
Jointly Attacking Graph Neural Network and its
Explanations

Wenqi Fan1,8*, Han Xu2*, Wei Jin2, Xiaorui Liu3, Xianfeng Tang4, Suhang Wang5,

Qing Li1, Jiliang Tang2, Jianping Wang6, and Charu Aggarwal7
1The Hong Kong Polytechnic University, 2Michigan State University, 3North Carolina State University, 4Amazon,

5The Pennsylvania State University, 6City University of Hong Kong, 7IBM T.J. Watson, 8PolyU-Shenzhen Research Institute

wenqifan03@gmail.com, {xuhan1, jinwei2, tangjili}@msu.edu, xiaorui.liu@ncsu.edu, tangxianfeng@outlook.com,

szw494@psu.edu, csqli@comp.polyu.edu.hk, jianwang@cityu.edu.hk, charu@us.ibm.com

Abstract—Graph Neural Networks (GNNs) have boosted the
performance for many graph-related tasks. Despite the great
success, recent studies have shown that GNNs are still vulnerable
to adversarial attacks, where adversaries can mislead the
GNNs’ prediction by modifying graphs. On the other hand, the
explanation of GNNs (GNNEXPLAINER for short) provides a better
understanding of a trained GNN model by generating a small
subgraph and features that are most influential for its prediction.
In this paper, we first perform empirical studies to validate that
GNNEXPLAINER can act as an inspection tool and have the
potential to detect the adversarial perturbations for graphs. This
finding motivates us to further investigate a new problem: Whether
a graph neural network and its explanations can be jointly attacked
by modifying graphs with malicious desires? It is challenging to
answer this question since the goals of adversarial attack and
bypassing the GNNEXPLAINER essentially contradict with each
other. In this work, we give a confirmative answer for this question
by proposing a novel attack framework (GEAttack) for graphs,
which can attack both a GNN model and its explanations by
exploiting their vulnerabilities simultaneously. To the best of our
knowledge, this is the very first effort to attack both GNNs and
explanations on graph-structured data for the trustworthiness of
GNNs. Comprehensive experiments on various real-world datasets
demonstrate the effectiveness of the proposed method.

Index Terms—Graph Neural Networks, Adversarial Attacks,
Explanations, GNNEXPLAINER, Trustworthy GNNs.

I. INTRODUCTION

Graph neural networks (GNNs) have achieved significant

success for graphs in various real-world data mining appli-

cations [1]–[4], such as node classification [5], recommender

systems [6]–[12], and natural language processing [13]. Despite

the great success, recent studies show that GNNs are vulnerable

to adversarial attacks [14], [15], which has raised great concerns

for employing GNNs in security-critical applications [13],

[15], [16]. More specifically, attackers can insert adversarial

perturbations into graphs, which can lead a well-designed

model to produce incorrect outputs or have bad overall

performance [13], [17], [18]. For example, adversaries can

build well-designed user profiles to promote/demote items in

bipartite graphs at many e-commerce platforms such as Alibaba

and Amazon [19], [20]; or some hackers intend to damage an

electoral opponent’s reputation by propagating fake news in

social media [16].

*Equal contribution

Recently, interpretation methods for GNNs

(GNNEXPLAINER for short) [21]–[24] have been proposed to

explain the inner working mechanisms of GNNs. In particular,

given a trained GNN model and its prediction on a test node,

GNNEXPLAINER [21], [22] will return a small subgraph

together with a small subset of node features that are most

influential for its prediction, so human can interpret the

model’s decision via the output subgraphs and features. In our

work, we hypothesize that GNNEXPLAINER can also provide

great opportunities for human (inspectors or system designers)

to inspect the “confused” predictions from adversarial

perturbations. For example, in the e-commerce platform

systems, once there exist abnormal predictions for certain

products given by the GNN model, the GNNEXPLAINER can

help us locate the most influential users which cause the

model to make such a prediction. In this way, we can figure

out the abnormal users, or adversaries who deliberately

propagate such adversarial information to our system. As an

illustrative example, in Figure 1, an attacker (Attacker 1)

changes node v1’s prediction of the GNN model by adding

an adversarial edge (v1, v7) (cf. Figure 1 (b)). At this time,

if people find vi’s prediction is problematic, they can apply

graph interpretation methods (cf. Figure 1 (c)) to “inspect”

this anomaly. Note that an GNNEXPLAINER can figure out the

most influential components for vi’s prediction. In such case,

these adversarial edges made by attackers are highly likely to

be chosen by the GNNEXPLAINER and then detected by the

inspector or system designers (cf. Figure 1 (c)). Therefore,

adversarial users / edges can be excluded from the GNN

model to improve the system’s safety. In fact, this hypothesis

is verified via empirical studies, where the details can be

found in Section III-C. Please note that similar observations

about model explanation techniques can be found on non

graph-structured data in other domains [25]–[28].

Motivated by the fact that GNNEXPLAINER can act as

an inspection tool for graph adversarial perturbations, we

further investigate a new problem: Whether a graph neural
network and its GNNEXPLAINER can be jointly attacked
by modifying graphs with malicious desires? For example,

as shown in Figure 1 (e-f), when an attacker (Attacker 2)

inserts an adversarial edge (v1, v11) to mislead the model’s

prediction, he can also successfully evade the detection by

654

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00056

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

05
6

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

6 9
7

8

32 10

6 9
7

8

32 10

GNNEXPLAINER
for node 1

(a) Clean Graph (c) Explaining GNN's Prediction
on Modified Graph (Attacker 1)

1 1

Predictions made
by GNN�for node 1�
(to be blue color)�

Inspector

6 9
7

8

32 10

(b) Modified Graph by Attacker 1

1

6 9
7

8

32 10

GNNEXPLAINER�
for node 1

(d) Explaning GNN's Prediction
�on Clean Graph (Node 1 with blue color)

1

11 11 11

6 9
7

8

32 10

(e) Modified Graph by Attacker 2

1
11

Attack node 1
(to be green�color)�

11

(f) Explaining GNN's Prediction
on Modified Graph (Attacker 2)

Attack node 1
(to be green�color)�

Attacker 1

representation

informative for� � �
�with blue color�

non-informative
for�

informative for� � �
with green color�

�

� �

normal edge

adversarial edge

GNNEXPLAINER
for node 1 6

9
7

8

32 10

1
11

Attacker 2

Figure 1: Adversarial attacks and the explanations (e.g., GNNEXPLAINER [21] and PGExplainer [22]) for prediction made by a

GNN model. Some edges form important message-passing pathways (in dotted circle with blue/green color) while others do

not (in translucent). The attacker 1 can successfully change the GNN’s prediction to green color on target node v1, while the

added adversarial edge (v1, v7) is included into a subgraph generated by GNNEXPLAINER. And the attacker 2 can attack the

GNN model, as well as fool the GNNEXPLAINER, where the added adversarial edge (v1, v11) is not included into a subgraph

and successfully evade the detection by a inspector.

a GNNEXPLAINER. Therefore, the attacker becomes more

dangerous because he can even misguide these inspection

approaches, leading to more severe safety issues for GNNs.

However, jointly fooling graph neural networks and the

GNNEXPLAINER faces tremendous challenges. The biggest

obstacle is that the goals of adversarial attack and bypassing the

GNNEXPLAINER essentially contradict with each other. After

all, the adversarial perturbations on graph are highly correlated

with the target label because it is the perturbations that cause

such malicious prediction. Therefore, the GNNEXPLAINER has

a high chance to detect these perturbations based on the mutual

information [21]. Moreover, although there exist extensive

works on adversarial attack for GNNs model [14], [15], [17],

[29], the attack on GNNEXPLAINER is a new problem and it

calls for a new solution.

To address aforementioned challenges, we propose a novel

attack framework (GEAttack) for graphs, where the attacker

can successfully fool the GNN model and misguide the

inspection from GNNEXPLAINER simultaneously. Our major

contributions can be summarized as follows:

• We discover that GNNEXPLAINER tools can be utilized

to understand and inspect the problematic outputs from

adversarially perturbed graph data, which paves a way to

improve the safety of GNNs.

• We propose a new attacking problem where we seek

to jointly attack a graph neural network method and

its explanations. Our proposed algorithm GEAttack
successfully resolves the dilemma between attacking GNN

and its explanations by exploiting their vulnerabilities

simultaneously. To the best of our knowledge, we are the

very first to study this problem that reveals more severe

safety concerns, and investigate interactions between ad-

versarial attacks and explainability for the trustworthiness

of GNNs model.

• We conduct comprehensive experiments on three real-

world graph datasets to show the effectiveness of the

proposed model.

II. RELATED WORK

Our work is related to two general lines of works adversarial

attacks on GNNs models and their interpretation methods.

A. Adversarial Attacks on Graphs

GNNs generalize deep neural networks to graph structured

data and become powerful tools for graph representations

learning [1], [30], [31]. However, recent studies have demon-

strated that GNNs suffer from the same issue as other deep

neural networks: they are highly vulnerable to adversarial

attacks [13], [32], [33]. Specifically, attackers can generate

graph adversarial perturbations by manipulating the graph

structure or node features to deceive the GNNs model to make

incorrect predictions [13]–[15]. Nettack [14] is one of the first

methods that perturbs the graph structure data by preserving

degree distribution and feature co-occurrence to perform attack

on GNN model [1]. RL-S2V [15] is the first work to employ

reinforcement learning to generate adversarial perturbations

on graph data. NIPA [34] also proposes a deep reinforcement

learning based method to perform fake node injection attack on

655

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

graph by simulating the attack process and sequentially adds the

adversarial edges and designs labels for the injected fake nodes.

IG-Attack [17] introduces an integrated gradients based attack

method to accurately reflect the effect of perturbing certain

features or edges on graph data. Metattack [35] is proposed to

globally perturb the graph based on meta-learning. In our work,

we first claim that GNNEXPLAINER tools can serve as an

alternative way to improve the GNN model’s safety, by people

(such as system inspectors or designers) doing inspections on

the problematic prediction outcomes of GNN models, and then

locating the potential adversarial perturbations in the graph.

B. Interpretation for Graph Neural Networks

The explanation techniques of deep models aim to study the

underlying relationships behind the predictions of deep models,

and provide human-intelligible explanations, which can make

the deep models more trustable [36]. Some recent efforts have

been made to explain the deep models for image and text

data [36]–[39]. However, the explainability of graph neural

networks models on graph structured data are less explored,

which is critical for understanding deep graph neural networks

[21]–[24], [40], [41]. In particular, as one of the first methods

to interpret GNN, GNNEXPLAINER [21] maximizes the mutual

information between the distribution of possible subgraphs

and the GNN’s prediction to find the subgraph that is most

influential for the prediction. PGExplainer [22] is proposed

to generate an explanation for each instance with a global

understanding of the target GNN model in an inductive setting.

To capture more local information around the given node being

explained, GraphLIME [24] is proposed to utilize predicted

labels from the node and its neighbors. Meanwhile, in order to

investigate what input patterns can result in a certain prediction,

XGNN [23] is proposed to train a graph generator to find

graph patterns to maximize a certain prediction of the target

GNN model by formulating the graph generation process as

reinforcement learning problem. The improved interpretability

is believed to offer a sense of security by involving human

in the decision-making process [23], [36]. However, given

its data-driven nature, the interpretability itself is potentially

susceptible to malicious manipulations [13], [42], [43]. In

this work, our goal is to fool a GNN model as well as its

interpretation methods. Note that there are other efforts devoted

to connecting these two topics by attacking interpretation

method on non graph-structured data [42]–[45]. To the best

of our knowledge, this is the very first effort to investigate

interactions between adversarial attacks and explainability by

attacking both GNNs model and its explanations on graph-

structured data for trustworthy GNNs [33], [46]–[48].

III. PRELIMINARIES

In this section, we investigate the potential of GNNEX-

PLAINER [21] to detect adversarial attacks through empirical

study. Before that, we first introduce key notations and concepts

used in this work.

A. Graph Neural Networks

Formally, let G = (V,E) denote a graph where V =
{v1, ..., vn} is the set of n nodes and E = {e1, ..., ek} is

the edge set. We use A ∈ {0, 1}n×n to indicate the adjacency

matrix of G, where the i, j-th element Aij is 1 if node vi
and node vj are connected in G, and 0 otherwise. We also

use X = [x1,x2, ...,xn] ∈ R
n×d to represent the node feature

matrix, where xi is the d-dimensional feature vector of the

node vi. Here we use G = (A,X) to represent the graph data.

Without loss of generality, given a graph G = (A,X), we

consider the problem of node classification task for GNNs

to learn a function fθ : VL → YL that maps the a part

of nodes VL = {v1, v2, ..., vl} to their corresponding labels

YL = {y1, y2, ..., yl} [1]. The objective function of GNNs can

be defined as,

min
θ

LGNN(fθ(A,X)) :=
∑

vi∈VL

� (fθ(A,X)vi , yi) (1)

= −
∑

vi∈VL

C∑

c=1

I[yi = c] ln(fθ(Â,X)cvi
)

where θ is the parameters of fθ. fθ(A,X)cvi
denotes the c-th

softmax output of node vi and C is the number of class. yi is

the true label of node vi and �(·, ·) is the cross-entropy loss

function. In this work, we adopt a two-layer GCN model [1]

with θ = (W1,W2) as

fθ(A,X) = softmax(Ãσ(ÃXW1)W2) (2)

where Ã = D̃−1/2(A+I)D̃−1/2 and D̃ is the diagonal matrix

of A+ I with D̃ii = 1+
∑

j Aij . σ is the activation function

such as ReLU.

B. GNNEXPLAINER

In order to explain why a GNN model fθ predicts a given

node vi’s label as Y , the GNNEXPLAINER acts to provide

a local interpretation GS = (AS ,XS) by highlighting the

relevant features XS and the relevant subgraph structure AS

for its prediction [21]. To achieve this goal, it formalizes the

problem as an optimization task to find the optimal explanation

(GS), which has the maximum Mutual Information (MI) with

the GNN’s prediction Y [21]:

max
(AS ,XS)

MI (Y, (AS ,XS)) := H(Y)−H(Y |A = AS ,X = XS)

(3)

As the GNN model fθ is fixed, the entropy term H(Y) is also

fixed. In other words, the explanation for vi’s prediction ŷi is a

subgraph AS and the associated feature XS that minimize the

uncertainty of the GNN fθ when the neural message-passing

is limited to GS as follows:

max
(AS ,XS)

MI (Y, (AS ,XS))

→ min
(AS ,XS)

H(Y |A = AS ,X = XS)

≈ min
(AS ,XS)

−
C∑

c=1

I[ŷi = c] ln fθ(AS ,XS)
c
vi (4)

656

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

(a) CITESEER (b) CORA (c) ACM

Figure 2: Results of Attack Success Rate (ASR) under Nettack method on CITESEER, CORA, and ACM datasets.

(a) CITESEER - F1@15 (b) CITESEER - NDCG@15

(c) CORA - F1@15 (d) CORA - NDCG@15

(e) ACM - F1@15 (f) ACM - NDCG@15

Figure 3: Results of detecting the adversarial edges via

GNNEXPLAINER under Nettack method on CITESEER, CORA,

and ACM datasets.

Experimentally, the objective function of GNNEXPLAINER

can be optimized to learn adjacency mask matrix MA

and feature selection mask matrix MF in the following

manner [21]:

min
(MA,MF)

LExplainer(fθ,A,MA,MF , vi, ŷi)

:= −
C∑

c=1

I[ŷi = c] ln fθ(A� σ(MA),X� σ(MF))
c
vi

(5)

where � denotes element-wise multiplication, and σ is the

sigmoid function that maps the mask to [0, 1]
n×n

. After the

optimal mask MA is obtained, we can compute AS = A�
σ(MA) and use a threshold to remove low values. Finally,

top-L edges with the largest values can provide an explanation

AS for GNN’s prediction at node vi. The same operation

XS = X � σ(MF) can be used to produce explanations by

considering the feature information.

C. GNNEXPLAINER as Adversarial Inspector

In our work, we first hypothesize that if a model gives a

wrong prediction to a test node vi because of some adversarially

inserted fake edges, these “adversarial edges” should make a

great contribution to the model’s prediction outcome. Therefore,

if a GNNEXPLAINER can understand this wrong prediction

outcome by figuring out the most influential edges, we are

highly likely to find and locate the adversarial edges and finally

exclude them from data. In this subsection, we first dispatch

empirical studies to validate the above mentioned hypothesis.

Note that in this work we concentrate on GNN’s explanation

on graph structural adversarial perturbations (for graph feature

perturbations are similar, we leave it for future work). Thus, the

objective function of GNNEXPLAINER for adversarial edges

detection can be defined as:

min
MA

LExplainer(fθ,A,MA,X, vi, ŷi)

→max
MA

C∑

c=1

I[ŷi = c] ln fθ(A� σ(MA),X)cvi (6)

where we find an optimal adjacency mask matrix MA, namely

the influential subgraph for vi’s prediction. To check the

inspection performance and verify our hypothesis, we check

whether GNNEXPLAINER’s output influential subgraph can

detect out the adversarially inserted fake edges.

Inspection Performance. We conduct preliminary experiments

on three real-world datasets (i.e., CITESEER, CORA, and

ACM) under F1@15 and NDCG@15 metrics. The details

of experimental settings can be found in Section VI-A. In

these experiments, we choose the state-of-the-art graph attack

method for GNN model, Nettack [14], to perturb the graph

data. We choose 40 target (victim) nodes with each certain

node’s degrees, and then validate whether the adversarial edges

can be found by GNNEXPLAINER for them. To extract the

subgraph (GS) for explanation, GNNEXPLAINER first computes

the importance weights on edges via masked adjacency (MA),

657

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

and then uses thresholding to remove the edges with low

values in graph. Finally, top L edges provide the explanation

(GS) for GNN’s prediction at target node [21]. In other words,

adversarial edges with higher importance weights are more

likely to present at top ranks and be easily detected by people

(such as system inspectors or designers). Here, we adopt

the F1@15 and NDCG@15 to evaluate the detection rate

on adversarial edges, where higher values of F1@15 and

NDCG@15 indicate that the adversarial edges are more likely

to be detected and noticeable. As shown in Figures 2 and 3,

the Nettack attacker can perform effective attacks for nodes

with different degrees on three datasets, achieving around 95%

attack success rate (ASR). Meanwhile, we can observe that

the detection performance via GNNEXPLAINER on these three

datasets are quite high, especially for the nodes with low degree

achieving around 0.4 under the NDCG@15 metric. It means

that the adversarial edges are highly likely to be ranked top

among all edges which contribute to the model’s prediction.

Our results indicate that GNNEXPLAINER has the potential to

mark the adversarial edges in corrupted graph data for GNNs.

In other words, GNNEXPLAINER can generate a small

subgraph (with some influential nodes) to reduce search space

from millions of edges, and adversarial edges ranked top among

all edges in the subgraph are likely to be inspected by domain

experts. Thus, these observations indicate that GNNEXPLAINER

has the potential to mark the adversarial edges in corrupted

graph data for GNNs. Note that similar observations on another

representative explainer (PGExplainer [22]) can be found in

Section VI-C.

In addition, recent studies have shown that the model

explanation techniques can be effectively used to diagnose

model errors–model debugging in computer vision domain

(e.g., diagnosing spurious image [28]) and NLP domain [27]

(e.g., detecting gender bias in abusive language [26] and

revealing model’s vulnerability-adversarial example [25]). To

the best of our knowledge, this work is the very first effort

to investigate the capability of GNN explanations on model

debugging for graph-structured data.

IV. PROBLEM STATEMENT

Given the node classification task, the attacker aims to attack

a specific target node vi ∈ Vt by performing small perturbations

on the graph G = (A,X) and obtains the corrupted graph

Ĝ = (Â, X̂), such that the predicted label of the target node

vi can be manipulated [14], [17]. There are two main types

of adversarial perturbations on the graph, including structure

attacks to modify the adjacency matrix A and feature attacks

to modify the feature matrix X. Please note that we focus

on the structure attacks that attackers only add fake edges to

connect the target nodes with others under certain perturbation

budget Δ. That is due to the fact that perturbing structure attack

is more effective than modifying nodes’ features [17], [49].

Note that a fixed perturbation budget Δ can be constrained as

follows,

‖E′‖ = ‖Â−A‖0 ≤ Δ. (7)

where E′ denotes the added adversarial edges by attackers.

In our work, in order to jointly attack a GNN model and its

GNNEXPLAINER, we design a new attacking method which

should achieve both: (1) misleading the GNN model fθ to

give a wrong prediction ŷi on node vi; (2) misleading the

explanations of the GNN model such that the added fake

edges do not appear in the output subgraph AS given by the

GNNEXPLAINER [21]. More formally, we state our attacking

objective as:

Problem: Given G = (A,X), target (victim) nodes vi ⊆
Vt and specific target label ŷi, the attacker aims to select

adversarial edges to composite a new graph Â which fulfills

the following two goals:

• The added adversarial edges can change the GNN’s predic-

tion to a specific target label: ŷi = argmaxc fθ(Â,X)cvi
;

• The added adversarial edges will not be included in the

subgraph generated by GNNEXPLAINER: Â−A /∈ AS .

V. THE PROPOSED FRAMEWORK

In this section, we first introduce the basic component of

graph attack via inserting adversarial edges and then propose

how to bypass the detection of GNNEXPLAINER. Finally,

we present the overall framework GEAttack and the detailed

algorithm.

A. Graph Attack

We first formulate the problem to attack a GNN model as

one optimization problem to search optimal model structure Â
which can let the model predict the victim node vi as wrong

label ŷi. In particular, given a well trained GNN model fθ
on the clean input graph G, we propose to achieve the attack

on target node vi with specific target label ŷi by searching Â
which let the model have minimum loss on vi:

min
Â

LGNN(fθ(Â,X)vi , ŷi) := −
C∑

c=1

I[ŷi = c] ln(fθ(Â,X)cvi
)

(8)

Note that since we minimize the negative likelihood probability

of the target label ŷi, the optimization of above loss will

promote the prediction probability of class ŷi such that the

prediction is maliciously manipulated from original prediction

yi to ŷi. Due to the perturbation budget, we can choose

adversarial edges according to the top Δ elements in Â.

To solve this optimization problem, we desire to apply

gradient-based attack methods, such as [50] to figure out the

each input edge’s influence to the model output. However,

due to the discrete property and cascading effects of graph

data [14], [29], it is not straightforward to attack a GNN model

via gradient-based attack method, like FGSM in continued

space in computer vision tasks [50]. To address the graph attack

problem, we first relax the adjacency matrix A ∈ {0, 1}n×n as

continuous variable R
n×n. The calculated gradient information

can help us approximately find the most “adversarial” edge

in the current adjacency matrix, which is the element in the

gradient that has the largest negative value. Once added this

658

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

founded edge into the input graph, the model is highly likely

to give a false prediction.

B. GNNEXPLAINER Attack

The graph attack introduced in Section V-A is usually

satisfactory in terms of successful attacking rate as we will

show in Section VI. However, just like existing attack methods

on graph data, since the adversarial edges are highly correlated

with the target prediction ŷi, they are most likely included in the

subgraph detected by the GNNEXPLAINER and then become

noticeable to the inspector or system designers. Therefore, it

is highly nontrivial to achieve attacking while bypassing the

detection by GNNEXPLAINER.

As introduced in Section III-B, GNNEXPLAINER aims to

identify an important small subgraph GS that influences GNN’s

prediction the most for making GNN’s explanations. It works

by minimizing LExplainer (Eq. 6) and selecting the top-L edges

in the adjacency mask matrix MA with the largest values.

Therefore, to bypass the detection by GNNEXPLAINER, we

propose a novel GNNEXPLAINER attack to suppress the

possibility of adversarial edges being detected as follows:

min
Â

∑

vj∈N (vi)

MT
A[i, j] ·B[i, j] (9)

where B = 11T − I−A. I is an identity matrix, and 11T is

all-ones matrix. 11T − I corresponds to the fully-connected

graph. When t is 0, M0
A is randomly initialized; while t is

larger than 0, Mt
A is updated as follows:

Mt
A = Mt−1

A − η∇Mt−1
A

LExplainer(fθ, Â,Mt−1
A ,X, vi, ŷi).

(10)

There are several key motivations:

• The update of Mt
A mimics the gradient descent step in

optimizing the loss function of GNNEXPLAINER in Eq. (5)

and MT
A corresponds to the adjacency mask matrix after

T steps of update.

• The loss term represents the total value of the adjacency

mask corresponding to the edges between node vi and its

direct neighbors N (vi) since we focus on direct attack.

Therefore, the adversarial edges we search among those

neighbors tend to have a small value in the mask matrix

MA; Since GNNEXPLAINER only select edges with large

values to construct the subgraph, there is a higher chance

that adversarial edges could bypass the detection.

• The penalty on existing edges in the clean graph is

excluded by matrix B where B[i, j] = 0 if edge

(vi, vj) exists in the clean graph A. In this way, the

GNNEXPLAINER is still able to include normal edges in

the subgraph. In other words, the GNNEXPLAINER works

normally if not being attacked.

Note that this loss function essentially accumulates and

penalizes the gradient of LExplainer with respect to Mt
A along

the optimization path M0
A → M1

A → · · · → MT
A. Each

step of the gradient has a sophisticated dependency on the

optimization variable Â and it requires the high-order gradient

computation which is supported by deep learning frameworks

such as Pytorch and TensorFlow.

C. GEAttack
After introducing the graph attack and GNNEXPLAINER

attack, we finally obtain the GEAttack framework as follows:

min
Â

LGEAttack := LGNN(fθ(Â,X)vi , ŷi) + λ
∑

v j∈N (v i)

MT
A[i, j] ·B[i, j]

(11)

where M0
A is randomly initialized when t is 0, and for t > 0,

Mt
A can be updated as follows:

Mt
A = MAt−1 − η∇Mt−1

A
LExplainer(fθ, Â,Mt−1

A ,X, vi, ŷi)

(12)

The first loss term LGNN guides the search of adversary

edge such that the prediction of node vi is attacked; the second

loss term guides the search process to bypass the detection of

GNNEXPLAINER; and λ is a hyperparameter which controls

the balance between these two losses. The proposed algorithm

GEAttack can be formulated as bi-level optimization problem

as shown in Algorithm 1. It majorly runs two loops:

• In the inner loop, we mimic the optimization process

of GNNEXPLAINER to obtain the adjacency mask MT
A

by T steps of gradient descent. Note that we maintain

the computation graph of these updates such that the

dependency of MT
A on Â is maintained, which facilitates

the gradient computation in the outer loop;

• In the outer loop, we compute the gradient of LGEAttack

with respect to Â. Note that this step requires the backward

propagation through all gradient descent updates in the

inner loop and requires high-order gradient computation

which is supported by the Automatic Differentiation

Package in PyTorch and TensorFlow. In each iteration,

we select one adversarial edge (set Â[i, j] = 1) according

to the largest value in this gradient since this update

will decrease the loss maximally, similar to the greedy

coordinate descent algorithm.

Algorithm 1 GEAttack
1: Input: perturbation budget: Δ; step-size and update

iterations of GNNEXPLAINER: η, T ; target node vi; target

label ŷi; graph G = (A,X), and a GNN model: fθ.

2: Output: the adversarial adjacency matrix Â.

3: B = 11T − I−A, Â = A, randomly initialize M0
A;

4: for o = 1, 2, . . . ,Δ do // outer loop over Â;

5: for t = 1, 2, . . . , T do // inner loop over Mt
A;

6: compute Pt = ∇
Mt−1

A
LExplainer(fθ, Â,Mt−1

A ,X, vi, ŷi);

7: gradient descent: Mt
A = Mt−1

A − ηPt;

8: end for
9: compute the gradient w.r.t. Â: Qo = ∇ÂLGEAttack;

10: select the edge between node pair (vi, vj) with the

maximum element Qo[i, j] as the adversarial edge, and

update Â[i, j] = 1 and B[i, j] = 0;

11: end for
12: Return Â.

659

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

Table I: The statistics of the datasets by considering the Largest

Connected Component (LCC).

Datasets Nodes Edges Classes Features

CITESEER 2,110 3,668 6 3,703
CORA 2,485 5,069 7 1,433
ACM 3,025 13,128 3 1,870

VI. EXPERIMENT

In this section, we conduct experiments to verify the

effectiveness of our attacking model.

A. Experimental Settings

1) Datasets: We conduct experiments on three widely

used benchmark datasets for node classification, including

CITESEER [1], CORA [1], and ACM [51], [52]. The processed

datasets can be found in the github link1. Following [35], we

only consider the largest connected component (LCC) of each

graph data. The statistics of these three datasets are presented

in Table I.

• CITESEER. CITESEER is a research paper citation

network with nodes representing papers and edges rep-

resenting their citation relationship. The node labels are

based on the paper topics and the node attributes are

bag-of-words descriptions about the papers.

• CORA. CORA is also a citation network where nodes

are papers and edges are the citation relationship between

the papers. The node attributes are also bag-of-words

descriptions about the papers. The papers are divided into

seven classes.

• ACM. This network is extracted from ACM dataset where

nodes represent papers with bag-of-words representations

as node attributes. The existence of an edge between two

nodes indicates they are from the same author. The nodes

are divided into three classes.

2) Baselines: To evaluate the effectiveness of the proposed

attacking method, we compare it with the state-of-the-art attack

algorithms. Since the problem for jointly attacking GNN and

GNNEXPLAINER in this paper is a novel task, there are very

few baselines we can compare with. We select following six

baselines1, which aim to perform targeted attack on a small

set of test nodes.

• Random Attack (RNA): The attacker randomly adds

adversarial edges to connect the target node with one

from candidate nodes whose label is specific target label

until reaching the perturbation budget.

• FGA [29], [53]: This is a gradient-based attack method

which aims to find adversarial edges by calculating the

gradient of model’s output on the adjacency matrix. Note

that this method does not consider to fool the model to

specific label.

• FGA-T: Similar to FGA attack, FGA-T is a targeted

version of FGA attack which aims to attack the target

node to specific target label.

1https://github.com/DSE-MSU/DeepRobust/tree/master/deeprobust/graph

• Nettack [14]: This method introduces the first study of

adversarial attacks on graph data by preserving important

graph characteristics.

• IG-Attack [17]: This baseline introduces an integrated

gradients method that could accurately reflect the effect

of perturbing edges for adversarial attacks on graph data.

• FGA-T&E (Joint Attack): Another baseline based on

FGA-T method, but further incorporates the desire to

evade the detection GNNEXPLAINER when generating

adversarial edges. We first adopt GNNEXPLAINER to

generate a small subgraph (explanation). Then, we exclude

the potential nodes from the subgraph when generating

the adversarial edges between the target node and the

potential nodes.

As most baselines are not directly applicable in target attack

with specific target label, we modify the attacking operations

accordingly, such as modifying the same loss function, or

constraining adversarial edges connecting with nodes who

have the specific target label.

3) Evaluation Metrics: We evaluate the effectiveness of

different attacking methods from two perspectives. The first

are Attack Success Rate (ASR) [54] and Attack Success
Rate with Target label (ASR-T), which are the ratio of the

successfully attacked nodes among all target nodes to any

wrong label and specific (incorrect) target label.

In our preliminary experiments Section III-C, we have

demonstrated that GNNEXPLAINER can act as an inspector

for adversarial edges. Therefore, another type of evaluation

metrics is the popular accuracy metrics for detection rate [55]:

Precision@K, Recall@K, F1@K, and Normalized Discounted

Cumulative Gain (NDCG@K). The first three metrics (Preci-

sion@K, Recall@K, F1@K) focus on how many adversarial

edges are included in the Top-K list of subgraph generated via

GNNEXPLAINER, while the last metric (NDCG@K) accounts

for the ranked position of adversarial edges in the Top-K list.

We set K as 5, 10, and 15. Note that adversarial edges with

higher importance weights in masked adjacency (MA) are

more likely to present at top ranks and be easily detected by

people (such as system inspectors or designers). Hence, higher

values of these metrics (Precision@K, Recall@K, F1@K, and

NDCG@K) indicate that the adversarial edges are more likely

to be detected and noticeable. Meanwhile, lower values of them

also indicate adversarial edges are less likely to include into

the subgraph (GS) and more unnoticeable to human, where the

GNNEXPLAINER can be attacked. Without any specific mention,

we adopt the default parameter setting of GNNEXPLAINER

in the author’s implementation3, and the size of subgraph

L is set to 20. Note that we further analyse the impact of

GNNEXPLAINER inspector on adversarial edge based on the

various size of subgraph L at Section VI-E1.

4) Attacker Settings: In this experiments, we conduct the

targeted attack by selecting a set of target nodes under white-

box setting and only consider the adding fake edges when

doing adversarial perturbations. Meanwhile, we conduct the

3https://github.com/RexYing/gnn-model-explainer

660

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

Table II: Results with standard deviations (± std) on three datasets using different attack algorithms. The higher ASR and

ASR-T is, the stronger the attacker to attack target node is. The lower Precision/Recall/F1/NDCG@K is, the more unnoticeable

the adversarial edges to be generated by attacker is.

Datasets Metrics (%) FGA2 RNA FGA-T Nettack IG-Attack FGA-T&E GEAttack

CITERSEER

ASR 86.79±0.08 55.52±0.08 99.56±0.01 99.11±0.01 91.54±0.05 98.74±0.02 100±0.00
ASR-T - 54.27±0.10 99.56±0.01 99.11±0.01 91.54±0.05 98.74±0.02 100±0.00

Precision@5 17.37±0.03 12.47±0.03 17.54±0.04 12.00±0.02 13.45±0.02 17.39±0.03 10.59±0.03
Precision@10 15.39±0.02 11.4±0.02 15.55±0.02 11.37±0.02 11.78±0.03 15.51±0.02 10.13±0.03
Precision@15 13.45±0.01 9.96±0.01 13.44±0.02 10.21±0.01 10.21±0.01 13.31±0.01 9.87±0.02

Recall@5 48.49±0.07 37.83±0.07 48.97±0.07 38.22±0.07 41.76±0.04 48.58±0.07 34.55±0.08
Recall@10 66.99±0.06 55.34±0.07 67.33±0.06 57.08±0.06 57.88±0.07 67.27±0.06 51.93±0.08
Recall@15 74.55±0.05 63.80±0.05 74.55±0.05 66.48±0.06 65.73±0.04 74.28±0.05 64.05±0.07

F1@5 24.70±0.04 17.98±0.04 24.96±0.05 17.73±0.04 19.71±0.03 24.74±0.04 15.77±0.04
F1@10 24.05±0.03 18.11±0.03 24.25±0.03 18.40±0.03 18.87±0.04 24.21±0.03 16.45±0.04
F1@15 21.65±0.02 16.44±0.02 21.64±0.02 17.08±0.02 16.96±0.02 21.47±0.02 16.49±0.03

NDCG@5 34.29±0.06 26.31±0.06 33.89±0.06 25.91±0.06 29.36±0.05 34.29±0.06 23.40±0.07
NDCG@10 43.36±0.05 34.94±0.05 42.96±0.05 34.37±0.05 36.84±0.05 43.49±0.05 31.06±0.06
NDCG@15 47.18±0.04 39.21±0.04 46.60±0.04 38.45±0.05 40.26±0.04 47.02±0.05 36.11±0.05

CORA

ASR 90.54±0.05 62.97±0.10 100±0.00 100±0.00 90.17±0.07 99.79±0.01 100±0.00
ASR-T - 62.58±0.10 100±0.00 100±0.00 90.17±0.07 99.79±0.01 100±0.00

Precision@5 15.16±0.03 10.32±0.03 14.81±0.03 10.08±0.03 10.83±0.03 15.40±0.03 8.30±0.03
Precision@10 18.86±0.02 10.98±0.02 19.01±0.02 13.13±0.02 14.94±0.04 18.98±0.02 11.71±0.02
Precision@15 16.02±0.01 10.47±0.01 16.08±0.01 12.78±0.01 13.47±0.03 15.95±0.01 12.21±0.01

Recall@5 35.45±0.08 26.16±0.07 35.05±0.08 27.03±0.07 28.55±0.06 35.76±0.08 23.97±0.06
Recall@10 63.49±0.06 44.23±0.08 63.91±0.06 50.41±0.07 55.50±0.09 63.87±0.07 48.79±0.09
Recall@15 72.65±0.05 55.40±0.07 72.75±0.05 63.83±0.06 67.66±0.04 72.45±0.05 65.03±0.06

F1@5 20.42±0.05 14.09±0.04 20.05±0.04 14.16±0.04 15.05±0.04 20.70±0.04 11.92±0.04
F1@10 28.00±0.03 16.96±0.03 28.22±0.03 20.12±0.03 22.71±0.06 28.18±0.03 18.39±0.03
F1@15 25.30±0.02 17.00±0.02 25.38±0.02 20.64±0.02 21.79±0.04 25.21±0.02 20.06±0.02

NDCG@5 24.61±0.06 19.4±0.05 24.63±0.06 19.24±0.06 19.77±0.05 25.22±0.06 17.36±0.04
NDCG@10 38.75±0.05 28.23±0.06 39.14±0.05 30.43±0.05 32.61±0.07 39.33±0.05 28.62±0.05
NDCG@15 43.15±0.04 34.16±0.05 43.41±0.04 36.47±0.04 38.05±0.05 43.46±0.04 35.60±0.03

ACM

ASR 67.50±0.07 63.66±0.13 100±0.00 98.00±0.03 98.82±0.02 100±0.00 100±0.00
ASR-T - 63.66±0.13 100±0.00 98.00±0.03 98.82±0.02 100±0.00 100±0.00

Precision@5 18.96±0.06 14.23±0.05 19.28±0.06 20.03±0.03 18.85±0.08 18.65±0.06 7.03±0.03
Precision@10 14.57±0.06 10.18±0.03 14.86±0.05 16.58±0.03 14.32±0.05 14.35±0.06 7.90±0.00
Precision@15 11.57±0.05 9.26±0.01 11.88±0.05 12.98±0.03 11.69±0.05 11.31±0.05 9.61±0.02

Recall@5 31.34±0.09 22.62±0.05 31.40±0.09 32.69±0.08 34.26±0.12 31.18±0.09 20.89±0.07
Recall@10 36.57±0.11 28.67±0.06 36.67±0.11 40.78±0.09 40.65±0.12 36.38±0.11 30.09±0.05
Recall@15 38.21±0.12 34.05±0.05 38.34±0.12 43.67±0.09 44.49±0.14 37.90±0.12 38.08±0.08

F1@5 19.46±0.06 14.12±0.03 19.54±0.06 21.13±0.04 21.53±0.09 19.25±0.06 10.23±0.04
F1@10 16.77±0.06 12.70±0.03 16.92±0.06 20.30±0.04 18.74±0.07 16.58±0.06 11.73±0.01
F1@15 14.16±0.05 12.75±0.02 14.35±0.05 17.61±0.04 16.61±0.07 13.91±0.05 14.03±0.03

NDCG@5 34.46±0.13 27.83±0.09 34.13±0.12 36.61±0.09 32.94±0.12 34.09±0.12 14.27±0.05
NDCG@10 37.40±0.13 32.58±0.10 37.12±0.13 44.49±0.09 37.97±0.12 37.01±0.12 19.34±0.04
NDCG@15 38.58±0.14 36.68±0.10 38.17±0.13 46.90±0.09 41.23±0.13 38.07±0.13 24.43±0.06

2 FGA cannot evaluate ASR-T metric where the specific target label are not available.

(a) CITESEER - F1 (b) CITESEER - NDCG (c) CORA - F1 (d) CORA - NDCG

Figure 4: Results of detecting the adversarial edges via PGExplainer Inspector under Nettack on CITESEER and CORA datasets.

661

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

evasion attack, where attacking happens after the GNN model

is trained or in the test phase. The model is fixed, and the

attacker cannot change the model parameter or structure. The

perturbation budget Δ of each target node is set to its degree.

Following the setting of IG-Attack [17], we select in total 40

victim target nodes which contain the 10 nodes with top scores,

10 nodes with the lowest scores, and the remaining nodes are

randomly selected. Note that we conducted direct attacks on

the edges directly connected to the target node with specific

target label. To obtain specific target label for each node, we

first perform attack to fool the target nodes via basic FGA

attack method. The changed label for each target node then

is set to be specific target label if success. Note that we use

these successfully attacked nodes to evaluate the final attacking

performance.

5) Parameter Settings: For training the GNN model in

each graph, we randomly choose 10% of nodes for training,

10% of nodes for validation and the remaining 80% of

nodes for testing [49]. For each experiment, we report

the average performance of 5 runs. The hyper-parameters

of all the models are tuned based on the loss and accu-

racy on validation set. For the λ, we test the value of

{0.001, 0.01, 1, 10, 20, 50, 100, 200, 500}. The value of step-

size η was searched in {0.001, 0.01, 0.1, 0.5, 1}. The value

of T was searched range from 1 to 10. Without any specific

mention, we adopt the default parameter setting in the author’s

implementation. We implemented the proposed method on the

basis of PyTorch.

B. Attack Performance Comparison

We first evaluate how the attack methods perform and

whether the adversarial edges can be detected by GNNEX-

PLAINER. The results are demonstrated in Table II. According

to the results, we have the following observations.

1) Attacking GNN Model: Our proposed attacker GEAttack

works consistently comparable to or outperform other strong

GNN attacking methods. In all three datasets (CITESEER,

CORA, and ACM), our proposed attacker GEAttack achieves

around 100% attacking success rate when doing adversarial

attacks with and without target labels (ASR-T & ASR). It

suggests that GEAttack can achieve similar attacking power

compared to other strongest GNN attackers such as FGA-T

and Nettack, while also outperforming other attackers such as

IG-Attack and random attack (RNA).

2) Attacking GNNEXPLAINER: Our proposed attacker

GEAttack consistently outperforms other methods when attack-

ing the GNNEXPLAINER, except for the RNA method. In other

words, our proposed GEAttack is much harder to be detected by

GNNEXPLAINER than all other attacking methods, only except

for the RNA attacker. Note that the RNA method is the strongest

baseline with regard to evade the detection of GNNEXPLAINER,

while having the worst performance on attacking the GNN

model with the ASR-T & ASR metrics. That is due to the fact

that RNA attacker randomly adds edges to the target node, so

the added edge is expected to have low influence to model’s

prediction. From our experimental results, we could see, when

excluding RNA attacker, our proposed GEAttack is the most

strongest attacker for GNNEXPLAINER. Compared to the most

successful GNN attackers (Nettack and FGA-T), GEAttack can

let the GNNEXPLAINER have much lower Precision, Recall

and F1 score, which suggests that the GNNEXPLAINER has

much lower power to detect adversarial perturbations from

GEAttack. For another baseline method, FGA-T&E which

also tries to evade the GNNEXPLAINER (by considering only

attack the edges that are not selected by GNNEXPLAINER),

the GNNEXPLAINER detector still has high chance to figure

out the adversarial perturbations. In conclusion, our proposed

GEAttack can have good performance for attacking GNN

models, which is comparable to other strongest attackers. At the

same time, it is much harder to be detected by GNNEXPLAINER.

The experimental results can verify that our proposed method

can jointly attack both a GNN model and its explanations

(GNNEXPLAINER).

C. Jointly attacking GNNs and PGExplainer

In this section, in order to evaluate the effectiveness of our

proposed attacking method on both GNNs and its explanations,

we apply our proposed method to another representative

explainer for the GNNs model (PGExplainer [22]), which

adopts a deep model to parameterize the generation process of

explanations in the inductive setting. As shown in Figure 4, we

first conducted empirical studies to validate that PGExplainer

has the potential to mark the adversarial edges in corrupted

graph data for GNNs over CITESEER and CORA datasets,

which has similar observations on GNNEXPLAINER in Sec-

tion III.

To perform jointly attacking, we adopt a similar manner to

the search of adversarial edges via the gradient computation of

PGExplainer. Table III shows the overall attack performance

comparison on CITESEER dataset. We do not show the results

on CORA and ACM datasets since similar observations can be

made. In general, we find that our proposed attacker GEAttack

achieves the highest attacking success rate (ASR/ASR-T) com-

pared with baselines. Meanwhile, as for attacking PGExplainer,

our proposed attacker GEAttack also consistently outperforms

other methods under Precision/Recall/F1/NDCG metrics when

attacking the PGExplainer, except for the RNA method. Note

that as RNA attacker randomly adds edges to the target node

for jointly attacking, these adversarial edges might have a low

influence to the model’s prediction and could easily lead to

evade the detection from Explainer, while making it difficult

to attack the GNN model under the ASR-T & ASR metrics.

These observations demonstrate that both GNNs model and

its explanations are vulnerable to adversarial attacks, and our

proposed method can jointly attack both a GNN model and its

explanations.

D. Balancing the Graph Attack and GNNEXPLAINER Attack -
λ

In the previous subsection, we have demonstrated the

effectiveness of the proposed method. In this subsection, we

study the effect of model components between Graph Attack

662

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

(a) CITESEER - ASR-T (b) CORA - ASR-T (c) ACM - ASR-T

Figure 5: Effect of λ under Attack Success Rate with Target label (ASR-T) on CITESEER, CORA, and ACM datasets.

(a) CITESEER - Precision@15 (b) CITESEER - Recall@15 (c) CITESEER - F1@15 (d) CITESEER - NDCG@15

Figure 6: Effect of λ under detection rate (Precision/Recall/F1/NDCG@15) on CITESEER dataset.

(a) CORA - Precision@15 (b) CORA - Recall@15 (c) CORA - F1@15 (d) CORA - NDCG@15

Figure 7: Effect of λ under detection rate (Precision/Recall/F1/NDCG@15) on CORA dataset.

Table III: Results with standard deviations (±std) on CITESEER dataset using different attacking algorithms.

Metrics (%) FGA RNA FGA-T Nettack IG-Attack FGA-T&E GEAttack
ASR 88.89±0.06 55.19±0.04 99.24±0.01 97.20±0.18 98.93±0.01 98.76±0.01 99.34±0.03

ASR-T - 51.74±0.06 99.24±0.01 96.91±0.11 98.42±0.02 98.81±0.01 99.34±0.03
Precion@5 6.30±0.03 4.53±0.03 6.62±0.04 7.05±0.05 7.89±0.02 6.71±0.04 4.59±0.02
Precion@10 7.04±0.03 4.12±0.02 6.42±0.03 6.51±0.04 7.00±0.02 5.89±0.03 4.82±0.02
Precion@15 6.77±0.03 4.10±0.02 6.47±0.02 6.45±0.03 6.52±0.02 5.66±0.02 4.65±0.01

Recall@5 20.5±0.11 14.05±0.08 21.71±0.13 22.6±0.12 27.65±0.06 19.93±0.14 14.16±0.09
Recall@10 33.7±0.15 21.07±0.09 31.90±0.15 32.89±0.14 37.62±0.08 29.02±0.16 23.05±0.10
Recall@15 40.39±0.14 27.37±0.12 39.71±0.16 40.50±0.16 43.73±0.10 35.14±0.16 28.60±0.11

F1@5 9.16±0.05 6.44±0.04 9.65±0.06 10.27±0.06 11.91±0.03 9.38±0.06 6.56±0.03
F1@10 11.09±0.05 6.51±0.03 10.13±0.05 10.36±0.05 11.07±0.03 9.22±0.05 7.42±0.03
F1@15 11.07±0.04 6.79±0.03 10.61±0.04 10.65±0.05 10.72±0.03 9.19±0.04 7.47±0.02

NDCG@5 14.59±0.08 9.57±0.06 15.54±0.10 15.84±0.08 20.24±0.04 13.56±0.10 10.45±0.07
NDCG@10 20.07±0.09 12.55±0.06 19.78±0.11 20.07±0.09 24.47±0.05 17.15±0.11 14.24±0.07
NDCG@15 22.65±0.09 14.85±0.07 22.87±0.11 23.07±0.09 26.76±0.06 19.38±0.11 16.45±0.07

663

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

(a) ACM - Precision@15 (b) ACM - Recall@15 (c) ACM - F1@15 (d) ACM - NDCG@15

Figure 8: Effect of λ under detection rate (Precision/Recall/F1/NDCG@15) on ACM dataset.

(a) CORA - Precision@15 (b) CORA - Recall@15

(c) CORA - F1@15 (d) CORA - NDCG@15

Figure 9: Effect of size of subgraph L under detection rate

(Precision/Recall/F1/NDCG@15) on CORA dataset.

and GNNEXPLAINER Attack, which is controlled by λ. When

λ is close to 0, GEAttack is degraded to Graph Attack model,

while it focuses on GNNEXPLAINER Attack for larger values

of λ.

The ASR-T performance change of GEAttack on CITESEER,

CORA, and ACM datasets is illustrated in Figure 5. As we can

see from figures, the ASR-T of GEAttack can maintain 100%

successfully attacked nodes until 50 and 20 for CITESEER

(ACM) and CORA datasets, respectively. However, larger

values of λ can greatly hurt the ASR-T performance. For

instance, ASR-T performance of GEAttack can reduce to 95%

when λ is set to 50. Moreover, for the detection performance

on the GNNEXPLAINER, the Precision/Recall/F1/NDCG@15

performance changes of GEAttack on CITESEER, CORA,

and ACM datasets are illustrated in Figure 6, 7 and 8,

respectively. From the figures, we first observe that when

the value of λ becomes large, the detection rate on CITESEER

and CORA datasets consistently has the same trend under Pre-

cision/Recall/F1/NDCG@15 metrics. In addition, the detection

ratio maintains stable when the value of λ is larger than 50.

This observation suggests that a larger value of λ is more likely

to encourage GEAttack for selecting the adversarial edges as

more unnoticeable as possible. Note that more results regarding

the effect of λ are shown in Figure 11 and 12.

To summarize, larger values of λ can hurt attack Graph

Attack, while benefiting to GNNEXPLAINER Attack and vise

versa. These observations demonstrate that there may indeed

exist the trade-off relation between attacking GNN model and

attacking the GNNEXPLAINER. However, selecting a proper λ
can facilitate us to achieve good attacking performance for the

two adversarial goals simultaneously.

E. Parameter Analysis

In this subsection, we study effect of model hyper-parameters

for understanding the proposed method, including the size of

subgraph L and the number of update iterations T .

1) Effect of Subgraph Size L: In this subsection, we further

study the impact of GNNEXPLAINER inspector for adversarial

edges based on the size of subgraph L. Figure 9 shows the

detection rate of GEAttack with varied size of subgraph L.

As we can see, when the size of subgraph increases, the

performance tends to increase first. And GEAttack can not

keep increasing when the size of subgraph is larger than around

20.

2) Effect of the Number of Update Iterations T : In this

subsection, we explore the sensitivity of hyper-parameter T for

GEAttack. T is the number step of updating GNNEXPLAINER,

which may influence the learning of Mt
A. The results are

given on Figure 10 on CORA and ACM datasets. We do

not show the results under attack success rate (ASR-T) as the

performance almost achieves 100% and do not change too much.

From the figure, we can observe that our proposed GEAttack

method can achieve good performance under small value of T
(i.e., less than 3), which indicates that sub-optimal solution of

GNNEXPLAINER can provide enough gradient signal regarding

Mt
A to guide the selection of adversarial edges for jointly

attacking graph neural networks and GNNEXPLAINER.

VII. CONCLUSION

In this paper, we first dispatched empirical studies to demon-

strate that GNNs’ explanations can act as an inspection tool

and have the potential to detect the adversarial perturbations for

graph data. After that, we introduced a new problem: Whether
a graph neural network and its explanations can be jointly
attacked by modifying graph data with malicious desires? To

664

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

(a) CORA - F1@15 (b) CORA - NDCG@15 (c) ACM - F1@15 (d) ACM - NDCG@15

Figure 10: Effect of T under detection rate (F1/NDCG@15) on CORA and ACM datasets.

(a) CITESEER - Precision@10 (b) CITESEER - Recall@10 (c) CITESEER - F1@10 (d) CITESEER - NDCG@10

Figure 11: Effect of λ under detection rate (Precision/Recall/F1/NDCG@10) on CITESEER dataset.

(a) CORA - Precision@10 (b) CORA - Recall@10 (c) CORA - F1@10 (d) CORA - NDCG@10

Figure 12: Effect of λ under detection rate (Precision/Recall/F1/NDCG@10) on CORA dataset.

address this problem, we presented a novel attacking method

(GEAttack) to jointly attack a graph neural network and its

explanations (e.g., GNNEXPLAINER and PGExplainer). Our

thorough experiments on three real-world datasets shown the

superiority of the proposed GEAttack over a set of competitive

baselines. Then, we furthermore performed model analysis to

better understand the behavior of GEAttack.

Currently we only consider detecting adversarial edges via

GNNEXPLAINER and PGExplainer [22], while there exist

other adversarial perturbations, like modifying features and

injecting fake nodes. In the future, we would like to extend

the proposed model for performing attacks via other types

of adversarial perturbations. Moreover, inspired by recent

success on self-supervised learning [56], [57], we would like to

investigate an adversarial self-supervised learning framework

to defend against such joint attacks on both GNNs and their

explanations via enhancing the robustness of the GNNs model

and explanations model simultaneously.

ACKNOWLEDGMENT

The research described in this paper has been partly

supported by NSFC (Project No. 62102335), an internal

research fund from The Hong Kong Polytechnic University

(Project No. P0036200, P0042693, and P0043302), a General

Research Fund from the Hong Kong Research Grants Council

(Project No. PolyU 15200021 and PolyU 15207322), and

Hong Kong Research Grant Council under RIF R5060-19.

Han Xu, Wei Jin, Xiaorui Liu, and Jiliang Tang are supported

by the National Science Foundation (NSF) under grant

numbers IIS1714741, CNS1815636, IIS1845081, IIS1907704,

IIS1928278, IIS1955285, IOS2107215, and IOS2035472, and

the Army Research Office (ARO) under grant number W911NF-

21-1-0198. Suhang Wang is supported by NSF under grant

number IIS-1909702, ARO under grant W911NF21-1-0198,

and Department of Homeland Security (DHS) CINA under

grant E205949D.

665

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations (ICLR), 2017.

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The World Wide Web
Conference, 2019, pp. 417–426.

[3] W. Fan, X. Liu, W. Jin, X. Zhao, J. Tang, and Q. Li, “Graph trend filtering
networks for recommendation,” in Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2022, pp. 112–121.

[4] T. Derr, Y. Ma, W. Fan, X. Liu, C. Aggarwal, and J. Tang, “Epidemic
graph convolutional network,” in Proceedings of the 13th International
Conference on Web Search and Data Mining, 2020, pp. 160–168.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Advances in neural information processing systems,
2017, pp. 1024–1034.

[6] W. Fan, Y. Ma, Q. Li, J. Wang, G. Cai, J. Tang, and D. Yin, “A
graph neural network framework for social recommendations,” IEEE
Transactions on Knowledge and Data Engineering, 2020.

[7] B. Chen, X. Zhao, Y. Wang, W. Fan, H. Guo, and R. Tang,
“Automated machine learning for deep recommender systems: A
survey,” CoRR, vol. abs/2204.01390, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2204.01390

[8] W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, and Q. Li, “Deep social
collaborative filtering,” in Proceedings of the 13th ACM Conference on
Recommender Systems, 2019, pp. 305–313.

[9] J. Wu, W. Fan, J. Chen, S. Liu, Q. Li, and K. Tang, “Disentangled
contrastive learning for social recommendation,” in Proceedings of
the 31st ACM International Conference on Information & Knowledge
Management, 2022, pp. 4570–4574.

[10] W. Fan, Q. Li, and M. Cheng, “Deep modeling of social relations for
recommendation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[11] X. Zhao, H. Liu, W. Fan, H. Liu, J. Tang, and C. Wang, “Autoloss:
Automated loss function search in recommendations,” in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 3959–3967.

[12] W. Fan, T. Derr, Y. Ma, J. Wang, J. Tang, and Q. Li, “Deep adversarial
social recommendation,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 2019, pp. 1351–1357.

[13] H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. K. Jain,
“Adversarial attacks and defenses in images, graphs and text: A review,”
International Journal of Automation and Computing, 2020.

[14] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks
on neural networks for graph data,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2847–2856.

[15] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” in Proceedings of the 35th
International Conference on Machine Learning, PMLR, vol. 80, 2018.

[16] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial
attacks on graph neural networks via node injections: A hierarchical
reinforcement learning approach,” in Proceedings of The Web Conference
2020, 2020, pp. 673–683.

[17] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu,
“Adversarial examples for graph data: deep insights into attack and
defense,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI), 2019, pp. 4816–4823.

[18] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng, M. Hong, and X. Lin,
“Topology attack and defense for graph neural networks: an optimization
perspective,” in Proceedings of the 28th International Joint Conference
on Artificial Intelligence, 2019, pp. 3961–3967.

[19] W. Fan, T. Derr, X. Zhao, Y. Ma, H. Liu, J. Wang, J. Tang, and
Q. Li, “Attacking black-box recommendations via copying cross-domain
user profiles,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 1583–1594.

[20] J. Chen, W. Fan, G. Zhu, X. Zhao, C. Yuan, Q. Li, and Y. Huang,
“Knowledge-enhanced black-box attacks for recommendations,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 108–117.

[21] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer:
Generating explanations for graph neural networks,” in Advances in neural
information processing systems, 2019, pp. 9244–9255.

[22] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang,
“Parameterized explainer for graph neural network,” in Proceedings of
34th Conference on Neural Information Processing Systems, 2020.

[23] H. Yuan, J. Tang, X. Hu, and S. Ji, “Xgnn: Towards model-level
explanations of graph neural networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, ser. KDD ’20, 2020, p. 430–438.

[24] Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang,
“Graphlime: Local interpretable model explanations for graph neural
networks,” arXiv preprint arXiv:2001.06216, 2020.

[25] M. T. Ribeiro, S. Singh, and C. Guestrin, “Semantically equivalent
adversarial rules for debugging nlp models,” in ACL, 2018.

[26] P. Lertvittayakumjorn, L. Specia, and F. Toni, “Find: Human-in-the-loop
debugging deep text classifiers,” in EMNLP, 2020.

[27] P. Lertvittayakumjorn and F. Toni, “Explanation-based human debugging
of nlp models: A survey,” Transactions of the Association for
Computational Linguistics, 2021.

[28] J. Adebayo, M. Muelly, I. Liccardi, and B. Kim, “Debugging tests for
model explanations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 700–712, 2020.

[29] W. Jin, Y. Li, H. Xu, Y. Wang, and J. Tang, “Adversarial attacks and
defenses on graphs: A review and empirical study,” arXiv preprint
arXiv:2003.00653, 2020.

[30] W. Fan, Y. Ma, H. Xu, X. Liu, J. Wang, Q. Li, and J. Tang, “Deep
adversarial canonical correlation analysis,” in Proceedings of the 2020
SIAM International Conference on Data Mining. SIAM, 2020, pp.
352–360.

[31] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations, 2018.

[32] Y. Wan, H. Xu, X. Liu, J. Ren, W. Fan, and J. Tang, “Defense against
gradient leakage attacks via learning to obscure data,” arXiv preprint
arXiv:2206.00769, 2022.

[33] W. Fan, X. Zhao, X. Chen, J. Su, J. Gao, L. Wang, Q. Liu, Y. Wang, H. Xu,
L. Chen et al., “A comprehensive survey on trustworthy recommender
systems,” arXiv preprint arXiv:2209.10117, 2022.

[34] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial
attacks on graph neural networks via node injections: A hierarchical
reinforcement learning approach,” in Proceedings of The Web Conference
2020, 2020, pp. 673–683.

[35] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” in International Conference on Learning
Representations (ICLR), 2019.

[36] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[37] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[38] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2921–2929.

[39] S. Kim, J. Yi, E. Kim, and S. Yoon, “Interpretation of nlp models through
input marginalization,” in EMNLP, 2020.

[40] E. Dai and S. Wang, “Towards self-explainable graph neural network,” in
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 302–311.

[41] ——, “Towards prototype-based self-explainable graph neural network,”
arXiv preprint arXiv:2210.01974, 2022.

[42] J. Heo, S. Joo, and T. Moon, “Fooling neural network interpretations
via adversarial model manipulation,” in Advances in Neural Information
Processing Systems, 2019, pp. 2925–2936.

[43] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang, “Interpretable
deep learning under fire,” in 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[44] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks is
fragile,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 3681–3688.

666

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

[45] N. Liu, H. Yang, and X. Hu, “Adversarial detection with model
interpretation,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 1803–
1811.

[46] H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. K. Jain,
and J. Tang, “Trustworthy ai: A computational perspective,” ACM
Transactions on Intelligent Systems and Technology (ACM TIST), 2022.

[47] H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, and J. Pei, “Trustworthy
graph neural networks: Aspects, methods and trends,” arXiv preprint
arXiv:2205.07424, 2022.

[48] E. Dai, T. Zhao, H. Zhu, J. Xu, Z. Guo, H. Liu, J. Tang, and S. Wang,
“A comprehensive survey on trustworthy graph neural networks: Privacy,
robustness, fairness, and explainability,” arXiv preprint arXiv:2204.08570,
2022.

[49] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure
learning for robust graph neural networks,” in Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2020, pp. 66–74.

[50] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations (ICLR), 2015.

[51] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adaptive
multi-channel graph convolutional networks,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 1243–1253.

[52] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

[53] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan, “Fast gradient
attack on network embedding,” arXiv preprint arXiv:1809.02797, 2018.

[54] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Attacking graph
convolutional networks via rewiring,” arXiv preprint arXiv:1906.03750,
2019.

[55] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[56] S. Suresh, P. Li, C. Hao, and J. Neville, “Adversarial graph augmentation
to improve graph contrastive learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 15 920–15 933, 2021.

[57] M. Kim, J. Tack, and S. J. Hwang, “Adversarial self-supervised contrastive
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 2983–2994, 2020.

667

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.

