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ABSTRACT 
Graph Neural Networks (GNNs) have achieved promising results 
in various tasks such as node classifcation and graph classifcation. 
Recent studies fnd that GNNs are vulnerable to adversarial attacks. 
However, efective backdoor attacks on graphs are still an open 
problem. In particular, backdoor attack poisons the graph by attach-
ing triggers and the target class label to a set of nodes in the training 
graph. The backdoored GNNs trained on the poisoned graph will 
then be misled to predict test nodes to target class once attached 
with triggers. Though there are some initial eforts in graph back-
door attacks, our empirical analysis shows that they may require a 
large attack budget for efective backdoor attacks and the injected 
triggers can be easily detected and pruned. Therefore, in this paper, 
we study a novel problem of unnoticeable graph backdoor attacks 
with limited attack budget. To fully utilize the attack budget, we 
propose to deliberately select the nodes to inject triggers and target 
class labels in the poisoning phase. An adaptive trigger generator 
is deployed to obtain efective triggers that are difcult to be no-
ticed. Extensive experiments on real-world datasets against various 
defense strategies demonstrate the efectiveness of our proposed 
method in conducting efective unnoticeable backdoor attacks. 
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1 INTRODUCTION 
Graph-structured data are very pervasive in the real-world such as 
social networks [14], fnance system [29], and molecular graphs [17]. 
Recently, graph neural networks (GNNs) [19, 27] have shown promis-

ing results in modeling graphs. Generally, GNNs adopt the message-

passing mechanism [19, 34], which updates a node’s representation 
by aggregating information from its neighbors. As a result, the node 
representations learned by GNNs can preserve node features, neigh-
bors and local graph topology, which facilitate various tasks such 
as semi-supervised node classifcation and graph classifcation. 

Despite their great success of GNNs, GNNs are vulnerable to 
adversarial attacks and many graph attack methods have been 
investigated to fool the target GNN models to achieve adversar-
ial goals [12, 33, 45]. Specifcally, due to the utilization of graph 
structure with the message-passing mechanism, attackers can de-
liberately manipulate the graph structures and/or node features to 
mislead the GNNs for adversarial attacks. For instance, Nettack [45] 
iteratively modifes the connectivity of node pairs within attack 
budget to reduce the classifcation accuracy of GNNs on target 
nodes. However, the majority of existing attacks focus on graph 
manipulation attacks that require to calculate the optimal edges 
to be added/deleted for each target node. This will result in un-
afordable time and space complexity on large-scale datasets, i.e, 
� (� 2) where � is the number of nodes [10, 12, 45]. In addition, 
manipulating links and attributes of existing nodes is impractical 
as these nodes/individuals are not controlled by the attacker [25]. 

To address the aforementioned issues, one promising direction 
is to develop backdoor attacks on graphs. Fig. 1 gives an illustration 
of backdoor attack on graphs, where a small set of nodes denoted 
as poisoned samples will be attached with triggers and assigned the 
label of target class. The model trained on the poisoned graph will 
link the trigger with the target class. As a result, the target nodes 
will be predicted as the target class once they are attached with the 
triggers during the inference phase. The trigger can be either pre-
defned or obtained from trigger generator. Firstly, the computation 
cost of backdoor attacks is limited compared with graph manipula-

tion attacks, which paves us a way for an efcient target attack on 
large-scale graphs. For predefned triggers, nearly no computation 
cost is required. When a trigger generator is adopted, optimizing 
the trigger generator only needs the gradients from the poisoned 
samples. Secondly, once the backdoor is injected to the target GNNs, 
the predictions on new target nodes can be easily controlled by 
attaching generated triggers instead of an additional optimization 
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Figure 1: General framework of graph backdoor attack. 

process as graph manipulation attacks. This will especially beneft 
the targeted attack on inductive node classifcation, which widely 
exists in real-world scenarios. For example, TikTok graph will often 
incorporate new users and predict labels of them with a trained 
model. Thirdly, compared with revising the links between existing 
users, it is relatively easy to inject triggers and malicious labels in 
backdoor attacks. Take malicious user detection on social networks 
as an example, many labels are collected from reports of users. In 
this case, malicious labels could be easily assigned by attackers. As 
for the trigger attachment, it can be achieved by linking a set of 
fake accounts to the users. 

Recently, Zhang et al. [39] frstly investigate a graph backdoor 
attack that uses randomly generated graphs as triggers. A trigger 
generator is adopted in [30] to get more powerful sample-specifc 
triggers. However, these methods have unnoticeablity issues in the 
following two aspects. Firstly, our empirical analysis in Sec. 3.3.1 
shows that existing methods need a large budget to conduct efec-
tive backdoor attacks on large-scale graphs, i.e., they need to attach 
the backdoor triggers to a large number of nodes in the training 
graph so that a model trained on the graph will be fooled to as-
sign target label to nodes attached with the backdoor trigger. This 
largely increases the risk of being detected. Secondly, the generated 
triggers of these methods can be easily identifed and destroyed. 
Specifcally, real-world graphs such as social networks generally 
follow homophily assumption, i.e., similar nodes are more likely to 
be connected; while in existing graph backdoor attacks, the edges 
linking triggers and poisoned nodes and edges inside the triggers 
are not guaranteed with the property of connecting nodes with high 
similarity scores. Thus, the triggers and assigned malicious labels 
can be eliminated by pruning edges linking dissimilar nodes and 
discarding labels of involved nodes, which is verifed in Sec 3.3.2. 
Thus, developing an efective unnoticeable graph backdoor attack 
with limited attack budget is important. However, graph backdoor 
attack is still in its early stage and there is no existing work on 
unnoticeable graph backdoor attack with limited attack budget. 

Therefore, in this paper, we study a novel and important problem 
of developing an efective unnoticeable graph backdoor attack with 
limited attack budget in terms of the number of poisoned nodes. In 
essence, we are faced with two challenges: (i) how to fully utilize 
the limited budget in poisoned samples for graph backdoor attacks; 
(ii) how to obtain triggers that are powerful and difcult to be de-
tected. In an attempt to address these challenges, we proposed a 
novel framework Unnoticeable Graph Backdoor Attack (UGBA)1. 
1
https://github.com/ventr1c/UGBA 

To better utilize the attack budget, UGBA proposes to attach trig-
gers with crucial representative nodes with a novel poisoned node 
selection algorithm. And an adaptive trigger generator is deployed 
in UGBA to obtain powerful unnoticeable trigger that exhibits high 
similarity with each target node and maintains high attack success 
rate. In summary, our main contributions are: 
• We study a novel problem of promoting unnoticeablity of graph 
backdoor attacks in generated triggers and attack budget; 

• We empirically verify that a simple strategy of edge pruning and 
label discarding can largely degrade existing backdoor attacks; 

• We design a framework UGBA that deliberately selects poisoned 
samples and learn efective unnoticeable triggers to achieve un-
noticeable graph backdoor attack under limited budget; and 

• Extensive experiments on large-scale graph datasets demonstrate 
the efectiveness of our proposed method in unnoticeably back-
dooring diferent GNN models with limited attack budget. 

2 RELATED WORKS 
2.1 Graph Neural Networks 
Graph Neural Networks (GNNs) [2, 19, 27, 35] have shown remark-

able ability in modeling graph-structured data, which benefts var-
ious applications such as recommendation system [35], drug dis-
covery [2] and trafc analysis [41]. Generally, the success of GNNs 
relies on the message-passing strategy, which updates a node’s 
representation by recursively aggregating and combining features 
from neighboring nodes. For instance, in each layer of GCN [19] the 
representations of neighbors and the center node will be averaged 
followed by a non-linear transformation such as ReLU. Recently, 
many GNN models are proposed to further improve the perfor-
mance of GNNs [4, 6, 7, 10, 18, 37, 43]. For example, self-supervised 
GNNs [18, 22, 43] are investigated to reduce the need of labeled 
nodes. Works that improve fairness [8], robustness [6, 7] and ex-
plainability [9, 36, 40] of GNNs are explored. And GNN models for 
heterophilic graphs are also desgined [11, 31]. 

2.2 Attacks on Graph Neural Networks 
According to the stages the attack occurs, adversarial attacks on 
GNNs can be divided into poisoning attack [25, 45, 46] and evasion 
attack [1, 3, 12, 26, 28, 33]. In poisoning attacks, the attackers aim 
to perturb the training graph before GNNs are trained such that a 
GNN model trained on the poisoned dataset will have a low predic-
tion accuracy on test samples. For example, Nettack [45] employs a 
tractable surrogate model to conduct a targeted poisoning attack by 
learning perturbation against the surrogate model. Evasion attacks 
add perturbation in the test stage, where the GNN model has been 
well trained and cannot be modifed by attackers. Optimizing the 
perturbation of graph structures by gradient descent [33] and rein-
forcement learnings [12, 21] have been explored. Evasion attacks 
through graph injection [20, 44] are also investigated. 

Backdoor attacks are still rarely explored on GNNs [30, 39]. Back-
door attacks generally attach backdoor triggers to the training data 
and assign the target label to samples with trigger. Then a model 
trained on the poisoned data will be misled if backdoors are ac-
tivated by the trigger-embedded test samples. Zhang et al. [39] 
propose a subgraph-based backdoor attack on GNNs by injecting 
randomly generated universal triggers to some training samples. 
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Xi et al. [30] adopt a trigger generator to learn to generate adaptive 
trigger for diferent samples. Sheng et al. [24] propose to select the 
nodes with high degree and closeness centrality. Xu and Picek [32] 
improve the unnoticeability by assigning triggers without change 
labels of poisoned samples. Our proposed method is inherently 
diferent from these methods as (i) we can generate unnoticeable 
adaptive triggers to simultaneously maintain the efectiveness and 
bypass the potential trigger detection defense based on feature sim-

ilarity of linked nodes; (ii) we design a novel clustering-based node 
selection algorithm to further reduce the required attack budget. 

3 PRELIMINARY ANALYSIS 
In this section, we present preliminaries of backdoor attacks on 
graphs and show unnoticeablity issues of existing backdoor attacks. 

3.1 Notations 
We use G = (V, E, X) to denote an attributed graph, where V = 
{�1, . . . , �� } is the set of � nodes, E ⊆ V ×V is the set of edges, 
and X = {x1, ..., x� } is the set of node attributes with x� being 
the node attribute of �� . A ∈ R� ×� 

is the adjacency matrix of 
the graph G, where A� � = 1 if nodes �� and � � are connected; 
otherwise A� � = 0. In this paper, we focus on a semi-supervised 
node classifcation task in the inductive setting, which widely exists 
in real-world applications. For instance, GNNs trained on social 
networks often need to conduct predictions on newly enrolled users 
to provide service. Specifcally, in inductive node classifcation, a 
small set of nodes V� ⊆ V in the training graph are provided with 
labels Y� = {�1, . . . , ��� }. The test nodes V� are not covered in 
the training graph G, i.e., V� ∩V = ∅. 

3.2 Preliminaries of Graph Backdoor Attacks 
3.2.1 Threat Model. In this section, we introduce the threat model. 
Attacker’s Goal: The goal of the adversary is to mislead the GNN 
model to classify target nodes attached with the triggers as tar-
get class. Simultaneously, the attacked GNN model should behave 
normally for clean nodes without triggers attached. 
Attacker’s Knowledge and Capability: As the setting of most 
poisoned attacks, the training data of the target model is available 
for attackers. The information of the target GNN models including 
model architecture is unknown to the attacker. Attackers are capa-
ble of attaching triggers and labels to nodes within a budget before 
the training of target models to poison graphs. During the inference 
phase, attackers can attach triggers to the target test node. 

3.2.2 General Framework of Graph Backdoor Atacks. The key idea 
of the backdoor attacks is to associate the trigger with the target 
class in the training data to mislead target models. As Fig. 1 shows, 
during the poisoning phase, the attacker will attach a trigger � to 
a set of poisoned nodes V� ⊆ V and assign V� with target class 
label �� , resulting a backdoored dataset. Generally, the poisoned 
node set V� is randomly selected. The GNNs trained on the back-
doored dataset will be optimized to predict the poisoned nodes V� 
attached with the trigger � as target class �� , which will force the 
target GNN to correlate the existence of the trigger � in neighbors 
with the target class. In the test phase, the attacker can attach the 
trigger � to a test node � to make � classifed as the target class 
by backdoored GNN. Some initial eforts [30, 39] have been made 

Table 1: Impacts of |V� | to ASR (%) of backdoor attacks. 

| V� | 

SBA-Samp 

80 

0.06 

240 

1.7 

400 

10.8 

800 

34.5 

2400 

75.5 
SBA-Gen 0.08 18.1 32.1 54.3 85.9 
GTA 37.4 62.4 72.4 82.7 94.8 

Table 2: Results of backdoor defense (Attack Success Rate (%) 
| Clean Accuracy (%)) on Ogb-arxiv dataset. 
Defense Clean SBA-Samp SBA-Gen GTA 

None 65.5 61.0 | 65.1 70.8 | 65.2 94.8 | 65.6 
Prune 62.2 8.9 | 64.0 31.2 | 64.0 1.4 | 64.5 
Prune+LD 62.6 3.2 | 64.0 15.3 | 63.8 0.04 | 64.1 

for graph backdoor attacks. Specifcally, SBA [39] directly injects 
designed sub-graphs as triggers. And GTA [30] adopts a trigger 
generator to learn optimal sample-specifc triggers. 

3.3 Unnoticeability of Graph Backdoor Attacks 
In this subsection, we analyze the unnoticeability of existing graph 
backdoor attacks in terms of the required number of poisoned 
samples and the difculty of trigger detection. 

3.3.1 Size of Poisoned Nodes. In backdoor attacks, a set of poi-
soned nodes V� will be attached triggers and target class labels 
to conduct attacks. However, as large-scale graphs can provide 
abundant information for training GNNs, the attacker may need to 
inject a large number of triggers and malicious labels to mislead 
the target GNN to correlate the trigger with target class, which 
puts backdoor attack at the risk of being noticed. To verify this, we 
analyze how the size of poisoned nodes afects the attack success 
rate of the state-of-the-art graph backdoor attacks, i.e., SBA-Gene, 
SBA-Samp [39], and GTA [30] on a large node classifcation dataset, 
i.e., OGB-arxiv [15]. Detailed descriptions of these methods can be 
found in Sec. 6.1.2. We vary |V� | as {80, 240, 800, 2400}. The size of 
trigger is limited to contain three nodes. The architecture of target 
model is GraphSage [14]. The attack success rate (ASR) results are 
presented in Tabble 1. From the table, we can observe that all meth-

ods especially SBA-Gen and SBA-Samp achieve poor attack results 
with limited budget such as 80 and 240 in V� . This is because (i) 
SBA-Gen and SBA-Samp utilize handcrafted triggers which is not 
efective; (ii) Though GTA uses learned sample-specifc trigger, sim-

ilar to SBA-Gen and SBA-Samp, the selection of poisoned nodes is 
random and the budget is not well utilized. Thus, it is necessary to 
develop graph backdoor attack methods that can generate efective 
triggers and fully exploit the attack budget. 

3.3.2 Detection of Triggers. Real-world graphs such as social net-
works generally show homophily property, i.e, nodes with similar 
attributes are connected by edges. For existing backdoor attacks, 
the attributes of triggers may difer a lot from the attached poisoned 
nodes. The connections within trigger may also violate homophily 
property. Therefore, the negative efects of injected triggers and 
target labels might be reduced by eliminating edges linking dissim-

ilar nodes and labels of involved nodes. To verify this, we evaluate 
two strategies to defend against backdoor attacks: 
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• Prune: We prune edges linking nodes with low cosine simi-

larity. As edges created by the backdoor attacker may link dis-
similar nodes, the trigger structure and attachment edge can be 
destroyed. 

• Prune+LD: To reduce the infuence of dirty labels of poisoned 
nodes, besides pruning, we also discard the labels of the nodes 
linked by dissimilar edges. 

Experimental results on Ogb-arxiv with |V� | set as 2400 are pre-
sented in Table 2. Other settings are the same as Sec. 3.3.1. For 
Prune and Prune+LD, the threshold is to flter out edges with low-
est 10% cosine similarity scores. More results on other datasets 
can be found in Table 4. The accuracy of the backdoored GNN on 
clean test set is also reported in Table 2 to show how the defense 
strategies afect the prediction performance. Accuracy on a clean 
graph without any attacks is reported as reference. All the results 
are average scores of 5 runs. We can observe from Tab. 2 that (i) ASR 
drops dramatically with the proposed two strategies of prune and 
prune+LD; (ii) the impact of the proposed strategies on prediction 
accuracy is negligible. This demonstrates that the used triggers by 
existing backdoor attacks can be easily mitigated. 

4 PROBLEM FORMULATION 
Our preliminary analysis verifes that existing backdoor attacks (i) 
require a large attack budget on large datasets; and (ii) the injected 
triggers can be easily detected. To alleviate these two issues, we 
propose to investigate a novel unnoticeable graph backdoor attack 
problem that can unnoticeablely backdoor various target GNNs 
with limited attack budget. Specifcally, we enhance the general 
graph backdoor attack model from the following two aspects. 
Selection of Poisoned Nodes V� : In the attack model of current 
graph backdoor attacks, the poisoned node set V� is randomly 
selected. However, in this way, it is likely the budget is wasted in 
some useless poisoned nodes. For example, the attacker may re-
peatedly poison nodes from the same cluster that have very similar 
pattern, which is unnecessary. Alternatively, to fully utilize the 
attack budget, we will deliberately select the most useful poisoned 
nodes V� ⊆ V in unnoticeable backdoor attack. 
Unnoticeable Constraint on Triggers: As the preliminary anal-
ysis shows, dissimilarity among trigger nodes and poisoned nodes 
makes the attack easy to be detected. Hence, it is necessary to obtain 
adaptive triggers that are similar to the poisoned nodes or target 
nodes. In addition, edges within triggers should also be enforced 
to link similar nodes to avoid being damaged by pruning strategy. 
Such adaptive trigger can be given by an adaptive generator. Let E� 

� 
denote the edge set that contain edges inside trigger �� and edge 
attaching trigger �� and node �� . The unnoticeable constraint on 
the generated adaptive triggers can be formally written as: 

min ���(�, �) ≥ �, (1) 
(�,�) ∈E� 

� 

where ��� denotes the cosine similarity between node features and 
� is a relatively high threshold of the cosine similarity which can 
be tuned based on datasets. 

In node classifcation with GNNs, the prediction is given based 
on the computation graph of the node. Thus, the clean prediction 
on node �� can be written as �� (G� ), where G� denotes the clean 

� � 

computation graph of node �� . For a node �� attached with the adap-
tive trigger �� , the predictive label will be given by �� (�(G� , �� )),� 
where �(·) denotes the operation of trigger attachment. Then, with 
the above descriptions and notations in Sec 3.1. we can formulate 
the unnoticeable graph backdoor attack by: 

Problem 1. Given a clean attributed graph G = (V, E, X) with a 
set of nodes V� provided with labels Y� , we aim to learn an adaptive 
trigger generator �� : �� → �� and efectively select a set of nodes V� 
within budget to attach triggers and labels so that a GNN � trained 
on the poisoned graph will classify the test node attached with the 
trigger to the target class �� by solving: ∑ 
min � (�� ∗ (�(G� , �� )), �� )� V� ,�� 

�� ∈V� ∑ ∑ 
� .� . � ∗ = arg min � (�� (G� ), �� ) + � (�� (�(G� , �� )), �� ),� � 

� �� ∈V� �� ∈V� 

∀�� ∈ V� ∪V� , �� meets Eq.(1) and |�� | < Δ� 

|V� | ≤ Δ� 
(2) 

where � (·) represents the cross entropy loss and �� denotes the param-
eters of the adaptive trigger generator �� . In the constraints, the node 
size of trigger |�� | is limited by Δ� , and the size of poisoned nodes is 
limited by Δ� . The architecture of the target GNN � is unavailable 
and may adapt various defense methods. 

In transductive setting, V� would be the target nodes. However, 
we focus on inductive setting where V� is not available for the 
optimization. Hence, V� would be V\V� to ensure the attacks can 
be efective for various types of target nodes. 

5 METHODOLOGY 
In this section, we present the details of UGBA which aims to opti-
mize Eq.(2) to conduct efective and unnoticeable graph backdoor 
attacks. Since it is challenging and computationally expensive to 
jointly optimize the selection of poisoned nodes V� and the trigger 
generator, UGBA splits the optimization process into two steps: poi-
soned node selection and adaptive trigger generator learning. Two 
challenges remain to be addressed: (i) how to select the poisoned 
nodes that are most useful for backdoor attacks; (ii) how to learn the 
adaptive trigger generator to obtain triggers that meet unnoticeable 
constraint and maintain a high success rate in backdoor attack; To 
address these challenges, a novel framework of UGBA is proposed, 
which is illustrated in Fig. 2. UGBA is composed of a poisoned node 
selector �� , an adaptive trigger generator �� , and a surrogate GCN 
model �� . Specifcally, the poisoned node selector takes the graph 
G as input and applies a novel metric to select nodes with represen-
tative patterns in features and local structures as poisoned nodes. 
An adaptive trigger generator �� is applied with a diferentiable 
unnoticeable constraint to give unnoticeable triggers for selected 
poisoned nodes V� to fool �� . To guarantee the efectiveness of 
the generated adaptive triggers on various test nodes, a bi-level 
optimization with a surrogate GCN model is applied. 

5.1 Poisoned Node Selection 
In this subsection, we give the details of the node selection algo-
rithm. Intuitively, if nodes with representative features and local 
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Figure 2: An overview of proposed UGBA. 

structures are predicted to the target class �� after being attached 
with triggers, other nodes are also very likely to be conducted suc-
cessful backdoor attacks. Therefore, we propose to select diverse 
and representative nodes in the graph as poisoned nodes, which 
enforce the target GNN to predict the representative nodes attached 
with triggers to be target class �� . 

One straightforward way to obtain the representative nodes is 
to conduct clustering on the node features. However, it fails to con-
sider the graph topology which is crucial for graph-structured data. 
Therefore, we propose to train a GCN encoder with the node labels 
to obtain representations that capture both attribute and struc-
ture information. Then, for each class, we can select representative 
nodes using the clustering algorithm on learned representations. 
Specifcally, the node representations and labels can be obtained as: 

ˆH = ��� (A, X), Y = softmax(W · H), (3) 

where W denotes the learnable weight matrix for classifcation. The 
training process of the GCN encoder can be written as: ∑ 

min � (�̂� , �� ) (4) 
�� ,W 

�� ∈V� 

where �� denotes the parameters of GCN encoder, � (·) is the cross 
entropy loss, and �� is the label of node �� . �̂� is the prediction of �� . 

With the GCN encoder trained in Eq. (4), we can obtain the node 
representations and conduct clustering to obtain the representative 
nodes for each class. Here, to guarantee the diversity of the obtained 
representative nodes, we separately apply K-Means to cluster {h� : 
�̂� = �} on each class � other than the target class �� , where h� 
denote the representation of node �� ∈ V/V� . Nodes nearer to 
the centroid of each cluster are more representative. However, the 
node nearest to the centroid may have a high degree. Injecting 
the malicious label to high-degree nodes may lead to a signifcant 
decrease in prediction performance as the negative efect will be 
propagated to its neighbors, which may make the attack noticeable. 
Hence, we propose a metric that balances the representativeness 
and negative efects on the prediction performance. Let h� 

denote� 
the center of the �-th cluster. Then for a node �� 

belonging to the 
� 

�-th cluster, the metric score can be computed by: 

− h� �(�� ) = | |h�� � | |2 + � · ���(��
� ) (5) 

where � is to control the contribution of the degree in node selection. 
After getting each node’s score, we select nodes with top-� highest 
scores in each cluster to satisfy the budget, where � = Δ� 

.(� −1)� 

5.2 Adaptive Trigger Generator 
Once the poisoned node set V� is determined, the next step is 
to generate adaptive triggers with �� to poison the dataset. To 
guarantee the unnoticeability of the generated triggers, we propose 
a diferentiable unnoticeable loss. We apply a bi-level optimization 
between the adaptive generator �� and the surrogate model �� to 
ensure high success rate on various test samples. Next, we give the 
details of trigger generator �� , diferentiable unnoticeable loss, and 
the bi-level optimization with �� . 
Design of Adaptive Trigger Generator. To generate adaptive 
triggers that are similar to the attached nodes, the adaptive trigger 
generator �� takes the node features of the target node as input. 
Specifcally, we adopt an MLP to simultaneously generate node 
features and structure of the trigger for node �� by: 

h�� = MLP(x� ), X�
� = W� · h�� , A�

� = W� · h�� , (6) 

where x� is the node features of �� . W� and W� are learnable param-

∈ R� ×� 
eters for feature and structure generation, respectively. X� 

� 
is the synthetic features of the trigger nodes, where � and � repre-
sent the size of the generated trigger and the dimension of features, 
respectively. A� ∈ R� ×� is the adjacency matrix of the generated 

� 
trigger. As the real-world graph is generally discrete, following 
the binary neural network [16], we binarize the continuous adja-
cency matrix A� 

in the forward computation; while the continuous 
�

value is used in backward propagation. With the generated trigger 
(X� 

= 
� , A

�), we link it to node �� ∈ V� and assign target class �� � 
label �� to build backdoored dataset. In the inference phase, the 
trigger generated by �� will be attached to the test node �� ∈ V� to 
lead backdoored GNN to predict it as target class �� . 
Diferentiable Unnoticeable Loss. The adaptive trigger generator 
�� aims to produce the triggers that meet the Eq.(1) for unnoticeable 
trigger injection. The key idea is to ensure the poisoned node or test 
node �� is connected to a trigger node with high cosine similarity 
to avoid trigger elimination. And within the generated trigger �� , 
the connected trigger nodes should also exhibit high similarity. 
Thus, we design a diferentiable unnoticeable loss to help optimize 
the adaptive trigger generator �� . Let E� denote the edge set that 

� 
contains edges inside trigger �� and edge attaching trigger �� and 
node �� , the unnoticeable loss can be written as:∑ ∑ 

min L� = max(0,� − ���(� � , �� )), (7) 
�� 

�� ∈V (�� ,�� ) ∈E� 
� 

where � denotes the threshold of the similarity, and �� represents 
the parameters of �� . The unnoticeable loss is applied on all nodes 
V to ensure that the generated trigger meets the unnoticeable 
constraint for various kinds of nodes. 
Bi-level Optimization. To guarantee the efectiveness of the gen-
erated triggers, we optimize the adaptive trigger generator to suc-
cessfully attack the surrogate GCN model �� with a bi-level opti-
mization. Specifcally, the surrogate GCN �� will be trained on the 
backdoored dataset, which can be formulated as:∑ ∑ 
min L� (�� , ��) = � (�� (G� ), �� ) + � (�� (�(G� , �� )), �� ),� � 
�� 

�� ∈V� �� ∈V� 
(8) 

where �� represents the parameters of the surrogate GCN �� , G� � 
indicates the clean computation graph of node �� , and �(·) denotes 
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the attachment operation. �� is the label of labeled node �� ∈ V� and 
�� is the target class label. The adaptive trigger will be optimized to 
efectively mislead the surrogate model �� to predict various nodes 
from V to be �� once injected with adaptive triggers, which can be 
written as: ∑ 

L� (�� , ��) = � (�� (�(G� , �� )), �� ). (9)� 
�� ∈V 

Combining the unnoticeable loss Eq.(7), the following bi-level opti-
mization problem can be formulated: 

minL� (�� ∗(��), ��) + �L� (��)
�� 

(10)

� .� . � ∗ = arg min L� (�� , ��),� 
�� 

where � is used to control the contribution of unnoticeable loss. 

5.3 Optimization Algorithm 
We propose an alternating optimization schema to solve the bi-level 
optimization problem of Eq.(10) with a small computation cost. 
Updating Lower Level Surrogate Model. Computing �� ∗ 

for each 
outter iteration is expensive. We update surrogate model �� with 
� inner iterations with fxed �� to approximate �� ∗ 

as [46] does: 

�� +1 = �� L� (�� , ��) (11)� � − �� ∇�� 

where �� denotes model parameters after � iterations. �� is the � 
learning rate for training the surrogate model. 
Updating Upper Level Surrogate Model. In the outer iteration, 
the updated surrogate model parameters �� 

are used to approximate � 
�� 
∗
. Moreover, we apply frst-order approximation [13] in computing 

gradients of �� to further reduce the computation cost: � � 
��
�+1 = ��� − �� ∇�� L� (� ¯ � , ��� ) + �L� (��� ) , (12) 

where � ¯ � indicates gradient propagation stopping. �� is the learning 
rate of training adaptive generator. See more details in algorithm 1. 
And the time complexity analysis can be found in Appendix F. 

6 EXPERIMENTS 
In this section, we will evaluate proposed methods on various large-
scale datasets to answer the following research questions: 
• RQ1: Can our proposed method conduct efective backdoor at-
tacks on GNNs and simultaneously ensure unnoticeability? 

• RQ2: How do the number of poisoned nodes afect the perfor-
mance of backdoor attacks? 

• RQ3: How do the adaptive constraint and the poisoned node 
selection module afect the attack performance? 

6.1 Experimental Settings 
6.1.1 Datasets. To demonstrate the efectiveness of our UGBA, 
we conduct experiments on four public real-world datasets, i.e., 
Cora, Pubmed [23], Flickr [37], and OGB-arxiv [15], that are widely 
used for inductive semi-supervised node classifcation. Cora and 
Pubmed are small citation networks. Flickr is a large-scale graph 
that links image captions sharing the same properties. OGB-arixv 
is a large-scale citation network. The statistics of the datasets are 
summarized in Tab. 3. 

Table 3: Dataset Statistics 

Datasets #Nodes #Edges #Feature #Classes 

Cora 
Pubmed 
Flickr 
OGB-arxiv 

2,708 
19,717 
89,250 
169,343 

5,429 1,443 
44,338 500 
899,756 500 
1,166,243 128 

7 
3 
7 
40 

6.1.2 Compared Methods. We compare UGBA with representa-
tive and state-of-the-art graph backdoor attack methods, including 
GTA [30], SBA-Samp [39] and its variant SBA-Gen. We also com-

pare GBAST [24] on Pubmed, which is shown in the Appendix C. 
As UGBA conduct attacks by injecting triggers to target nodes, 

we also compare UGBA with two state-of-the-art graph injection 
evasion attacks designed for large-scale attacks, i.e. TDGIA [44] 
and AGIA [5]. More details of these compared methods can be 
found in Appendix D. For a fair comparison, hyperparameters of 
all the attack methods are tuned based on the performance of the 
validation set. 
Competing with Defense Methods. We applied the backdoor de-
fense strategies introduced in Sec. 3.3.2 (i.e., Prune and Prune+LD) 
to help evaluate the unnoticeability of backdoor attacks. More-

over, two representative robust GNNs, i.e., RobustGCN [42] and 
GNNGuard [38], are also selected to verify that UGBA can also 
efectively attack general robust GNNs. 

6.1.3 Evaluation Protocol. In this paper, we conduct experiments 
on the inductive node classifcation task, where the attackers can 
not access test nodes when they poison the graph. Hence, we ran-
domly mask out 20% nodes from the original dataset. And half of 
the masked nodes are used as target nodes for attack performance 
evaluation. Another half is used as clean test nodes to evaluate the 
prediction accuracy of backdoored models on normal samples. The 
graph containing the rest 80% nodes will be used as training graph 
G, where the labeled node set and validation set both contain 10% 
nodes. The average success rate (ASR) on the target node set and 
clean accuracy on clean test nodes are used to evaluate the backdoor 
attacks. A two-layer GCN is used as the surrogate model for all 
attack methods. And to demonstrate the transferability of the back-
door attacks, we attack target GNNs with diferent architectures, 
i.e., GCN, GraphSage, and GAT. Experiments on each target GNN 
architecture are conducted 5 times. We report the average ASR and 
clean accuracy of the total 15 runs (Tab. 4, Fig. 4, and Fig. 3). For 
all experiments, class 0 is the target class. The attack budget Δ� 
on size of poisoned nodes V� is set as 10, 40, 80 and 160 for Cora, 
Pubmed, Flickr and OGB-arxiv, respectively. The number of nodes 
in the trigger size is limited to 3 for all experiments. For experiments 
varying the budget in trigger size, please refer to Appendix E. 

Our UGBA deploys a 2-layer GCN as the surrogate model. A 
2-layer MLP is used as the adaptive trigger. More details of the 
hyperparameter setting can be found in Appendix B. 

6.2 Attack Results 
To answer RQ1, we compare UGBA with baselines on four real-
world graphs under various defense settings in terms of attack 
performance and unnoticeability. 
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Table 4: Backdoor attack results (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graphs. 

Datasets Defense Clean Graph SBA-Samp SBA-Gen GTA Ours 

Cora 
None 
Prune 
Prune+LD 

83.09 
79.68 
79.68 

34.94 | 84.09 
16.70 | 82.98 
15.87 | 79.63 

42.54 | 84.81 
19.56 | 83.19 
17.49 | 80.61 

90.25 | 82.88 
17.63 | 83.06 
18.35 | 80.17 

96.95 | 83.90 
98.89 | 82.66 
95.30 | 79.90 

Pubmed 
None 
Prune 
Prune+LD 

84.86 
85.09 
85.12 

30.43 | 84.93 
22.10 | 84.90 
21.56 | 84.63 

31.96 | 84.93 
22.13 | 84.86 
22.06 | 83.71 

86.64 | 85.07 
28.10 | 85.05 
22.00 | 83.76 

92.27 | 85.06 
92.87 | 85.09 
93.06 | 83.75 

Flickr 
None 
Prune 
Prune+LD 

46.40 
43.02 
43.02 

0.00 | 47.36 
0.00 | 44.01 
0.00 | 45.03 

0.00 | 47.07 
0.00 | 43.78 
0.00 | 45.32 

88.64 | 45.67 
0.00 | 42.71 
0.00 | 44.99 

97.43 | 46.09 
90.34 | 42.99 
96.81 | 42.14 

OGB-arxiv 
None 
Prune 
Prune+LD 

65.50 
62.16 
62.16 

0.65 | 65.53 
0.03 | 63.88 
0.16 | 64.15 

11.26 | 65.43 
0.01 | 64.10 
0.02 | 63.89 

75.01 | 65.54 
0.01 | 63.97 
0.03 | 64.30 

96.59 | 64.10 
93.07 | 62.58 
90.95 | 63.19 

Table 5: Comparisons of ASR (%) with node inject attacks. 

Datasets Defense TDGIA AGIA Ours 

GCN-Prune 77.01 77.22 99.91 
Flickr RobustGCN 78.61 78.61 99.23 

GNNGuard 55.68 56.01 99.91 

GCN-Prune 66.17 66.33 94.05 
OGB-arixv RobustGCN 73.87 74.00 95.39 

GNNGuard 42.27 42.58 96.88 

6.2.1 Comparisons with baseline backdoor atacks. We conduct 
experiments on four real-world graphs under three backdoor de-
fense strategy settings (i.e., No defense, Prune and Prune+LD). As 
described by the evaluation protocol in Sec. 6.1.3, we report the 
average results in backdooring three target GNN architectures in 
Tab. 4. The details of the backdoor attack results are presented in 
Tab. 8-10 in Appendix. From the table, we can make the following 
observations: 
• When no backdoor defense strategy is applied, our UGBA out-
performs the baseline methods, especially on large-scale datasets. 
This indicates the efectiveness of poisoned node selection algo-
rithm in fully utilizing the attack budget. 

• All the baselines give poor performance when the trigger de-
tection based defense methods, i.e., Prune and Prune+LD, are 
adopted. By contrast, our UGBA can achieve over 90% ASR with 
the defense strategies and maintain high clean accuracy. This 
demonstrates that our UGBA can generate efective and unno-
ticeable triggers for backdoor attacks. 

• As the ASRs are average results of backdooring three diferent 
GNN architectures, the high ASR scores of UGBA prove its trans-
ferability in backdooring various types of GNN models. 

6.2.2 Comparisons with baseline node injection atacks. We also 
compare UGBA with two state-of-the-art node injection evasion 
attacks. Experiments are conducted on Flickr and OGB-arxiv. Three 
defense models (GCN-Prune, RobustGCN and GNNGuard) are se-
lected to defend against the compared attacks. The ASR of 5 runs 
is reported in Tab 5. From this table, we observe: 
• UGBA can efectively attack the robust GNNs, which shows that 
UGBA can also bypass the general defense methods with the 
unnoticeable constraint. 

(a) No Defense (b) Prune+LD 
Figure 3: Impacts of sizes of poisoned nodes on OGB-arxiv. 

• Compared with node injection attacks, UGBA only requires a 
very small additional cost in injecting triggers and labels (e.g. 
160 poisoned nodes out of 169K nodes in OGB-arxiv). But UGBA 
can outperform node injection attacks by 30%. This implies the 
superiority of UGBA in attacking large amounts of target nodes. 

6.3 Impacts of the Sizes of Poisoned Nodes 
To answer RQ2, we conduct experiments to explore the attack 
performance of UGBA given diferent budgets in the size of poi-
soned nodes. Specifcally, we vary the sizes of poisoned samples 
as {80, 160, 240, 320, 400, 480}. The other settings are the same as 
the evaluation protocol in Sec. 6.1.3. Hyperparameters are selected 
with the same process as described in Appendix. B. Fig. 4 shows 
the results on OGB-arxiv. We have similar observations on other 
datasets. From Fig. 4, we can observe that: 
• The attack success rate of all compared methods in all settings in-
creases as the increase of the number of poisoned samples, which 
satisfes our expectation. Our method consistently outperforms 
the baselines as the number of poisoned samples increases, which 
shows the efectiveness of the proposed framework. In particular, 
the gaps between our method and baselines become larger when 
the budget is smaller, which demonstrates the efectiveness of the 
poisoned node selection in efectively utilizing the attack budget. 

• When Prune+LD defense is applied on the backdoor attacks, our 
methods still achieve promising performances, while all the base-
lines obtain nearly 0% ASR in all settings, which is as expected. 
That’s because our method can generate trigger nodes similar to 
the attached nodes due to the unnoticeable constraint, which is 
helpful for bypassing the defense method. 
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(a) No defense (b) Prune+LD 
Figure 4: Ablation studies on Pubmed and OGB-arxiv. 

6.4 Ablation Studies 
To answer RQ3, we conduct ablation studies to explore the efects 
of the unnoticeable constraint and the poisoned node selection mod-

ule. To demonstrate the efectiveness of the unnoticeable constraint 
module, we set the � as 0 when we train the trigger generator 
and obtain a variant named as UGBA\C. To show the benefts 
brought by our poisoned node selection module, we train a variant 
UGBA\S which randomly selects poisoned nodes to attach triggers 
and assign target nodes. We also implement a variant of our model 
by removing both unnoticeable constraint and poisoned node se-
lection, which is named as UGBA\CS. The average results and 
standard deviations on Pubmed and OGB-arxiv are shown in Fig. 4. 
All the settings of evaluation follow the description in Sec. 6.1.3. 
And the hyperparameters of the variants are also tuned based on 
the validation set for fair comparison. From Fig. 4, we observe that: 
• Compared with UGBA\S, UGBA achieves better attack results 
on various defense settings. The variance of ASR of UGBA is 
signifcantly lower than that of UGBA\S. This is because our 
poisoned node selection algorithm selects consistently diverse 
and representative nodes that are useful for backdoor attacks. 

• When the backdoor defense strategy Prune+LD, UGBA can out-
perform UGBA\C and UGBA\CS by a large margin. This implies 
that the proposed unnoticeable loss manages to guide the trigger 
generator to give unnoticeable triggers for various test nodes, 
which can efectively bypass the pruning defenses. 

(a) GTA (b) UGBA 

Figure 5: Edge similarity distributions on OGB-arxiv. 

6.5 Similarity Analysis 
In this section, we conduct a case study to further explore the simi-

larity of the trigger nodes. We conduct backdoor attacks by using 
both GTA and our method on OGB-arxiv and then calculate the 
edge similarities of trigger edges (i.e., the edges associated with trig-
ger nodes) and clean edges (i.e., the edges not connected to trigger 
nodes). The histogram of the edge similarity scores are plotted in 
Fig. 5. From the fgure, we observe that the trigger edges generated 

(a) Pubmed (b) OGB-arxiv 
Figure 6: Hyperparameter Sensitivity Analysis 

by GTA have low similarities, which implies high risk of trigger 
elimination with our proposed backdoor defense strategies. In con-
trast, the edges created by our method present cosine similarity 
scores that well disguise them as clean edges, which verifes the 
unnoticeability of our methods. 

6.6 Parameter Sensitivity Analysis 
In this subsection, we further investigate how the hyperparameter 
� and � afect the performance of UGBA, where � and � control the 
weight of unnoticeable loss in training the trigger generator and the 
threshold of similarity scores used in unnoticeable loss. To explore 
the efects of � and� , we vary the values of � as {0, 50, 100, 150, 200}. 
And� is changed from {0, 0.2, 0.4, 0.6, 0.8, 1} and {0.6, 0.7, 0.8, 0.9, 1}
for Pubmed and OGB-arxiv, respectively. Since � and � only afect 
the unnoticeablity of triggers, we report the attack success rate 
(ASR) of attacking against the Prune+LD defense strategy in Fig. 6. 
The test model is fxed as GCN. We observe that (i): In Pubmed, 
the similarity threshold � needs to be larger than 0.2; while � is 
required to be higher than 0.8 in OGB-arxiv. This is because edges 
in OGB-arxiv show higher similarity scores compared with Pubmed. 
Hence, to avoid being detected, a higher similarity threshold � is 
necessary. In practice, the � can be set according to the average 
edge similarity scores of the dataset. (ii) When � is set to a proper 
value, high ASR can generally be achieved when � ≤ 1, which eases 
the hyperparameter tuning. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we empirically verify that existing backdoor attacks 
require large attack budgets and can be easily defended with edge 
pruning strategies. To address these problems, we study a novel 
problem of conducting unnoticeable graph backdoor attacks with 
limited attack budgets. Specifcally, a novel poisoned node selection 
algorithm is adopted to select representative and diverse nodes as 
poisoned nodes to fully utilize the attack budget. And an adaptive 
generator is optimized with an unnoticeable constraint loss to en-
sure the unnoticeability of generated triggers. The efectiveness of 
generated triggers is further guaranteed by bi-level optimization 
with the surrogate GCN model. Extensive experiments on large-
scale datasets demonstrate that our proposed method can efectively 
backdoor various target GNN models and even be adopted with 
defense strategies. There are two directions that need further inves-
tigation. First, in this paper, we only focus on node classifcation. 
We will extend the proposed attack to other tasks such as recom-

mendation and graph classifcation. Second, it is also interesting to 
investigate how to defend against the unnoticeable graph backdoor 
attack. 
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Algorithm 1 Algorithm of UGBA. 
Input: G = (V, E, X), Y� , � , � . 
Output: Backdoored dataset G� , adaptive trigger generator �� 
1: Initialize G� = G; 
2: Randomly initialize �� and �� for �� and �� ; 
3: Select poisoned nodes V� based on Eq. (5); 
4: Assign class � as labels of V� ; 
5: while not converged yet do 
6: for t=1, 2, . . . , � do 
7: Update �� by descent on ∇�� L� based on Eq. (11); 
8: end for � � 
9: Update �� by descent on ∇�� L� + �L� based on Eq. (12); 
10: end while 
11: for �� ∈ V� do 
12: Generate the trigger �� for �� by using �� ; 
13: Update G� based on �(G� , �� );� 
14: end for 
15: return G� and �� ; 

A TRAINING ALGORITHM 
The algorithm of UGBA is proposed in Algorithm 1. Specially, we 
frst select the poisoned nodes V� with the top-� highest scores 
�(·) based on Eq. (5), and assign the target class �� as labels to V� 
(lines 3-4). From line 5 to line 10, we train the trigger generator �� 
on the surrogate GCN �� by solving a bi-level optimization problem 
based on Eq. (10). In detail, we update lower level surrogate model 
(lines 6-8) and upper level surrogate model (line 9), respectively, by 
doing gradient descent on �� and �� based on Eq. (11) and Eq. (12). 
After that, from line 11 to line 14, we use the well-trained �� to 
generate a trigger �� for each poisoned node �� ∈ V� and attach �� 
with �� to obtain the poisoned graph G� . 

B IMPLEMENTATION DETAILS 
A 2-layer GCN is deployed as the surrogate model. A 2-layer MLP 
is used as the adaptive trigger. All the hidden dimension is set as 32. 
The inner iterations step � is set as 5 for all the experiments. For 
the hyperparameter � and � , they are selected based on the grid 
search on the validation set. Specifcally, � is fxed as 0.5, 0.5, 0.5, 
0.8 for Cora, Pubmed, Flickr and OGB-arxiv, respectively. For Prune 
and Prune+LD defenses, the threshold of pruning is set to flter out 
around 10% dissimilar edges. In particular, the set thresholds are 
around 0.1, 0.2, 0.4, 0.8 for Cora, Pubmed, Flickr and OGB-arxiv. 

C ADDITIONAL EXPERIMENTS 
We compare our UGBA with GBAST [24] on Pubmed. And we report 
the ASR (%) of attacking GCN under diferent defense settings in 
Tab. 6. We similar observations on other datasets and target GNN 
models. Compared with GBAST which selects the poisoned samples 
by degree and closeness centrality, our UGBA achieves much higher 
ASR when not defense is applied. This implies the efectiveness of 
our clustering-based poisoned sample selection. In addition, GBAST 
cannot bypass the defense strategy. Our UGBA can still show high 
attack performance under the Prune+LD defense. 

Table 6: Comparison with GBAST 
Defense GBAST UGBA 

None 55.1 ±11.4 96.3 ±1.3 
Prune+LD 21.3 ±0.2 92.3 ±2.1 

D DETAILS OF COMPARED METHODS 
The details of compared methods are described following: 
• SBA-Samp [39]: It injects one fxed subgraph as a trigger to the 
training graph for a poisoned node. To generate the subgraph 
the connections are generated using Erdos-Renyi (ER) model and 
the node features are randomly sampled from the training graph. 

• SBA-Gen: This is a variant of SBA-Samp, which uses generated 
features for trigger nodes. Features are from a Gaussian distribu-
tion whose mean and variance is computed from real nodes. 

• GTA [30]: This is the state-of-the-art backdoor attack on GNNs. 
Poisoned nodes is randomly selected in GTA. A trigger generator 
is adopted to create subgraphs as sample-specifc triggers. The 
trigger generator is purely optimized by the backdoor attack loss 
without any unnoticeable constraint. 

• TDGIA [44]: It employs a topological defective edge selection 
strategy to choose the nodes to be connecting with the injected 
ones, and generates the features for injected nodes by performing 
the smooth adversarial feature optimization. 

• AGIA [5]: It leverages gradient information to perform a bi-level 
optimization for the features and structures of the injected nodes. 

E IMPACTS OF TRIGGER SIZE 
In this section, we conduct experiments to explore the attack per-
formance of UGBA by injecting diferent numbers of nodes as a 
trigger for a poisoned node. Specially, the trigger size is varied as 
{1, 2, 3, 4, 5}. The other settings are the same as the evaluation proto-
col in Sec. 6.1.3. The results on OGB-arxiv are shown in Table 7. We 
have similar observations on other datasets. From the table, we can 
fnd that: (i) as the increase of trigger sizes, the attack success rate 
of UGBA in all settings increases, as larger trigger can be stronger 
in backdoor attack; (ii) UGBA can achieve stable and high attack 
performance when the trigger size is as small as 2, which shows 
the efectiveness of our UGBA in generating triggers. 

Table 7: Attack results of UGBA (ASR (%)) with various trigger 
sizes under three defense strategies on OGB-arxiv 

Trigger Size 1 2 3 4 5 

None 83.0 98.9 98.8 98.9 97.8 
Prune 77.7 94.5 94.4 94.6 93.8 

Prune+LD 65.2 94.0 95.1 94.2 89.0 

F TIME COMPLEXITY ANALYSIS 
In the poisoning phase, the time complexity mainly comes from the 
poisoned node selection and the optimization of trigger generator. 
Let ℎ denote the embedding dimension. The cost of poisoned node 
selection with clustering is approximately � (�ℎ |V|), where � is 
the number of clusters set in poisoned node selection and |V| is 
the number of nodes in the training graph. During the bi-level 
optimization phase, the computation cost of each outter iteration 

2272



Table 8: Results of backdooring GCN (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graph. 

Datasets Defense Clean Graph SBA-Samp SBA-Gen GTA Ours 

None 82.9 33.8±3.4 | 83.9±1.1 40.1±7.0 | 83.5±1.1 98.9±0.8 | 82.7±1.2 98.8±0.1 | 83.5±0.8 
Cora Prune 79.6 17.1±2.3 | 83.1±1.1 19.9±2.6 | 83.3±0.9 17.7±3.2 | 83.6±0.6 99.6±0.0 | 82.5±0.9 

Prune+LD 79.6 16.6±2.7 | 81.3±1.2 18.9±3.5 | 81.3±1.0 20.1±5.6 | 80.8±0.4 99.6±0.1 | 81.5±0.6 

None 85.1 26.4±2.9 | 84.9±0.2 28.8±3.5 | 85.0±0.2 92.8±2.9 | 85.2±0.2 96.3±1.2 | 84.9±0.1 
Pubmed Prune 85.1 22.4±1.0 | 85.3±0.1 22.6±0.9 | 85.2±0.1 28.8±1.2 | 85.1±1.0 93.0±1.1 | 85.4±0.2 

Prune+LD 85.1 21.7±0.9 | 85.0±0.2 22.2±1.2 | 84.2±0.3 22.3±0.5 | 84.2±0.1 92.3±2.0 | 85.0±0.1 

None 45.5 0±0.0 | 46.7±0.3 0±0.0 | 46.4±0.1 99.9±0.1 | 45.0±0.3 96.9±2.3 | 44.8±0.4 
Flickr Prune 42.3 0±0.0 | 44.1±0.2 0±0.0 | 43.4±0.4 0±0.0| 41.7±0.2 99.9±0.0 | 41.7±0.4 

Prune+LD 42.3 0±0.0 | 45.6±0.2 0±0.0 | 45.6±0.2 0±0.0 | 44.5±0.4 96.6±1.6 | 44.8±0.1 

None 65.6 0.3±0.1 | 65.8±0.1 1.8±2.4 | 65.8±0.2 75.2±1.4 | 65.8±0.1 98.8±0.1 | 63.9±0.5 
OGB-arxiv Prune 62.1 0.1±0.1 | 64.5±0.5 0.1±0.1 | 64.0±0.1 0.1±0.1 | 64.0±0.1 94.0±0.3 | 62.2±0.7 

Prune+LD 62.1 0.1±0.1 | 64.7±0.1 0.1±0.1 | 64.6±0.1 0.1±0.1 | 64.7±0.2 93.5±0.2 | 63.0±0.4 

Table 9: Results of backdooring GraphSage (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graph. 

Datasets Defense Clean Graph SBA-Samp SBA-Gen GTA Ours 

None 81.8 34.2±4.0 | 83.0±1.5 40.4±5.6 | 82.7±1.2 99.5±0.4 | 81.3±1.0 92.7±2.1 | 82.8±1.4 
Cora Prune 77.9 17.3±1.8 | 82.5±1.1 19.9±3.6 | 82.4±1.1 18.6±4.1 | 81.9±0.8 99.6±0.1 | 83.9±1.5 

Prune+LD 77.9 16.4±1.8 | 78.8±0.6 16.9±3.2 | 78.9±0.8 18.0±4.5 | 77.9±2.0 94.4±2.1 | 77.8±0.5 

None 85.7 38.0±3.8 | 85.8±0.3 40.0±4.2 | 85.9±0.2 92.7±3.5 | 86.0±0.3 96.0±0.9 | 86.0±0.1 
Pubmed Prune 86.2 22.8±1.0 | 85.8±0.2 23.0±0.9 | 85.8±0.1 27.4±1.2 | 86.5±0.3 91.0±0.6 | 86.4±0.1 

Prune+LD 86.2 21.5±1.0 | 85.4±0.2 22.0±1.2 | 83.8±0.1 21.9±0.3 | 83.8±0.2 91.6±1.7 | 86.0±0.1 

None 47.0 0±0.0 | 48.5±0.1 0±0.0 | 48.4±0.1 99.7±0.2 | 48.0±0.3 98.9±0.3 | 47.7±0.1 
Flickr Prune 45.2 0±0.0 | 46.7±0.1 0±0.0 | 46.8±0.1 0±0.0 | 45.9±0.2 98.9±0.9 | 41.2±1.3 

Prune+LD 45.2 0±0.0 | 44.4±0.4 0±0.0 | 44.4±0.4 0±0.0 | 44.5±0.4 97.1±2.4 | 44.7±0.3 

None 65.6 0.5±0.6 | 65.4±0.6 6.2±3.5 | 65.3±0.6 55.5±2.3 | 65.9±0.3 91.0±0.8 | 63.6±0.6 
OGB-arxiv Prune 62.5 0.1±0.1 | 64.5±0.4 0.1±0.1 | 64.5±0.5 0.1±0.1 | 64.8±0.4 89.7±0.6 | 62.6±0.4 

Prune+LD 62.5 0.3±0.4 | 63.7±0.5 0.1±0.1 | 63.8±0.5 0.1±0.1 | 64.1±0.3 84.6±0.5 | 62.8±0.2 

Table 10: Results of backdooring GAT (ASR (%) | Clean Accuracy (%)) . Only clean accuracy is reported for clean graph. 

Datasets Defense Clean Graph SBA-Samp SBA-Gen GTA Ours 

None 84.5 36.8±8.7 | 85.4±1.3 47.1±18.0 | 84.4±1.1 72.3±27.7 | 84.6±0.8 99.3±0.7 | 85.4±1.0 
Cora Prune 81.2 15.7±2.4 | 83.7±0.9 18.9±3.6 | 83.8±0.6 16.6±1.5 | 83.7±1.3 99.6±0.1 | 83.9±1.5 

Prune+LD 81.2 14.6±2.9 | 81.1±1.2 16.7±3.8 | 81.6±0.8 16.9±4.4 | 81.8±1.2 92.0±14.7 | 80.4±0.8 

None 83.9 26.9±4.5 | 84.1±0.3 27.1±3.8 | 83.9±0.2 91.2±1.5 | 84.0±0.2 100±0.0 | 84.0±4.2 
Pubmed Prune 84.0 21.1±0.9 | 83.6±0.2 20.8±1.4 | 83.6±0.2 28.1±1.1 | 83.5±0.1 94.6±2.6 | 83.5±0.2 

Prune+LD 84.0 21.5±1.3 | 83.5±0.3 22.0±0.8 | 83.2±0.3 21.8±0.4 | 83.3±0.5 95.3±4.1 | 84.0±4.2 

None 46.5 0±0.0 | 46.9±0.2 0±0.0 | 46.4±0.4 66.2±34.9 | 44.0±0.6 96.5±4.4 | 45.8±1.3 
Flickr Prune 41.7 0±0.0 | 41.2±0.8 0±0.0 | 41.2±1.2 0±0.0 | 40.5±0.1 72.2±27.5 | 41.2±1.3 

Prune+LD 41.7 0±0.0 | 46.1±0.6 0±0.0 | 46.0±0.6 0±0.0 | 45.7±0.4 96.7±6.3 | 46.0±0.3 

None 65.3 1.1±1.3 | 65.4±0.1 25.8±20.3 | 65.2±0.6 94.3±2.5 | 65.0±0.1 100±0.0 | 64.8±0.2 
OGB-arxiv Prune 61.9 0.1±0.1 | 63.2±0.1 0.1±0.1 | 63.2±0.1 0.1±0.1 | 63.1±0.1 95.5±0.0 | 62.9±0.2 

Prune+LD 61.9 0.1±0.1 | 64.1±0.1 0.1±0.1 | 64.0±0.1 0.1±0.1 | 64.1±0.1 94.8±0.0 | 63.7±0.1 

Table 11: Training time 

Dataset Size GTA UBGA 

Flickr 89,250 18.1s 18.3s 
Arxiv 169,343 37.7s 41.8s 

consists of updating of surrogate GCN model in inner iterations and 
training adaptive trigger generator. The cost for updating surrogate 
model is approximate � (�ℎ� |V|), where � is the average degree 
of nodes and � is the number of inner iterations which is generally 
small. The cost for optimizing the trigger generator in each outter 
iteration is � (ℎ� |V|). Hence, the overall time complexity in each 
iteration of optimization is � ((� + 1)ℎ� |V|), which is linear to 
the graph size. Furthermore, the framework can be trained in a 
mini-batch way to further reduce the computation cost in each 
iteration. In the test phase, the cost of generating trigger to attack 
the target node is only � (ℎ). Our time complexity analysis proves 
that UGBA has great potential in conducting scalable target attacks. 

We also report the overall training time of our UGBA and GTA 
in Tab. 11. All models are trained with 200 epochs on an A6000 GPU 
with 48G memory. The training time is very short and increases 
linearly as the complexity analysis suggests. In the test phase, at-
tacking each target node requires 0.0017 seconds on average. 

2273


	Abstract
	1 Introduction
	2 Related Works
	2.1 Graph Neural Networks
	2.2 Attacks on Graph Neural Networks

	3 Preliminary Analysis
	3.1 Notations
	3.2 Preliminaries of Graph Backdoor Attacks
	3.3 Unnoticeability of Graph Backdoor Attacks

	4 Problem Formulation
	5 Methodology
	5.1 Poisoned Node Selection
	5.2 Adaptive Trigger Generator
	5.3 Optimization Algorithm

	6 Experiments
	6.1 Experimental Settings
	6.2 Attack Results
	6.3 Impacts of the Sizes of Poisoned Nodes
	6.4 Ablation Studies
	6.5 Similarity Analysis
	6.6 Parameter Sensitivity Analysis

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Training Algorithm
	B Implementation Details
	C Additional Experiments
	D Details of Compared Methods
	E Impacts of trigger size
	F Time Complexity Analysis



