
Transmission Line Outage Detection with Limited
Information Using Machine Learning

Daniel Flores, Yuanrui Sang, and Michael P. McGarry
Department of Electrical and Computer Engineering

The University of Texas at El Paso
El Paso, TX, USA

dflores45@miners.utep.edu, ysang@utep.edu, mpmcgarry@utep.edu

Abstract—Transmission line outage detection plays an impor-
tant role in maintaining the reliability of electric power systems.
Most existing methods rely on optimization models to estimate the
outage of transmission lines, and the process is computationally
burdensome. In this study, we propose a transmission line outage
detection method using machine learning. Using this method, we
could monitor the power flow of one line and estimate whether
another line is in service or not, despite the load fluctuations
in the system. The study also investigates the principles for
observation point selection and the effectiveness of this method
in detecting the outage of transmission lines with different levels
of power flows. The method was implemented on an IEEE 118-
bus system, and results show that the method is effective for
transmission lines with all levels of power flows, and line outage
distribution factors (LODF) are good indicators in observation
point selection.

Index Terms—KNN, line outage distribution factors (LODF),
machine learning, transmission faults, transmission outage de-
tection

I. INTRODUCTION

The electric power grid is one of the critical infrastructures
supporting our daily life, and its reliability is paramount. Ac-
cording to a report by Lawrence Berkeley National Laboratory,
power outages cause an economic loss of $79 billion annually
in the U.S. [1], and reducing power outages can result in
significant improvements in social welfare. The transmission
network is a critical power grid component, since it delivers
electric power over long distances, and transmission outages
can have a series of negative consequences in power system
operations, such as cascading failures and power outages
[2], [3]. Thus, detecting transmission line outages can have
a tremendous positive impact on enhancing power system
reliability.

Various reasons, such as lightning, tree fall, or extreme
weather, can cause transmission outages. Among these rea-
sons, extreme weather can cause the most widespread trans-
mission failure. For example, during Hurricane Ian, the Eastern
Interconnection reported 140 transmission outages [4]. With
the wide installation of phasor measurement units (PMU),
an increasing amount of data is available for power system
monitoring. However, transmission outage detection is a com-
putationally complex problem [2], [5], [6], and the computa-
tional efficiency of such problems can be improved through a
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distributed approach [7], [8], graph theory [9], or innovative
circuit theory-based method [10]. Transmission outage detec-
tion is challenging even when complete information about
power system operation is available, and the unavailability of
system data under certain circumstances adds to the difficulty
of this problem. Because of the high cost of PMU, not all
the substations are installed with PMUs [11]. Also, during
natural disasters, not only the power grid gets damaged but
also the communication network. This requires us to identify
the transmission outages without complete information of the
system. Existing transmission outage detection method are
mostly optimization-based [12], [13], [14], and the locations of
PMUs can be selected considering the effectiveness of trans-
mission outage detection [15]. Although PMUs do not have to
be installed at every bus, at least almost half of the buses in
the system need to be installed with PMUs to ensure accurate
monitoring in such methods [16]. An emerging method to
improve the computational efficiency and effectiveness of
transmission outage detection is through machine learning.
A data-driven topology identification method is proposed in
[17], and using this method, to ensure high detection accuracy,
measurements at a large number of nodes in the system
is desired. The topology of a radial distribution network is
estimated using machine learning in [18], which shows the
potential of machine learning in network topology estimation.

Currently, there is still a gap in detecting transmission
outages with high computational efficiency with limited in-
formation. This study aims to address this gap by proposing a
machine learning-based transmission outage detection, which
can detect transmission outages with high speed and limited
information. Using this method, we can monitor the power
flow on one transmission line considering the uncertainty of
load and estimate whether another transmission line is in or
out of service. The method was implemented on an IEEE
118-bus system, with power flow data collected through the
ACOPF solver of MATPOWER [22] and the learning process
performed by the Scikit-learn machine learning library.
The case study investigates the principles for observation
point selection, i.e., which transmission line is the best to be
monitored to estimate the outage of the other, and the results
show that line outage distribution factor (LODF) is a good
indicator for observation point selection.

This paper is organized as follows. Section II describes the

20
23

 N
or

th
 A

m
er

ic
an

 P
ow

er
 S

ym
po

siu
m

 (N
AP

S)
 |

 9
79

-8
-3

50
3-

15
09

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
N

AP
S5

88
26

.2
02

3.
10

31
86

37

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on December 29,2023 at 17:55:40 UTC from IEEE Xplore.  Restrictions apply. 



proposed method, Section III our experiment design, Section
IV our experiment results and findings. Finally, Section V con-
cludes the paper and outlines avenues for further investigation.

II. DETECTING TRANSMISSION LINE OUTAGES

Machine learning (ML) can be applied to detect power
system transmission line outages. A binary nominal variable
can be used to represent the status for each transmission line:
0 - line is in-service and 1 - line is out-of-service: yi where
i is the transmission line number. Collectively those variables
form a vector y of length M where M is the number of
transmission lines in the power system. If M = 100, there are
100 transmission lines and we use ML to predict the values of
100 binary nominal variables. With this modeling approach we
can detect any number of simultaneous line outages. However,
we can model the problem in other ways that do not have that
ability. As an example, if we needed to only detect a single line
outage we could model the problem using a single nominal
variable, y, that would assume an integer value of 0 . . .M ;
e.g., 0 indicating no line outage, 1 indicating an outage on
line 1, and M indicating an outage on line M .

Predicting the value of a nominal variable is referred
to as classification and there are many ML algorithms for
classification, such as logistic regression, k-nearest neighbors
(KNN), and decision trees [21]. The input to our specific
classification problem would be data collected from a set of
observation points in the power system. The collected data
could be real and reactive power measurements, voltages, and
currents observed at each member of the set of observation
points. These data would be referred to as features in ML
terminology; these power system features are used by the
classification model to predict the binary nominal variables
indicating the line outages. Let xi,j be feature j collected at
observation point i and X be the matrix of those values, all
features from all observation points. The classification model
is a function that maps the features to the binary nominal
variables representing the state of the transmission lines,

y = F(X) (1)

An ML classification algorithm, e.g., KNN, produces a
function F that minimizes error between that function and
training data (i.e., matching pairs of y and X) provided to the
algorithm. This is a slight simplification, see [21] for more
detail on classification with ML.

In summary, the line outage detection system contains the
following steps, see Fig. 1:

1) collect data from the observation point(s)
2) use ML classification model to infer the binary nominal

variables representing the line outage state of the system
3) send indications regarding the location(s) of line out-

age(s)

Fig. 1. Flow Chart of Transmission Line Outage Detection

In this work, we gain some insight into the selection of
power system observation points that provide the features to
be used for the line outage detection classification problem.
Specifically, we gain insight into the observation points best
for observing real power at the from buses (PF or xi,1), reactive
power at the from buses (QF or xi,2), real power at the to
buses (PT or xi,3), and reactive power at the to buses (QT or
xi,4). With four features to be collected at each observation
point we want to determine the best selection of observation
points to collect those features. The goal is to provide sufficient
classification performance as measured by precision, recall and
F-1 score. Here we consider the use of a single observation
point and leave the consideration of two or more observation
points for future work. In this study, we choose the observation
points based on the LODF values [19], [20] of observed lines
versus the line out of service. A high LODF indicates that
the observed line will experience a relatively large change
in its power flow when the other line goes out of service,
and thus, we hypothesize that lines with high LODF values
corresponding to the line that goes out are good observation
points, and the hypothesis is tested in this study.

III. EXPERIMENT DESIGN

To test our hypothesis, we designed a set of experiments
where we varied the observation points in a power system
where real and reactive power are measured at from and to
buses. We varied those observation points based on their
LODF values for the line whose outage we wish to detect.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on December 29,2023 at 17:55:40 UTC from IEEE Xplore.  Restrictions apply. 



We used three categories of observation points: low LODF,
medium LODF, and high LODF. Our experiment design also
varied the power flow for the line outage we wish to detect
with three categories: low power flow, medium power flow,
and high power flow. With the product of three types of ob-
servation points and three types of power lines, our experiment
design therefore consisted of nine experiments. We randomly
repeated each of the nine experiments 24 times to produce an
unbiased sample used for statistical inference to validate our
conclusions.

Our platform to execute our experiment design consisted of
two components:

1) software using MATLAB’s MATPOWER package to sim-
ulate AC optimal power flow to generate training and
testing data for our classifier

2) software using the Scikit-learn Python library for
training and testing of a k-nearest neighbor (KNN)
classifier

For all of the experiments, we chose to use the IEEE 118-
Bus System, which represents the American Power System
in the Midwestern region of the US during December 1962,
for the case studies. This power system has 186 transmission
lines, making it difficult to detect when a line goes out when
many lines need to be observed. More details on our use of
MATPOWER to generate training/testing data is provided in
Section III-A.

We used a KNN classifier to detect a line outage using
the power data obtained from MATPOWER. Specifically, we
trained the KNN classifier with the training portion of the
data and then evaluated the performance of the KNN clas-
sifier using the testing portion of the data. We recorded the
classification performance measures of precision, recall, and
F1-score. More details on our use of the KNN classifier is
provided in Section III-B.

Finally, we used inferential statistics to validate our conclu-
sions, we explain in Section III-C.

A. Generating Training and Testing Data

We executed two sets of ACOPF solutions for the IEEE
118-Bus System. The first set of solutions represents the
power system with all lines functioning, while the second
set represents the power system with one line disconnected
or out-of-service. We gathered information on the real and
reactive power flows at the from and to buses of each line in
the power system, excluding lines 7, 9, 113, 133, 134, 176,
177, 183, and 184, as their ACOPF solution does not converge
when disconnected. As a result, there are 177 lines that can
be placed in the out-of-service state for detection.

As the load at each bus in real-world power systems
fluctuates over time, we simulated realistic data for each line.
To achieve this, we randomly varied the power demand for
every bus between +/- 1% to +/- 5%. We collected real power
at the from buses (PF), reactive power at the from buses (QF),
real power at the to buses (PT), and reactive power at the
to buses (QT) for every line in both OPF solutions. With
this data, we created binary class labels where 0 represents

a transmission line in-service and 1 represents a transmission
line out-of-service. We gathered 1000 samples for each line:
500 samples for the transmission line in-service, and 500 for
the transmission line out-of-service.

B. KNN Classification

For classification, training data consists of features and the
corresponding class labels. In our specific line outage detection
classification problem, the features are the PF, QF, PT, and
QT measurements, and our class labels are (0: in-service)
or (1: out-of-service). We used the training data obtained
from the MATPOWER simulations to train a KNN classifier
and then used that trained classifier to infer on the testing
data. We computed performance by checking the inferred
labels from the KNN classifier against the ground-truth labels
from the MATPOWER simulations. With those comparisons the
classification performance measures of precision, recall, and
F1-score were computed.

Binary classification produces four outcomes: true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). A true positive outcome is when an out-of-
service line is correctly labeled. A true negative outcome is
when an in-service line is correctly labeled. A false positive
outcome is when an in-service line is incorrectly labeled as
out-of-service. Lastly, a false negative outcome is when an
out-of-service line is incorrectly labeled as in-service.

Precision is the percentage of accurate positive (i.e., out-
of-service) predictions (i.e., TP

TP+FP ), recall is the percentage
of positive cases correctly predicted (i.e., TP

TP+FN ), and the
F1-score is the harmonic mean of precision and recall.

C. Utilizing Inferential Statistics

We utilized inferential statistics to validate our conclusions
regarding line outage classification performance and observa-
tion point type based on LODF. Our goal was to have an
unbiased sample by selecting random line outage locations,
consisting of 24 transmission lines each for low, medium, and
high power flows, respectively. We then used these randomly
selected line outage locations to test for line outage classifica-
tion performance at observation points with lines having low,
medium, and high LODF values. We collected sample means
of precision, recall, and F1-scores, along with 95% confidence
intervals computed from the 24 samples.

IV. EXPERIMENT RESULTS

To visualize our experiment results, we partitioned the
results across three figures (see Figures 2, 3, and 4) each
with three subplots. Each of the three figures shows the
classification performance for each of the three categories
of transmission line for which we detect its service status:
Figure 2 for low power flow lines, Figure 3 for medium
power flow lines, and Figure 4 for high power flow lines. The
three subplots show each of the three performance measures:
precision, recall, and F1-score. In each subplot there are three
data points, one each for low LODF, medium LODF, and high
LODF observation points.
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Fig. 2. Detection of low power flow lines with low, medium, and high LODF
values.

Fig. 3. Detection of medium power flow lines with low, medium, and high
LODF values.

Fig. 4. Detection of high power flow lines with low, medium, and high LODF
values.

A. Low Power Flow Lines

Figure 2 shows that the best lines to observe when a low
power flow line is disconnected are lines with high LODF
values. For lines with low LODF values, we get an average
precision of 56.94%, an average recall of 57.18%, and an
average F1-score of 57.04%. For lines with medium LODF
values, we get an average precision of 66.84%, an average
recall of 65.93%, and an average F1-score of 65.98%. For
lines with high LODF values, we get an average precision of
99.99%, an average recall of 99.97%, and an average F1-score
of 99.98%.

B. Medium Power Flow Lines

Figure 3 shows that the best lines to observe when a medium
power flow line is disconnected are lines with high LODF
values. For lines with low LODF values, we get an average
precision of 51.17%, an average recall of 51.63%, and an
average F1-score of 51.14%. For lines with medium LODF
values, we get an average precision of 52.66%, an average
recall of 52.26%, and an average F1-score of 52.63%. For
lines with high LODF values, we get an average precision of
97.94%, an average recall of 98.05%, and an average F1-score
of 97.99%.

C. High Power Flow Lines

Figure 4 shows that the best lines to observe when a high
power flow line is disconnected are lines with high LODF
values. For lines with low LODF values, we get an average
precision of 58.93%, an average recall of 58.91%, and an
average F1-score of 58.90%. For lines with medium LODF
values, we get an average precision of 62.37%, an average
recall of 62.38%, and an average F1-score of 62.37%. For
lines with high LODF values, we get an average precision of
98.84%, an average recall of 99.01%, and an average F1-score
of 98.92%.

D. Overall Averages for All Lines

For every line in the power system that can be disconnected,
we calculated an average precision, recall, and F1-score for
different observation point types. When we use low LODF
lines as our observation points, we get an average precision
of 55.01%, an average recall of 55.91%, and an average F1-
score of 55.69%. When we use medium LODF lines as our
observation points, we get an average precision of 60.62%, an
average recall of 60.32%, and an average F1-score of 60.33%.
When we use high LODF lines as our observation points,
we get an average precision of 98.92%, an average recall
of 99.01%, and an average F1-score of 98.96%. The results
show that no matter what level of power flow that the line
disconnected used to carry, lines with high LODF values are
in general the best lines to be selected as observation points.

V. CONCLUSIONS

In summary, the most effective way to locate line outages
is by using observation points with high LODF values corre-
sponding to the line out of service. These points indicate that
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a significant amount of power from an outage is being dis-
tributed to that line, which in turn makes detection much easier
using a classification algorithm such as KNN. Conversely,
observation points with low or medium LODF values produce
relatively poor detection results due to the minimal difference
in power flow when a line is disconnected or connected.

Moving forward, our goal is to identify a set of high LODF
lines that can be used to effectively monitor as many lines
as possible in the system. We have observed that certain
line outage locations share the same high LODF lines, which
could allow us to group different lines for detection using
machine learning and limit the amount of data needed to detect
various line outages. Additionally, our line plots have shown a
dramatic change from low and medium LODF to high LODF
observation points. In the future, we would like to observe the
exact point when this change occurs.
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