s Unnoticeable Backdoor Attacks on Graph Neural Networks
Enyan Dai" Minhua Lin*
emd5759@psu.edu mfl5681@psu.edu

The Pennsylvania State University
State College, USA

Xiang Zhang
xzz89@psu.edu
The Pennsylvania State University
State College, USA

ABSTRACT

Graph Neural Networks (GNNs) have achieved promising results
in various tasks such as node classification and graph classification.
Recent studies find that GNNs are vulnerable to adversarial attacks.
However, effective backdoor attacks on graphs are still an open
problem. In particular, backdoor attack poisons the graph by attach-
ing triggers and the target class label to a set of nodes in the training
graph. The backdoored GNNs trained on the poisoned graph will
then be misled to predict test nodes to target class once attached
with triggers. Though there are some initial efforts in graph back-
door attacks, our empirical analysis shows that they may require a
large attack budget for effective backdoor attacks and the injected
triggers can be easily detected and pruned. Therefore, in this paper,
we study a novel problem of unnoticeable graph backdoor attacks
with limited attack budget. To fully utilize the attack budget, we
propose to deliberately select the nodes to inject triggers and target
class labels in the poisoning phase. An adaptive trigger generator
is deployed to obtain effective triggers that are difficult to be no-
ticed. Extensive experiments on real-world datasets against various
defense strategies demonstrate the effectiveness of our proposed
method in conducting effective unnoticeable backdoor attacks.

CCS CONCEPTS

« Computing methodologies — Machine learning.

KEYWORDS
Backdoor Attack, Graph Neural Networks

ACM Reference Format:

Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. 2023. Unnoticeable
Backdoor Attacks on Graph Neural Networks. In Proceedings of the ACM Web
Conference 2023 (WWW °23), April 30-May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583392

*Both authors contribute equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23, April 30-May 04, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04...$15.00
https://doi.org/10.1145/3543507.3583392

2263

The Pennsylvania State University
State College, USA

Suhang Wang
szw494@psu.edu
The Pennsylvania State University
State College, USA

1 INTRODUCTION

Graph-structured data are very pervasive in the real-world such as
social networks [14], finance system [29], and molecular graphs [17].
Recently, graph neural networks (GNNs) [19, 27] have shown promis-
ing results in modeling graphs. Generally, GNNs adopt the message-
passing mechanism [19, 34], which updates a node’s representation
by aggregating information from its neighbors. As a result, the node
representations learned by GNNs can preserve node features, neigh-
bors and local graph topology, which facilitate various tasks such
as semi-supervised node classification and graph classification.
Despite their great success of GNNs, GNNs are vulnerable to
adversarial attacks and many graph attack methods have been
investigated to fool the target GNN models to achieve adversar-
ial goals [12, 33, 45]. Specifically, due to the utilization of graph
structure with the message-passing mechanism, attackers can de-
liberately manipulate the graph structures and/or node features to
mislead the GNNs for adversarial attacks. For instance, Nettack [45]
iteratively modifies the connectivity of node pairs within attack
budget to reduce the classification accuracy of GNNs on target
nodes. However, the majority of existing attacks focus on graph
manipulation attacks that require to calculate the optimal edges
to be added/deleted for each target node. This will result in un-
affordable time and space complexity on large-scale datasets, i.e,
O(N?) where N is the number of nodes [10, 12, 45]. In addition,
manipulating links and attributes of existing nodes is impractical
as these nodes/individuals are not controlled by the attacker [25].
To address the aforementioned issues, one promising direction
is to develop backdoor attacks on graphs. Fig. 1 gives an illustration
of backdoor attack on graphs, where a small set of nodes denoted
as poisoned samples will be attached with triggers and assigned the
label of target class. The model trained on the poisoned graph will
link the trigger with the target class. As a result, the target nodes
will be predicted as the target class once they are attached with the
triggers during the inference phase. The trigger can be either pre-
defined or obtained from trigger generator. Firstly, the computation
cost of backdoor attacks is limited compared with graph manipula-
tion attacks, which paves us a way for an efficient target attack on
large-scale graphs. For predefined triggers, nearly no computation
cost is required. When a trigger generator is adopted, optimizing
the trigger generator only needs the gradients from the poisoned
samples. Secondly, once the backdoor is injected to the target GNNGs,
the predictions on new target nodes can be easily controlled by
attaching generated triggers instead of an additional optimization

https://doi.org/10.1145/3543507.3583392
https://doi.org/10.1145/3543507.3583392
mailto:permissions@acm.org
mailto:szw494@psu.edu
mailto:mfl5681@psu.edu
mailto:xzz89@psu.edu
mailto:emd5759@psu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583392&domain=pdf&date_stamp=2023-04-30

Training G2
RV 3

+ +
/ \ -I N Inject triggers / \ -l \‘\‘\‘ I,'I Target GNN
Assign Label ~__.- Training Backdoored
WAL E AL

Clean Graph PoisonGraph
Testing
‘/X:; \\\ . \,\"’:4- . 02 Trigger node
XTI X T petsoncd o
CONA Ve ““'— S O sl oisoned node
A ST coccos MGEENR Ul S
\ 1~07 GNN > 4+ Misprediction
N \
R = N s @ @ Labeled
T Unlabeled
Local Graph of node v Prediction niabele!

Figure 1: General framework of graph backdoor attack.

process as graph manipulation attacks. This will especially benefit
the targeted attack on inductive node classification, which widely
exists in real-world scenarios. For example, TikTok graph will often
incorporate new users and predict labels of them with a trained
model. Thirdly, compared with revising the links between existing
users, it is relatively easy to inject triggers and malicious labels in
backdoor attacks. Take malicious user detection on social networks
as an example, many labels are collected from reports of users. In
this case, malicious labels could be easily assigned by attackers. As
for the trigger attachment, it can be achieved by linking a set of
fake accounts to the users.

Recently, Zhang et al. [39] firstly investigate a graph backdoor
attack that uses randomly generated graphs as triggers. A trigger
generator is adopted in [30] to get more powerful sample-specific
triggers. However, these methods have unnoticeablity issues in the
following two aspects. Firstly, our empirical analysis in Sec. 3.3.1
shows that existing methods need a large budget to conduct effec-
tive backdoor attacks on large-scale graphs, i.e., they need to attach
the backdoor triggers to a large number of nodes in the training
graph so that a model trained on the graph will be fooled to as-
sign target label to nodes attached with the backdoor trigger. This
largely increases the risk of being detected. Secondly, the generated
triggers of these methods can be easily identified and destroyed.
Specifically, real-world graphs such as social networks generally
follow homophily assumption, i.e., similar nodes are more likely to
be connected; while in existing graph backdoor attacks, the edges
linking triggers and poisoned nodes and edges inside the triggers
are not guaranteed with the property of connecting nodes with high
similarity scores. Thus, the triggers and assigned malicious labels
can be eliminated by pruning edges linking dissimilar nodes and
discarding labels of involved nodes, which is verified in Sec 3.3.2.
Thus, developing an effective unnoticeable graph backdoor attack
with limited attack budget is important. However, graph backdoor
attack is still in its early stage and there is no existing work on
unnoticeable graph backdoor attack with limited attack budget.

Therefore, in this paper, we study a novel and important problem
of developing an effective unnoticeable graph backdoor attack with
limited attack budget in terms of the number of poisoned nodes. In
essence, we are faced with two challenges: (i) how to fully utilize
the limited budget in poisoned samples for graph backdoor attacks;
(i) how to obtain triggers that are powerful and difficult to be de-
tected. In an attempt to address these challenges, we proposed a
novel framework Unnoticeable Graph Backdoor Attack (UGBA)!.

Uhttps://github.com/ventr1c/UGBA

2264

To better utilize the attack budget, UGBA proposes to attach trig-
gers with crucial representative nodes with a novel poisoned node
selection algorithm. And an adaptive trigger generator is deployed
in UGBA to obtain powerful unnoticeable trigger that exhibits high
similarity with each target node and maintains high attack success
rate. In summary, our main contributions are:

e We study a novel problem of promoting unnoticeablity of graph
backdoor attacks in generated triggers and attack budget;

o We empirically verify that a simple strategy of edge pruning and
label discarding can largely degrade existing backdoor attacks;

o We design a framework UGBA that deliberately selects poisoned
samples and learn effective unnoticeable triggers to achieve un-
noticeable graph backdoor attack under limited budget; and

o Extensive experiments on large-scale graph datasets demonstrate
the effectiveness of our proposed method in unnoticeably back-
dooring different GNN models with limited attack budget.

2 RELATED WORKS

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) [2, 19, 27, 35] have shown remark-
able ability in modeling graph-structured data, which benefits var-
ious applications such as recommendation system [35], drug dis-
covery [2] and traffic analysis [41]. Generally, the success of GNNs
relies on the message-passing strategy, which updates a node’s
representation by recursively aggregating and combining features
from neighboring nodes. For instance, in each layer of GCN [19] the
representations of neighbors and the center node will be averaged
followed by a non-linear transformation such as ReLU. Recently,
many GNN models are proposed to further improve the perfor-
mance of GNNs [4, 6, 7, 10, 18, 37, 43]. For example, self-supervised
GNNss [18, 22, 43] are investigated to reduce the need of labeled
nodes. Works that improve fairness [8], robustness [6, 7] and ex-
plainability [9, 36, 40] of GNNs are explored. And GNN models for
heterophilic graphs are also desgined [11, 31].

2.2 Attacks on Graph Neural Networks

According to the stages the attack occurs, adversarial attacks on
GNNs can be divided into poisoning attack [25, 45, 46] and evasion
attack [1, 3, 12, 26, 28, 33]. In poisoning attacks, the attackers aim
to perturb the training graph before GNNs are trained such that a
GNN model trained on the poisoned dataset will have a low predic-
tion accuracy on test samples. For example, Nettack [45] employs a
tractable surrogate model to conduct a targeted poisoning attack by
learning perturbation against the surrogate model. Evasion attacks
add perturbation in the test stage, where the GNN model has been
well trained and cannot be modified by attackers. Optimizing the
perturbation of graph structures by gradient descent [33] and rein-
forcement learnings [12, 21] have been explored. Evasion attacks
through graph injection [20, 44] are also investigated.

Backdoor attacks are still rarely explored on GNNs [30, 39]. Back-
door attacks generally attach backdoor triggers to the training data
and assign the target label to samples with trigger. Then a model
trained on the poisoned data will be misled if backdoors are ac-
tivated by the trigger-embedded test samples. Zhang et al. [39]
propose a subgraph-based backdoor attack on GNNs by injecting
randomly generated universal triggers to some training samples.

https://1https://github.com/ventr1c/UGBA

Xi et al. [30] adopt a trigger generator to learn to generate adaptive
trigger for different samples. Sheng et al. [24] propose to select the
nodes with high degree and closeness centrality. Xu and Picek [32]
improve the unnoticeability by assigning triggers without change
labels of poisoned samples. Our proposed method is inherently
different from these methods as (i) we can generate unnoticeable
adaptive triggers to simultaneously maintain the effectiveness and
bypass the potential trigger detection defense based on feature sim-
ilarity of linked nodes; (ii) we design a novel clustering-based node
selection algorithm to further reduce the required attack budget.

3 PRELIMINARY ANALYSIS

In this section, we present preliminaries of backdoor attacks on
graphs and show unnoticeablity issues of existing backdoor attacks.

3.1 Notations

We use G = (V, E,X) to denote an attributed graph, where V =
{0v1,...,0n} is the set of N nodes, & € V x V is the set of edges,
and X = {x1,..,xN} is the set of node attributes with x; being
the node attribute of v;. A € RNXN s the adjacency matrix of
the graph G, where A;; = 1 if nodes v; and v; are connected;
otherwise A;; = 0. In this paper, we focus on a semi-supervised
node classification task in the inductive setting, which widely exists
in real-world applications. For instance, GNNs trained on social
networks often need to conduct predictions on newly enrolled users
to provide service. Specifically, in inductive node classification, a
small set of nodes Vp C V in the training graph are provided with
labels Y1, = {y1,...,yn; }. The test nodes Vr are not covered in
the training graph G, i.e., Vr NV = 0.

3.2 Preliminaries of Graph Backdoor Attacks

3.2.1 Threat Model. In this section, we introduce the threat model.
Attacker’s Goal: The goal of the adversary is to mislead the GNN
model to classify target nodes attached with the triggers as tar-
get class. Simultaneously, the attacked GNN model should behave
normally for clean nodes without triggers attached.

Attacker’s Knowledge and Capability: As the setting of most
poisoned attacks, the training data of the target model is available
for attackers. The information of the target GNN models including
model architecture is unknown to the attacker. Attackers are capa-
ble of attaching triggers and labels to nodes within a budget before
the training of target models to poison graphs. During the inference
phase, attackers can attach triggers to the target test node.

3.2.2 General Framework of Graph Backdoor Attacks. The key idea
of the backdoor attacks is to associate the trigger with the target
class in the training data to mislead target models. As Fig. 1 shows,
during the poisoning phase, the attacker will attach a trigger g to
a set of poisoned nodes Vp C V and assign Vp with target class
label y;, resulting a backdoored dataset. Generally, the poisoned
node set Vp is randomly selected. The GNNs trained on the back-
doored dataset will be optimized to predict the poisoned nodes Vp
attached with the trigger g as target class y;, which will force the
target GNN to correlate the existence of the trigger g in neighbors
with the target class. In the test phase, the attacker can attach the
trigger g to a test node v to make v classified as the target class
by backdoored GNN. Some initial efforts [30, 39] have been made

2265

Table 1: Impacts of |'Vp| to ASR (%) of backdoor attacks.

|Vp| 80 240 400 800 2400
SBA-Samp 0.06 1.7 10.8 34.5 75.5
SBA-Gen 0.08 18.1 32.1 54.3 85.9
GTA 37.4 62.4 72.4 82.7 94.8

Table 2: Results of backdoor defense (Attack Success Rate (%)
| Clean Accuracy (%)) on Ogb-arxiv dataset.

Defense Clean SBA-Samp SBA-Gen GTA

None 65.5 610|651 708|652 94.8]65.6
Prune 62.2 8.9 64.0 31.2]64.0 1.4]64.5
Prune+LD 62.6 32|640 153|638 0.04]64.1

for graph backdoor attacks. Specifically, SBA [39] directly injects
designed sub-graphs as triggers. And GTA [30] adopts a trigger
generator to learn optimal sample-specific triggers.

3.3 Unnoticeability of Graph Backdoor Attacks

In this subsection, we analyze the unnoticeability of existing graph
backdoor attacks in terms of the required number of poisoned
samples and the difficulty of trigger detection.

3.3.1 Size of Poisoned Nodes. In backdoor attacks, a set of poi-
soned nodes Vp will be attached triggers and target class labels
to conduct attacks. However, as large-scale graphs can provide
abundant information for training GNNs, the attacker may need to
inject a large number of triggers and malicious labels to mislead
the target GNN to correlate the trigger with target class, which
puts backdoor attack at the risk of being noticed. To verify this, we
analyze how the size of poisoned nodes affects the attack success
rate of the state-of-the-art graph backdoor attacks, i.e., SBA-Gene,
SBA-Samp [39], and GTA [30] on a large node classification dataset,
i.e., OGB-arxiv [15]. Detailed descriptions of these methods can be
found in Sec. 6.1.2. We vary |Vp| as {80, 240, 800, 2400}. The size of
trigger is limited to contain three nodes. The architecture of target
model is GraphSage [14]. The attack success rate (ASR) results are
presented in Tabble 1. From the table, we can observe that all meth-
ods especially SBA-Gen and SBA-Samp achieve poor attack results
with limited budget such as 80 and 240 in “Vp. This is because (i)
SBA-Gen and SBA-Samp utilize handcrafted triggers which is not
effective; (i) Though GTA uses learned sample-specific trigger, sim-
ilar to SBA-Gen and SBA-Samp, the selection of poisoned nodes is
random and the budget is not well utilized. Thus, it is necessary to
develop graph backdoor attack methods that can generate effective
triggers and fully exploit the attack budget.

3.3.2 Detection of Triggers. Real-world graphs such as social net-
works generally show homophily property, i.e, nodes with similar
attributes are connected by edges. For existing backdoor attacks,
the attributes of triggers may differ a lot from the attached poisoned
nodes. The connections within trigger may also violate homophily
property. Therefore, the negative effects of injected triggers and
target labels might be reduced by eliminating edges linking dissim-
ilar nodes and labels of involved nodes. To verify this, we evaluate
two strategies to defend against backdoor attacks:

e Prune: We prune edges linking nodes with low cosine simi-
larity. As edges created by the backdoor attacker may link dis-
similar nodes, the trigger structure and attachment edge can be
destroyed.

o Prune+LD: To reduce the influence of dirty labels of poisoned
nodes, besides pruning, we also discard the labels of the nodes
linked by dissimilar edges.

Experimental results on Ogb-arxiv with |Vp| set as 2400 are pre-
sented in Table 2. Other settings are the same as Sec. 3.3.1. For
Prune and Prune+LD, the threshold is to filter out edges with low-
est 10% cosine similarity scores. More results on other datasets
can be found in Table 4. The accuracy of the backdoored GNN on
clean test set is also reported in Table 2 to show how the defense
strategies affect the prediction performance. Accuracy on a clean
graph without any attacks is reported as reference. All the results
are average scores of 5 runs. We can observe from Tab. 2 that (i) ASR
drops dramatically with the proposed two strategies of prune and
prune+LD; (ii) the impact of the proposed strategies on prediction
accuracy is negligible. This demonstrates that the used triggers by
existing backdoor attacks can be easily mitigated.

4 PROBLEM FORMULATION

Our preliminary analysis verifies that existing backdoor attacks (i)
require a large attack budget on large datasets; and (ii) the injected
triggers can be easily detected. To alleviate these two issues, we
propose to investigate a novel unnoticeable graph backdoor attack
problem that can unnoticeablely backdoor various target GNNs
with limited attack budget. Specifically, we enhance the general
graph backdoor attack model from the following two aspects.

Selection of Poisoned Nodes Vp: In the attack model of current
graph backdoor attacks, the poisoned node set ‘Vp is randomly
selected. However, in this way, it is likely the budget is wasted in
some useless poisoned nodes. For example, the attacker may re-
peatedly poison nodes from the same cluster that have very similar
pattern, which is unnecessary. Alternatively, to fully utilize the
attack budget, we will deliberately select the most useful poisoned
nodes Vp C V in unnoticeable backdoor attack.

Unnoticeable Constraint on Triggers: As the preliminary anal-
ysis shows, dissimilarity among trigger nodes and poisoned nodes
makes the attack easy to be detected. Hence, it is necessary to obtain
adaptive triggers that are similar to the poisoned nodes or target
nodes. In addition, edges within triggers should also be enforced
to link similar nodes to avoid being damaged by pruning strategy.
Such adaptive trigger can be given by an adaptive generator. Let 812
denote the edge set that contain edges inside trigger g; and edge
attaching trigger g; and node v;. The unnoticeable constraint on
the generated adaptive triggers can be formally written as:

min sim(u,0) > T, (1)
(u,0)e&y

where sim denotes the cosine similarity between node features and
T is a relatively high threshold of the cosine similarity which can
be tuned based on datasets.

In node classification with GNNs, the prediction is given based
on the computation graph of the node. Thus, the clean prediction
on node v; can be written as fg(gé), where Q‘C denotes the clean

2266

computation graph of node v;. For a node v; attached with the adap-
tive trigger g;, the predictive label will be given by fe((l(Qé, gi)),
where a(-) denotes the operation of trigger attachment. Then, with
the above descriptions and notations in Sec 3.1. we can formulate
the unnoticeable graph backdoor attack by:

ProBLEM 1. Given a clean attributed graph G = (V, E,X) with a
set of nodes Vy, provided with labels Yy, we aim to learn an adaptive
trigger generator fy : v; — g; and effectively select a set of nodes Vp
within budget to attach triggers and labels so that a GNN f trained
on the poisoned graph will classify the test node attached with the
trigger to the target class y; by solving:

min > 1o (a(GE 90),9e)

P> gviEVU
st 07 =argmin > U(fp(GhLy)+ Y. U fo(a(Gh90). o),
0 UiE(VL UiE(Vp
You; € Vp U Vr, gi meets Eq.(1) and |gi| < A4
[Vp| < Ap

@)
where () represents the cross entropy loss and 0y denotes the param-
eters of the adaptive trigger generator f;. In the constraints, the node
size of trigger |g;| is limited by Ay, and the size of poisoned nodes is
limited by Ap. The architecture of the target GNN f is unavailable
and may adapt various defense methods.

In transductive setting, Vy would be the target nodes. However,
we focus on inductive setting where Vr is not available for the
optimization. Hence, ‘Viy would be V\V], to ensure the attacks can
be effective for various types of target nodes.

5 METHODOLOGY

In this section, we present the details of UGBA which aims to opti-
mize Eq.(2) to conduct effective and unnoticeable graph backdoor
attacks. Since it is challenging and computationally expensive to
jointly optimize the selection of poisoned nodes Vp and the trigger
generator, UGBA splits the optimization process into two steps: poi-
soned node selection and adaptive trigger generator learning. Two
challenges remain to be addressed: (i) how to select the poisoned
nodes that are most useful for backdoor attacks; (ii) how to learn the
adaptive trigger generator to obtain triggers that meet unnoticeable
constraint and maintain a high success rate in backdoor attack; To
address these challenges, a novel framework of UGBA is proposed,
which is illustrated in Fig. 2. UGBA is composed of a poisoned node
selector fp, an adaptive trigger generator f, and a surrogate GCN
model f;. Specifically, the poisoned node selector takes the graph
G as input and applies a novel metric to select nodes with represen-
tative patterns in features and local structures as poisoned nodes.
An adaptive trigger generator fj is applied with a differentiable
unnoticeable constraint to give unnoticeable triggers for selected
poisoned nodes Vp to fool f;. To guarantee the effectiveness of
the generated adaptive triggers on various test nodes, a bi-level
optimization with a surrogate GCN model is applied.

5.1 Poisoned Node Selection

In this subsection, we give the details of the node selection algo-
rithm. Intuitively, if nodes with representative features and local

Input Graph G
Trigger Graph

(" z) .
® @ Labeled L/ \ N | Poisoned
Unlabeled | O I Node Selector
1\ \ i
v N) fe
Poisoned
Backdoored Graph Gp Nodes V,

Surrogate

Adaptive Trigger

Generator f;

/
|
|
GCN Mode! FERENgy S N\
fs |

t
; Bi-level optimization Q Unnoticeable Loss £,

Figure 2: An overview of proposed UGBA.

structures are predicted to the target class y; after being attached
with triggers, other nodes are also very likely to be conducted suc-
cessful backdoor attacks. Therefore, we propose to select diverse
and representative nodes in the graph as poisoned nodes, which
enforce the target GNN to predict the representative nodes attached
with triggers to be target class y;.

One straightforward way to obtain the representative nodes is
to conduct clustering on the node features. However, it fails to con-
sider the graph topology which is crucial for graph-structured data.
Therefore, we propose to train a GCN encoder with the node labels
to obtain representations that capture both attribute and struc-
ture information. Then, for each class, we can select representative
nodes using the clustering algorithm on learned representations.
Specifically, the node representations and labels can be obtained as:

H=GCN(A,X), Y = softmax(W - H), 3)

where W denotes the learnable weight matrix for classification. The
training process of the GCN encoder can be written as:

min > (G i) @

£ [E(VL

where 6 denotes the parameters of GCN encoder, I(-) is the cross
entropy loss, and y; is the label of node v;. §; is the prediction of v;.

With the GCN encoder trained in Eq. (4), we can obtain the node
representations and conduct clustering to obtain the representative
nodes for each class. Here, to guarantee the diversity of the obtained
representative nodes, we separately apply K-Means to cluster {h; :
7; = I} on each class [other than the target class y;, where h;
denote the representation of node v; € V/Vr. Nodes nearer to
the centroid of each cluster are more representative. However, the
node nearest to the centroid may have a high degree. Injecting
the malicious label to high-degree nodes may lead to a significant
decrease in prediction performance as the negative effect will be
propagated to its neighbors, which may make the attack noticeable.
Hence, we propose a metric that balances the representativeness
and negative effects on the prediction performance. Let h¥ denote
the center of the k-th cluster. Then for a node vf belonging to the
k-th cluster, the metric score can be computed by:

m(v;) = ||h¥ — hE||5 + 1 - deg(vF) (5)

where A is to control the contribution of the degree in node selection.
After getting each node’s score, we select nodes with top-n highest

scores in each cluster to satisfy the budget, where n = (Céﬁ'

2267

5.2 Adaptive Trigger Generator

Once the poisoned node set Vp is determined, the next step is
to generate adaptive triggers with f; to poison the dataset. To
guarantee the unnoticeability of the generated triggers, we propose
a differentiable unnoticeable loss. We apply a bi-level optimization
between the adaptive generator f; and the surrogate model f; to
ensure high success rate on various test samples. Next, we give the
details of trigger generator f;, differentiable unnoticeable loss, and
the bi-level optimization with f;.

Design of Adaptive Trigger Generator. To generate adaptive
triggers that are similar to the attached nodes, the adaptive trigger
generator f; takes the node features of the target node as input.
Specifically, we adopt an MLP to simultaneously generate node
features and structure of the trigger for node v; by:

h* = MLP(x;), X{ =Wy -h", A=W, -h", (o)
where x; is the node features of v;. W ¥ and W, are learnable param-

eters for feature and structure generation, respectively. X? € R3*d
is the synthetic features of the trigger nodes, where s and d repre-
sent the size of the generated trigger and the dimension of features,
respectively. A';] € R%*S is the adjacency matrix of the generated
trigger. As the real-world graph is generally discrete, following
the binary neural network [16], we binarize the continuous adja-
cency matrix A? in the forward computation; while the continuous
value is used in backward propagation. With the generated trigger
gi = (Xlg, A?), we link it to node v; € Vp and assign target class
label y; to build backdoored dataset. In the inference phase, the
trigger generated by f; will be attached to the test node v; € Vr to
lead backdoored GNN to predict it as target class y;.

Differentiable Unnoticeable Loss. The adaptive trigger generator
fg aims to produce the triggers that meet the Eq.(1) for unnoticeable
trigger injection. The key idea is to ensure the poisoned node or test
node v; is connected to a trigger node with high cosine similarity
to avoid trigger elimination. And within the generated trigger g;,
the connected trigger nodes should also exhibit high similarity.
Thus, we design a differentiable unnoticeable loss to help optimize
the adaptive trigger generator f;. Let 81"3 denote the edge set that
contains edges inside trigger g; and edge attaching trigger g; and
node v;, the unnoticeable loss can be written as:

minle= D,),

v €YV (0j,00)€EL

max(0, T — sim(vj, vt)), (7)

where T denotes the threshold of the similarity, and 8, represents
the parameters of f5. The unnoticeable loss is applied on all nodes
V to ensure that the generated trigger meets the unnoticeable
constraint for various kinds of nodes.

Bi-level Optimization. To guarantee the effectiveness of the gen-
erated triggers, we optimize the adaptive trigger generator to suc-
cessfully attack the surrogate GCN model f; with a bi-level opti-
mization. Specifically, the surrogate GCN f; will be trained on the
backdoored dataset, which can be formulated as:

min Ls (65, 0) = DUUKGE + Y UA@(GE).y,

Ui € (VL Uj E(Vp
@

where 65 represents the parameters of the surrogate GCN f, Q'C
indicates the clean computation graph of node v;, and a(-) denotes

the attachment operation. y; is the label of labeled node v; € Vp and
y; is the target class label. The adaptive trigger will be optimized to
effectively mislead the surrogate model f; to predict various nodes
from V to be y; once injected with adaptive triggers, which can be
written as:

Ly(05,05) =) 1(f(a(GLg0)). yi)- ©

v; eV

Combining the unnoticeable loss Eq.(7), the following bi-level opti-
mization problem can be formulated:

. (10)
st 05 = argnéin.ﬁs(es, 0y),

where f is used to control the contribution of unnoticeable loss.

5.3 Optimization Algorithm

We propose an alternating optimization schema to solve the bi-level
optimization problem of Eq.(10) with a small computation cost.
Updating Lower Level Surrogate Model. Computing 6; for each
outter iteration is expensive. We update surrogate model 65 with
N inner iterations with fixed 0, to approximate 05 as [46] does:

011 = 6! — Vg, Ls(65,6) (11)

where 0! denotes model parameters after ¢ iterations. as is the
learning rate for training the surrogate model.

Updating Upper Level Surrogate Model. In the outer iteration,
the updated surrogate model parameters GST are used to approximate
0. Moreover, we apply first-order approximation [13] in computing
gradients of 6, to further reduce the computation cost:

05! = 0 — agVg, (Ly(0s, 05) + BLA(6))), (12)

where 05 indicates gradient propagation stopping. g is the learning
rate of training adaptive generator. See more details in algorithm 1.
And the time complexity analysis can be found in Appendix F.

6 EXPERIMENTS

In this section, we will evaluate proposed methods on various large-
scale datasets to answer the following research questions:

e RQ1: Can our proposed method conduct effective backdoor at-
tacks on GNNs and simultaneously ensure unnoticeability?

e RQ2: How do the number of poisoned nodes affect the perfor-
mance of backdoor attacks?

e RQ3: How do the adaptive constraint and the poisoned node
selection module affect the attack performance?

6.1 Experimental Settings

6.1.1 Datasets. To demonstrate the effectiveness of our UGBA,
we conduct experiments on four public real-world datasets, i.e.,
Cora, Pubmed [23], Flickr [37], and OGB-arxiv [15], that are widely
used for inductive semi-supervised node classification. Cora and
Pubmed are small citation networks. Flickr is a large-scale graph
that links image captions sharing the same properties. OGB-arixv
is a large-scale citation network. The statistics of the datasets are
summarized in Tab. 3.

2268

Table 3: Dataset Statistics

Datasets #Nodes #Edges #Feature #Classes
Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3

Flickr 89,250 899,756 500 7
OGB-arxiv 169,343 1,166,243 128 40

6.1.2 Compared Methods. We compare UGBA with representa-
tive and state-of-the-art graph backdoor attack methods, including
GTA [30], SBA-Samp [39] and its variant SBA-Gen. We also com-
pare GBAST [24] on Pubmed, which is shown in the Appendix C.

As UGBA conduct attacks by injecting triggers to target nodes,
we also compare UGBA with two state-of-the-art graph injection
evasion attacks designed for large-scale attacks, i.e. TDGIA [44]
and AGIA [5]. More details of these compared methods can be
found in Appendix D. For a fair comparison, hyperparameters of
all the attack methods are tuned based on the performance of the
validation set.

Competing with Defense Methods. We applied the backdoor de-
fense strategies introduced in Sec. 3.3.2 (i.e., Prune and Prune+LD)
to help evaluate the unnoticeability of backdoor attacks. More-
over, two representative robust GNN, i.e., RobustGCN [42] and
GNNGuard [38], are also selected to verify that UGBA can also
effectively attack general robust GNNs.

6.1.3 Evaluation Protocol. In this paper, we conduct experiments
on the inductive node classification task, where the attackers can
not access test nodes when they poison the graph. Hence, we ran-
domly mask out 20% nodes from the original dataset. And half of
the masked nodes are used as target nodes for attack performance
evaluation. Another half is used as clean test nodes to evaluate the
prediction accuracy of backdoored models on normal samples. The
graph containing the rest 80% nodes will be used as training graph
G, where the labeled node set and validation set both contain 10%
nodes. The average success rate (ASR) on the target node set and
clean accuracy on clean test nodes are used to evaluate the backdoor
attacks. A two-layer GCN is used as the surrogate model for all
attack methods. And to demonstrate the transferability of the back-
door attacks, we attack target GNNs with different architectures,
i.e., GCN, GraphSage, and GAT. Experiments on each target GNN
architecture are conducted 5 times. We report the average ASR and
clean accuracy of the total 15 runs (Tab. 4, Fig. 4, and Fig. 3). For
all experiments, class 0 is the target class. The attack budget Ap
on size of poisoned nodes Vp is set as 10, 40, 80 and 160 for Cora,
Pubmed, Flickr and OGB-arxiv, respectively. The number of nodes
in the trigger size is limited to 3 for all experiments. For experiments
varying the budget in trigger size, please refer to Appendix E.
Our UGBA deploys a 2-layer GCN as the surrogate model. A
2-layer MLP is used as the adaptive trigger. More details of the
hyperparameter setting can be found in Appendix B.

6.2 Attack Results

To answer RQ1, we compare UGBA with baselines on four real-
world graphs under various defense settings in terms of attack
performance and unnoticeability.

Table 4: Backdoor attack results (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graphs.

Datasets Defense Clean Graph SBA-Samp SBA-Gen GTA Ours
None 83.09 34.94 \ 84.09 42.54 \ 84.81 90.25 | 82.88 96.95 | 83.90
Cora Prune 79.68 16.70 | 82.98 19.56 | 83.19 17.63 | 83.06 98.89 | 82.66
Prune+LD 79.68 15.87 \ 79.63 17.49 \ 80.61 18.35 | 80.17 95.30 | 79.90
None 84.86 30.43 | 84.93 31.96 | 84.93 86.64 | 85.07 92.27 | 85.06
Pubmed Prune 85.09 22.10 | 84.90 22.13 | 84.86 28.10 | 85.05 92.87 | 85.09
Prune+LD 85.12 21.56 | 84.63 22.06 | 83.71 22.00 | 83.76 93.06 | 83.75
None 46.40 0.00 | 47.36 0.00 | 47.07 88.64 | 45.67 97.43 | 46.09
Flickr Prune 43.02 0.00 | 44.01 0.00 | 43.78 0.00 | 42.71 90.34 | 42.99
Prune+LD 43.02 0.00 | 45.03 0.00 | 45.32 0.00 | 44.99 96.81]42.14
None 65.50 0.65 | 65.53 11.26 \ 65.43 75.01 | 65.54 96.59 | 64.10
OGB-arxiv Prune 62.16 0.03 | 63.88 0.01 | 64.10 0.01 | 63.97 93.07 | 62.58
Prune+LD 62.16 0.16 | 64.15 0.02 | 63.89 0.03 | 64.30 90.95 | 63.19
Table 5: Comparisons of ASR (%) with node inject attacks. [
90 90f oo °*
Datasets Defense TDGIA AGIA Ours = _
X 60 X 60
GCN-Prune 77.01 77.22 99.91 ot pot - Ours - SBAGen
. GTA —— SBA-Samp
Flickr RobustGCN 78.61 78.61 99.23 230 230
GNNGuard 55.68 56.01 99.91
0 —e— Ours —a— SBA-Gen 0 "
GCN-Prune 66.17 66.33 94.05 GTA —— SBA-Samp
OGB-arixv RobustGCN 73.87 74.00 95.39 80 lGOf 240 3(210 400l 480 80 160 240 320 400 480
Size of Poisoned Samples Size of Poisoned Samples
GNNGuard 42.27 42.58 96.88
uar (a) No Defense (b) Prune+LD

6.2.1 Comparisons with baseline backdoor attacks. We conduct
experiments on four real-world graphs under three backdoor de-
fense strategy settings (i.e., No defense, Prune and Prune+LD). As
described by the evaluation protocol in Sec. 6.1.3, we report the
average results in backdooring three target GNN architectures in
Tab. 4. The details of the backdoor attack results are presented in
Tab. 8-10 in Appendix. From the table, we can make the following
observations:

e When no backdoor defense strategy is applied, our UGBA out-
performs the baseline methods, especially on large-scale datasets.
This indicates the effectiveness of poisoned node selection algo-
rithm in fully utilizing the attack budget.

e All the baselines give poor performance when the trigger de-
tection based defense methods, i.e., Prune and Prune+LD, are
adopted. By contrast, our UGBA can achieve over 90% ASR with
the defense strategies and maintain high clean accuracy. This
demonstrates that our UGBA can generate effective and unno-
ticeable triggers for backdoor attacks.

e As the ASRs are average results of backdooring three different
GNN architectures, the high ASR scores of UGBA prove its trans-
ferability in backdooring various types of GNN models.

6.2.2 Comparisons with baseline node injection attacks. We also
compare UGBA with two state-of-the-art node injection evasion
attacks. Experiments are conducted on Flickr and OGB-arxiv. Three
defense models (GCN-Prune, RobustGCN and GNNGuard) are se-
lected to defend against the compared attacks. The ASR of 5 runs
is reported in Tab 5. From this table, we observe:

o UGBA can effectively attack the robust GNNs, which shows that
UGBA can also bypass the general defense methods with the
unnoticeable constraint.

2269

Figure 3: Impacts of sizes of poisoned nodes on OGB-arxiv.

e Compared with node injection attacks, UGBA only requires a
very small additional cost in injecting triggers and labels (e.g.
160 poisoned nodes out of 169K nodes in OGB-arxiv). But UGBA
can outperform node injection attacks by 30%. This implies the
superiority of UGBA in attacking large amounts of target nodes.

6.3 Impacts of the Sizes of Poisoned Nodes

To answer RQ2, we conduct experiments to explore the attack
performance of UGBA given different budgets in the size of poi-
soned nodes. Specifically, we vary the sizes of poisoned samples
as {80, 160, 240, 320, 400, 480}. The other settings are the same as
the evaluation protocol in Sec. 6.1.3. Hyperparameters are selected
with the same process as described in Appendix. B. Fig. 4 shows
the results on OGB-arxiv. We have similar observations on other
datasets. From Fig. 4, we can observe that:

o The attack success rate of all compared methods in all settings in-
creases as the increase of the number of poisoned samples, which
satisfies our expectation. Our method consistently outperforms
the baselines as the number of poisoned samples increases, which
shows the effectiveness of the proposed framework. In particular,
the gaps between our method and baselines become larger when
the budget is smaller, which demonstrates the effectiveness of the
poisoned node selection in effectively utilizing the attack budget.

e When Prune+LD defense is applied on the backdoor attacks, our
methods still achieve promising performances, while all the base-
lines obtain nearly 0% ASR in all settings, which is as expected.
That’s because our method can generate trigger nodes similar to
the attached nodes due to the unnoticeable constraint, which is
helpful for bypassing the defense method.

mmm UGBA\CS B UGBA\C
UGBA\S mmm UGBA

mmm UGBA\CS B UGBA\C

100 UGBA\S s UGBA

100

5 8%

£ 90 g

24 @ 60

0 0
80

< < 40

20

60
Pubmed OGB-arixv Pubmed OGB-arxiv
(a) No defense (b) Prune+LD

Figure 4: Ablation studies on Pubmed and OGB-arxiv.

6.4 Ablation Studies

To answer RQ3, we conduct ablation studies to explore the effects
of the unnoticeable constraint and the poisoned node selection mod-
ule. To demonstrate the effectiveness of the unnoticeable constraint
module, we set the f as 0 when we train the trigger generator
and obtain a variant named as UGBA\C. To show the benefits
brought by our poisoned node selection module, we train a variant
UGBA\S which randomly selects poisoned nodes to attach triggers
and assign target nodes. We also implement a variant of our model
by removing both unnoticeable constraint and poisoned node se-
lection, which is named as UGBA\CS. The average results and
standard deviations on Pubmed and OGB-arxiv are shown in Fig. 4.
All the settings of evaluation follow the description in Sec. 6.1.3.
And the hyperparameters of the variants are also tuned based on
the validation set for fair comparison. From Fig. 4, we observe that:

e Compared with UGBA\S, UGBA achieves better attack results
on various defense settings. The variance of ASR of UGBA is
significantly lower than that of UGBA\S. This is because our
poisoned node selection algorithm selects consistently diverse
and representative nodes that are useful for backdoor attacks.
When the backdoor defense strategy Prune+LD, UGBA can out-
perform UGBA\C and UGBA\CS by a large margin. This implies
that the proposed unnoticeable loss manages to guide the trigger
generator to give unnoticeable triggers for various test nodes,
which can effectively bypass the pruning defenses.

200 Clean Edges 150 Clean Edges
2150 Trigger Edges B Trigger Edges
g g 100
2100 =
2 £ 50
&4 50 5

G—0.5 0.0 0.5 1.0 00.2 04 06 08 1.0
Cosine Similarity Cosine Similarity
(a) GTA (b) UGBA

Figure 5: Edge similarity distributions on OGB-arxiv.

6.5 Similarity Analysis

In this section, we conduct a case study to further explore the simi-
larity of the trigger nodes. We conduct backdoor attacks by using
both GTA and our method on OGB-arxiv and then calculate the
edge similarities of trigger edges (i.e., the edges associated with trig-
ger nodes) and clean edges (i.e., the edges not connected to trigger
nodes). The histogram of the edge similarity scores are plotted in
Fig. 5. From the figure, we observe that the trigger edges generated

2270

8 1 57
(b) OGB-arxiv
Figure 6: Hyperparameter Sensitivity Analysis

(a) Pubmed

by GTA have low similarities, which implies high risk of trigger
elimination with our proposed backdoor defense strategies. In con-
trast, the edges created by our method present cosine similarity
scores that well disguise them as clean edges, which verifies the
unnoticeability of our methods.

6.6 Parameter Sensitivity Analysis

In this subsection, we further investigate how the hyperparameter
p and T affect the performance of UGBA, where ff and T control the
weight of unnoticeable loss in training the trigger generator and the
threshold of similarity scores used in unnoticeable loss. To explore
the effects of f and T, we vary the values of f§ as {0, 50, 100, 150, 200}.
And T is changed from {0, 0.2, 0.4, 0.6,0.8, 1} and {0.6,0.7,0.8,0.9, 1}
for Pubmed and OGB-arxiv, respectively. Since and T only affect
the unnoticeablity of triggers, we report the attack success rate
(ASR) of attacking against the Prune+LD defense strategy in Fig. 6.
The test model is fixed as GCN. We observe that (i): In Pubmed,
the similarity threshold T needs to be larger than 0.2; while T is
required to be higher than 0.8 in OGB-arxiv. This is because edges
in OGB-arxiv show higher similarity scores compared with Pubmed.
Hence, to avoid being detected, a higher similarity threshold T is
necessary. In practice, the T can be set according to the average
edge similarity scores of the dataset. (ii) When T is set to a proper
value, high ASR can generally be achieved when f < 1, which eases
the hyperparameter tuning.

7 CONCLUSION AND FUTURE WORK

In this paper, we empirically verify that existing backdoor attacks
require large attack budgets and can be easily defended with edge
pruning strategies. To address these problems, we study a novel
problem of conducting unnoticeable graph backdoor attacks with
limited attack budgets. Specifically, a novel poisoned node selection
algorithm is adopted to select representative and diverse nodes as
poisoned nodes to fully utilize the attack budget. And an adaptive
generator is optimized with an unnoticeable constraint loss to en-
sure the unnoticeability of generated triggers. The effectiveness of
generated triggers is further guaranteed by bi-level optimization
with the surrogate GCN model. Extensive experiments on large-
scale datasets demonstrate that our proposed method can effectively
backdoor various target GNN models and even be adopted with
defense strategies. There are two directions that need further inves-
tigation. First, in this paper, we only focus on node classification.
We will extend the proposed attack to other tasks such as recom-
mendation and graph classification. Second, it is also interesting to
investigate how to defend against the unnoticeable graph backdoor
attack.

ACKNOWLEDGMENTS

This material is based upon work supported by, or in part by, the
National Science Foundation (NSF) under grant number IIS-1707548
and IIS-1909702, the Army Research Office (ONR) under grant
number W911NF21-1-0198, and Department of Homeland Secu-
rity (DNS) CINA under grant number E205949D. The findings in
this paper do not necessarily reflect the view of the funding agency.

REFERENCES

[1] Aleksandar Bojchevski and Stephan Giinnemann. 2019. Adversarial Attacks on
Node Embeddings via Graph Poisoning. In Proceedings of the 36th International
Conference on Machine Learning, ICML (Proceedings of Machine Learning Research).
PMLR.

Pietro Bongini, Monica Bianchini, and Franco Scarselli. 2021. Molecular gener-
ative Graph Neural Networks for Drug Discovery. Neurocomputing 450 (2021),
242-252.

[3] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng
Cui, Wenwu Zhu, and Junzhou Huang. 2020. A Restricted Black-Box Adversarial
Framework Towards Attacking Graph Embedding Models. AAAT 34, 3389-3396.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In ICML. 1725-1735.

[5] Yonggiang Chen, Han Yang, Yonggang Zhang, MA KAILI, Tongliang Liu, Bo Han,
and James Cheng. 2022. Understanding and Improving Graph Injection Attack
by Promoting Unnoticeability. In ICLR.

[6] Enyan Dai, Charu Aggarwal, and Suhang Wang. 2021. NRGNN: Learning a Label
Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs.
arXiv preprint arXiv:2106.04714 (2021).

[7] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. 2022. Towards robust graph
neural networks for noisy graphs with sparse labels. In WSDM. 181-191.

[8] Enyan Dai and Suhang Wang. 2021. Say No to the Discrimination: Learning Fair
Graph Neural Networks with Limited Sensitive Attribute Information. In WSDM.
680-688.

[9] Enyan Dai and Suhang Wang. 2021. Towards self-explainable graph neural
network. In CIKM. 302-311.

[10] Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu,
Jiliang Tang, and Suhang Wang. 2022. A Comprehensive Survey on Trustworthy
Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv
preprint arXiv:2204.08570 (2022).

Enyan Dai, Shijie Zhou, Zhimeng Guo, and Suhang Wang. 2022. Label-Wise
Graph Convolutional Network for Heterophilic Graphs. In LOG.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. ICML (2018).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML. 1126-1135.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024-1034.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS, Vol. 33. 22118-22133.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. NeurIPS.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G
Coleman. 2012. ZINC: a free tool to discover chemistry for biology. Journal of
chemical information and modeling 52, 7 (2012), 1757-1768.

[18] Dongkwan Kim and Alice Oh. 2021. How to find your friendly neighborhood:
Graph attention design with self-supervision. In ICLR.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[20] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In ICLR. 1885-1894.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2021. Graph
Adversarial Attack via Rewiring. In SIGKDD. 1161-1169.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gce: Graph contrastive coding for graph
neural network pre-training. In SIGKDD. 1150-1160.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93-93.

Yu Sheng, Rong Chen, Guanyu Cai, and Li Kuang. 2021. Backdoor attack of
graph neural networks based on subgraph trigger. In International Conference on
Collaborative Computing: Networking, Applications and Worksharing. Springer,
276-296.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A

&

(11

(12

[13

[14

[15

[16

[17

[19

[21

[22

[23

[24

[25

2271

[26

[27

[28

&~
20,

(30]

(31

(32]

[33

[34

@
i

[36

[37

[38

(39]

S
=

[41]

[42

[43

[44]

[45

'S
&

Hierarchical Reinforcement Learning Approach. In WWW. Association for Com-
puting Machinery, New York, NY, USA, 673-683.

Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng.
2021. Single Node Injection Attack against Graph Neural Networks. In CIKM.
1794-1803.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. ICLR (2018).

Binghui Wang, Tianxiang Zhou, Minhua Lin, Pan Zhou, Ang Li, Meng Pang, Cai
Fu, Hai Li, and Yiran Chen. 2020. Evasion attacks to graph neural networks via
influence function. arXiv preprint arXiv:2009.00203 (2020).

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A Semi-supervised Graph
Attentive Network for Financial Fraud Detection. In ICDM. IEEE, 598-607.
Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
USENIX Security. 1523-1540.

Junjie Xu, Enyan Dai, Xiang Zhang, and Suhang Wang. 2022. HP-GMN: Graph
Memory Networks for Heterophilous Graphs. In ICDM. 1263-1268.

Jing Xu and Stjepan Picek. 2022. Poster: Clean-label Backdoor Attack on Graph
Neural Networks. In CCS. 3491-3493.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks:
An Optimization Perspective. In IJCAL 3961-3967.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974-983.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. In
Advances in neural information processing systems. 9244-9255.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In ICLR.

Xiang Zhang and Marinka Zitnik. 2020. GNNGuard: Defending Graph Neural
Networks against Adversarial Attacks. In NeurIPS, H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 9263-
9275.

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhengiang Gong. 2021. Back-
door attacks to graph neural networks. In SACMAT. 15-26.

Zaixi Zhang, Qi Liu, Hao Wang, Chenggiang Lu, and Cheekong Lee. 2022. Prot-
gnn: Towards self-explaining graph neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 9127-9135.

Tianxiang Zhao, Xianfeng Tang, Xiang Zhang, and Suhang Wang. 2020. Semi-
Supervised Graph-to-Graph Translation. In CIKM. 1863-1872.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In SIGKDD. 1399-1407.
Qikui Zhu, Bo Du, and Pingkun Yan. 2020. Self-supervised Training of Graph
Convolutional Networks. arXiv preprint arXiv:2006.02380 (2020).

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang
Lu, and Jie Tang. 2021. TDGIA: Effective Injection Attacks on Graph Neural
Networks. In SIGKDD. Association for Computing Machinery, New York, NY,
USA, 2461-2471.

Daniel Ziugner, Amir Akbarnejad, and Stephan Giinnemann. 2018. Adversarial
attacks on neural networks for graph data. In SIGKDD. 2847-2856.

Daniel Ziigner and Stephan Giinnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In International Conference on Learning
Representations (ICLR).

Algorithm 1 Algorithm of UGBA.

Input: G = (V,5,X), Y., B, T.
Output: Backdoored dataset Gp, adaptive trigger generator f;
. Initialize Gg = G;
: Randomly initialize 05 and 0, for f; and fg;
. Select poisoned nodes Vp based on Eq. (5);
. Assign class t as labels of Vp;
: while not converged yet do
fort=1,2,...,N do
Update 05 by descent on Vg_Ls based on Eq. (11);
end for
Update 6, by descent on Veg (Lg + BL.) based on Eq. (12);
: end while
: forv; € Vp do
Generate the trigger g; for v; by using fg;
Update Gp based on a(glig,gi);
: end for
: return Gp and fg;

=B RN R - U NI SR RN

P
SO ORI R SR Y

A TRAINING ALGORITHM

The algorithm of UGBA is proposed in Algorithm 1. Specially, we
first select the poisoned nodes Vp with the top-n highest scores
m(-) based on Eq. (5), and assign the target class y; as labels to Vp
(lines 3-4). From line 5 to line 10, we train the trigger generator f;
on the surrogate GCN f; by solving a bi-level optimization problem
based on Eq. (10). In detail, we update lower level surrogate model
(lines 6-8) and upper level surrogate model (line 9), respectively, by
doing gradient descent on 65 and 0, based on Eq. (11) and Eq. (12).
After that, from line 11 to line 14, we use the well-trained fq to
generate a trigger g; for each poisoned node v; € Vp and attach g;
with v; to obtain the poisoned graph Gg.

B IMPLEMENTATION DETAILS

A 2-layer GCN is deployed as the surrogate model. A 2-layer MLP
is used as the adaptive trigger. All the hidden dimension is set as 32.
The inner iterations step N is set as 5 for all the experiments. For
the hyperparameter and T, they are selected based on the grid
search on the validation set. Specifically, T is fixed as 0.5, 0.5, 0.5,
0.8 for Cora, Pubmed, Flickr and OGB-arxiv, respectively. For Prune
and Prune+LD defenses, the threshold of pruning is set to filter out
around 10% dissimilar edges. In particular, the set thresholds are
around 0.1, 0.2, 0.4, 0.8 for Cora, Pubmed, Flickr and OGB-arxiv.

C ADDITIONAL EXPERIMENTS

We compare our UGBA with GBAST [24] on Pubmed. And we report
the ASR (%) of attacking GCN under different defense settings in
Tab. 6. We similar observations on other datasets and target GNN
models. Compared with GBAST which selects the poisoned samples
by degree and closeness centrality, our UGBA achieves much higher
ASR when not defense is applied. This implies the effectiveness of
our clustering-based poisoned sample selection. In addition, GBAST
cannot bypass the defense strategy. Our UGBA can still show high
attack performance under the Prune+LD defense.

2272

Table 6: Comparison with GBAST

Defense GBAST UGBA
None 55.1 +£11.4 96.3 £1.3
Prune+LD 21.3 £0.2 92.3 £2.1

D DETAILS OF COMPARED METHODS

The details of compared methods are described following:

e SBA-Samp [39]: It injects one fixed subgraph as a trigger to the
training graph for a poisoned node. To generate the subgraph
the connections are generated using Erdos-Renyi (ER) model and
the node features are randomly sampled from the training graph.

e SBA-Gen: This is a variant of SBA-Samp, which uses generated
features for trigger nodes. Features are from a Gaussian distribu-
tion whose mean and variance is computed from real nodes.

e GTA [30]: This is the state-of-the-art backdoor attack on GNNss.
Poisoned nodes is randomly selected in GTA. A trigger generator
is adopted to create subgraphs as sample-specific triggers. The
trigger generator is purely optimized by the backdoor attack loss
without any unnoticeable constraint.

e TDGIA [44]: It employs a topological defective edge selection
strategy to choose the nodes to be connecting with the injected
ones, and generates the features for injected nodes by performing
the smooth adversarial feature optimization.

e AGIA [5]: It leverages gradient information to perform a bi-level
optimization for the features and structures of the injected nodes.

E IMPACTS OF TRIGGER SIZE

In this section, we conduct experiments to explore the attack per-
formance of UGBA by injecting different numbers of nodes as a
trigger for a poisoned node. Specially, the trigger size is varied as
{1,2,3,4,5}. The other settings are the same as the evaluation proto-
colin Sec. 6.1.3. The results on OGB-arxiv are shown in Table 7. We
have similar observations on other datasets. From the table, we can
find that: (i) as the increase of trigger sizes, the attack success rate
of UGBA in all settings increases, as larger trigger can be stronger
in backdoor attack; (ii) UGBA can achieve stable and high attack
performance when the trigger size is as small as 2, which shows
the effectiveness of our UGBA in generating triggers.

Table 7: Attack results of UGBA (ASR (%)) with various trigger
sizes under three defense strategies on OGB-arxiv

Trigger Size 1 2 3 4 5
None 83.0 98.9 98.8 98.9 97.8
Prune 77.7 94.5 94.4 94.6 93.8

Prune+LD 65.2 94.0 95.1 94.2 89.0

F TIME COMPLEXITY ANALYSIS

In the poisoning phase, the time complexity mainly comes from the
poisoned node selection and the optimization of trigger generator.
Let h denote the embedding dimension. The cost of poisoned node
selection with clustering is approximately O(Kh|V|), where K is
the number of clusters set in poisoned node selection and |V] is
the number of nodes in the training graph. During the bi-level
optimization phase, the computation cost of each outter iteration

Table 8: Results of backdooring GCN (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graph.

SBA-Gen

GTA

Ours

40.1+7.0 | 83.5+1.1
19.9£2.6 | 83.3£0.9
18.9£3.5 | 81.3£1.0

98.9+0.8 | 82.7+1.2
17.743.2 | 83.60.6
20.1+5.6 | 80.8+0.4

98.8+0.1 | 83.5+0.8
99.6+0.0 | 82.5+0.9
99.6+0.1 | 81.5+0.6

28.8+3.5 | 85.0+0.2
22.6+0.9 | 85.2+0.1
22.2+1.2|84.2+0.3

92.8+2.9 | 85.2+0.2
28.8+1.2|85.1£1.0
22.3+0.5 | 84.2+0.1

96.3+1.2 | 84.940.1
93.0+1.1| 85.4+0.2
92.34+2.0 | 85.0+0.1

0+0.0 | 46.4+0.1
0+0.0 | 43.4+0.4
0+0.0 | 45.6+0.2

99.9+0.1 | 45.0+0.3
0+0.0] 41.7+0.2
0+0.0 | 44.5+0.4

96.9+2.3 | 44.8+0.4
99.940.0 | 41.7+0.4
96.6+1.6 | 44.8+0.1

Datasets Defense Clean Graph SBA-Samp
None 82.9 33.8+3.4 | 83.9+1.1
Cora Prune 79.6 17.1£2.3 | 83.1£1.1
Prune+LD 79.6 16.6+£2.7 | 81.3+1.2
None 85.1 26.4+2.9 | 84.9+0.2
Pubmed Prune 85.1 22.4+1.0 | 85.3+0.1
Prune+LD 85.1 21.740.9 | 85.0+0.2
None 45.5 0+0.0 | 46.7+0.3
Flickr Prune 42.3 0+0.0 | 44.1£0.2
Prune+LD 42.3 0+0.0 | 45.6%0.2
None 65.6 0.3%0.1 | 65.8+0.1
OGB-arxiv Prune 62.1 0.1+0.1 | 64.5+0.5
Prune+LD 62.1 0.1£0.1 | 64.7+0.1

1.8+2.4 | 65.840.2
0.1£0.1 | 64.0£0.1
0.1£0.1 | 64.6+0.1

75.2+1.4 | 65.8+0.1
0.1£0.1 | 64.0+0.1
0.1£0.1 | 64.7+0.2

98.8+0.1| 63.9£0.5
94.0+0.3 | 62.2+0.7
93.5+0.2 | 63.0+0.4

Table 9: Results of backdooring GraphSage (ASR (%) | Clean Accuracy (%)). Only clean accuracy is reported for clean graph.

SBA-Gen

GTA

Ours

40.4+5.6 | 82.7+1.2
19.943.6 | 82.4£1.1
16.9+3.2 | 78.9+0.8

99.5+0.4 | 81.3£1.0
18.6+4.1] 81.9£0.8
18.0+4.5 | 77.9£2.0

92.7+2.1| 82.8+1.4
99.6+0.1 | 83.9+1.5
94.4+2.1|77.8+0.5

40.0+4.2 | 85.9+0.2
23.0+0.9 | 85.8+0.1
22.0+1.2 | 83.8+0.1

92.7£3.5 | 86.0+0.3
27.4%1.2] 86.5+0.3
21.9+0.3 | 83.8+0.2

96.0+0.9 | 86.0+0.1
91.0+0.6 | 86.4+0.1
91.6+1.7 | 86.0+0.1

0£0.0 | 48.4£0.1
0£0.0 | 46.8+0.1
0£0.0 | 44.4+0.4

99.7+0.2 | 48.0+0.3
0£0.0 | 45.940.2
0£0.0 | 44.5+0.4

98.9+0.3 | 47.7+0.1
98.9+0.9 | 41.2+1.3
97.1+2.4 | 44.7+0.3

Datasets Defense Clean Graph SBA-Samp
None 81.8 34.2+4.0 | 83.0+1.5
Cora Prune 77.9 17.3+1.8 | 82.5+1.1
Prune+LD 77.9 16.4+1.8 | 78.8+0.6
None 85.7 38.0+3.8 | 85.8+0.3
Pubmed Prune 86.2 22.8+1.0 | 85.8+0.2
Prune+LD 86.2 21.5+1.0 | 85.4+0.2
None 47.0 0+0.0 | 48.5+0.1
Flickr Prune 45.2 0+0.0 | 46.7+0.1
Prune+LD 45.2 0+0.0 | 44.4+0.4
None 65.6 0.5+0.6 | 65.4+0.6
OGB-arxiv Prune 62.5 0.1+0.1 | 64.5+0.4
Prune+LD 62.5 0.3+0.4 | 63.7+0.5

6.2+3.5 | 65.3+0.6
0.1+0.1 | 64.5+0.5
0.1+0.1 | 63.8+0.5

55.5+2.3 | 65.940.3
0.120.1 | 64.8£0.4
0.120.1 | 64.1£0.3

91.0+0.8 | 63.6+0.6
89.7+0.6 | 62.6+0.4
84.6+0.5 | 62.8+0.2

Table 10: Results of backdooring GAT (ASR (%) | Clean Accuracy (%)) . Only

clean accuracy is reported for clean graph.

SBA-Gen

GTA

Ours

47.1£18.0 | 84.4%1.1
18.9£3.6 | 83.8+0.6
16.74£3.8 | 81.640.8

72.3+27.7 | 84.6+£0.8
16.6+1.5 | 83.7+1.3
16.9+4.4 | 81.8+1.2

99.3+0.7 | 85.4+1.0
99.6+0.1 | 83.9+1.5
92.0+14.7 | 80.4+0.8

27.1+3.8 | 83.9+0.2
20.8+1.4 | 83.6+0.2
22.0+0.8 | 83.2+0.3

91.2+1.5 | 84.0+0.2
28.1+1.183.5+0.1
21.8+0.4 | 83.3+0.5

100+0.0 | 84.0+4.2
94.6+2.6 | 83.5+0.2
95.3+4.1 84.0+4.2

0+0.0 | 46.4+0.4
0+0.0 | 41.2+1.2
0+0.0 | 46.0+0.6

66.2+34.9 | 44.0£0.6
0+0.0 | 40.5+0.1
0+0.0 | 45.7+0.4

96.5+4.4 | 45.8+1.3
72.2+27.5 | 41.2+1.3
96.7+6.3 | 46.0+0.3

25.8+20.3 | 65.2+0.6
0.1£0.1 | 63.240.1
0.1£0.1 | 64.0£0.1

94.3+2.5 | 65.0+0.1
0.1£0.1 | 63.1+0.1
0.1£0.1 | 64.1+0.1

100+0.0 | 64.8+0.2
95.540.0 | 62.9£0.2
94.840.0 | 63.7+0.1

Datasets Defense Clean Graph SBA-Samp
None 84.5 36.8+8.7 | 85.4+1.3

Cora Prune 81.2 15.7£2.4 | 83.7£0.9
Prune+LD 81.2 14.6+£2.9 | 81.1£1.2
None 83.9 26.9+4.5 | 84.1+0.3

Pubmed Prune 84.0 21.140.9 | 83.6+0.2
Prune+LD 84.0 21.5+1.3 | 83.5+0.3
None 46.5 0+0.0 | 46.9+0.2

Flickr Prune 41.7 0+0.0 | 41.2+0.8
Prune+LD 41.7 0+0.0 | 46.1+0.6
None 65.3 1.1+1.3 | 65.4+0.1

OGB-arxiv Prune 61.9 0.1+0.1 | 63.2+0.1
Prune+LD 61.9 0.1£0.1 | 64.1£0.1

Table 11: Training time

Dataset Size GTA UBGA

Flickr 89,250 18.1s 18.3s

Arxiv 169,343 37.7s 41.8s

consists of updating of surrogate GCN model in inner iterations and
training adaptive trigger generator. The cost for updating surrogate
model is approximate O(Nhd|V|), where d is the average degree
of nodes and N is the number of inner iterations which is generally
small. The cost for optimizing the trigger generator in each outter
iteration is O(hd|V|). Hence, the overall time complexity in each
iteration of optimization is O((N + 1)hd|V|), which is linear to
the graph size. Furthermore, the framework can be trained in a
mini-batch way to further reduce the computation cost in each
iteration. In the test phase, the cost of generating trigger to attack
the target node is only O(h). Our time complexity analysis proves
that UGBA has great potential in conducting scalable target attacks.

2273

We also report the overall training time of our UGBA and GTA
in Tab. 11. All models are trained with 200 epochs on an A6000 GPU
with 48G memory. The training time is very short and increases
linearly as the complexity analysis suggests. In the test phase, at-
tacking each target node requires 0.0017 seconds on average.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Graph Neural Networks
	2.2 Attacks on Graph Neural Networks

	3 Preliminary Analysis
	3.1 Notations
	3.2 Preliminaries of Graph Backdoor Attacks
	3.3 Unnoticeability of Graph Backdoor Attacks

	4 Problem Formulation
	5 Methodology
	5.1 Poisoned Node Selection
	5.2 Adaptive Trigger Generator
	5.3 Optimization Algorithm

	6 Experiments
	6.1 Experimental Settings
	6.2 Attack Results
	6.3 Impacts of the Sizes of Poisoned Nodes
	6.4 Ablation Studies
	6.5 Similarity Analysis
	6.6 Parameter Sensitivity Analysis

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Training Algorithm
	B Implementation Details
	C Additional Experiments
	D Details of Compared Methods
	E Impacts of trigger size
	F Time Complexity Analysis

