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ABSTRACT KEYWORDS

Graph Neural Networks (GNNs) have achieved great success in
modeling graph-structured data. However, recent works show that
GNNs are vulnerable to adversarial attacks which can fool the
GNN model to make desired predictions of the attacker. In addition,
training data of GNNs can be leaked under membership inference
attacks. This largely hinders the adoption of GNNs in high-stake
domains such as e-commerce, finance and bioinformatics. Though
investigations have been made in conducting robust predictions and
protecting membership privacy, they generally fail to simultane-
ously consider the robustness and membership privacy. Therefore,
in this work, we study a novel problem of developing robust and
membership privacy-preserving GNNs. Our analysis shows that
Information Bottleneck (IB) can help filter out noisy information
and regularize the predictions on labeled samples, which can bene-
fit robustness and membership privacy. However, structural noises
and lack of labels in node classification challenge the deployment of
IB on graph-structured data. To mitigate these issues, we propose a
novel graph information bottleneck framework that can alleviate
structural noises with neighbor bottleneck. Pseudo labels are also
incorporated in the optimization to minimize the gap between the
predictions on the labeled set and unlabeled set for membership
privacy. Extensive experiments on real-world datasets demonstrate
that our method can give robust predictions and simultaneously
preserve membership privacy.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have shown promising results
in modeling graph-structured data such as social network analy-
sis [17], finance [42], and drug discovery [21]. For graphs, both
graph topology and node attributes are important for downstream
tasks. Generally, GNNs adopt a message-passing mechanism to
update a node’s representation by aggregating information from
its neighbors. The learned node representation can preserve both
node attributes and local structural information, which facilitates
various tasks, especially semi-supervised node classification.
Despite their great success in modeling graphs, GNNs are at risk
of adversarial attacks and privacy attacks. First, GNNs are vulnerable
to adversarial attacks [14, 55, 57]. An attacker can achieve various
attack goals such as controlling predictions of target nodes [14]
and degrading the overall performance [57] by deliberately per-
turbing the graph structure and/or node attributes. For example,
Nettack [56] can mislead the target GNN to give wrong predictions
on target nodes by poisoning the training graph with small per-
turbations on graph structure or node attributes. The vulnerability
of GNNs largely hinders the adoption of GNNs in safety-critical
domains such as finance and healthcare. Second, GNNs might leak
private training data information under membership inference at-
tacks (MIAs) [32, 36]. The membership inference attack can detect
whether a target sample belongs to the training set. It can effectively
distinguish the training samples even with black-box access to the
prediction vectors of the target GNNs. This potential membership
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leakage threatens the privacy of the GNN models trained on sen-
sitive data such as clinical records. For example, an attacker can
infer the patient list from GNN-based chronic disease prediction
on the patient network [29].

Many efforts [12, 15, 23, 39, 52, 54] have been taken to learn
robust GNN’s against adversarial attacks. For instance, robust aggre-
gation mechanisms [5, 16, 28, 54] have been investigated to reduce
the negative effects of adversarial perturbations. A group of graph
denoising methods [8, 15, 23, 52] is also proposed to remove/down-
weight the adversarial edges injected by the attacker. Though they
are effective in defending graph adversarial attacks, these methods
may fail to preserve the membership privacy, which is also em-
pirically verified in Sec. 5.3. For membership privacy-preserving,
approaches such as adversarial regularization [31] and differential
privacy [1, 33] are proposed for independent and identically dis-
tributed (i.i.d) data. However, in semi-supervised node classification,
the size of labeled nodes is small and information on labeled nodes
can be propagated to their neighbor nodes. These will challenge
existing methods that generally process i.i.d data with sufficient
labels. Work in membership privacy-preserving on GNNs is still
limited [32], let alone robust and membership privacy-preserving
GNN . Therefore, in this paper, we focus on a novel problem of
simultaneously defending adversarial attacks and membership pri-
vacy attacks with a unified framework.

One promising direction of simultaneously achieving robustness
and membership privacy-preserving is to adopt the information
bottleneck (IB) principle [40] for node classification of GNNs. The
IB principle aims to learn a code that maximally expresses the
target task while containing minimal redundant information. In
the objective function of IB, apart from the classification loss, a
regularization is applied to constrain information irrelevant to the
classification task in the bottleneck code. First, as IB encourages
filtering out information irrelevant to the classification task, the
noisy information from adversarial perturbations could be reduced,
resulting in robust predictions [2]. Second, membership inference
attack is feasible because of the difference between training and test
samples in posteriors. As analyzed in Sec 3.5, the regularization in
IB can constrain the mutual information between representations
and labels on the training set, which can narrow the gap between
training and test sets to avoid membership privacy leakage.

Though promising, there are still two challenges in applying IB
principle for robust and membership privacy-preserving predictions
on graphs. First, in graph-structured data, adversarial perturbations
can happen in both node attributes and graph structures. However,
IB for ii.d data is only designed to extract compressed information
from attributes. Simply extending the IB objective function used
for i.i.d data to the GNN model may fail to filter out the structural
noises. This problem is also empirically verified in Sec. 3.6. Second,
in semi-supervised node classification, the size of labeled nodes
is small. Without enough labels, the IB framework would have
poor performance on test nodes. In this situation, the gap between
labeled nodes and unlabeled test nodes can still be large even with
the IB regularization term on labeled nodes, making it ineffective
to defend MIA. Our empirical analysis in Sec. 3.5 also proves that
this challenge is caused by lacking labels.

In an attempt to address these challenges, we propose a novel
Robust and Membership Privacy-Preserving Graph Information
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Bottleneck (RM-GIB). RM-GIB develops a novel graph information
bottleneck framework that adopts an attribute bottleneck and a
neighbor bottleneck, which can handle the redundant information
and adversarial perturbations in both node attributes and graph
topology. Moreover, a novel self-supervisor is deployed to benefit
the neighbor bottleneck in alleviating noisy neighbors to further
improve the robustness. Since membership privacy-preserving with
IB requires a large number of labels, RM-GIB collects pseudo labels
on unlabeled nodes and combines them with provided labels in the
optimization to guarantee membership privacy. In summary, our
main contributions are:

e We investigate a new problem of developing a robust and mem-
bership privacy-preserving framework for graphs.

e We propose a novel RM-GIB that can alleviate both attribute and
structural noises with bottleneck and preserve the membership
privacy through incorporating pseudo labels in the optimization.

e Extensive experiments in various real-world datasets demon-
strate the effectiveness of our proposed RM-GIB in defending
membership inference and adversarial attacks.

2 RELATED WORKS

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) [3, 25, 41, 49] have shown re-
markable ability in modeling graph-structured data, which benefits
various applications such as recommendation system [49], drug
discovery [3] and traffic analysis [53]. Generally, GNNs adopt a
message-passing mechanism to iteratively aggregate the neighbor
information to augment the representation learning of center nodes.
For instance, in each layer of GCN [25], the representations of neigh-
bors and the center node will be averaged, followed by a non-linear
transformation such as ReLU. GAT [41] deploys an attention mech-
anism in the neighbor aggregation to benefit the representation
learning. Recently, many extensions and improvements have been
made to address various challenges in graph learning [7, 10, 34]. For
example, new frameworks of GNNs such LW-GCN [13] are designed
to handle the graph with heterophily. FairGNN [10] is proposed to
mitigate the bias of predictions of GNNs. Various self-supervised
GNNs [11, 34] have been explored to learn better representations.
However, despite the great achievements, GNNs are vulnerable
to adversarial [56] and privacy attacks [32], which largely con-
strain the applications of GNNs in safety-critical domains such as
bioinformatics and finance.

2.2 Robust Graph Learning

Extensive studies [9, 46, 56, 57] have shown that GNNs are vulnera-
ble to adversarial attacks. Attackers can inject a small number of ad-
versarial perturbations on graph structures and/or node attributes
for their attack goals such as reducing overall performance [55, 57]
or controlling predictions of target nodes [9, 56].

Recently, many efforts have been taken to defend against ad-
versarial attacks [12, 15, 23, 39, 54], which can be roughly divided
into three categories, i.e., adversarial training, robust aggregation,
and graph denoising. In adversarial training [48], the GNN model
is forced to give similar predictions for a clean sample and its ad-
versarially perturbed version to achieve robustness. The robust
aggregation methods [16, 28, 54] design a new message-passing
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mechanism to restrict the negative effects of adversarial perturba-
tions. Some efforts in adopting Gaussian distributions as hidden
representations [54], aggregating the median value of each neigh-
bor embedding dimension [16], and incorporating /;-based graph
smoothing [28]. In graph denoising methods [8, 15, 23, 27, 46],
researchers propose various methods to identify and remove/down-
weight the adversarial edges injected by the attacker. For example,
Wu et al. [46] propose to prune the perturbed edges based on the
Jaccard similarity of node features. Pro-GNN [23] learns a clean
graph structure by low-rank constraint. RS-GNN [8] introduces a
feature similarity weighted edge-reconstruction loss to train the
link predictor which can down-weight the noisy edges and predict
the missing links. However, these methods do not consider defense
against membership inference attacks; On the contrary, the pro-
posed RM-GIB can simultaneously defend against both adversarial
attacks and membership inference attacks.

2.3 Membership Privacy Preservation

Membership inference attack (MIA) [32, 36] is a type of privacy at-
tack that aims to identify whether a sample belongs to the training
set. The main idea of MIA is to learn a binary classifier on patterns
such as posteriors that training and test samples exhibit different
distributions. The membership leakage will largely threaten the pri-
vacy of the model trained on sensitive data such as medical records.
Many studies [1, 6, 18, 31, 37] have been conducted to defend against
the membership inference attack on models trained on i.i.d data.
The overfitting on the training samples leads to the difference be-
tween training samples and test samples in terms of posteriors
and other patterns, which makes the membership inference attack
feasible. Hence, a group of MIA defense methods propose to reduce
the generalization gap through various regularization techniques.
For example, L2 regularization [37], weight normalization [18], and
dropout [6, 35] have been investigated for membership privacy
preservation. Adversarial regularization [31] is also explored to
reduce the posterior distribution difference between training and
test samples. Another type of defense [1, 4, 33] is to apply differen-
tially private mechanisms such as DP-SGD [1]. These mechanisms
generally add noise to gradients, model parameters, or outputs to
achieve membership privacy guarantee. The above membership
inference attack and defense methods are mainly on i.i.d data.

Recently, several seminal works [19, 32, 44] show that GNNs
also suffer from MIA. However, defending MIA on graphs is rarely
explored [32]. Olatunji et al. [32] propose to inject noise to the
posteriors or sample neighbors in the aggregation to protect the
membership privacy on node classification. However, it will largely
sacrifice the node classification performance to achieve member-
ship privacy. On the contrary, our method combines the proposed
novel graph IB and pseudo labels to give accurate and membership
privacy-preserving predictions. Moreover, our framework is robust
to both MIA and adversarial attacks.

2.4 Information Bottleneck

The Information Bottleneck (IB) principle [40] aims to learn latent
representations of each sample that maximally express the tar-
get task while containing minimal redundant information. Alemi
et al. [2] firstly propose the variational information bottleneck
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(VIB) to introduce the IB principle to deep learning. As IB filters
out information irrelevant to the downstream task, it naturally
leads to more robust representations, which have been investigated
in [2, 24, 43] for i.i.d data. Wu et al. [47] extend the IB principle to
learn robust representations on graph-structured data. IB is also
applied to extract informative but compressed subgraphs for graph
classification [38, 50] and graph explanation [30]. Our method is
inherently different from these methods because: (i) we conduct the
first attempt to design a novel IB-based framework for membership
privacy-preserving on graph neural networks; (ii) we propose a uni-
fied framework that can simultaneously defend against adversarial
and membership inference attacks.

3 PRELIMINARIES

3.1 Notations

We use G = (V, E,X) to denote an attributed graph, where V =
{v1,....,oN} is the set of nodes, & € V X V is the set of edges, and
X = {x1,..., XN} is node attribute matrix with x; being the node
attribute vector of v;. A € RN*N denotes the adjacency matrix of
G, where A;j = 1if (v;,05) € & and A;jj = 0 otherwise. In this work,
we focus on semi-supervised node classification. Only a small set of
nodes Vy, are provided with labels Y1 = {y1,...,y;}. Vu =V -V,
denotes the unlabeled nodes. Note that the topology and attributes
of G could contain adversarial perturbations or inherent noises.

3.2 Membership Inference Attack

Attacker’s Goal. The goal of MIA is to identify if a target node
was used for training the target model fr for node classification.
Attacker’s Knowledge. We focus on the defense against black-
box membership inference attacks as black-box MIA is a practical
setting that is widely adopted in existing MIA methods. Specifically,
the attacker can have black-box access to the target model fr to
obtain prediction vectors of queried samples. And a shadow graph
dataset Gs from the same distribution of the graph for training fr
is assumed to be available for the attacker. It can be a subgraph or
overlap with the training graph G.

General Framework of MIAs. Shadow training [32, 37] is gen-
erally used to train the attack model f4 for MIA. In the shadow
training, part of nodes in the shadow dataset, i.e., ’Vsi" C Gs, are
used to train a shadow model fs for node classification to mimic the
behaviors of the target model fr. Then, the attacker can construct
a dataset by combining the prediction vectors and corresponding
ground truth of membership for the attack model training. Specifi-
cally, each node v; € ‘Vsi” used to train fs is labeled as 1 (member-
ship) and each node v; € (Vs"”t is labeled as 0 (non-membership),
where W;“t = Vs - (VS"’” . Then, the training process of fy is
formally written as follows:

min= D log(faGi) = ), log(l=fa(57)

UiE(V;" viefi{g“’

(1)

where f4 denotes the attack model, which is a binary classifier
to judge if a node is in the training set or not. 4 represents the
parameters of fy. }?ls denotes the prediction vector of node v; from
the shadow model fs. As machine learning model generally overfits
on the labeled samples, it is feasible to have a well-trained attack
model. With the trained attack model fj, the membership of a
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target node v; can be inferred by fi (§I[T) where §rtT denotes the
prediction vector of v; given by the target model fr.

3.3 Problem Definition

With the notations in Sec. 3.1 and the description of membership
inference attacks in Sec. 3.2, the problem of learning a robust and
membership privacy-preserving GNN can be formally defined as:

PROBLEM 1. Given a graph G = (V,E,X) with a small set of
nodes V., labeled, and edge set & and attributes X may be poisoned
by adversarial perturbations, we aim to learn a robust and membership
privacy-preserving GNN fg : G — Y that maintains high prediction
accuracy on the unlabeled set ‘Vy; and is resistant to membership
inference attacks.

3.4 Preliminaries of Information Bottleneck

The objective of information bottleneck on i.i.d data is to learn a
bottleneck representation z = fy(x) that (i) maximizes the mutual
information with label y; and (ii) filters out information not related
to the label y. Various functions can be adopted for fy such as neural
networks. Formally, the objective function of IB can be written as:

mein -I(z;y) + fI(z; %), (2)

where the former term aims to maximize the mutual information
between the bottleneck z and the label y. The latter term constrains
the mutual information between z and input x to help filter out
the redundant information for the classification task. f is the La-
grangian parameter that balances two terms.

3.5 Impacts of IB to Membership Privacy

As shown in Eq.(2), IB will constrain I(z;x) on the training set.
Based on mutual information properties and the fact that z is only
obtained from x, we can derive the following equation:
I(z;x) = I(z; y) + I(z:x[y) — I(z;y]x)
=1(z;y) + I(zxly) = I(z;y)

The details of the derivation can be found in the Appendix D. The
constraint on I(z;x) in the IB objective will simultaneously bound
the mutual information I(z;y) on the training set Vy. On the con-
trary, classifier without using IB will maximize I(z;y) on the train-
ing set Vp, without any constraint. Hence, compared to classifier
without using IB regularization, classifier using IB objective is ex-
pected to exhibit a smaller gap between the training set and test set.
As a result, the member inference attack on classifier trained with
IB regularization will be less effective. However, in semi-supervised
node classification, only a small portion of nodes are labeled. I(z; y)
will be only maximized on the small set of labeled nodes V;. Due
to the lack of labels, the performance on unlabeled nodes could
be poor. And I(z; y) on unlabeled nodes can still be very low. As a
result, even with a constraint on I(z; y), the gap between labeled
nodes and unlabeled nodes can still be large when the size of labeled
nodes is small, resulting in membership privacy leakage.

To verify the above analysis, we directly apply the objective
function of VIB [2] to GCN and denote the model as GCN+IB. We
investigate the performance of GCN+IB against membership in-
ference attacks by varying the number of training labeled nodes.
Specifically, we vary the label rates on Cora [25] by {2%, 4%, 6%, 8%}.

®)
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Figure 1: Results of classification and MIA on Cora.

The ROC score of MIA-F [32] is used to evaluate the ability to pre-
serve membership privacy. Note that a lower MIA-F ROC score
indicates better performance in preserving membership privacy.
The experimental settings of MIA and the hyperparameter tuning
follow the description in Sec. 5.1. The results are presented in Fig. 1,
where we can observe that (i) MIA-F ROC of GCN+IB is consis-
tently lower than GCN, which verifies that adopting IB can benefit
membership privacy preserving; (ii) membership inference attack
can still be very effective on GCN+IB when the label rate is small.
With the increase in label rate, the MIA-F ROC score of GCN+IB
significantly decreases and the gap between GCN and GCN+IB be-
comes larger. This empirically shows that abundant labeled samples
are required for applying IB to defend MIA effectively.

3.6 Impacts of IB to Adversarial Robustness

Intuitively, the negative effects of adversarial perturbations can
be reduced with IB, as IB aims to learn representations that only
contain information about the label of the classification task. This
has been verified by VIB [2], which incorporates IB to deep neural
networks on i.i.d data. However, GNNs generally explicitly combine
the information of center nodes and their neighbors to obtain node
representations. For example, in each layer of GCN, the center node
representations are updated by averaging with neighbor represen-
tations. Directly using the IB objective function to a GNN encoder
may not be sufficient to bottleneck the minimal sufficient neigh-
bor information. As a result, adversarial perturbations on graph
structures can still degrade the performance. To empirically verify
this, we compare the performance of GCN+IB with GCN on graphs
perturbed by Metattack [57] and Nettack [56]. The experimental
settings follow the description in Sec. 5.1. The results are shown
in Tab. 1. We can observe that the GCN model trained with IB ob-
jective function achieves better performance on perturbed graphs,
which indicates the potential of giving robust node classification
with IB. However, compared with the performance on clean graphs,
the accuracy of GCN+IB on perturbed graphs is still relatively poor.
This empirically verifies that simply applying IB objective function
to the GNN model cannot properly eliminate the noisy information
from adversarial edges and there is still a large space to improve IB
for robust GNN.

4 METHODOLOGY

As analyzed in Sec. 3.5 and Sec. 3.6, information bottleneck can
benefit both robustness and membership privacy. However, there
are two challenges to be addressed for achieving better robust and
membership privacy-preserving predictions: (i) how to design a
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Table 1: Results (Accuracy(%)+std) on perturbed graphs.

Dataset Model Clean Metattack Netattack
Cora GCN 73.2 £0.8 619 £1.4 54.6 £0.8
GCN+IB 73.1 £0.5 66.3 £0.3 58.0 £1.6
Citeseer GCN 72.1 £0.2 64.1 £0.5 62.3 £0.7
GCN+IB 71.5 £0.3 66.8 £1.1 63.1 £1.3

graph information bottleneck framework that can handle adver-
sarial edges? and (ii) how to ensure membership privacy with IB
given a small set of labels? To address these challenges, we pro-
pose a novel framework RM-GIB, which is illustrated in Fig. 2. In
RM-GIB, the attribute information and neighbor information are
separately bottlenecked. The attribute bottleneck aims to extract
node attribute information relevant to the classification. The neigh-
bor bottleneck aims to control the information flow from neighbors
to the center node, and to filter out noisy or useless neighbors for
the prediction on the center node. Hence, the influence of adver-
sarial edges can be reduced. Moreover, a novel self-supervisor is
proposed to guide the training of the neighbor bottleneck to benefit
the noisy neighbor elimination. To address the challenge of lacking
plenty of labels for membership privacy-preserving, we propose
to obtain pseudo labels and combine them with provided labels in
the training phase. Specifically, RM-GIB will be trained with the IB
objective function with both labels on labeled nodes and pseudo
labels on unlabeled nodes to guarantee membership privacy. More
details of the design are presented in the following sections.

4.1 Graph Information Bottleneck

In this section, we give the objective of the proposed graph infor-
mation bottleneck. For graph-structured data, both node attributes
and neighbors contain crucial information for node classification.
Therefore, for each node v, RM-GIB will extract bottleneck code
from both node attributes x and its neighbor set N, which is shown
in Fig. 2. More specifically, the bottleneck code is separated into
two parts: (i) zx = fx(x), encoding the node attribute information;
(i) Ns = fu(N,x), a subset of v’s neighbors that bottleneck the
neighborhood information for prediction. Note that AV can be multi-
hop neighbors of a node. With the explicit bottleneck mechanisms
on both attributes and neighbors, the noisy information from ad-
versarial perturbations can be suppressed. The objective function
of the graph information bottleneck is given as:

méi.n—l(zx, Ns;y) + PI(zx, Ns;x, N) (4)
where 0 denotes the learnable parameters of attribute bottleneck
and neighbor bottleneck. However, it is challenging to directly
optimize Eq.(4) due to the difficulty in computing the mutual infor-
mation. Thus, we derive tractable variational upper bounds of the
two terms in Eq.(4).

Following [2], we introduce q(y|zx, Ns) as the parameterized
variational approximation of p(y|zx, Ns). Note that q(y|zx, Ns)
also can be viewed as a predictor, which can be flexible to various
GNN . Then, the upper bound of —I(zyx, Ns; y) can be derived as:

—I(zx, Ns;y) < Ep (4, Ns,y) [—108 q(ylzx, N5)] — H(y)

5
< EP(Zx,Ns,y) [-logq(ylzx, Ns)] = Lc )
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Figure 2: The overall framework of our method and the il-
lustration of optimization with pseudo labels.

Next, we give the upper bound of the second term in Eq.(4).
Since the attribute code zy is given by fi (x) which only takes node
attributes as input, we can infer that p(zx|x, N) = p(zx|x). Then,
we can get p(zy, Ns|x, N) = p(zx|x)p(Ns|x, N), which indicates
I(zx, Ns|x, N) = 0. As a result, I(zx, Ns; x, N') can be derived to:

I(zx, Ns; X5, N) = I(zx; X, N) + I(Ns; x, N|zx)

=1(zx;x) + I(Ns; X, N) = I(zx; N5) + I(zx, Ns|x, N)  (6)
<I(zx;x) + I(Ns;x, N)
The term I(zx;x) in Eq.(6) can be upper bounded as:
1(22:%) < Ep(y [KL(p(zx9)llq(z:))] = L] @)

where q(zy) is the variational approximation to the marginal p(zy)
KL denotes the KL divergence. ¢(zy) is flexible to various distri-
butions such as normal distribution. Similarly, let g(Ns) be the
variational approximation to the marginal p(Ns), the upper bound
of I(Ns; x, N) is given as:

With the above derivations, we obtain a variational upper bound
of Eq.(4) as the objective function of graph information bottleneck:

min Lo+ f(L] +L7) )

where 0 denotes the parameters to be optimized in the graph infor-
mation bottleneck.

4.2 Neural Network Parameterization

With the objective function of graph information bottleneck given
above, we specify the neural network parameterization of the at-
tribute bottleneck p(zx|x), neighbor bottleneck p(Ns|x, N) and
the predictor q(y|zx, Ns) in this subsection.

4.2.1 Attribute Bottleneck. The attribute bottleneck aims to learn
a code z, that contains minimal and sufficient information for clas-
sification from node attributes x. Inspired by [2], a MLP model and
reparameterization trick is adopted to model p(zy|x) for attribute
bottleneck. Specifically, we assume p(zx|x) follows Gaussian dis-
tribution with the mean and variance as the output of a MLP:

1o = fx(x) (10)

where f; is a MLP which outputs p and o as the mean and standard
deviation. zy can be sampled by zy = p+ o © €, where € is sampled
from the normal distribution N(0,I). As g(zx) is set as normal
distribution, KL(p(zx[x)||q(zx)) can be easily computed for L.

p(zx%) = N(zy; p, 0°1),
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4.2.2  Neighbor Bottleneck. For the neighbor bottleneck, it will ex-
tract a subset of neighbors that are useful for the target classification
task. With an ideal neighbor bottleneck, noisy neighbors caused by
adversarial edges and inherent structural noise can be eliminated.
Here, we propose a parameterized neighbor bottleneck to model
p(Ns|x, N). To ease the difficulty of computation, we decompose
p(Ns|x, N) into a multivariate Bernoulli distribution as

pNsle N = [ [ opePul Luene@-p0) D)

where py, is the probability of p(u|x, NV) that follows Bernoulli
distribution. To ensure the gradients can be propagated from the
classifier to the neighbor bottleneck module during the optimiza-
tion, Gumbel-Softmax trick [22] with the temperature set as 1 is
applied in the sampling phase. Each p,, will be estimated by a MLP
which takes the center node attributes x and the attributes of the
neighbor x,, as input by:

pu = o(hlh) with h = f,(x), hy = fo(xw), (12)
where o denotes the sigmoid function, and f;, denotes a MLP
model. As for the variational approximation of marginal distri-
bution q(Ns), we also use a multivariate Bernoulli distribution
q(Ns) = rINsl(1 = 1) INI=INs| where r € [0, 1] is the probability of
a predefined Bernoulli distribution. Then, the information loss on
neighbor bottleneck L' in Eq.(9) can be computed as:
1-py

|-

1-r

L =Bpen | 3 pulog P+ (1= pu)log (13)

ueN

4.2.3 Predictor. The predictor q(y|zx, Ns) will give predictions
based on the bottleneck code of attributes and the extracted subset
of neighbors. To fully utilize the rich information from bottlenecked
neighbors, a GNN model is deployed as the predictor in RM-GIB.
It is flexible to adopt various GNN models such as GCN [25] and
SGC [45]. Note that if N contains neighbors in K hops, a K layer
GNN will be adopted in this situation. In addition, to avoid the
influence of noises in attributes, we also use the attribute bottle-
neck code z, for each neighbor z,, € Ns. Let Ag denote the local
adjacency matrix that connects nodes in Ns and the center node,
the prediction can be formally defined as:

§ = fe(zx. {zutuens. As) (14)

where f; is the GNN-based classifier. As the prediction is given on
bottlenecked attributes and neighbors, it can give robust predictions
against adversarial perturbations on attributes and graph structures.

4.3 Self-supervision for Neighbor Bottleneck

The objective function in Eq.(9) will force the neighbor bottleneck to
extract minimal sufficient neighbors that achieve good classification
performance. However, the training of neighbor bottleneck will
only rely on the implicit supervision from the small set of labels in
semi-supervised node classification, which may not be sufficient
to train a neighbor bottleneck to handle various structural noises.
Therefore, we propose a novel self-supervisor to explicitly guide
the training of the neighbor bottleneck. The major intuition is that
the neighbor nodes with low mutual information with the center
node are likely to be the noisy neighbors that are not helpful for
the prediction on the center nodes. Hence, we can first estimate the
mutual information of each pair of linked nodes. Then, neighbors
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with low mutual information scores with the center node can be
viewed as negative samples and others as positive samples. Next,
we give the details of the mutual information estimation followed
by the self-supervision loss on the neighbor bottleneck.

Following [20], a neural network f3s is used to estimate the
mutual information between node v and u by:

sou = o(hg Th), B = fi(xo), b = fir(x),  (15)
where o is the sigmoid activation function and fjs is an MLP in-
stead of a GNN model to avoid the negative effects of inherent and
adversarial structural noises. A larger sy, indicates higher point-
wise mutual information between v and u. The mutual information
estimator fys can be trained with the following objective [20]:

1
min - ZV ZN[ log(sou) = En-p(o) log(1 = son)],  (16)
where 0y represents parameters of fys and Ny is the set of neigh-
bors of v. p(v) is the distribution of sampling negative samples for
v, which is set as a uniform distribution. With Eq.(16), the mutual
information estimator can be trained. Then, we can select the neigh-
bors with a mutual information score lower than the threshold as
the negative pairs for neighbor bottleneck. Specifically, for each
node v, the negative neighbors can be obtained by:

N, ={ue Ny;sou <T}, (17)

where T is the predefined threshold. With the negative neighbors,
the self-supervision on neighbor bottleneck can be given by:

min L5 = 0 ) | >, ~loslri) ~ 3, log(1=pi)], 19
eV ueN{ ueN,
where 0 denotes parameters of RM-GIB, N;f = N, — N and pg
corresponds to the probability value of p(u|x,, Ny) given by neigh-
bor bottleneck thorough Eq.(12). With Eq.(18), the neighbors who
are likely to be noisy will be given lower probability scores in the
neighbor bottleneck.

4.4 Privacy-Preserving Optimization with
Pseudo Labels

As empirically verified in Sec. 3.5, a large number of labels are re-
quired to preserve membership privacy with IB. Thus, we propose
to obtain pseudo labels of unlabeled nodes to enlarge the train-
ing set to further improve membership privacy. In particular, the
adoption of pseudo labels in RM-GIB can benefit the membership
privacy in two aspects: (i) classification loss will also be optimized
with unlabeled nodes, which increases the confidence scores of
prediction on unlabeled nodes. This will make it more difficult to
distinguish the prediction vectors of labeled and unlabeled nodes.
(ii) involving a large number of unlabeled nodes in the training
can improve the generalization ability of attribute and neighbor
bottleneck, which can help narrow the gap between the predictions
on training samples and test samples. Moreover, the improvement
of bottleneck code can also benefit the classification performance.
Next, we give the details of the pseudo label collection and the
optimization with pseudo labels.

To obtain pseudo labels that are robust to noises in graphs, we
can train RM-GIB with the IB objective function combined with the
self-supervision on neighbor bottleneck. Let Lo(V, Y1), LT (VL),
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Table 2: Statistics of datasets.

Cora Citeseer Pubmed Flickr
#classes 7 6 3 7
#features 1,433 3,703 500 500
#nodes 2,485 2,110 19,717 89,250
#edges 5,069 3,668 44,338 899,756

and L*(Vp) denote the three terms in the IB objective function in
Eq.(9) on the labeled set “V;. Then, the process of training RM-GIB
for pseudo label collection can be formulated as:

maiHLC((VL,yL) + (LT (V) + LF(WV)) +yvLs,  (19)

where f and y are hyperparameters to control the contributions
of regularization on bottleneck code and the self-supervision on
neighbor bottleneck. 6 denotes the learnable parameters in RM-
GIB. With the RM-GIB trained on Eq.(19), we can collect high-
quality pseudo labels Yy of the unlabeled set V7. Then, we combine
pseudo labels yU with provided labels Yy and retrain RM-GIB for
membership privacy-preserving. Let Vp = VLUV and Yp = Yyu
Y denote the enlarged labeled node set and labels, the membership
privacy-preserving optimization can be formally written as:

mein Lo(Vo,Yp) + BLY (Vo) + LT (V) +vLs  (20)

The hyperparameters § and y are set the same as Eq.(19).

5 EXPERIMENTS

In this subsection, we evaluate the proposed RM-GIB on various
real-world datasets to answer the following research questions:

e RQ1 Can our proposed RM-GIB preserve the membership pri-
vacy in node classification given a small set of labeled nodes?

e RQ2 Is RM-GIB robust to adversarial perturbations on graphs
and can membership privacy be simultaneously guaranteed?

e RQ3 How does each component of RM-GIB contribute to the
robustness and membership privacy?

5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on widely used publicly
available benchmark datasets, i.e., Cora, Citeseer, Pubmed [25], and
Flickr [51]. The key statistics of these datasets can be found in
Tab. 2. Details of the dataset settings can be found in Appendix A

5.1.2 Baselines. To evaluate the performance in preserving mem-
bership privacy, we compare RM-GIB with the representative graph
neural network GCN [25] and an existing work of graph informa-
tion bottleneck GIB [47]. We also incorporate a state-of-the-art
regularization method, i.e., adversarial regularization [31] (Adv-
Reg). A differential privacy-based method DP-SGD [1] is also com-
pared. Additionally, we compare two recent methods for defending
membership inference attacks on GNNs, which are LBP [32] and
NSD [32]. LBP adds noise to the posterior before it is released to
end users. NSD randomly chooses neighbors of the queried node
to limit the amount of information used in the target model for
membership privacy protection.

To evaluate the robustness of RM-GIB against adversarial attacks
on graphs, apart from GCN and GIB, we also compare representative
and state-of-the-art robust GNNs. Specifically, we compare two
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classical preprocessing methods, i.e., GCN-jaccard [46] and GCN-
SVD [15]. Two state-of-the-art robust GNNs are also incorporated
in the comparison, which are Elastic [28] and RSGNN [8]. For
more detailed descriptions about the above baselines, please refer
to Appendix B. To make a fair comparison, the hyperparameters
of all baselines are tuned based on the validation set. For our RM-
GIB, hyperparameter sensitivity analysis is given in Sec. 5.5. More
implementation details of RM-GIB can be found in Appendix C.

5.1.3  Evaluation Protocol. In this subsection, we provide details of
experimental settings and metrics to evaluate the performance in
defending membership inference attacks and adversarial attacks.

Membership Privacy. We adopt the state-of-the-art MIA on GNNs
in [32] for membership privacy-preserving evaluation. The shadow
training [32] described in Sec. 3.2 is adopted. Here, GCN is applied
as the shadow model. The attack setting is set as black-box, i.e., the
attacker can only obtain the predictive vectors and cannot access
model parameters. As for the shadow dataset, we use two settings:

e MIA-F: The attacker has the complete graph used for training
along with a small set of labels;

o MIA-S: The attacker has a subgraph of the dataset with a small
set of labels; In all experiments, we randomly sample 50% nodes
as the subgraph that is available for the attacker.

In both settings, the labeled nodes used in the attack have no overlap
with the training set of target model. The number of labeled nodes
used in the attack is the same as the training set. The attack ROC
score is used as a metric for membership privacy-preserving evalu-
ation. And a GNN model with a lower attack ROC score indicates
better performance in defending MIAs.

Robustness. To evaluate the robustness against adversarial attacks,
we evaluate RM-GIB on graphs perturbed by following methods:

e Mettack [57]: It aims to reduce the overall performance of the
target GNN by perturbing attributes and graph structures. The
perturbation rate is set as 0.2 in all experiments.

e Nettack [56]: It aims to lead the GNN to misclassify target nodes.
Following [8], 15% nodes are randomly selected as target nodes.

As the cited papers do, both Mettack and Nettack can access the
whole graph. Similar to MIA, the adversarial attacker is assumed
to have nodes with labels that do not overlap with the training set.

5.2 Privacy Preserving on Clean Graphs

To answer RQ1, we compare RM-GIB with baselines in defending
membership inference attacks on various real-world graphs. The
prediction accuracy of each method is reported. As described in
Sec. 5.1.3, for membership privacy-preserving evaluation, we report
the membership attack ROC score on two different settings, i.e.,
MIA-F and MIA-S, which correspond to the MIA-F ROC and MIA-S
ROC in the evaluation metrics. Note that lower attack ROC score
indicates better performance in preserving privacy. The results
on the default dataset split setting described in Appendix A are
reported in Tab. 3. Results on different sizes of training set can be
found in Appendix F. From the Tab. 3, we can observe:

e GCN can be easily attacked by membership inference attacks.
This demonstrates the necessity of developing membership privacy-
preserving methods for node classification on graphs.
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Table 3: Comparison with baselines in defending membership inference attack on various clean graphs.

Dataset  Metrics GCN GCN+PL Adv-Reg DP-SGD GIB LBP NSD RM-GIB
Accuracy (%) T 73.2+0.8 74.7£0.2 75.5 £0.8 57.9 £0.2 72.5 £0.7 69.7 £0.7 65.4 +£0.3 78.1 £0.4

Cora MIA-F ROC (%) | 90.6 +£0.8 61.6+0.2 70.6 £0.4 73.8 £3.3 86.6 £0.8 71.0 £1.7 81.8 £0.8 57.4 £0.2
MIA-SROC (%) | 88.8 £0.2 63.8 £0.8 70.6 £0.3 753 £1.2 87.3 £0.7 71.1 £1.5 81.2 £0.6 59.5 £1.2
Accuracy (%)T 72.1 £0.2 73.1 £0.2 72.4 £1.0 57.9 £0.2 71.0 £0.2 66.5 +£0.8 65.6 £0.2 73.9 £0.6

Citeseer MIA-F ROC (%)] 88.5 +1.8 65.2 £0.6 60.9 +0.6 73.8 £3.3 85.8 £0.5 66.6 +£0.4 84.4 +0.1 55.2 £0.8
MIA-S ROC (%)| 84.9 1.5 65.8 £0.5 61.2 +1.1 75.3 £1.2 80.3 0.4 67.3 £0.7 88.3 +0.1 55.9 +£1.7
Accuracy (%)7 79.9 +£0.1 79.9 £0.1 79.4 £1.1 69.3 £3.2 78.1 £0.4 78.3 £0.1 75.5 £0.1 81.4 +0.2

Pubmed MIA-FROC (%)] 75.1 £0.2 60.8 £0.2 60.6 £1.8 56.3 +1.8 68.5 £1.6 67.4 £1.6 68.4 +£0.2 53.9 £0.3
MIA-S ROC (%)] 73.4 £0.1 63.4 £0.2 62.8 £2.0 58.3 £2.1 67.0 £1.8 65.7 £2.0 72.1 £0.1 57.2 £0.2
Accuracy (%)7 52.5 £0.2 51.8 £0.8 48.2 1.8 46.2 £0.1 45.2 £2.0 44.6 0.5 41.6 £0.5 52.2 £0.2

Flickr MIA-F ROC (%)] 87.9 0.7 72.9 £1.5 64.3 £3.9 66.5 0.7 79.9 +4.4 67.9 £0.8 59.0 £1.5 58.2 £0.1
MIA-S ROC (%) | 84.2 £0.7 69.7 £1.2 66.4 1.2 65.1 £0.6 76.5 £0.7 71.3 £0.9 63.5 +1.3 57.6 £0.3
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Figure 3: Results on perturbed Cora and Pubmed graphs.

Nettack
(a) Accuracy on Pubmed

o RM-GIB gives significantly lower scores in MIA-F ROC and MIA-
S ROC than baselines. The attack ROC scores can be even close
to 0.5, indicating invalid privacy attacks. This demonstrates the
effectiveness of RM-GIB in preserving membership privacy.

o The baseline methods often improve membership privacy with
a significant decline in accuracy. By contrast, our RM-GIB can
simultaneously maintain high prediction accuracy and preserve
membership privacy. This is because baselines generally need
to either largely regularize the model or inject strong noises.
RM-GIB does not only rely on the regularization in the IB objec-
tive function. Pseudo labels are further incorporated in training
RM-GIB, which helps to bottleneck redundant information to
improve performance and narrow the gap between training and
test samples for preserving membership privacy.

5.3 Results on Adverarially Perturbed Graphs

To answer RQ2, we first compare RM-GIB with Robust GNNs on
various perturbed graphs. Then, the performance of membership
privacy-preserving on perturbed graphs is also evaluated.

5.3.1 Robust Classification. Two types of adversarial attacks, i.e.,
Metattack and Nettack, are considered for all datasets. Metattack
and Nettack will result in out of memory in attacking the large-scale
dataset Flickr. Therefore, we only conduct experiments on Cora,
Citeseer, and Pubmed. The detailed settings of attacks follow the
description in Sec. 5.1. The average results and standard deviations
of 5 runs are reported in Tab. 4, where we can observe:

e Our proposed RM-GIB achieves comparable/better results com-
pared with the state-of-the-art robust GNNs on perturbed graphs,
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Figure 4: Ablation studies on the Cora graph.
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which indicates RM-GIB can mitigate the attribute noises and
structural noises with the attribute and neighbor bottleneck.
Our RM-GIB performs much better than GIB, which also applies
IB on graphs to filter out noises in attributes and structures. This
is because self-supervision on neighbor bottleneck is adopted in
RM-GIB to eliminate noisy neighbors irrelevant to label informa-
tion. Meanwhile, incorporating pseudo labels of unlabeled nodes
also benefits bottleneck code learning.

On clean graphs, RM-GIB can also consistently outperform base-
lines including GCN. This is because clean graphs can contain
superfluous information and inherent noises, which can be alle-
viated with the bottleneck in RM-GIB.

5.3.2  Membership Privacy Preserving. We also evaluate RM-GIB
on perturbed graphs in terms of membership privacy-preserving.
The most effective privacy-preserving baselines in Tab. 3 and ro-
bust GNNs in Tab. 4 are selected for comparison. The accuracy and
MIA-F ROC on Pubmed and Cora that are perturbed by Metattack
and Nettack are shown in Fig. 3 and Fig. 6, respectively. From this
figure, we can find that robust GNNs generally fail in preserving
privacy. And privacy-preserving baselines give poor classification
performance on perturbed graphs. In contrast, RM-GIB can simulta-
neously preserve membership privacy and give robust predictions
in a unified framework.

5.4 Ablation Study

To answer RQ3, we conduct an ablation study to understand the ef-
fects of the proposed graph information bottleneck, self-supervision
on the neighbor bottleneck, and adoption of pseudo labels. To
demonstrate the effectiveness of the self-supervision on the neigh-
bor bottleneck, we set y as 0 when we train RM-GIB and denote this
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Table 4: Comparison with Robust GNN’s in node classification (Accuracy(%)+Std) on various adversarially perturbed graphs.

Dataset  Graph GCN GIB GCN-jaccard GCN-SVD Elastic RSGNN RM-GIB
Clean 73.2 £0.8 72.5 0.7 68.9 0.6 65.1 0.6 77.9 £0.9 74.6 £1.0 78.5 £0.6
Cora Metattack 61.9 +1.4 65.6 +0.1 64.4 +0.2 60.5 +1.3 70.2 +0.4 65.3 +2.5 71.1 +£0.6
Nettack 54.6 £0.8 60.1 3.2 58.6 £0.5 54.8 £0.7 64.8 1.1 66.9 0.4 65.6 +1.3
Clean 72.1 +£0.2 71.0 £0.2 72.2 £0.1 63.0 +0.4 73.7 +£0.3 73.7 £1.3 73.9 +£0.6
Citeseer Metattack 64.1 £0.5 66.8 £0.7 70.5 +£0.1 59.7 +1.1 71.5 +0.4 73.0 +£0.3 72.1 £0.9
Nettack 62.3 £0.7 63.8 £1.6 68.9 +£0.2 55.6 +1.1 68.5 +0.2 69.0 +0.9 69.9 +0.8
Clean 79.8 +£0.1 78.1 +£0.4 79.5 +0.1 75.1 +£0.1 80.6 +0.2 75.6 +0.3 81.4 +0.1
Pubmed Metattack 67.5 0.1 61.5 0.4 74.1 £0.6 74.5 0.1 73.5 £0.2 74.4 £0.2 77.3 £0.1
Nettack 68.2 £0.1 67.5 +£0.6 74.0 +0.7 67.9 £0.2 73.2 £0.3 72.8 £0.6 75.0 +£0.2

variant as RM-GIB\S. Moreover, to show our RM-GIB can better
bottleneck noisy neighbors, a GIB+PL model which trains GIB [47]
with pseudo labeling is adopted as a reference. We train a vari-
ant RM-GIB\PL that does not incorporate any pseudo labels of
unlabeled nodes in the optimization to show the benefits of using
pseudo labels in the training. To prove the flexibility of RM-GIB,
we train two variants of RM-GIB that use SGC and GraphSage as
the predictor, which correspond to RM-GIBsGc and RM-GIBggge-
Results of classification and membership privacy-preserving on
clean graphs and Metattack perturbed graphs are reported in Fig. 4.
We only show results on Cora as we have similar observations on
other datasets. Concretely, we observe that:

o RM-GIBgsgc and RM-GIBg,ge achieve comparable results in both
robustness and membership privacy-preserving, which shows
the flexibility of our proposed RM-GIB.

e The accuracy of RM-GIB\S and GIB+PL is worse than RM-GIB
especially on perturbed graphs, which verifies self-supervision
on neighbor bottleneck can benefit filtering out noisy neighbors.

e RM-GIB outperforms RM-GIB\PL in both accuracy and member-
ship privacy preserving. This shows the effectiveness of adopting
pseudo labels to IB for preserving membership privacy. Pseudo
labels on unlabeled nodes also improve the quality of the bottle-
neck code, resulting in better classification performance.

5.5 Hyperparameter Sensitivity Analysis

In this subsection, we conduct hyperparameter sensitivity analysis
to investigate how f and y affect the RM-GIB, where f controls the
regularization on the bottleneck code and y controls the contribu-
tions of self-supervision on the neighbor bottleneck. More specifi-
cally, we vary f and y as {0.0003, 0.0001, 0.003,0.001, 0.03,0.1} and
{0.00001, 0.0001,0.001,0.01, 0.1}, respectively. We report the accu-
racy and MIA-F ROC on Cora graph perturbed by Metattack. Similar
trends are also observed on other datasets and attack methods. The
results are shown in Fig. 5. We find that: (i) With the increase
of f, the performance of classification and membership privacy-
preserving both become better. This is because with very small f,
the regularization will be too weak, which can cause overfitting
and failure in filtering out noisy information. When f is very large,
the strong constraint will lead to poor generalization ability of
bottleneck code, resulting in worse performance of both classifi-
cation and membership privacy; (ii) With the increment of y, the
classification accuracy on perturbed graphs tends to first increase
and decrease. And its effects on preserving membership privacy
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Figure 5: Hyperparameter analysis on the perturbed Cora.

is negligible. When y is in [0.0001,0.001], RM-GIB generally gives
good classification performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we study a novel problem of developing a unified
framework that can simultaneously achieve robustness and pre-
serve membership privacy. We verify that IB has potential to elimi-
nate the noises and adversarial perturbations in the data. In addition,
IB regularizes the predictions on labeled samples, which can benefit
membership privacy. However, the deployment of IB on graph-
structured data is challenged by structural noises and shortage of
labels in node classification on graphs. To address these issues, we
propose a novel graph information bottleneck framework that sepa-
rately bottlenecks the attribute and neighbor information to handle
attribute and structural noises. A self-supervision loss is applied to
neighbor bottleneck to further help to filter out adversarial edges
and inherent structural noises. Moreover, pseudo labels of unla-
beled nodes are incorporated in optimization with pseudo labels to
enhance membership privacy. There are two directions that need
further investigation. In this work, we only focus on membership
inference attacks. We will investigate whether IB can help defend
against other privacy attacks such as attribute inference attacks.
Since IB can extract minimal sufficient information, it would be
interesting to investigate whether the sensitive information of users
such as race can be removed for fairness.
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A DATASET

Cora, Citeseer, and Pubmed are citation networks, where nodes
in the graphs represent the papers and edges denote citation rela-
tionship. The attributes of the nodes are the bag-of-words of these
papers. For small citation graphs, i.e., Cora and Citeseer, we ran-
domly sample 2% nodes as the training set. For the large citation
graph Pubmed, we randomly sample 0.5% nodes as the training set.
As for Flickr [51], it is a large-scale graph to categorize the type of
images. Each node represents an image and the image description is
used as a node attribute. Edges are formed between nodes sharing
common properties. We randomly sample 2% nodes from Flickr
as the training set. Splits of validation and test sets on all datasets
follow the cited papers for consistency. Note that the training node
set doesn’t overlap with the validation and test sets.

B BASELINES

To evaluate the performance in preserving membership privacy,
we compare RM-GIB with the following representative and state-
of-the-art methods in defending membership inference attacks:

e GCN [25]: This is a representative graph convolutional network
which defines graph convolution with spectral analysis.
GCN+PL [26]: A GCN is firstly trained to obtain pseudo labels.
Then, pseudo labels of unlabeled nodes and labels of labeled
nodes are used to retrain the GCN.

GIB [47]: It proposes a graph information bottleneck that regu-
larizes the structural and attribute information in GAT [41].
Adv-Reg [31]: Min-max game between the training model and the
membership inference attacker is introduced as regularization
for membership privacy-preserving.

DP-SGD [1]: This is a differentially private mechanism that adds
noises to gradients during optimization for preserving privacy.
LBP [32]: This is an output perturbation method by adding noise
to the posterior before it is released to end users.

NSD [32]: It randomly chooses neighbors of the queried node in
inference to limit the amount of information used in the target
model for membership privacy protection.

Apart from GCN and GIB, we also compare the following represen-
tative and state-of-the-art robust GNNs to evaluate the robustness
of RM-GIB against adversarial attacks on graphs:

o GCN-jaccard [46]: It preprocesses a graph by removing edges
linking nodes with low Jaccard feature similarity, then trains a
GCN on the preprocessed graph.

e GCN-SVD [15]: It uses a low-rank approximation of the per-
turbed graph to defend against graph adversarial attacks with
the observation that adversarial edges often result in a high-rank
adjacency matrix.

o Elastic [28]: Elastic designs a robust message-passing mechanism
which incorporates I/1-based graph smoothing in GNNss.

e RSGNN ([8]: This is a state-of-the-art robust GNN that denoises
and densifies the noisy graph to give robust predictions.

C IMPLEMENTATION DETAILS

A 2-layer MLP is deployed as the attribute bottleneck. The neigh-
bor bottleneck also uses a 2-layer MLP. As for the predictor, we
use a 2-layer GCN without on default. The mutual information
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estimator used for self-supervision on neighbor bottleneck also
deploys a 2-layer MLP. All the hidden dimensions of the neural
networks are set as 256. For the hyperparameter T which is the
threshold to determine the negative neighbors for self-supervision,
it is set as 0.5 for all experiments. As for the hyperparameters
and y used in the final objective function Eq.(20), they are selected
based on accuracy on the validation set with grid search. Specifi-
cally, we vary f and y as {0.0003, 0.0001, 0.003, 0.001, 0.03,0.1} and
{0.00001, 0.0001, 0.001, 0.01, 0.1}, respectively.

D PROOF DETAILS

Recall that in IB, for a given training sample (xp, yn), its distribu-
tion of z is obtained by P(z|xn, yn; 0) = fy(z xn), where fy(z, x5)
is the probability density function modeled by the nerual network
with parameters 6. In the practice of computing mutual informa-
tion, P(x, y, z; 0) is approximated with the empirical data distribu-
tion P(x,y,2;0) = ﬁ Zjn\]:l x,, (X)8y, (y) fo (2, xn), where §() is the
Dirac function. Then, we can have the following equations:

1 N
P(x,z;0) = f Pxy.z0)dY = - > Ox, () fy(zxa)  (21)
y n=1

1 N
P(x,y;0) = /P(x, y,2;0)dz = N Z Ox,, (x)(Syn (v) (22)
z n=1

1 N
P(x:0) = / P(x y:0)dx = Z Sy, (%) (23)
Yy n=1

The Iy(z; y|x) can be computed by:

Ip(z; ylx)

///p(xy,29)1
_ % /X /y / (;axn(x)ay,,(y)fe(z,)(n))

og (21,1\[:1 5xn(x)) : (Z (Sx,l (X)ayn (y)fe(z Xn))
(ZN S5 (0)8y,, (1)) - (ZhL; 8x, (0 fp (2. xn))

/ Zfe(z ) log 22 X0)
(29

fo(z Xn)
Based on the above proof, we verify that Iy (z;y|x) = 0 regardless
the value of model parameters. Thus, we can derive the first line of
Eq.(3) in our paper.

P(x;0)P(x,y,z;0)

P(x y; 0)P(x, z; G)d dydz

dxdydz

E TIME COMPLEXITY ANALYSIS

We analyze the time complexity of the proposed RM-GIB in the
following. The time complexity mainly comes from the pretraining
of self-supervisor for the neighbor bottleneck, and the training of
RM-GIB. Let h and K denote the embedding dimension and train-
ing epochs, respectively. The cost of training the self-supervisor is
approximately O(Khd|V|), where d is the average degree of nodes
and |V| is the number of nodes in the graph. Next, we analyze the
time complexity of the optimization of RM-GIB. The time complex-
ity of attribute bottleneck and neighbor bottleneck in each epoch
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Table 5: Results of defending membership inference attack (Accuracy(%)] | MIA-F ROC(%) |) with various label rates.

Enyan Dai et al.

4%

6%

8%

79.4+0.2 | 81.3+1.4
78.8+0.5 | 78.6+0.7
79.6+0.6 | 56.9+0.3

81.2+0.2 | 78.0+£0.4
80.6+1.5|71.4+1.8
81.9+0.4 | 55.9+0.6

82.1+0.3 | 74.3+0.1
80.9+0.8 | 67.8+0.6
81.9+0.3 | 54.4+1.0

71.3+0.4 | 83.1+0.3
72.1+0.6 | 80.4+2.1
73.6+0.8 | 53.0+0.1

73.6£0.1 | 76.0+0.3
74.8+0.5 | 70.9+0.3
76.1+0.3 | 50.3+0.7

73.9+0.1 | 73.2+0.1
74.6+0.7 | 69.9+0.9
76.4+0.7 | 50.2+1.8

Dataset Method 2%
GCN 73.2+£0.8 | 89.4+0.5
Cora GIB 72.5+0.7 | 86.6+0.8
RM-GIB 78.5+£0.6 | 56.4+0.2
GCN 70.2+0.2 | 88.5+1.8
Citeseer GIB 70.1+1.1 | 87.4+0.6
RM-GIB 73.9+0.6 | 55.2+0.8
GCN 81.0£0.1 | 56.6+0.1
Pubmed GIB 81.9+0.1 | 56.1+0.2
RM-GIB 84.0+0.1 | 50.3+0.5

82.8+0.4 | 56.6+0.1
84.0+0.2 | 53.7+0.4
85.2+0.4 | 49.8+0.7

83.9+0.1 | 54.9+0.1
85.1+0.3 | 52.0+0.1
85.9+0.3 | 50.1+0.3

85.3+0.1 | 53.0+0.1
85.5+0.8 | 51.3%0.1
86.4+0.2 | 50.1+0.1

are O(h|V|) and O(hd|V]), respectively. As for the computation
cost of the predictor is approximately O(hd|V|) in each epoch. The

Table 6: Impacts of labels rates in defending metattack.

2% 4% 6% 8%
privacy-preserving optimization requires firstly training RM-GIB
for pseudo label collection followed by the optimization on the en- GCN 62.74#0.6  71.9£0.2  76.0£0.2  77.7+03
larged label set. Hence, the time complexity of optimizing RM-GIB Cora GIB 65.6£0.1  74.0£0.7 77.5£10  78.4£05
. .. C . . RM-GIB 71.1+0.6 75.7+0.6 78.4+0.5 79.6+0.6
is O(2Kh(2d + 1)|V|). Combining the training of self-supervisor,
the overall time complexity for training is O(Kh(4d + 3)|V|). Our GCN 66.1+0.5  67.9£1.9  68.3£08  71.1+0.4
RM-GIB is linear to the size of the graph, which proves its scalability. Citeseer  GIB 66.8+0.7  68.90.7 694402  72.2+05
RM-GIB  72.1+0.9 71.9+0.9 74.5+0.9 74.6+0.3
F ADDITIONAL EXPERIMENTAL RESULTS GCN 70.3+0.1  72.1x0.1  72.9+0.1  74.1%0.3
Pubmed GIB 70.8+0.2 73.4+0.2 74.4+0.2 75.240.3
N o ——— e ———— RM-GIB  81.2£0.2 81.9+0.3 83.1+0.5 84.4+0.6
B RSGNN == GIB B RSGNN == GIB
_ == Elastic GCN 398 == Elastic GCN
Q . LBP < . LBP . .
°\;7O " S h Table 7: Results (%) of varying pseudo label Sizes.
865 &
3 | k.78 5% 10% 20% 50% 100%
260 g
=68 MIA-FROC  68.0£0.9 63.2+3.3 62.0+43 581+2.1 54.8+3.1
55 [ 58 Accuracy 68.1£0.5 69.8+1.2 70.5+0.3 71.1+0.6 71.7+0.4
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Figure 6: Additional results on the perturbed Cora.

The additional results on the perturbed Cora graph are shown
in Fig. 6, which have the same observations as Fig. 3.
Impacts of Label Rates. We add the experiments that vary label
rates by {2%, 4%, 6%, 8%} to verify our motivation and the effective-
ness of our RM-GIB. All the hyperparameters of GCN, GIB, and our
RM-GIB are tuned on the validation set for a fair comparison. The
results are presented in Table 5. We can observe that:

o When the label rates are small, GIB gives high MIA-F ROC scores
and marginally outperforms GCN in privacy preservation. This
verifies that GIB is vulnerable to membership inference attack
under a semi-supervised learning setting.

o Our method RM-GIB can consistently achieve a very low MIA-F
ROC score (close to 50%) with different sizes of labeled nodes. This
demonstrates the effectiveness of our RM-GIB in membership
privacy preservation under different data settings.

We also show the accuracy (%)) of defending metattack (20%
perturbation rate) under different label rates in Tab. 6. Our RM-
GIB consistently performs better than GIB by a large margin in
defending graph adversarial attacks given different sizes of labels.
Varying Sizes of Pseudo Labels. We vary the rates of unlabeled
nodes used for the pseudo-label generation by {5%, 10%, 20%, 50%,
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Table 8: Accuracy on attribute-perturbed only graphs.

Dataset GCN GIB RM-GIB
Cora 70.3+1.3 74.3£0.2 78.2+0.7
Citeseer 70.7+0.5 71.6+0.2 73.9+0.9

100%} . Experiments are conducted on the Cora graph. For the ad-
versarial attacks, we apply metattack with 20% perturbation rate.
All other settings are the same as the description in Sec. 5.1. The
results are shown in Tab. 7. We can observe from the results that
with the increase of pseudo labels, the performance in defending
membership inference attack and adversarial attacks will both in-
crease. This demonstrates the effectiveness of incorporating pseudo
labels. It justifies that we should generate pseudo labels for all the
unlabeled nodes in the graph.

Results on Attribute Perturbation. we conduct experiments on
attribute-perturbed only graphs to empirically verify the effective-
ness of our methods in defending against noises in attributes. We
apply metattack to poison the attributes of the Cora and Citeseer
graphs with the perturbation rate set as 20%. The other settings are
the same as the description in Sec. 5.1. The results are shown in
Tab. 8, where we can observe that our RM-GIB performs better than
GIB on attribute-perturbed graphs. This verifies the effectiveness
of our method in defending noises in node attributes.
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