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Early detection of esophageal neoplasia via evaluation of endoscopic surveillance biopsies is the key
to maximizing survival for patients with Barrett’s esophagus, but it is hampered by the sampling
limitations of conventional slide-based histopathology. Comprehensive evaluation of whole biopsies
with three-dimensional (3D) pathology may improve early detection of malignancies, but large 3D
pathology data sets are tedious for pathologists to analyze. Here, we present a deep learning-based
method to automatically identify the most critical 2D image sections within 3D pathology data sets
for pathologists to review. Our method first generates a 3D heatmap of neoplastic risk for each
biopsy, then classifies all 2D image sections within the 3D data set in order of neoplastic risk. In a
clinical validation study, we diagnose esophageal biopsies with Al-triaged 3D pathology (3 images
per biopsy) vs standard slide-based histopathology (16 images per biopsy) and show that our
method improves detection sensitivity while reducing pathologist workloads.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.

Introduction

then high-grade dysplasia (HGD) before finally advancing to EAC.
Although the risk of progression to EAC is low for patients with BE

The incidence of esophageal adenocarcinoma (EAC) has increased
more than 10-fold in Western populations over the last several de-
cades.! Most EAC patients are diagnosed with late-stage or distant
disease for which the 5-year survival rate is <20%.>* EAC is believed
to arise from Barrett’s esophagus (BE), a complication of gastroin-
testinal reflux disease that results in specialized intestinal meta-
plasia.”® BE typically progresses to low-grade dysplasia (LGD) and
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(0.3% per year), the risk of progression to EAC increases for patients
who develop LGD and HGD, for whom the likelihood increases to 2%
and >6% per year, respectively.”!! Therefore, patients with BE are
recommended to receive periodic endoscopic screening for
neoplasia (defined here as dysplasia or EAC) to enable early detection
and early intervention, which is the key to maximizing patient
outcomes.>™ During these screening procedures, 4-quadrant
random biopsies are obtained via endoscopic forceps at ~1 to 2 cm
increments along the segments of the esophagus containing BE as
well as of suspicious areas seen with endoscopy, as shown in Figure 1
(ie, Seattle protocol).* In addition to the sampling limitations of
random biopsies, the gold-standard method for evaluating these
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Endoscopic screening with biopsies evaluated by conventional histology vs nondestructive three-dimensional (3D) pathology. During periodic endoscopic screening of Barrett’s
esophagus patients, 4-quadrant biopsies are obtained at ~1 to 2 cm increments along the length of the Barrett's esophagus (Seattle protocol). With conventional histology, these
biopsies are thinly sectioned, mounted onto glass slides, and stained with hematoxylin and eosin for pathologist review, in which only a small fraction (~1%) of each biopsy is
examined. In this study, open-top light-sheet microscopy is used to comprehensively image the whole biopsy in 3D without requiring destructive tissue sectioning.

biopsies, slide-based histology, severely undersamples the biopsied
tissues.””"!7 In conventional histology, biopsy specimens are thinly
sectioned, mounted onto glass slides, and stained with hematoxylin
and eosin (H&E) to enable microscopic evaluation by pathologists
(Fig. 1). Because this process is destructive to the tissue and time-
consuming, only a few tissue sections (typically 4 to 16 sections)
are processed as H&E slides. The limited amount of each biopsy
(~1%) that pathologists view as 2D sections may negatively impact
the sensitivity for detecting neoplasia.®

We hypothesize that nondestructive three-dimensional (3D)
pathology may improve the sensitivity of detecting neoplasia in
endoscopic biopsies in comparison to conventional histology
because a vastly greater volume of biopsy tissue may be interro-
gated with this method (Fig. 1). The ability to characterize diag-
nostically important structures in 3D can also reduce certain
ambiguities inherent to 2D histology.'®->° Here, we utilized open-
top light-sheet (OTLS) microscopy as a 3D pathology platform,
which enables comprehensive examination of diverse clinical
specimens.’’ By staining intact clinical specimens with a fluo-
rescent analog of H&E and optically clearing the tissues with a
solvent-based protocol, 3D pathology data sets generated by OTLS
microscopy can be false-colored to mimic the appearance of
standard-of-care H&E histology images for convenient assess-
ment by pathologists.'®?0-24 Additionally, tissue processing for
OTLS microscopy utilizes gentle reagents and reversible protocols
so that tissues may be submitted for conventional histology after
OTLS imaging without negative effects.”>*> The value of this
technology has been demonstrated for several applications, such
as the grading of prostate cancer,”>*® multiscale examination of
lymph nodes for breast cancer staging,>” and examination of fresh
breast tissue in intraoperative settings.'%%>

Although OTLS microscopy is a nondestructive approach that
enables histologic evaluation of whole biopsies, 3D pathology data

sets can be tedious to assess by human observers (Fig. 2A).
Considering that endoscopies alone generate 20 million cases
annually in the US for pathologist review,”’ and that there is a
worsening shortage of pathologists across the globe,?®~° diag-
nostic workflows that take advantage of 3D information without
further increasing pathologist workloads would be ideal. To this
end, we have developed an Al-based triage method to streamline
the diagnosis of 3D pathology data sets while keeping the
pathologist in the loop to minimize risk and to facilitate clinical
adoption. Our method uses a deep learning algorithm to auto-
matically identify neoplastic regions in small 2D image patches,
aggregates these patch-based predictions in 3D, and then uses a
random forest classifier (RFC) to select the most important 2D
image sections from the 3D data set for pathologist review
(Fig. 2B).>*2 Importantly, this Al-based triage method screens the
entire volume of each biopsy for neoplasia to facilitate improved
detection in comparison to conventional histology, which evalu-
ates a modest number of thin sections from only one side of each
tissue specimen. We quantify the patch-based and image section-
based performance of our triage method and report a preliminary
clinical validation study showing that Al-triaged 3D pathology can
potentially improve the sensitivity of diagnosing neoplasia in
endoscopic biopsies while reducing the workload for pathologists
in comparison to standard-of-care histology.

Methods
Tissue Preparation and Open-Top Light-Sheet Imaging

Archived esophageal biopsy and endoscopic mucosal resection
specimens were obtained as formalin-fixed paraffin-embedded
blocks from the Gastrointestinal Center for Analytic Research and
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Motivation and advantages of Al-triaged three-dimensional (3D) pathology. (A) Nondestructive 3D pathology provides comprehensive sampling of biopsies while preserving the
tissue for downstream assays/archives. However, the manual evaluation of such large 3D pathology data sets is time-consuming. (B) Alternatively, our Al-based triage method
automatically identifies regions most likely to contain neoplasia within a 3D pathology data set (center) and then selects the highest-risk 2D image sections (right) for manual

review by a pathologist. Scale bars represent 200 pm.

Exploratory Science at the University of Washington Medical
Center following institutional review board-approved protocols
(IR9066). For initial model development, 30 specimens from 11
patients (22 biopsies and 8 endoscopic mucosal resection speci-
mens) were used for algorithm training. An additional 20 biopsy
specimens from 10 other patients were set aside as an indepen-
dent validation cohort. Specimens were deparaffinized by incu-
bating them at 70 °C for 1 hour and then immersing them in
Xylene at 65 °C for 48 hours. Specimens were washed twice in
100% ethanol (EtOH) for 1 hour each, incubated in 70% EtOH (30%
deionized water) for 1 hour, then stained with a fluorescent
analog of H&E by incubating them in 70% EtOH at pH 4 (titrated
with hydrochloric acid) with a 1:1000 dilution of TO-PRO-3 and a
1:2000 dilution of Eosin-Y. Finally, the specimens were optically
cleared in ethyl cinnamate (n = 1.56) for 4 hours.”!

Esophageal specimens were then placed on a flat index-
matched (n = 1.56) sample plate (Hivex, 200-um thick). The
whole volume of each biopsy was imaged (0.6-mm average thick-
ness) with a previously reported OTLS microscope using a 20x
objective (numerical aperture = 0.40).”° A digitally scanned light
sheet (numerical aperture ~0.09) was used to illuminate TO-PRO-3
and Eosin-Y at wavelengths of 660 nm and 488 nm, respectively.>
Fluorescence was collected with a band-pass filter (Semrock FFO1-
496/LP-25 and Semrock LP02-664RU-25) and 20x objective (Nikon
CFI60 TU Plan ELWD), then relayed to an sCMOS camera as the
specimen was stage-scanned in XYZ. Images were collected with an
isotropic sampling pitch of 0.21 pum/px. Data were compressed
during imaging by ~10x with B3D lossless compression as reported
in a study by Baldzs et al.>* Examples of false-colored 3D pathology
data sets may be found in Supplementary Movies 1-2.

Image Preprocessing

3D pathology data sets of 30 esophageal specimens from 11
patients were processed to facilitate patch-based training of the

deep learning network. One to 2 cross-sectional images (2D) were
selected from the 3D pathology data sets of each specimen (43
total image sections). Prior to pathologist review and annotation,
these images were false-colored to mimic an H&E-like appearance
and saved in a pyramidal TIFF format. Pixel-level annotations were
provided by a board-certified pathologist (DMR) to indicate re-
gions of neoplasia (dysplasia or cancer) using the Automated Slide
Analysis Platform and recorded in an XML file.

After annotations were prepared, the images were pre-
processed for training the deep learning algorithm (ResNet18),
which was pretrained on ImageNet.>"*> The raw data for both
fluorescence channels (TO-PRO-3 and Eosin-Y) were normalized
and saved as 2 channels within an RGB image (as per the con-
ventional image format used for patch-based deep learning al-
gorithms). Otsu thresholding was used to segment the tissue
boundaries from the background of the image.*® Overlapping
patches (512 x 512 pixels or ~100 x 100 pm, with 50% overlap
between adjacent patches) were extracted from the tissue-
containing regions in each 2D image. Finally, each patch was
assigned a label of 0 (benign) or 1 (containing neoplasia) based on
the pathologist’s pixel-level annotations of the images. This pro-
cedure generated approximately 393,000 patches (355,800
benign and 37,300 neoplastic) for training.

Training of Patch-Based Algorithm

Once OTLS data sets were prepared for network training, a
deep learning network (ResNet18) was trained to label patches
extracted from the 2D image sections as benign or neoplastic’'
using cross-validation resampling.®” Image transformations were
applied to patches at random to improve model performance and
reduce overfitting: image rotations, vertical and horizontal flips,
brightness and contrast adjustments, and saturation adjustments.
We used 15-fold cross-validation to train the model and estimate
its overall performance. For each fold, all image patches from 28
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Figure 3.

Prediction pipeline for Al-triaged three-dimensional (3D) pathology. (A) For each 3D pathology data set, a deep learning algorithm is used to identify neoplastic image patches.
These predictions are volumetrically aggregated, resulting in a (B) 3D heatmap of the average predicted probability of each patch containing neoplasia. (C) A random forest
classifier then predicts the probability that each 2D image section within the heatmap contains neoplasia. (D) The 3 highest-ranked 2D sections are then identified for pathologist
review. (E) The training data used for the ResNet model consists of 43 image sections with pixel-level annotations for neoplasia (left). These images are split into 100 x 100 um
patches (insets) where each patch is assigned a ground-truth label of 0 (benign) or 1 (neoplastic). (F) To train the random forest classifier, 43 2D image sections are assigned a
ground-truth label of 0 if they are entirely benign, or 1 if they contain any amount of neoplasia. Scale bars represent 200 pm.

specimens were used for training, and patches from the remaining
2 specimens were held out for testing. The model was trained over
20 epochs (hard stop) with a batch size of 64 for each of the 15
folds. A fully connected dropout layer was added to the model to
reduce overfitting.>® The model was optimized with stochastic
gradient descent with a learning rate of 0.001 and momentum of
0.9. Training took approximately 9 hours for each fold on a
workstation equipped with a Nvidia TITAN Xp graphics card, 128
GB of RAM, and an Intel Xeon processor (E5-1620 v4 3.5GHz 4
core).

For each 2D image section, overlapping patch-based pre-
dictions were aggregated (overlapping patch regions were aver-
aged) to create a probability heatmap, for which the intensity
value of any given patch (maximum value of 1.0) represents the
predicted probability of that image patch containing neoplasia.
With 50% overlap between all adjacent patches, the intensity
value of each patch in the heatmap was therefore the average of 4
overlapping patch predictions (except for patches at the boundary
of the tissue). Predictions were generated and aggregated over all
2D image sections in each 3D specimen (~3 hours for a 1 mm?

biopsy), resulting in a 3D heatmap predicting the presence of
neoplasia within the whole specimen (Fig. 3A, B).

Training of Image-Based Random Forest Classifier

The RFC was trained to discriminate between benign and
neoplastic 2D image sections based on the probability heatmaps
generated by the patch-based classifier. A set of 3 “hand-crafted”
features extracted from the heatmaps served as inputs to the RFC:
the maximum predicted probability of neoplasia, the number of
patches for which P value was >.10, and the image noise (SD of the
patch values).>” To train the classifier for this task, we used the
heatmaps corresponding to the 43 annotated images generated
during cross-validation testing of the patch-based algorithm. The
ground-truth label for each image was 0 or 1 according to DMR’s
annotations, in which images that contained any amount of
neoplasia were assigned a label of 1, and entirely benign images
were assigned a label of 0. We used 15-fold cross-validation to
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train and evaluate the RFC’s performance with the same train-test
splits described for the patch-based classifier.

After training the RFC, we used the classifier to generate pre-
dictions on all 2D image sections within each 3D pathology data
set. The output for each image section was a single value
(maximum of 1.0) corresponding to the probability that the image
section contained neoplasia (Fig. 3C). We sorted the sections
based on the probability of containing neoplasia and then iden-
tified the top 3 image sections for manual review by a pathologist
(Fig. 3D).

Results

Patch-Based and Image-Based Classification Results

We first demonstrate the performance of the patch-based
deep learning classifier. We show several examples of 2D heat-
maps generated by the patch-based classifier along with corre-
sponding ground-truth annotations (regions encircled by black
lines) in Figure 4A, B. We also show examples of true-positive
and true-negative patch-based predictions from these exam-
ples (insets on the left), as well as the patch-based receiver
operating characteristic (ROC) curve for each of the 2D cross-
sectional images. Several additional examples of generated 2D
and 3D heatmaps, ground-truth annotations, and patch-based
predictions may be found in Supplementary Figure 1 and
Supplementary Movie 3. Additionally, we use principal compo-
nent analysis to visualize the model’s predictions and confirmed
how the algorithm distinguishes between benign and neoplastic
image patches in feature space (Fig. 4C).>° Two principal com-
ponents were fitted to the 512-element feature vectors gener-
ated by the model for each patch before the final fully connected
layer of the ResNet model. Visualization of all predictions in this
feature space suggests that the neoplastic patches are well-
distinguished from the benign patches. See Supplementary
Figure 2 for additional visualization of these patches from
different regions of the principal component analysis plot.
Finally, the model’s performance was estimated with 15-fold
cross-validation. As shown in Figure 4D, the overall perfor-
mance was benchmarked by computing ROC curves for all 15-
folds applied to 43 2D image sections from 30 specimens. The
average ROC curve is also shown (AUC = 0.89, ¢ =.02; 95% (I,
0.85-0.92) where the 95% CI is estimated by bootstrapping per-
formance across all cross-validation folds as described in the
study by Tsamardinos et al*” where B = 10,000. On average, the
algorithm identifies neoplastic regions with 90% patch-based
sensitivity and 71% patch-based specificity (Fig. 4E), which is
deemed adequate in this study for a triage algorithm to screen
for the presence of neoplasia in thousands of image patches from
hundreds of image sections per 3D pathology data set. In
Supplementary Figure 3A, B, we visualize the calibration of the
patch-based algorithm,*"*? as well as cross-entropy loss and
ROC-AUC performance over all 20 epochs during training and
testing.

To demonstrate the performance of the image-based classifier,
we benchmarked the RFC's performance in discriminating be-
tween image sections that are entirely benign vs containing any
amount of neoplasia. The average ROC curve for the performance
of this image-based classifier is shown in Figure 4E, with an AUC =
0.92 (o = 0.048; 95% (I, 0.80-0.98). Selection of the most-optimal
probability threshold yields an overall 2D image-based sensitivity
of 87% and specificity of 73%. We examine the calibration of the
image-based classifier in Supplementary Figure 3C.

Preliminary Clinical Validation Study

To explore the clinical value of this triage method, we
compared our Al-triaged 3D pathology method with gold-
standard 2D histology using an independent validation cohort of
20 endoscopic biopsies from 10 patients. As shown in Figure 5A, a
board-certified gastrointestinal pathologist first diagnosed each
biopsy based on only the top 3 image sections identified with our
computational triage method. After Al-triaged 3D pathology was
performed, conventional histology sections were obtained from
the same biopsies. Here, ~16 physical tissue sections were viewed
by the pathologists, per standard practice at our institution. A
washout period of at least 2 weeks was implemented between the
time in which the Al-triaged image sections were viewed and the
standard histology sections were viewed.**> Of the 20 biopsies
evaluated, 3 biopsies diagnosed as benign by conventional his-
tology were found to contain neoplasia based on Al-triaged 3D
pathology, as shown in the Table. Two examples are shown in
Figure 5B. In the first example (biopsy 13), image sections iden-
tified by Al-triaged 3D pathology showed hallmarks of HGD, such
as fused and crowded glands (green box), large nuclei (yellow
box), prominent nucleoli (green arrowhead), and mitoses (yellow
arrowhead). However, normal architectural features of basally
oriented epithelial cells with mucin caps (blue box) are observed
with gold-standard histopathology. In another example (biopsy
15), regions of HGD characterized by focal areas of fused glands
(green box), nucleoli (green arrowhead), and mitosis (yellow
arrowhead) are seen in the Al-triaged image sections but are not
seen in any of the conventional histology sections.

In addition to the 3 biopsies that were diagnostically upgraded
from benign BE to neoplastic (biopsies 11, 13, and 15), a fourth
biopsy diagnosed as LGD by conventional histology (biopsy 2) was
upgraded to HGD with Al-triaged 3D pathology. There were no
examples of diagnostic downgrading based on Al-triaged 3D pa-
thology. Note that in these images, certain artifacts inherent to 2D
histology, such as cracks, folds, and regions of poor staining
quality, are eliminated with nondestructive 3D pathology.

Discussion

Nondestructive 3D pathology enables comprehensive visuali-
zation of whole biopsies, which may improve detection sensitivity
and facilitate earlier intervention, thereby maximizing patient
outcomes. The tissue preparation protocols used in this study are
straightforward and scalable, obviating the need for highly skilled
histotechnologists. Previous studies with our 3D pathology
methods have also shown that these methods are reversible (ie,
archived tissues can be restored as formalin-fixed paraffin-
embedded blocks after imaging) and that tissue morphology and
molecular expression are unchanged.'®!%21232> Therefore, the
incorporation of 3D pathology into clinical practice can be cost
effective and low risk. However, a challenge with 3D pathology is
that the massive data sets are tedious for pathologists to
comprehensively analyze. To address this challenge, we have
implemented an Al-based triage method to identify the most
critical 2D image sections within each 3D data set for pathologists
to review. With deep learning-based triage of 3D pathology data
sets, we show the potential to improve diagnostic sensitivity in
comparison to gold-standard 2D histology while reducing
pathologist workloads (ie, the number of images that must be
viewed) compared with standard histopathology practice. We
believe that in clinical practice, our method will be synergistic
with endoscopic screening tools under development, such as
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overlaid onto 2D image sections from three-dimensional (3D) pathology data sets of biopsy specimens from the annotated training set. Each heatmap value indicates the
probability of that patch containing neoplasia. The heatmaps are overlaid onto their respective hematoxylin and eosin false-colored 2D images, and the ground-truth annotations
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predictions are shown. On the right, patch-based ROC curves are also shown for each image along with AUC values (+ ¢) and 95% Cls. Scale bars represent 20 um unless otherwise
indicated. (C) Principal component analysis was performed to visualize the model’s patch-based predictions in feature space. This visualization suggests that the neoplastic
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Figure 5.

Preliminary clinical validation study. (A) Nondestructive three-dimensional (3D) pathology data sets were obtained of 20 intact biopsies. Our Al algorithm identified the 3 image
sections with the highest probability of containing neoplasia for pathologist review. The same biopsies were submitted for standard hematoxylin and eosin histology, where ~16
physical tissue sections per biopsy were reviewed. (B) Examples are shown for which Al-triaged 3D pathology upgraded the diagnosis compared with conventional 2D histology.
Regions of high-grade dysplasia can be identified in the Al-triaged image sections in biopsy #13 and biopsy #15, as characterized by fused and crowded glands (green boxes),
large nuclei (yellow boxes), prominent nucleoli (green arrowhead), and mitoses (yellow arrowhead). However, in the conventional histology sections, architectural features
showing basally oriented epithelial cells with mucin caps (blue box) are consistent with a diagnosis of benign Barrett’s esophagus. Scale bars are 100 pm for black boxes and 30
um for all other boxes.
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Table
An independent validation cohort of 20 endoscopic biopsies evaluated with
Al-triaged 3D pathology vs conventional 2D histology

Biopsy Conventional 2D histology Al-triaged 3D pathology
ID diagnosis diagnosis

1 Benign Benign

2 Neoplasia (LGD) Neoplasia (HGD)
3 Benign Benign

4 Benign Benign

5 Benign Benign

6 Benign Benign

7 Benign Benign

8 Benign Benign

9 Benign Benign

10 Benign Benign

11 Benign Neoplasia (LGD)
12 Benign Benign

13 Benign Neoplasia (HGD)
14 Benign Benign

15 Benign Neoplasia (HGD)
16 Benign Benign

17 Benign Benign

18 Benign Benign

19 Benign Benign

20 Benign Benign

Biopsies 11, 13, and 15 are examples for which Al-triaged 3D pathology upgraded
the diagnosis from benign (based on conventional histology) to neoplasia.
3D, three-dimensional; HGD, high-grade dysplasia; LGD, low-grade dysplasia.

optical coherence tomography, Cytosponge-TFF3, and hyper-
spectral imaging,***° which will enable the acquisition of tar-
geted biopsies (as opposed to random biopsies) that may be
comprehensively assessed by 3D pathology.

As machine learning and deep learning-based approaches are
rapidly advanced, developing methods that are interpretable will
encourage clinical translation. Our multistep process facilitates
interpretability by providing a quantitative heatmap of high-risk
regions in the whole 3D volume before selecting the most crit-
ical 2D image sections for pathologist review. This intermediate
checkpoint provides pathologists with the opportunity to review
the tissue regions and pathological structures that are ranked with
the highest neoplastic probability, which will improve their con-
fidence in the algorithm.

Although our method enables improved diagnostic sensitivity
in comparison to conventional histology, the RFC’s task in the
second stage of our computational pipeline is particularly chal-
lenging as it must learn to recognize and correctly prioritize
various manifestations of neoplasia. For example, it must evaluate
whether image sections with large diffuse regions of neoplasia
should be ranked as more important than image sections with
small focal areas of neoplasia. To facilitate learning of these dis-
tinctions, we chose features (see Methods) that would account for
some of these variables as inputs to the RFC. For example, the
“maximum predicted probability” feature enables the RFC to
consider image sections with small focal areas of neoplasia,
whereas the “number of patches for which P >.10” feature allows
the RFC to consider image sections with large regions of neoplasia.
More extensive hand-crafted or deep learning-based feature en-
gineering approaches could enable improved selection of the most
important image sections for pathologist review.

To facilitate the adoption of 3D pathology into clinical settings,
this study explores a diagnostic paradigm that keeps the pathol-
ogist “in the loop” to minimize risk. Furthermore, due to the

severe workload and staffing shortages faced by pathology labo-
ratories, we sought to design a time-efficient diagnostic workflow
that requires minimal retraining of the pathologist. This motivated
our choice to provide pathologists with a small number of 2D H&E
false-colored image sections, which they are accustomed to
viewing, rather than large image stacks or videos of 3D data. It
should be noted, however, that pathologist review of 3D data may
enhance diagnostic accuracy, especially for structures that can be
ambiguous when viewed as 2D images.”>**>?® Therefore, it is
worth exploring the display of high-priority localized 3D image
regions as image stacks or volumetric renderings. Future studies
should also explore algorithms that classify neoplastic regions
based on 3D chunks instead of 2D patches, which could improve
the accuracy of deep learning models through the incorporation of
novel 3D features.’® Finally, future studies may benefit from
confirming the 3D pathology diagnosis of neoplasia with immu-
nofluorescent labeling or a panel of pathologists.’®

One of the limitations of our method is that tedious pixel-level
annotations are required to train the patch-based deep learning
algorithm. Recent advances in weakly supervised learning facili-
tate direct image-based predictions after training with image-
based or patient-based labels,>>*"*? as well as the ability to
generate attention maps that offer a similar level of interpret-
ability to pathologists.>> However, it can be challenging to achieve
accurate performance with such single-step methods with rela-
tively small training data sets, as used in this study. Future studies
are needed with larger training set sizes to explore the perfor-
mance for various strategies of Al-triaged 3D pathology. Ideally,
this work would facilitate improved detection sensitivity of
neoplasia (>95%) in comparison to this study (~90%). More
importantly, prospective studies are needed to demonstrate that
these methods can lead to improved long-term outcomes for
patients with BE.

In conclusion, we have developed a nondestructive 3D pa-
thology workflow to enable comprehensive histologic evaluation
of whole biopsies and a deep learning-based computational triage
method to identify the most important 2D image sections for
time-efficient pathologist review. Our results suggest that Al-
triaged 3D pathology has the potential to improve diagnostic ac-
curacy while reducing pathologist workloads.
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