the tensors, depicted by horizontal lines.

Gradient descent is carried out by TSGO [32] with rota-
tion angle (learning rate) n = /36, which showed better and
faster convergence compared to Adam or SGD.

1. Sampling

Sampling from a trained W is carried via Born rule. Start-
ing from the first pixel, which corresponds to the state |x12),
xl
‘((\p|||\\3’p)>‘ )
Here (x!||W) is a “state,” i.e., a tensor with N — 1 indexes
oo, o, ..., ay. The subsequent pixel is sampled condition-
ally: p(x?|x") = p(x' U x?)/p(x"). To effectively calculate the
probabilities one needs to keep the MPS in the right canonical
form [9]. Typical examples of sampled images are shown in
Fig. 5.

one samples it with marginal probability p(x') =

2. Quality of sampling

To assess quality of sampling we trained an auxiliary CNN
to classify MNIST-like images on QMNIST [33], a data set
which extends MNIST with additional 50K images, which
allowed us to train CNN [12] on images never seen by our
MPS. We sampled images with MPS and passed them through
CNN which returned a probability of sampled image of, say,
three to be classified as three. This probability we interpret as
the quality of sampling, which is shown in the left panels of
Fig. 2 and Fig. 3.

3. Classification

To classify images we take ten MPS W; trained to minimize
the loss function (15) for each digit i separately. To predict
label for an image x we calculate arg max |W;(x)|%. Accuracy

of such classification peaked at around 96% in our simula-
tions, which is not as high as contemporary supervised NN
architectures, but on par with common unsupervised methods.

4. Discrimination

Discrimination quality is the ability of a NN to distinguish
images of, say, threes from any other images. In our case, due
to normalization condition (3) the wave function W3 tends to
decrease outside of the set of threes. In our setup |W(x)|> > €
indicates that x is contained in the set of threes and x is outside
of the set of threes if |W(x)|> < €. Here we propose a simple
method to fix € and estimate discrimination quality. While as-
sessment of discrimination quality in principle requires to test
MPS against the whole “space of images” I, in practice, most
of this space is irrelevant. Our model does not confuse threes
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with random images. The hardest examples to discriminate
are pictures which are structurally similar to threes, i.e., those
depicting other symbols. That is why we test W; on other digits
on MNIST. We split training test into two parts. One part is
used to train the model, while the other is used to fix € such
that the balanced accuracy on the test set is maximized. The
resulting quality of discrimination is shown on the right panel
of Fig. 2.

5. Fixing e

The value of ¢, introduced around Eq. (9) should be fixed
to separate “neat” images of digit i from the “corrupted”
ones. There is no precise definition of “neat” or “corrupted.”
However, we can try to estimate ¢ as follows. First, we use
trained W; to sample the images of i and keep only those
with the value of E &~ Ej. With the help of auxiliary CNN,
we estimate sampling quality of each sample and calculate
mean and variance of the sampling quality distribution. Then,
we start looking into sampled images with larger values of
E > E,. For the given E we estimate mean and variance of the
sampling quality distribution. Thus for each E we have mean
value and variance. Now we are looking for E = E, which
is large enough such that corresponding sampling quality
distribution is sufficiently different from the one for £ = Ej,
namely, corresponding mean values are separated by at least
the standard deviation. This value of E, is taken to be ¢ = E,.
We have checked numerically that ¢ obtained in this way
yields sub-leading contribution to Nr; see Eq. (10).

6. Further comments

We trained an auxiliary deep convolutional GAN to inde-
pendently sample additional MNIST-like images. With these
samples we doubled the amount of images and retrained MPS
on extended data. As a result the value of mean (E) averaged
over the test set decreased by 4%. Additionally, we used
GAN samples to verify our estimation of effective (fractal)
dimension for each digit. The results are in agreement with
values of A from the Table 1.

B. Entanglement entropy

Entanglement entropy of a bipartition which splits a quan-
tum spin-chain into two parts A and B consisting of k “left”
and n — k “right” spins correspondingly is defined as

S(pa) = —Tr(palog pa) = =Tr(pglog pg) = S(ps), (17)

where ps = Trg(pap) and pg = Tra(pap) are reduced density
matrices for each partition and psp = |W) (V| for a pure state.

For any pure state the entanglement entropy can be
expressed using the singular values of the Schmidt decom-
position of the state,

W) = Ailui)a ® [vi)s, (18)

where |u;)4 and |v;) g are orthonormal states of the subsystems
A and B separated. The entanglement entropy reduces to

S(pa) = S(ps) == Y ILlPlog(lhl®). (19

The advantage of the MPS is that we can bring network
to the form with the orthogonality center to be the bond be-
tween the subsystems A and B. Then Schmidt decomposition
(18) becomes singular value decomposition of the product of
two MPS tensors from the nodes adjacent to the orthogonality
center bond [13].
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