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Abstract—Graph Neural Networks (GNNs) have boosted the
performance for many graph-related tasks. Despite the great
success, recent studies have shown that GNNs are still vulnerable
to adversarial attacks, where adversaries can mislead the
GNNs’ prediction by modifying graphs. On the other hand, the
explanation of GNNs (GNNEXPLAINER for short) provides a better
understanding of a trained GNN model by generating a small
subgraph and features that are most influential for its prediction.
In this paper, we first perform empirical studies to validate that
GNNEXPLAINER can act as an inspection tool and have the
potential to detect the adversarial perturbations for graphs. This
finding motivates us to further investigate a new problem: Whether
a graph neural network and its explanations can be jointly attacked
by modifying graphs with malicious desires? 1t is challenging to
answer this question since the goals of adversarial attack and
bypassing the GNNEXPLAINER essentially contradict with each
other. In this work, we give a confirmative answer for this question
by proposing a novel attack framework (GEAttack) for graphs,
which can attack both a GNN model and its explanations by
exploiting their vulnerabilities simultaneously. To the best of our
knowledge, this is the very first effort to attack both GNNs and
explanations on graph-structured data for the trustworthiness of
GNNs. Comprehensive experiments on various real-world datasets
demonstrate the effectiveness of the proposed method.

Index Terms—Graph Neural Networks, Adversarial Attacks,
Explanations, GNNEXPLAINER, Trustworthy GNNs.

I. INTRODUCTION

Graph neural networks (GNNs) have achieved significant
success for graphs in various real-world data mining appli-
cations [1]-[4], such as node classification [5], recommender
systems [6]—[12], and natural language processing [13]. Despite
the great success, recent studies show that GNNs are vulnerable
to adversarial attacks [14], [15], which has raised great concerns
for employing GNNs in security-critical applications [13],
[15], [16]. More specifically, attackers can insert adversarial
perturbations into graphs, which can lead a well-designed
model to produce incorrect outputs or have bad overall
performance [13], [17], [18]. For example, adversaries can
build well-designed user profiles to promote/demote items in
bipartite graphs at many e-commerce platforms such as Alibaba
and Amazon [19], [20]; or some hackers intend to damage an
electoral opponent’s reputation by propagating fake news in
social media [16].

“Equal contribution

Recently, interpretation methods for GNNs
(GNNEXPLAINER for short) [21]-[24] have been proposed to
explain the inner working mechanisms of GNNs. In particular,
given a trained GNN model and its prediction on a test node,
GNNEXPLAINER [21], [22] will return a small subgraph
together with a small subset of node features that are most
influential for its prediction, so human can interpret the
model’s decision via the output subgraphs and features. In our
work, we hypothesize that GNNEXPLAINER can also provide
great opportunities for human (inspectors or system designers)
to inspect the “confused” predictions from adversarial
perturbations. For example, in the e-commerce platform
systems, once there exist abnormal predictions for certain
products given by the GNN model, the GNNEXPLAINER can
help us locate the most influential users which cause the
model to make such a prediction. In this way, we can figure
out the abnormal users, or adversaries who deliberately
propagate such adversarial information to our system. As an
illustrative example, in Figure 1, an attacker (Attacker 1)
changes node v;’s prediction of the GNN model by adding
an adversarial edge (v1,v7) (cf. Figure 1 (b)). At this time,
if people find v;’s prediction is problematic, they can apply
graph interpretation methods (cf. Figure 1 (c)) to “inspect”
this anomaly. Note that an GNNEXPLAINER can figure out the
most influential components for v;’s prediction. In such case,
these adversarial edges made by attackers are highly likely to
be chosen by the GNNEXPLAINER and then detected by the
inspector or system designers (cf. Figure 1 (c)). Therefore,
adversarial users / edges can be excluded from the GNN
model to improve the system’s safety. In fact, this hypothesis
is verified via empirical studies, where the details can be
found in Section III-C. Please note that similar observations
about model explanation techniques can be found on non
graph-structured data in other domains [25]-[28].

Motivated by the fact that GNNEXPLAINER can act as
an inspection tool for graph adversarial perturbations, we
further investigate a new problem: Whether a graph neural
network and its GNNEXPLAINER can be jointly attacked
by modifying graphs with malicious desires? For example,
as shown in Figure 1 (e-f), when an attacker (Attacker 2)
inserts an adversarial edge (vy,v11) to mislead the model’s
prediction, he can also successfully evade the detection by
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Figure 1: Adversarial attacks and the explanations (e.g., GNNEXPLAINER [21] and PGExplainer [22]) for prediction made by a
GNN model. Some edges form important message-passing pathways (in dotted circle with blue/green color) while others do
not (in translucent). The attacker 1 can successfully change the GNN’s prediction to green color on target node v;, while the
added adversarial edge (vy,v7) is included into a subgraph generated by GNNEXPLAINER. And the attacker 2 can attack the
GNN model, as well as fool the GNNEXPLAINER, where the added adversarial edge (v1,v11) is not included into a subgraph

and successfully evade the detection by a inspector.

a GNNEXPLAINER. Therefore, the attacker becomes more
dangerous because he can even misguide these inspection
approaches, leading to more severe safety issues for GNNs.
However, jointly fooling graph neural networks and the
GNNEXPLAINER faces tremendous challenges. The biggest
obstacle is that the goals of adversarial attack and bypassing the
GNNEXPLAINER essentially contradict with each other. After
all, the adversarial perturbations on graph are highly correlated
with the target label because it is the perturbations that cause
such malicious prediction. Therefore, the GNNEXPLAINER has
a high chance to detect these perturbations based on the mutual
information [21]. Moreover, although there exist extensive
works on adversarial attack for GNNs model [14], [15], [17],
[29], the attack on GNNEXPLAINER is a new problem and it
calls for a new solution.

To address aforementioned challenges, we propose a novel
attack framework (GEAttack) for graphs, where the attacker
can successfully fool the GNN model and misguide the
inspection from GNNEXPLAINER simultaneously. Our major
contributions can be summarized as follows:

o We discover that GNNEXPLAINER tools can be utilized
to understand and inspect the problematic outputs from
adversarially perturbed graph data, which paves a way to
improve the safety of GNNs.

o« We propose a new attacking problem where we seek
to jointly attack a graph neural network method and
its explanations. Our proposed algorithm GEAttack
successfully resolves the dilemma between attacking GNN
and its explanations by exploiting their vulnerabilities
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simultaneously. To the best of our knowledge, we are the
very first to study this problem that reveals more severe
safety concerns, and investigate interactions between ad-
versarial attacks and explainability for the trustworthiness
of GNNs model.

We conduct comprehensive experiments on three real-
world graph datasets to show the effectiveness of the
proposed model.

II. RELATED WORK

Our work is related to two general lines of works adversarial
attacks on GNNs models and their interpretation methods.

A. Adversarial Attacks on Graphs

GNNs generalize deep neural networks to graph structured
data and become powerful tools for graph representations
learning [1], [30], [31]. However, recent studies have demon-
strated that GNNs suffer from the same issue as other deep
neural networks: they are highly vulnerable to adversarial
attacks [13], [32], [33]. Specifically, attackers can generate
graph adversarial perturbations by manipulating the graph
structure or node features to deceive the GNNs model to make
incorrect predictions [13]-[15]. Nettack [14] is one of the first
methods that perturbs the graph structure data by preserving
degree distribution and feature co-occurrence to perform attack
on GNN model [1]. RL-S2V [15] is the first work to employ
reinforcement learning to generate adversarial perturbations
on graph data. NIPA [34] also proposes a deep reinforcement
learning based method to perform fake node injection attack on
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graph by simulating the attack process and sequentially adds the
adversarial edges and designs labels for the injected fake nodes.
IG-Attack [17] introduces an integrated gradients based attack
method to accurately reflect the effect of perturbing certain
features or edges on graph data. Metattack [35] is proposed to
globally perturb the graph based on meta-learning. In our work,
we first claim that GNNEXPLAINER tools can serve as an
alternative way to improve the GNN model’s safety, by people
(such as system inspectors or designers) doing inspections on
the problematic prediction outcomes of GNN models, and then
locating the potential adversarial perturbations in the graph.

B. Interpretation for Graph Neural Networks

The explanation techniques of deep models aim to study the
underlying relationships behind the predictions of deep models,
and provide human-intelligible explanations, which can make
the deep models more trustable [36]. Some recent efforts have
been made to explain the deep models for image and text
data [36]-[39]. However, the explainability of graph neural
networks models on graph structured data are less explored,
which is critical for understanding deep graph neural networks
[21]-[24], [40], [41]. In particular, as one of the first methods
to interpret GNN, GNNEXPLAINER [21] maximizes the mutual
information between the distribution of possible subgraphs
and the GNN'’s prediction to find the subgraph that is most
influential for the prediction. PGExplainer [22] is proposed
to generate an explanation for each instance with a global
understanding of the target GNN model in an inductive setting.
To capture more local information around the given node being
explained, GraphLIME [24] is proposed to utilize predicted
labels from the node and its neighbors. Meanwhile, in order to
investigate what input patterns can result in a certain prediction,
XGNN [23] is proposed to train a graph generator to find
graph patterns to maximize a certain prediction of the target
GNN model by formulating the graph generation process as
reinforcement learning problem. The improved interpretability
is believed to offer a sense of security by involving human
in the decision-making process [23], [36]. However, given
its data-driven nature, the interpretability itself is potentially
susceptible to malicious manipulations [13], [42], [43]. In
this work, our goal is to fool a GNN model as well as its
interpretation methods. Note that there are other efforts devoted
to connecting these two topics by attacking interpretation
method on non graph-structured data [42]-[45]. To the best
of our knowledge, this is the very first effort to investigate
interactions between adversarial attacks and explainability by
attacking both GNNs model and its explanations on graph-
structured data for trustworthy GNNs [33], [46]-[48].

III. PRELIMINARIES

In this section, we investigate the potential of GNNEX-
PLAINER [21] to detect adversarial attacks through empirical
study. Before that, we first introduce key notations and concepts
used in this work.

656

A. Graph Neural Networks

Formally, let G = (V,E) denote a graph where V =
{v1,...,v,} is the set of n nodes and E = {ey,...,ex} is
the edge set. We use A € {0,1}"*" to indicate the adjacency
matrix of G, where the 7, j-th element A;; is 1 if node v;
and node v; are connected in &, and 0 otherwise. We also
use X = [x1,Xs, ..., X,] € R"*? to represent the node feature
matrix, where x; is the d-dimensional feature vector of the
node v;. Here we use G = (A, X) to represent the graph data.
Without loss of generality, given a graph G = (A, X), we
consider the problem of node classification task for GNNs
to learn a function fy : V; — Y that maps the a part
of nodes Vi = {vy,vq,...,u;} to their corresponding labels
YL ={v1,y2,...,y1} [1]. The objective function of GNNs can
be defined as,

mein Lann(fo(A, X)) = Z C(fo(A, X) 0, ¥s) 0
v; €V, . A
== > DIy = dn(fo(A, X)5,)
v; €V c=1

where 0 is the parameters of fy. fp(A,X);, denotes the c-th
softmax output of node v; and C is the number of class. y; is
the true label of node v; and £(-,-) is the cross-entropy loss
function. In this work, we adopt a two-layer GCN model [1]
with § = (W1, Ws) as

fo(A,X) = softmax(A o(A X W;) W) )

where A = D~/2(A+I)D~'/2 and D is the diagonal matrix
of A+TIwith Dy =14 ; A,;;. o is the activation function
such as ReLU.

B. GNNEXPLAINER

In order to explain why a GNN model fy predicts a given
node v;’s label as Y, the GNNEXPLAINER acts to provide
a local interpretation Gg (As,Xg) by highlighting the
relevant features X g and the relevant subgraph structure A g
for its prediction [21]. To achieve this goal, it formalizes the
problem as an optimization task to find the optimal explanation
(Gs), which has the maximum Mutual Information (M I) with
the GNN’s prediction Y [21]:

max MI(Y,(Ag,Xg)) = H(Y)— HY|A = Ag,X = Xg)

(As,Xs)

3
As the GNN model fj is fixed, the entropy term H(Y') is also
fixed. In other words, the explanation for v;’s prediction g; is a
subgraph A g and the associated feature X g that minimize the
uncertainty of the GNN fy when the neural message-passing
is limited to Gg as follows:

max MI (Y, (As,Xs))

(As.Xs)
— min H(Y|A=Ag,X=Xg)
(As.Xs)
c
~ min —» I[g; =c|ln fy(Ag,Xg); 4
A ;[y Jn fo(As, Xs);, @)
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Figure 2: Results of Attack Success Rate (ASR) under Nettack method on CITESEER, CORA, and ACM datasets.
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Figure 3: Results of detecting the adversarial edges via
GNNEXPLAINER under Nettack method on CITESEER, CORA,
and ACM datasets.

Experimentally, the objective function of GNNEXPLAINER
can be optimized to learn adjacency mask matrix M4
and feature selection mask matrix Mz in the following
manner [21]:

(Mril’il\r}[F)L:Explainer(f% A> MAa MFa (%7 :’)z)

C
==Y T = dIn fo(A©o(Ma), X ©a(Mp));,
c=1
©)

where © denotes element-wise multiplication, and o is the
sigmoid function that maps the mask to [0,1]"". After the

optimal mask M 4 is obtained, we can compute Ag = A ©®
o(M,) and use a threshold to remove low values. Finally,
top-L edges with the largest values can provide an explanation
A for GNN’s prediction at node v;. The same operation
Xs =X ®o(Mp) can be used to produce explanations by
considering the feature information.

C. GNNEXPLAINER as Adversarial Inspector

In our work, we first hypothesize that if a model gives a
wrong prediction to a test node v; because of some adversarially
inserted fake edges, these “adversarial edges” should make a
great contribution to the model’s prediction outcome. Therefore,
if a GNNEXPLAINER can understand this wrong prediction
outcome by figuring out the most influential edges, we are
highly likely to find and locate the adversarial edges and finally
exclude them from data. In this subsection, we first dispatch
empirical studies to validate the above mentioned hypothesis.
Note that in this work we concentrate on GNN’s explanation
on graph structural adversarial perturbations (for graph feature
perturbations are similar, we leave it for future work). Thus, the
objective function of GNNEXPLAINER for adversarial edges
detection can be defined as:

Hl\}lin['Explainer(f% A7 MA7 X, 4, ﬁz)
A

C
- nﬁix; I[g; = JIn fo(A © o(M4),X)S.  (6)

where we find an optimal adjacency mask matrix M 4, namely
the influential subgraph for v;’s prediction. To check the
inspection performance and verify our hypothesis, we check
whether GNNEXPLAINER’s output influential subgraph can
detect out the adversarially inserted fake edges.

Inspection Performance. We conduct preliminary experiments
on three real-world datasets (i.e., CITESEER, CORA, and
ACM) under F1@15 and NDCG@15 metrics. The details
of experimental settings can be found in Section VI-A. In
these experiments, we choose the state-of-the-art graph attack
method for GNN model, Nettack [14], to perturb the graph
data. We choose 40 target (victim) nodes with each certain
node’s degrees, and then validate whether the adversarial edges
can be found by GNNEXPLAINER for them. To extract the
subgraph (G g) for explanation, GNNEXPLAINER first computes
the importance weights on edges via masked adjacency (M 4),

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:02:03 UTC from IEEE Xplore. Restrictions apply.



and then uses thresholding to remove the edges with low
values in graph. Finally, top L edges provide the explanation
(Gg) for GNN’s prediction at target node [21]. In other words,
adversarial edges with higher importance weights are more
likely to present at top ranks and be easily detected by people
(such as system inspectors or designers). Here, we adopt
the F1@15 and NDCG@15 to evaluate the detection rate
on adversarial edges, where higher values of F1@15 and
NDCG@15 indicate that the adversarial edges are more likely
to be detected and noticeable. As shown in Figures 2 and 3,
the Nettack attacker can perform effective attacks for nodes
with different degrees on three datasets, achieving around 95%
attack success rate (ASR). Meanwhile, we can observe that
the detection performance via GNNEXPLAINER on these three
datasets are quite high, especially for the nodes with low degree
achieving around 0.4 under the NDCG@15 metric. It means
that the adversarial edges are highly likely to be ranked top
among all edges which contribute to the model’s prediction.
Our results indicate that GNNEXPLAINER has the potential to
mark the adversarial edges in corrupted graph data for GNNs.

In other words, GNNEXPLAINER can generate a small
subgraph (with some influential nodes) to reduce search space
from millions of edges, and adversarial edges ranked top among
all edges in the subgraph are likely to be inspected by domain
experts. Thus, these observations indicate that GNNEXPLAINER
has the potential to mark the adversarial edges in corrupted
graph data for GNNs. Note that similar observations on another
representative explainer (PGExplainer [22]) can be found in
Section VI-C.

In addition, recent studies have shown that the model
explanation techniques can be effectively used to diagnose
model errors—model debugging in computer vision domain
(e.g., diagnosing spurious image [28]) and NLP domain [27]
(e.g., detecting gender bias in abusive language [26] and
revealing model’s vulnerability-adversarial example [25]). To
the best of our knowledge, this work is the very first effort
to investigate the capability of GNN explanations on model
debugging for graph-structured data.

IV. PROBLEM STATEMENT

Given the node classification task, the attacker aims to attack
a specific target node v; € V; by performing small perturbations
on the graph G = (A, X) and obtains the corrupted graph
G = (A,X), such that the predicted label of the target node
v; can be manipulated [14], [17]. There are two main types
of adversarial perturbations on the graph, including structure
attacks to modify the adjacency matrix A and feature attacks
to modify the feature matrix X. Please note that we focus
on the structure attacks that attackers only add fake edges to
connect the target nodes with others under certain perturbation
budget A. That is due to the fact that perturbing structure attack
is more effective than modifying nodes’ features [17], [49].
Note that a fixed perturbation budget A can be constrained as
follows,

|E'|| = ||A — Allo < A. %)
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where E’ denotes the added adversarial edges by attackers.
In our work, in order to jointly attack a GNN model and its
GNNEXPLAINER, we design a new attacking method which
should achieve both: (1) misleading the GNN model fy to
give a wrong prediction ¢; on node v;; (2) misleading the
explanations of the GNN model such that the added fake
edges do not appear in the output subgraph Ag given by the
GNNEXPLAINER [21]. More formally, we state our attacking
objective as:

Problem: Given G = (A, X), target (victim) nodes v; C
V; and specific target label y;, the attacker aims to select
adversarial edges to composite a new graph A which fulfills
the following two goals:

o The added adversarial edges can change the GNN’s predic-
tion to a specific target label: j; = argmax, fo(A, X)5.s

o The added adversarial edges will not be included in the
subgraph generated by GNNEXPLAINER: A — A ¢ Ag.

V. THE PROPOSED FRAMEWORK

In this section, we first introduce the basic component of
graph attack via inserting adversarial edges and then propose
how to bypass the detection of GNNEXPLAINER. Finally,
we present the overall framework GEAttack and the detailed
algorithm.

A. Graph Attack

We first formulate the problem to attack a GNN model as
one optimization problem to search optimal model structure A
which can let the model predict the victim node v; as wrong
label g;. In particular, given a well trained GNN model fy
on the clean input graph G, we propose to achieve the attack
on target node v; with specific target label y; by searching A
which let the model have minimum loss on v;:

o In(fs(A,X)5,)
(8)

Note that since we minimize the negative likelihood probability
of the target label ¢;, the optimization of above loss will
promote the prediction probability of class g; such that the
prediction is maliciously manipulated from original prediction
y; to ;. Due to the perturbation budget, we can choose
adversarial edges according to the top A elements in A.

To solve this optimization problem, we desire to apply
gradient-based attack methods, such as [50] to figure out the
each input edge’s influence to the model output. However,
due to the discrete property and cascading effects of graph
data [14], [29], it is not straightforward to attack a GNN model
via gradient-based attack method, like FGSM in continued
space in computer vision tasks [50]. To address the graph attack
problem, we first relax the adjacency matrix A € {0,1}"*"™ as
continuous variable R”*". The calculated gradient information
can help us approximately find the most “adversarial” edge
in the current adjacency matrix, which is the element in the
gradient that has the largest negative value. Once added this

min Lox(fo(A, X)u,, 9:) = ZH
c=1
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founded edge into the input graph, the model is highly likely
to give a false prediction.

B. GNNEXPLAINER Afttack

The graph attack introduced in Section V-A is usually
satisfactory in terms of successful attacking rate as we will
show in Section VI. However, just like existing attack methods
on graph data, since the adversarial edges are highly correlated
with the target prediction g;, they are most likely included in the
subgraph detected by the GNNEXPLAINER and then become
noticeable to the inspector or system designers. Therefore, it
is highly nontrivial to achieve attacking while bypassing the
detection by GNNEXPLAINER.

As introduced in Section III-B, GNNEXPLAINER aims to
identify an important small subgraph G's that influences GNN’s
prediction the most for making GNN’s explanations. It works
by minimizing Lexprainer (EQ. 6) and selecting the top-L edges

in the adjacency mask matrix M 4 with the largest values.

Therefore, to bypass the detection by GNNEXPLAINER, we
propose a novel GNNEXPLAINER attack to suppress the
possibility of adversarial edges being detected as follows:

min MZLi, 4] - Bli, j
A Z A[Zﬂj] [27.7]
v EN(v;)

©))

where B=117 —T— A.Tis an identity matrix, and 117 is
all-ones matrix. 117 — I corresponds to the fully-connected
graph. When ¢ is 0, MY is randomly initialized; while ¢ is
larger than 0, MY, is updated as follows:

qu = qu_l - 7/]vl\/IiA—lL"E)q)lain&=.r(f97 A7 qu_lv Xv Vi, ?)z)
(10)

There are several key motivations:

o The update of M’ mimics the gradient descent step in
optimizing the loss function of GNNEXPLAINER in Eq. (5)
and Mﬂ corresponds to the adjacency mask matrix after
T steps of update.

o The loss term represents the total value of the adjacency
mask corresponding to the edges between node v; and its

direct neighbors N (v;) since we focus on direct attack.

Therefore, the adversarial edges we search among those
neighbors tend to have a small value in the mask matrix
M 4; Since GNNEXPLAINER only select edges with large
values to construct the subgraph, there is a higher chance
that adversarial edges could bypass the detection.

o The penalty on existing edges in the clean graph is
excluded by matrix B where B[i,j] = 0 if edge
(vs,vj) exists in the clean graph A. In this way, the
GNNEXPLAINER is still able to include normal edges in
the subgraph. In other words, the GNNEXPLAINER works
normally if not being attacked.

Note that this loss function essentially accumulates and
penalizes the gradient of Lgyplainer With respect to Mf4 along
the optimization path MY — MY — ... — M?Y. Each
step of the gradient has a sophisticated dependency on the
optimization variable A and it requires the high-order gradient
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computation which is supported by deep learning frameworks
such as Pytorch and TensorFlow.

C. GEAttack

After introducing the graph attack and GNNEXPLAINER
attack, we finally obtain the GEAttack framework as follows:

min Leasack = Lann (fo(A, X)u, . 5:) + A Y M4, j] - Bli, j]

A v EN(JU ) i

(1D

where M% is randomly initialized when ¢ is 0, and for ¢ > 0,
MY, can be updated as follows:

Mt = llef*1 - UthAfl »CExplainer(fea Aa MtA_lv Xa Uiy gl)
(12)
The first loss term Lgnn guides the search of adversary
edge such that the prediction of node v; is attacked; the second
loss term guides the search process to bypass the detection of
GNNEXPLAINER; and A is a hyperparameter which controls
the balance between these two losses. The proposed algorithm
GEAttack can be formulated as bi-level optimization problem
as shown in Algorithm 1. It majorly runs two loops:

o In the inner loop, we mimic the optimization process
of GNNEXPLAINER to obtain the adjacency mask M7
by 1" steps of gradient descent. Note that we maintain
the computation graph of these updates such that the
dependency of M% on A is maintained, which facilitates
the gradient computation in the outer loop;

« In the outer loop, we compute the gradient of Lggaack
with respect to A.. Note that this step requires the backward
propagation through all gradient descent updates in the
inner loop and requires high-order gradient computation
which is supported by the Automatic Differentiation
Package in PyTorch and TensorFlow. In each iteration,
we select one adversarial edge (set A[i, j] = 1) according
to the largest value in this gradient since this update
will decrease the loss maximally, similar to the greedy
coordinate descent algorithm.

Algorithm 1 GEAttack

1: Input: perturbation budget: A; step-size and update
iterations of GNNEXPLAINER: 7, T'; target node v;; target
label ¢;; graph G = (A, X), and a GNN model: fy.

: Output: the adversarial adjacency matrix A.

B=117 —1— A, A = A, randomly initialize MY;

for o =1,2,...,A do // outer loop over A;

for t=1,2,...,7 do // inner loop over M',;
compute P! = V-1 Lespiainer (o, A MY X v, 6);
gradient descent: M!, = M ' — 5Pt

end for

compute the gradient w.r.t. A: Q° = V 4 LoEAutack:

select the edge between node pair (v;,v;) with the
maximum element Q°[¢, j] as the adversarial edge, and

update A[i,j] =1 and BJi, j] = 0;

end for

Return A.

R A A i 4

_.
=4

11:
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Table I: The statistics of the datasets by considering the Largest
Connected Component (LCC).

Datasets \ Nodes Edges Classes Features
CITESEER | 2,110 3,668 6 3,703
CORA 2,485 5,069 7 1,433
ACM 3,025 13,128 3 1,870

VI. EXPERIMENT

In this section, we conduct experiments to verify the
effectiveness of our attacking model.

A. Experimental Settings

1) Datasets: We conduct experiments on three widely
used benchmark datasets for node classification, including
CITESEER [1], CORA [1], and ACM [51], [52]. The processed
datasets can be found in the github link'. Following [35], we
only consider the largest connected component (LCC) of each
graph data. The statistics of these three datasets are presented
in Table I.

o CITESEER. CITESEER is a research paper citation

network with nodes representing papers and edges rep-

resenting their citation relationship. The node labels are
based on the paper topics and the node attributes are
bag-of-words descriptions about the papers.

CORA. CORA is also a citation network where nodes

are papers and edges are the citation relationship between

the papers. The node attributes are also bag-of-words
descriptions about the papers. The papers are divided into
seven classes.

o ACM. This network is extracted from ACM dataset where
nodes represent papers with bag-of-words representations
as node attributes. The existence of an edge between two
nodes indicates they are from the same author. The nodes
are divided into three classes.

2) Baselines: To evaluate the effectiveness of the proposed
attacking method, we compare it with the state-of-the-art attack
algorithms. Since the problem for jointly attacking GNN and
GNNEXPLAINER in this paper is a novel task, there are very
few baselines we can compare with. We select following six
baselines!, which aim to perform targeted attack on a small
set of test nodes.

« Random Attack (RNA): The attacker randomly adds
adversarial edges to connect the target node with one
from candidate nodes whose label is specific target label
until reaching the perturbation budget.

FGA [29], [53]: This is a gradient-based attack method
which aims to find adversarial edges by calculating the
gradient of model’s output on the adjacency matrix. Note
that this method does not consider to fool the model to
specific label.

FGA-T: Similar to FGA attack, FGA-T is a targeted
version of FGA attack which aims to attack the target
node to specific target label.

Uhttps://github.com/DSE-MSU/DeepRobust/tree/master/deeprobust/graph

660

o Nettack [14]: This method introduces the first study of
adversarial attacks on graph data by preserving important
graph characteristics.

IG-Attack [17]: This baseline introduces an integrated
gradients method that could accurately reflect the effect
of perturbing edges for adversarial attacks on graph data.
FGA-T&E (Joint Attack): Another baseline based on
FGA-T method, but further incorporates the desire to
evade the detection GNNEXPLAINER when generating
adversarial edges. We first adopt GNNEXPLAINER to
generate a small subgraph (explanation). Then, we exclude
the potential nodes from the subgraph when generating
the adversarial edges between the target node and the
potential nodes.

As most baselines are not directly applicable in target attack
with specific target label, we modify the attacking operations
accordingly, such as modifying the same loss function, or
constraining adversarial edges connecting with nodes who
have the specific target label.

3) Evaluation Metrics: We evaluate the effectiveness of
different attacking methods from two perspectives. The first
are Attack Success Rate (ASR) [54] and Attack Success
Rate with Target label (ASR-T), which are the ratio of the
successfully attacked nodes among all target nodes to any
wrong label and specific (incorrect) target label.

In our preliminary experiments Section III-C, we have
demonstrated that GNNEXPLAINER can act as an inspector
for adversarial edges. Therefore, another type of evaluation
metrics is the popular accuracy metrics for detection rate [55]:
Precision@K, Recall @K, F1@K, and Normalized Discounted
Cumulative Gain (NDCG@K). The first three metrics (Preci-
sion@K, Recall@K, F1 @K) focus on how many adversarial
edges are included in the Top-K list of subgraph generated via
GNNEXPLAINER, while the last metric (NDCG@K) accounts
for the ranked position of adversarial edges in the Top-K list.
We set K as 5, 10, and 15. Note that adversarial edges with
higher importance weights in masked adjacency (M 4) are
more likely to present at top ranks and be easily detected by
people (such as system inspectors or designers). Hence, higher
values of these metrics (Precision@K, Recall@K, F1 @K, and
NDCG@K) indicate that the adversarial edges are more likely
to be detected and noticeable. Meanwhile, lower values of them
also indicate adversarial edges are less likely to include into
the subgraph (G g) and more unnoticeable to human, where the
GNNEXPLAINER can be attacked. Without any specific mention,
we adopt the default parameter setting of GNNEXPLAINER
in the author’s implementation®, and the size of subgraph
L is set to 20. Note that we further analyse the impact of
GNNEXPLAINER inspector on adversarial edge based on the
various size of subgraph L at Section VI-E1.

4) Attacker Settings: In this experiments, we conduct the
targeted attack by selecting a set of target nodes under white-
box setting and only consider the adding fake edges when
doing adversarial perturbations. Meanwhile, we conduct the

3https://github.com/Rex Ying/gnn-model-explainer
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Table II: Results with standard deviations (£ std) on three datasets using different attack algorithms. The higher ASR and
ASR-T is, the stronger the attacker to attack target node is. The lower Precision/Recall/F1I/NDCG@K is, the more unnoticeable
the adversarial edges to be generated by attacker is.

Datasets Metrics (%) FGAZ RNA FGA-T Nettack IG-Attack FGA-T&E GEAttack
ASR 86.7940.08 | 55.524+0.08 | 99.56+0.01 | 99.114+0.01 | 91.5440.05 | 98.74+0.02 100+0.00
ASR-T - 54.2740.10 | 99.56+0.01 | 99.11£+0.01 | 91.5440.05 | 98.74+0.02 100+0.00
Precision@3 17.3740.03 12.4740.03 17.54+0.04 | 12.00+£0.02 | 13.45+0.02 | 17.394+0.03 10.59+0.03
Precision@10 | 15.39+0.02 11.4+0.02 15.5540.02 | 11.3740.02 | 11.78+0.03 | 15.51+£0.02 | 10.13+0.03
Precision@15 | 13.45+0.01 9.96+0.01 13.444+0.02 | 10.21£0.01 10.2140.01 13.314+0.01 9.8740.02
Recall@5 48.494+0.07 | 37.83+£0.07 | 48.97+£0.07 | 38.22+0.07 | 41.76£0.04 | 48.58+0.07 | 34.55+0.08
CITERSEER Recall@10 66.994+0.06 | 55.34+0.07 | 67.33+£0.06 | 57.08+0.06 | 57.88+0.07 | 67.274+0.06 | 51.93+0.08
Recall@15 74.55+0.05 63.80+0.05 | 74.55+0.05 | 66.48+0.06 | 65.73+0.04 | 74.28+0.05 | 64.05£0.07
F1@5 24.770+0.04 17.984+0.04 | 24.96+0.05 | 17.73£0.04 | 19.71+0.03 | 24.74+0.04 | 15.77+0.04
F1@10 24.0540.03 18.114+0.03 | 24.25+0.03 | 18.40+0.03 | 18.874+0.04 | 24.21+0.03 16.45+0.04
Fl1@15 21.65+0.02 | 16.44+0.02 21.64+0.02 | 17.08+0.02 | 16.96+0.02 | 21.47+0.02 16.4940.03
NDCG@5 34.29+0.06 | 26.314+0.06 | 33.8940.06 | 25.91+0.06 | 29.36+0.05 | 34.29+0.06 | 23.40+0.07
NDCG@10 43.3610.05 34.9440.05 | 42.96+0.05 | 34.37+£0.05 | 36.844+0.05 | 43.49+0.05 | 31.06+0.06
NDCG@15 47.18+0.04 | 39.21£0.04 | 46.60£0.04 | 38.45+0.05 | 40.26+£0.04 | 47.02+0.05 | 36.11+0.05
ASR 90.5440.05 62.9740.10 100+0.00 100+0.00 90.1740.07 | 99.7940.01 100+0.00
ASR-T - 62.58+0.10 100+0.00 100+0.00 90.17+0.07 | 99.79+0.01 100+0.00
Precision@3 15.161+0.03 10.3240.03 14.81+0.03 | 10.08+£0.03 | 10.83+£0.03 | 15.40+0.03 8.30+0.03
Precision@10 | 18.86+0.02 | 10.98+0.02 19.01+0.02 | 13.13+£0.02 | 14.9440.04 | 18.984+0.02 11.714+0.02
Precision@15 | 16.02+0.01 10.47+0.01 16.08+0.01 | 12.78+0.01 | 13.47£0.03 | 15.95+0.01 12.21+0.01
Recall@5 35.4540.08 | 26.1640.07 35.05+£0.08 | 27.03+0.07 | 28.554+0.06 | 35.76+0.08 | 23.97+0.06
Recall@10 63.491+0.06 | 44.23+0.08 63.91+0.06 | 50.41+£0.07 | 55.504+0.09 | 63.87+0.07 | 48.79+0.09
CORA Recall@15 72.65+0.05 | 55.40+0.07 | 72.75+£0.05 | 63.83+0.06 [ 67.66+£0.04 | 72.45+0.05 | 65.03+0.06
Fl1@5 20.4240.05 14.0940.04 | 20.054+0.04 | 14.16+0.04 | 15.05+£0.04 | 20.70+0.04 | 11.92+0.04
F1@10 28.00£0.03 | 16.96+0.03 28.22+0.03 | 20.12+0.03 | 22.71£0.06 | 28.18+0.03 18.3940.03
F1@15 25.30+0.02 | 17.00+£0.02 25.38+0.02 | 20.64+£0.02 | 21.794£0.04 | 25.21+£0.02 | 20.06£0.02
NDCG@5 24.614+0.06 19.440.05 24.63+0.06 | 19.24+0.06 | 19.7740.05 | 25.224+0.06 | 17.36:£0.04
NDCG@10 38.75+0.05 | 28.23+0.06 39.14£0.05 | 30.43+0.05 | 32.61£0.07 | 39.33£0.05 | 28.62+0.05
NDCG@15 43.154+0.04 | 34.161+0.05 43.41+£0.04 | 36.47£0.04 | 38.05+0.05 | 43.46£0.04 | 35.60+0.03
ASR 67.50+0.07 | 63.66+0.13 100+0.00 98.00+0.03 | 98.82+0.02 10040.00 100+0.00
ASR-T - 63.66+0.13 100+0.00 98.00+0.03 | 98.82+0.02 100+0.00 100+0.00
Precision@5 18.96+0.06 14.2340.05 19.284+0.06 | 20.03+0.03 | 18.85+0.08 | 18.65+0.06 7.03+0.03
Precision@10 | 14.574+0.06 10.1840.03 14.86+0.05 | 16.58+0.03 | 14.32+0.05 | 14.3540.06 7.90+0.00
Precision@15 | 11.5740.05 9.26+0.01 11.88+0.05 | 12.98+0.03 | 11.69£0.05 | 11.31+0.05 9.61£0.02
Recall@5 31.3440.09 | 22.624+0.05 31.40£0.09 | 32.694+0.08 | 34.26+£0.12 | 31.184+0.09 | 20.89+0.07
ACM Recall@10 36.57+0.11 28.67+0.06 | 36.67E£0.11 | 40.78+0.09 | 40.65+0.12 | 36.38+0.11 30.09£0.05
Recall@15 38.21£0.12 | 34.05+0.05 | 38.3440.12 | 43.67+0.09 | 44.49+0.14 | 37.90+0.12 | 38.08+0.08
Fl1@5 19.46+0.06 14.1240.03 19.544+0.06 | 21.13+£0.04 | 21.534+0.09 | 19.25+0.06 | 10.23£0.04
F1@10 16.77+0.06 12.70£0.03 16.924+0.06 | 20.30+£0.04 | 18.74£0.07 | 16.58+0.06 | 11.73£0.01
F1@15 14.16+0.05 12.75+0.02 14.3540.05 | 17.61+0.04 | 16.61+£0.07 | 13.91£0.05 14.0340.03
NDCG@5 34.4640.13 27.834+0.09 | 34.13+0.12 | 36.61£0.09 | 32.9440.12 | 34.09+0.12 | 14.27+0.05
NDCG@10 37.40+0.13 32.58+0.10 | 37.12+0.13 | 44.49+0.09 | 37.974+0.12 | 37.01£0.12 | 19.34+0.04
NDCG@15 38.58+0.14 | 36.684+0.10 | 38.17£0.13 | 46.904+0.09 | 41.23+0.13 | 38.07£0.13 | 24.431+0.06

2 FGA cannot evaluate ASR-T metric where the specific target label are not available.
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Figure 4: Results of detecting the adversarial edges via PGExplainer Inspector under Nettack on CITESEER and CORA datasets.
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evasion attack, where attacking happens after the GNN model
is trained or in the test phase. The model is fixed, and the
attacker cannot change the model parameter or structure. The
perturbation budget A of each target node is set to its degree.
Following the setting of IG-Attack [17], we select in total 40
victim target nodes which contain the 10 nodes with top scores,
10 nodes with the lowest scores, and the remaining nodes are
randomly selected. Note that we conducted direct attacks on
the edges directly connected to the target node with specific
target label. To obtain specific target label for each node, we
first perform attack to fool the target nodes via basic FGA
attack method. The changed label for each target node then
is set to be specific target label if success. Note that we use
these successfully attacked nodes to evaluate the final attacking
performance.

5) Parameter Settings: For training the GNN model in
each graph, we randomly choose 10% of nodes for training,
10% of nodes for validation and the remaining 80% of
nodes for testing [49]. For each experiment, we report
the average performance of 5 runs. The hyper-parameters
of all the models are tuned based on the loss and accu-
racy on validation set. For the A\, we test the value of
{0.001,0.01, 1, 10, 20, 50, 100, 200, 500}. The value of step-
size n was searched in {0.001,0.01,0.1,0.5,1}. The value
of T' was searched range from 1 to 10. Without any specific
mention, we adopt the default parameter setting in the author’s
implementation. We implemented the proposed method on the
basis of PyTorch.

B. Attack Performance Comparison

We first evaluate how the attack methods perform and
whether the adversarial edges can be detected by GNNEX-
PLAINER. The results are demonstrated in Table II. According
to the results, we have the following observations.

1) Attacking GNN Model: Our proposed attacker GEAttack
works consistently comparable to or outperform other strong
GNN attacking methods. In all three datasets (CITESEER,
CORA, and ACM), our proposed attacker GEAttack achieves
around 100% attacking success rate when doing adversarial
attacks with and without target labels (ASR-T & ASR). It
suggests that GEAttack can achieve similar attacking power
compared to other strongest GNN attackers such as FGA-T
and Nettack, while also outperforming other attackers such as
IG-Attack and random attack (RNA).

2) Attacking GNNEXPLAINER: Our proposed attacker
GEAttack consistently outperforms other methods when attack-
ing the GNNEXPLAINER, except for the RNA method. In other
words, our proposed GEAttack is much harder to be detected by
GNNEXPLAINER than all other attacking methods, only except
for the RNA attacker. Note that the RNA method is the strongest
baseline with regard to evade the detection of GNNEXPLAINER,
while having the worst performance on attacking the GNN
model with the ASR-T & ASR metrics. That is due to the fact
that RNA attacker randomly adds edges to the target node, so
the added edge is expected to have low influence to model’s
prediction. From our experimental results, we could see, when
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excluding RNA attacker, our proposed GEAttack is the most
strongest attacker for GNNEXPLAINER. Compared to the most
successful GNN attackers (Nettack and FGA-T), GEAttack can
let the GNNEXPLAINER have much lower Precision, Recall
and F1 score, which suggests that the GNNEXPLAINER has
much lower power to detect adversarial perturbations from
GEAttack. For another baseline method, FGA-T&E which
also tries to evade the GNNEXPLAINER (by considering only
attack the edges that are not selected by GNNEXPLAINER),
the GNNEXPLAINER detector still has high chance to figure
out the adversarial perturbations. In conclusion, our proposed
GEAttack can have good performance for attacking GNN
models, which is comparable to other strongest attackers. At the
same time, it is much harder to be detected by GNNEXPLAINER.
The experimental results can verify that our proposed method
can jointly attack both a GNN model and its explanations
(GNNEXPLAINER).

C. Jointly attacking GNNs and PGExplainer

In this section, in order to evaluate the effectiveness of our
proposed attacking method on both GNNs and its explanations,
we apply our proposed method to another representative
explainer for the GNNs model (PGExplainer [22]), which
adopts a deep model to parameterize the generation process of
explanations in the inductive setting. As shown in Figure 4, we
first conducted empirical studies to validate that PGExplainer
has the potential to mark the adversarial edges in corrupted
graph data for GNNs over CITESEER and CORA datasets,
which has similar observations on GNNEXPLAINER in Sec-
tion III.

To perform jointly attacking, we adopt a similar manner to
the search of adversarial edges via the gradient computation of
PGExplainer. Table III shows the overall attack performance
comparison on CITESEER dataset. We do not show the results
on CORA and ACM datasets since similar observations can be
made. In general, we find that our proposed attacker GEAttack
achieves the highest attacking success rate (ASR/ASR-T) com-
pared with baselines. Meanwhile, as for attacking PGExplainer,
our proposed attacker GEAttack also consistently outperforms
other methods under Precision/Recall/F1/NDCG metrics when
attacking the PGExplainer, except for the RNA method. Note
that as RNA attacker randomly adds edges to the target node
for jointly attacking, these adversarial edges might have a low
influence to the model’s prediction and could easily lead to
evade the detection from Explainer, while making it difficult
to attack the GNN model under the ASR-T & ASR metrics.
These observations demonstrate that both GNNs model and
its explanations are vulnerable to adversarial attacks, and our
proposed method can jointly attack both a GNN model and its
explanations.

D. Balancing the Graph Attack and GNNEXPLAINER Attack -
A

In the previous subsection, we have demonstrated the
effectiveness of the proposed method. In this subsection, we
study the effect of model components between Graph Attack
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Figure 7: Effect of A\ under detection rate (Precision/Recall/FI/NDCG@15) on CORA dataset.

Table III: Results with standard deviations (&£std) on CITESEER dataset using different attacking algorithms.

Metrics (%) FGA RNA FGA-T Nettack IG-Attack | FGA-T&E GEAttack
ASR 88.89+0.06 | 55.194+0.04 | 99.2440.01 | 97.2040.18 | 98.934+0.01 | 98.764+0.01 | 99.34+0.03
ASR-T - 51.74+0.06 | 99.24£0.01 | 96.91+0.11 | 98.424+0.02 | 98.81£0.01 | 99.3440.03

Precion@5 6.30+0.03 4.53+0.03 6.62+0.04 7.05+0.05 7.89+0.02 6.711+0.04 4.59+0.02
Precion@10 | 7.04=£0.03 4.12+0.02 6.42+0.03 6.51£0.04 7.00£0.02 5.8940.03 4.82+0.02
Precion@15 | 6.77£0.03 4.10+0.02 6.47+0.02 6.45+0.03 6.5240.02 5.6610.02 4.65+0.01
Recall@5 20.5+0.11 14.054+0.08 | 21.71£0.13 | 22.6:£0.12 | 27.65£0.06 | 19.93+0.14 | 14.16£0.09
Recall@10 33.74£0.15 | 21.074£0.09 | 31.90£0.15 | 32.8940.14 | 37.62£0.08 | 29.024+0.16 | 23.05£0.10
Recall@15 40.39+£0.14 | 27.3740.12 | 39.71£0.16 | 40.504+0.16 | 43.73£0.10 | 35.144+0.16 | 28.60+£0.11
F1@5 9.16+0.05 6.44+0.04 9.65+0.06 10.27£0.06 | 11.91£0.03 | 9.384+0.06 6.56£0.03
F1@10 11.09£0.05 | 6.514+0.03 10.13£0.05 | 10.36£0.05 | 11.07£0.03 | 9.2240.05 7.42£0.03
Fl1@15 11.07£0.04 | 6.791+0.03 10.61£0.04 | 10.65£0.05 | 10.72£0.03 | 9.1940.04 7.47£0.02
NDCG @5 14.59£0.08 | 9.5740.06 15.54£0.10 | 15.84£0.08 | 20.24£0.04 | 13.56£0.10 | 10.45+0.07
NDCG@10 | 20.07£0.09 | 12.55+0.06 | 19.78+0.11 | 20.07£0.09 | 24.47+0.05 | 17.15+0.11 | 14.24+0.07
NDCG@15 | 22.65+0.09 | 14.85+0.07 | 22.87+0.11 | 23.07+0.09 | 26.76+0.06 | 19.38+0.11 | 16.45+0.07
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and GNNEXPLAINER Attack, which is controlled by A\. When
A is close to 0, GEAttack is degraded to Graph Attack model,
while it focuses on GNNEXPLAINER Attack for larger values
of \.

The ASR-T performance change of GEAttack on CITESEER,
CORA, and ACM datasets is illustrated in Figure 5. As we can
see from figures, the ASR-T of GEAttack can maintain 100%
successfully attacked nodes until 50 and 20 for CITESEER
(ACM) and CORA datasets, respectively. However, larger
values of A can greatly hurt the ASR-T performance. For
instance, ASR-T performance of GEAttack can reduce to 95%
when A is set to 50. Moreover, for the detection performance
on the GNNEXPLAINER, the Precision/Recall/F1/NDCG@ 15
performance changes of GEAttack on CITESEER, CORA,
and ACM datasets are illustrated in Figure 6, 7 and 8,
respectively. From the figures, we first observe that when
the value of A becomes large, the detection rate on CITESEER
and CORA datasets consistently has the same trend under Pre-
cision/Recall/F1/NDCG @15 metrics. In addition, the detection
ratio maintains stable when the value of A is larger than 50.
This observation suggests that a larger value of X is more likely
to encourage GEAttack for selecting the adversarial edges as

more unnoticeable as possible. Note that more results regarding
the effect of A are shown in Figure 11 and 12.

To summarize, larger values of A\ can hurt attack Graph
Attack, while benefiting to GNNEXPLAINER Attack and vise
versa. These observations demonstrate that there may indeed
exist the trade-off relation between attacking GNN model and
attacking the GNNEXPLAINER. However, selecting a proper A
can facilitate us to achieve good attacking performance for the
two adversarial goals simultaneously.

E. Parameter Analysis

In this subsection, we study effect of model hyper-parameters
for understanding the proposed method, including the size of
subgraph L and the number of update iterations 7'.

1) Effect of Subgraph Size L: In this subsection, we further
study the impact of GNNEXPLAINER inspector for adversarial
edges based on the size of subgraph L. Figure 9 shows the
detection rate of GEAttack with varied size of subgraph L.
As we can see, when the size of subgraph increases, the
performance tends to increase first. And GEAttack can not
keep increasing when the size of subgraph is larger than around
20.

2) Effect of the Number of Update Iterations T': In this
subsection, we explore the sensitivity of hyper-parameter 7' for
GEAttack. T is the number step of updating GNNEXPLAINER,
which may influence the learning of MY. The results are
given on Figure 10 on CORA and ACM datasets. We do
not show the results under attack success rate (ASR-T) as the
performance almost achieves 100% and do not change too much.
From the figure, we can observe that our proposed GEAttack
method can achieve good performance under small value of 7'
(i.e., less than 3), which indicates that sub-optimal solution of
GNNEXPLAINER can provide enough gradient signal regarding
MY, to guide the selection of adversarial edges for jointly
attacking graph neural networks and GNNEXPLAINER.

VII. CONCLUSION

In this paper, we first dispatched empirical studies to demon-
strate that GNNs’ explanations can act as an inspection tool
and have the potential to detect the adversarial perturbations for
graph data. After that, we introduced a new problem: Whether
a graph neural network and its explanations can be jointly
attacked by modifying graph data with malicious desires? To
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address this problem, we presented a novel attacking method
(GEAttack) to jointly attack a graph neural network and its
explanations (e.g., GNNEXPLAINER and PGExplainer). Our
thorough experiments on three real-world datasets shown the
superiority of the proposed GEAttack over a set of competitive
baselines. Then, we furthermore performed model analysis to
better understand the behavior of GEAttack.

Currently we only consider detecting adversarial edges via
GNNEXPLAINER and PGExplainer [22], while there exist
other adversarial perturbations, like modifying features and
injecting fake nodes. In the future, we would like to extend
the proposed model for performing attacks via other types
of adversarial perturbations. Moreover, inspired by recent
success on self-supervised learning [56], [57], we would like to
investigate an adversarial self-supervised learning framework
to defend against such joint attacks on both GNNs and their
explanations via enhancing the robustness of the GNNs model
and explanations model simultaneously.
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