
Reconsidering Learning Objectives in Unbiased
Recommendation: A Distribution Shift Perspective
Teng Xiao

The Pennsylvania State University

tengxiao@psu.edu

Zhengyu Chen

Zhejiang University

chenzhengyu@zju.edu.cn

Suhang Wang

The Pennsylvania State University

szw494@psu.edu

ABSTRACT
This work studies the problem of learning unbiased algorithms

from biased feedback for recommendation. We address this prob-

lem from a novel distribution shift perspective. Recent works in

unbiased recommendation have advanced the state-of-the-art with

various techniques such as re-weighting, multi-task learning, and

meta-learning. Despite their empirical successes, most of them lack

theoretical guarantees, forming non-negligible gaps between theo-

ries and recent algorithms. In this paper, we propose a theoretical

understanding of why existing unbiased learning objectives work

for unbiased recommendation. We establish a close connection

between unbiased recommendation and distribution shift, which

shows that existing unbiased learning objectives implicitly align

biased training and unbiased test distributions. Built upon this

connection, we develop two generalization bounds for existing

unbiased learning methods and analyze their learning behavior.

Besides, as a result of the distribution shift, we further propose a

principled framework, Adversarial Self-Training (AST), for unbi-

ased recommendation. Extensive experiments on real-world and

semi-synthetic datasets demonstrate the effectiveness of AST.
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1 INTRODUCTION
Recommender systems are widely used in many applications such

as e-commerce platforms, social networks, and healthcare. However,

recommender systems learn from logged user-item feedback data

and are subject to selection bias as the training data collected by

the logging policy is observational rather than experimental [17, 38,
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56, 57, 61]. Ideally, the feedback should be collected by randomly

and uniformly exposing items to users. However, in the real world,

exposures are affected by the past recommendation policy, which is

known as model selection bias. For example, users are more likely

to interact with popular items than tail items, and recommender

systems are also more likely to recommend popular items than

others [38, 58, 61]. This model selection bias results in the "rich get

richer" phenomenon, where head contents are getting more and

more exposure while tail contents are rarely discovered. Selection

bias also comes from user self-selection, i.e., users usually interact

and rate items they like and rarely rate items they do not like [31, 38].

Previous studies [37, 38, 48, 55] have theoretically and empirically

shown that directly learning from the biased feedback cannot reflect

user true preferences on items.

Remarkable theoretical advances have been proposed for un-

biased recommendation. Specifically, [38] and [48] provide rigor-

ous generalization bounds under selection bias. On par with their

theoretical findings, there have been rich advances in unbiased

recommendation [37, 38, 48, 61] based on inverse propensity score

(IPS)[33] and doubly robust (DR)[1] in causal inference. Although

IPS and DR can address the selection bias in theory, these solu-

tions typically assume unconfoundedness [59], i.e., the indepen-

dence of user preference over items given the feature of getting

exposed [37, 38, 59], which is impractical and cannot be examined

in many real-world RS. Moreover, they need to estimate the propen-

sity score for re-weighting and suffer from huge variance when the

propensity score is small [36, 42]. Thus, IPS and DR empirically per-

form poorly compared to many recent works [7, 26, 36, 46, 49, 50].

Many unbiased recommendation algorithms have been intro-

duced to conduct debiasing learning using variousmachine learning

techniques, such asmulti-task learning [6, 26], meta-learning [7, 49],

and information bottleneck [50], which achieve promising empiri-

cal performance. However, there is a severe lack of rigorous the-

oretical analysis for these algorithms in the literature, creating a

gap between current theory and many strong empirical methods.

Specifically, most of these methods [6, 7, 26, 49] solve the bias issue

by introducing unbiased uniform data in the training, which is

collected by a random logging policy. Nevertheless, no clear and

unified connection between current theory and these algorithms

has been established. In other words, unbiased learning generaliza-

tion bounds for them have not been derived. Furthermore, there

is no solid theoretical justification for why utilizing unbiased uni-

form data can improve learning performance. Table 1 provides an

overview of the discussed methods and suggests that most of them

lack theoretical guarantees. This significant gap between theory

and practice raises an important question: How to bridge the gap be-
tween theories and recent unbiased learning objectives? Furthermore,
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Table 1: An overview of representative unbiased learning objectives we theoretically discuss in this paper, and how they relate
to one another in terms of unconfoundedness assumption and whether they can work w/o unbiased uniform data, suffer from
the variance issue, or whether the methods can theoretically unify other algorithms.

Learning objectives w/o unconfoundedness assumption w/o unbiased uniform data w/o variance issue unified framework
Re-weighting [15, 37, 38, 48] ✗ ✓ ✗ ✗

Information bottleneck [28, 50] ✗ ✓ ✓ ✗

Multi-task learning [6, 26] ✗ ✗ ✓ ✗

Meta-learning [7, 49] ✗ ✗ ✓ ✗

Adversarial self-training ✓ ✓ ✓ ✓

could we propose a more effective unbiased learning objective guided
by rigorous theoretical justification?

In this paper, we provide answers to the research question stated

above. We first revisit unbiased recommendation from the perspec-

tive of distribution shift and then present a theoretical analysis

of unbiased learning to provide explicit guidance and explanation

for the current algorithm design. Our analysis shows that many

unbiased learning objectives essentially optimize different terms

in our bound. Unlike existing bounds [38, 48], our bounds explic-

itly suggest accounting for the unobserved confounders, which is

important since the assumption of unobserved confounders may

not hold in the real world (please see details in § 3.2). Our theo-

retical generalization bounds pave the way for us to understand

why and how unbiased uniform data improves unbiased learning

performance. We further provide insights into our theory analysis

and propose a novel unbiased learning algorithm, Adversarial Self-

Training (AST), which effectively minimizes the upper bound of

the error and reduces the unbiased generalization gap. We evaluate

AST on both real-world and semi-synthetic datasets and conduct

ablation studies to analyze its behaviors. Extensive experimental

results validate the effectiveness of AST. The main contributions of

this work can be summarized as follows:

• We reconsider unbiased learning objectives proposed recently for

recommendation from the perspective of distribution shift and

provide a novel theoretical analysis towards explicit guidance

and explanations for algorithm design.

• We provide important insights that our theoretical generalization

bounds allow us to understand why and how unbiased uniform

data helps to improve unbiased learning performance.

• Inspired by our theoretical analysis, we propose a novel unbiased

algorithm, AST, which can maintain rigorous theoretical justifi-

cation and address limitations of current algorithms. Extensive

experiments on both semi-synthetic and real-world datasets also

demonstrate the effectiveness of AST.

2 RELATED WORK
2.1 Selection Bias in Recommendation
Unbiased learning algorithms such as IPS [16, 37, 37, 38, 58, 64]

and DR [48, 49] are proposed to theoretically address selection bias.

For example, DR combines propensity score estimation and error

imputation in a theoretically sophisticated manner. However, these

methods heavily rely on accurately estimating the propensity score,

which is often impossible to know in the real world. Furthermore,

previous works [12, 42] have demonstrated that these methods suf-

fer from high variance [35]. It is important to note that these causal

inference methods typically assume unconfoundedness, where the

relevance of user-item pairs is assumed to be independent of ex-

posure given the user and item features [37, 38, 59]. Xu et al. [59]

make similar observations regarding the limitations of the uncon-

foundedness assumption and highlight the inconsistent issues in

supervised learning caused by unknown exposure mechanisms.

However, they do not provide a theoretical framework to explain

existing unbiased learning methods.

Recently, several empirical algorithms have been proposed to

avoid the need for estimating the propensity score, utilizing tech-

niques such as causal embedding [6], knowledge distillation [26, 27],

and transfer learning [25]. These algorithms follow a multi-task

learning scheme, where both unbiased uniform data and biased

data are used, and the difference between the resulting user-item

representations is regularized. Additionally, some algorithms adopt

a meta-learning scheme [7, 49], where unbiased uniform data is

used to supervise the learning of debiasing parameters within a bi-

level optimization framework. Despite their promising performance

in practice, most of these algorithms require additional unbiased

uniform data, which can degrade user experiences, and they lack

sufficient theoretical guarantees. As a result, there is currently a

disconnect between theory and the existing algorithms. This work

primarily focuses on addressing selection bias, with the aim of

bridging the gap between theories and algorithms by proposing a

theoretically motivated framework for unbiased recommendation.

2.2 Domain Adaptation and Self-Training
The unbiased recommendation problem setting can be treated as

a special instantiation of out-of-distribution generalization and is

related to domain adaptation [2, 3, 13, 30]. We discuss the relation-

ships of our problem setting and our model with domain adaptation.

The goal of domain adaptation is to train a predictor that performs

well on a target domain using only labeled source samples and

unlabeled target samples during training. The adversarial feature

adaptation methods [13], inspired by the theoretical analysis of [3],

are most similar to ours. Specifically, in [13], DANN is proposed

to simultaneously minimize source empirical errors and approxi-

mate the divergence between source and target domains [3]. Our

approach further develops this idea for unbiased learning in rec-

ommendation, but our work differs from domain adaptation in :(1)

Our work focuses on the unbiased recommendation scenario where

both selection bias and unobserved confounders exist simultane-

ously, as shown in § 3.2, and (2) we derive two novel generalization

bounds for both multi-task and meta-learning strategies using un-

biased uniform data proposed by recent unbiased recommendation

algorithms [6, 7, 26, 49].

Our work is also related to self-training [4, 14, 51], which is

a popular technique for semi-supervised learning. Self-training
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assigns pseudo-labels to unlabeled samples by using a classifier’s

predictions and jointly re-trains the model with pseudo-labeled and

labeled samples. Instead of focusing on semi-supervised learning, in

this paper, we address the unbiased recommendation problem with

the self-training. There are also some works [9, 22, 29, 62] applying

the self-training for long-tail and cross-domain recommendation.

Several previous works also have explored adversarial training to

improve fairness [53], robustness [52], and accuracy [18, 47] of

recommendation. Different from them, we focus on providing a

theoretical analysis of existing unbiased learning objectives and

addressing the selection bias issue via adversarial self-training.

3 PRELIMINARIES
In this section, we introduce basic notations and formulate the

unbiased recommendation from the distribution shift perspective.

3.1 Notations and Selection Bias
Let xu ∈ XU be the feature vector for user u ∈ {1, . . . , |U|}, xi ∈
XI be the feature vector for item i ∈ {1, . . . , |I |}. Typically, the
feature vectors can be user/item one-hot encoding, profile or em-

bedding.XU andXI are the feature spaces, respectively. Following

previous works [37, 59], we letOu ,i ∈ {0, 1} be the exposure status,
Yu ,i ∈ {0, 1} be the feedback such as the click, and Rui ∈ {0, 1} be
the true preference of user u on item i .Ou ,i = 1 if the feedback Yu ,i
is observed and Yu ,i = Ou ,i · Ru ,i which means that, when item i
has been exposed to u, the true preference should be equal to the

feedback [37, 38]. Let DP = {xu , xi ,Yui |Ou ,i = 1} be the logged

feedback and the number of samples is N . The task of unbiased

recommendation is to infer unobserved preference Rui . Typically,
the collected feedback follows a generative process [37, 38, 59]:

p(xu , xi , Yui ) = p(xu )p(xi )p(Rui ,Oui = 1 |xu , xi ) = (1)

p(xu )p(xi )p(Oui = 1 |xu , xi )p(Rui |Oui = 1, xu , xi ) ∵ Yui = Oui · Rui ,

where the exposure distribution p(Oui = 1|xu , xi ) makes the ob-

served feedback be missing-not-at-random (MNAR). We will drop

= 1 for all Oui in the remainder of the paper for conciseness. The

exposure distribution p(Oui |xu , xi ) is unknown and depends on

user self-selection or the item exposure process by which past-

recommendation policies match users and items. Since we want to

eliminate the influence from the underlying exposure mechanism,

ideally, we are interested in learning with the following unbiased

risk function where the exposure is missing completely at random

(MCAR), i.e., Oui ⊥ (Rui , xu , xi ):

LQ (f ) ≜ LQ (f , д) = EQ [ℓ(f (xu , xi ), д(xu , xi ))] (2)

where Q ≜ p(xu )p(xi )p(Oui ) with p(Oui ) = 1 for all user-item

pairs [38, 59, 60]. f (xu , xi ) is the estimated hypothesis. д(xu , xi ) =
p(Rui |xu , xi ) is the optimal labeling function, depending on the true

preference distribution p(Rui |xu , xi ). Q is called as the marginal

distribution over features. Typically, ℓ(f (xu , xi ),д(xu , xi )) is the
0-1 loss, which is the probability that f disagrees with д under Q:
EQ [I(f (xu , xi ) , д(xu , xi ))]. In this paper, we conduct theoretical

analysis based on 0-1 loss. But, in practice, we can use 0-1 log loss

ℓ(x,y) = −y logσ (x)− (1−y) log(1−σ (x)) with σ (x) = 1/(1+e−x )
which serves as a effective convex proxy for 0-1 loss.

We can notice that the unbiased risk function in Eq. (2) is in-

dependent of the exposure distribution of logged feedback, i.e.,

p(Oui |xu , xi ). That is, we average the instance-wise loss over the
uniform exposure distributions of all user-item pairs, P(Oui ) = 1,

rather than the exposure distribution p(Oui |xu , xi ). This uniform
exposure scenario is ideal because the preferencewill not be affected

by the previous exposure, thus leading to an unbiased estimation. In

other words, unbiased recommendation wants to learn hypothesis

f which generalizes well for all possible pairs of users and items,

not just the pairs that are frequently exposed. The reason we suffer

from the bias is because of the discrepancy between the exposure

distribution of the logged feedback, and the testing distribution to

which the model will be practically applied:

Training : p(xu )p(xi )p(Oui |xu , xi )p(Rui |Oui , xu , xi ) (3)

Testing : p(xu )p(xi )p(Oui )p(Rui |xu , xi ). (4)

Due the this discrepancy, the empirical risk L̂P (f ) over logged
feedback DP is a biased estimate of the ideal risk:

ˆLP (f ) =
1

N

∑
(xu ,xi ,Yui )∈Dp

ℓ(f (xu , xi ), Yui ) ≃ LP (f ) , LQ (f ),

where LP (f ) ≜ LP (f , k ) = EP [ℓ(f (xu , xi ), k (xu , xi ))], (5)

P = p(xu )p(xi )p(Oui = 1|xu , xi ) and k(xu , xi ) is the optimal la-

beling function depending on distribution p(Rui |xu , xi ,Oui ) in the

logged feedback. Thus, the learned f will not be approximately

optimal even having sufficiently large training data [38].

3.2 The Unconfoundedness Assumption
To deal with this selection bias, many de-biasing methods [37, 38,

48] inspired by causal inference algorithms such as IPS and DR have

been proposed. As mentioned by previous works [37, 59], these

algorithms assume that being relevant is independent of getting

exposed given the feature, i.e, Rui ⊥ Oui |xu , xi :

p(Rui |Oui , xu , xi ) = p(Rui |xu , xi ). (6)

Wenotice that this assumption is actually referred to as unconfound-

edness assumption [34] in causal inference: assuming that there

are no other latent variables except the features that affect both the

outcome and the treatment assignment. With this assumption, we

only have the distribution shift with respect to the exposure prob-

ability (see Eq. (4)) and the conditional distribution shift between

p(Rui |xu , xi ) and p(Rui |Oui , xu , xi ) vanishes (i.e., labeling function
д(xu , xi ) = k(xu , xi )). Thus, these methods [37, 38, 48, 64] conduct

unbiased estimation by inversely re-weighting logged feedback:

L̂w (f ) =
1

N

∑
(xu ,xi ,Yui )∈Dp

1

p(Oui |xu , xi )
ℓ(f (xu , xi ), Yui ). (7)

It is straightforward to verify that L̂w is an unbiased estimation

of ideal risk: EP [L̂w (f )] = LQ (f ) with the unconfoundedness

assumption in Eq. (6). Thus, this objective can theoretically correct

for the distribution shift caused by the exposure ifp(Oui = 1|xu , xi )
is known in advance. While this objective has theoretical guaran-

tee [37, 38, 48], there are three crucial directions for improvement:

(1) The unconfoundedness assumption may not be true and can-

not be examined in real recommendation scenarios [11, 59], unless

we can include every single factor that may affect users’ decision-

making process as a feature. However, there are other unobserved

confounders, such as user social influence, item popularity effect,

and public opinions, that cannot be captured through features. For

example, as demonstrated in [23], user ratings exhibit different

distributions when users rate items before or after reading public

opinions. Additionally, due to privacy restrictions, recommender

systems inevitably face unobserved confounders. For instance, user

financial status directly affects feedback but is not measurable in
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many recommender systems. Ignoring such confounders leads to an

over-recommendation of inexpensive items. Nevertheless, current

methods [37, 38, 48] do not consider these unobserved confounders.

(2) The theoretical analysis of this re-weighting objective [37, 38,

48] cannot explain and generalize well tomany unbiased algorithms,

especially those [6, 7, 26, 49] that utilize unbiased uniform data.

(3) This objective also requires accurate estimation of the expo-

sure probability, which is usually challenging [36, 59] and suffers

from significant variance. Consequently, it performs poorly in em-

pirical comparison to recent algorithms [7, 26, 50].

4 THEORETICAL ANALYSIS
In this section, we first present our framework for unbiased rec-

ommendation from the distribution shift perspective with feature

adaptation and derive two finite-sample generalization bounds. We

provide a key insight that our theoretical framework is able to unify

a series of recent unbiased learning objectives [6, 7, 26, 28, 49, 50].

4.1 Unbiased Learning via Feature Adaptation
In this subsection, we show how feature adaptation is related

to unbiased recommendation. Recall that we have logged feed-

back DP from distribution P = p (Oui |xu , xi , )p(xu )p(xi ), where
P ≜ P(xu , xi ,Oui ) is the training marginal distribution over fea-

tures. Similarly, we have the testing marginal distribution Q ≜
p(xu )p(xi )p(Oui ) = 1/|U||I|, meaning (xu , xi ) is sampled i.i.d.

from uniform exposure distribution. Our goal is to learn a function

f (xu , xi ) which can approximate the optimal function д(xu , xi )
which depends on preference distribution p(Rui |xu , xi ).

To show how recent unbiased algorithms [6, 7, 26, 50] are related

to feature adaptation, without loss of generality, we further consider

the hypothesis f (xu , xi ) , which is composed of a two parts: f =
h ◦ ϕ where ϕ ∈ Φ ⊂ {ϕ : Xu × Xi → Z} is the feature mapping

function and h ∈ H ⊂ {h : Z → Y} is the hypothesis of the

classification head. In general, h is a linear or feed-forward network

predictor. Given this, we noticed that Ben-David et al. [3] and Blitzer

et al. [5] proved the following bound on the unbiased riskLQ (h◦ϕ)

in terms of the empirical biased risk L̂P (h ◦ϕ) and the discrepancy
between the training and testing distributions:

Theorem 4.1. [3, 5] LetH be a hypothesis space with VC-dimension
d . P(zui ) (resp.Q(zui )) is the distribution overZ induced bymarginal
distribution P(xu , xi ,Oui ) (resp. Q(xu, xi ,Oui )) and ϕ. Then, with
probability (w.p) at least 1−δ over the natural exponential e , ∀h ∈ H :

LQ (h ◦ ϕ) ≤ L̂P (h ◦ ϕ) +
1

2

dH∆H (P (zui ),Q (zui ))

+ λ(ϕ) +

√
4

N
(d log

2eN
d
+ log

4

δ
), where (8)

dH∆H(P(zui ),Q(zui )) = 2 suph,h′∈H
��EP (zui )[ℓ(h(zui ),h

′(zui ))] −
EQ (zui )[ℓ(h(zui ),h

′(zui ))]
�� is theH∆H -divergence [5] which mea-

sures the discrepancy between two distributions on symmetric differ-
ence hypothesis space and λ(ϕ) = infh∈H(LP (h ◦ ϕ) + LQ (h ◦ ϕ))
is the combined risk of the ideal hypothesis.

Theorem 4.1 shows that the ideal riskLQ (h◦ϕ) depends on three

terms, which include the empirical risk L̂P (h ◦ ϕ), the divergence
between P(zui ) andQ(zui ), and the combined risk λ(ϕ). This bound
serves as the theoretical foundation and has inspired the domain

adaptation methods [13, 39], which simultaneously minimizes the

divergence between P(zui ) and Q(zui ), and loss L̂P (h ◦ ϕ).
This bound has made influential impacts in domain adaptation

and we find there are two crucial directions to improve it for unbi-

ased recommendation: (1) This bound considers aligning marginal

distribution between P(xu , xi ,Oui ) and Q(xu , xi ,Oui ) by using la-

tent feature adaptation, however it does not theoretically reflect

the unjustifiable unconfoundedness assumption as shown in § 3.2.

This will make the upper bound loose when the unconfoundedness

assumption is violated in the real-world. (2) This bound still can

not give the guidance and explanation for unbiased learning ob-

jectives [6, 7, 26, 49] that utilize unbiased uniform data. In what

follows, we will introduce two generalization bounds based on this

framework to address these two problems.

4.2 Unbiased Multi-Task Learning Bound
In this subsection, we give an unbiased multi-task learning bound

whichmeasures the unconfoundedness assumption.We also demon-

strate that a a series of existing unbiased recommendation algo-

rithms [6, 26, 28, 37, 38, 50] including those using unbiased uniform

data can be partly interpreted by our new bound.

Specifically, some recent algorithms [6, 26] conduct de-biasing

learning via unbiased uniform data, which is collected by a ran-

dom exposure probability Q and can reflect user preferences in an

unbiased way. Thus, besides the biased data DP , we assume that

we have some unbiased uniform data DQ = {xu , xi ,Yui |Ou ,i = 1}

and the number of samples isM . Given the combined biased and

unbiased data, these algorithms [6, 26, 28, 37, 38, 50] generally have

the following empirical multi-task learning objective:

ρ L̂P (h ◦ ϕ) + (1 − ρ)L̂Q (h ◦ ϕ) + αR(P̂ (zui ), Q̂ (zui )), (9)

where ρ ∈ [0, 1]. ρ = 1 means that we do not have unbiased

uniform data DQ . Thus, this formulation can also unify those al-

gorithms [28, 38, 50] without using unbiased data. R(·, ·) is the

regularization function, and P̂(zui ) and Q̂(zui ) are empirical distri-

butions of latent features over P andQ , respectively. α is the hyper-

parameter. L̂Q (h ◦ ϕ) =
1

M
∑
(xu ,xi ,Yui )∈DQ ℓ(h ◦ ϕ(xu , xi ),Yui ) is

the empirical objective under unbiased uniform dataDQ . Based on

this, we provide the following generalization bound:

Theorem 4.2. Let H be a hypothesis space with VC-dimension d,
and P(zui ) (resp. Q(zui ) is the probability density functions overZ
induced by P(xu , xi ,Oui ) (resp. Q(xu , xi ,Oui )) and ϕ. д̃ (resp. ˜k) is
the labeling function overZ induced by д (resp. k) and ϕ. Then, w.p.
at least 1 − δ over the exponential e , ∀h ∈ H :

LQ (h ◦ ϕ) ≤ ρ L̂P (h ◦ ϕ) + (1 − ρ)L̂Q (h ◦ ϕ) +
ρ
2

dH∆H (P (zui ),Q (zui ))

+ ρ min{EP (zui )[ |д̃(zui ) −
˜k (zui ) |], EQ (zui )[ |д̃(zui ) −

˜k (zui ) |]}+

ρ

√
4

N
(d log

2eN
d
+ log

4

δ
) + (1 − ρ)

√
4

M
(d log

2eM
d
+ log

4

δ
). (10)

Remark. The proof is provided in Appendix B. This bound sug-

gests that the ideal risk depends on the empirical multi-task learn-

ing error, the divergence of feature distributions, and the distance

min{EP (zui )[|д̃(zui )− ˜k(zui )|],EQ (zui )[|д̃(zui )− ˜k(zui )|]} of labeling
functions, which is essentially the divergence between conditional

distributions p(Rui |Oui , xu , xi ) and p(Rui |xu , xi ) [63].
Compared with the bound in Theorem 4.1 and other bounds in

unbiased recommendation [38, 48], the bound in Theorem 4.2 has
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two key differences: (1) it involves an empirical multi-task learning

objective. When ρ = 1, the unbiased empirical error is not con-

sidered, with ρ ∈ [0, 1), we introduce both biased and unbiased

uniform data for de-biasing, and the generalizability of the model

could be improved. This appeals to us since we can theoretically jus-

tify algorithms that employ unbiased data to conduct debiasing. (2)

The termmin{EP (zui )[|д̃(zui )− ˜k(zui )|],EQ (zui )[|д̃(zui )− ˜k(zui )|]}
reflects the unconfoundedness assumption. This bound explicitly

considers this assumption and suggests that if it is violated, i.e.,

p(Rui |Oui , xu , xi ) , p(Rui |xu , xi ), the bound will be loose. Thus,

we should guarantee that the conditional distributions are not too

far away from each other for successful unbiased recommendations.

The bound in Theorem 4.2 enables us to interpret many learning

objectives [6, 26, 37, 38, 48, 50] in a unified perspective. Specifically,

we show that they all fall into the multi-task objective in Eq. (9)

and approximately minimize different terms in the bound.

Re-weighting Objectives [37, 38]. These methods fall into the

multi-task learning objective in Eq. (9) with ρ = 1 and α = 0 since

they do not utilize unbiased uniform data and regularization. They

re-weight the distribution P via w(xu , xi ) = 1/p(Oui |xu , xi ). By
setting ϕ as the identity function, it is easy to verify that the first

term in the bound becomes the re-weighting objective in Eq. (7) and

the third becomes dH∆H
(
w(xu , xi )P(xu , xi ,Oui ),Q(xu , xi ,Oui )

)
which equals to zero. Thus, they essentially minimize the first and

third term in this bound with ρ = 1 and ϕ being identity function.

Information Bottleneck Objectives [28, 50]. These algorithms

also fall into the multi-learning objective with ρ = 1 and α , 0. The

regularization term in Eq. (9) is instantiated as the information bot-

tleneck to regularize the model to learn a invariant representation

across training and testing distributions, which makes the diver-

gence dH∆H(P(zui ),Q(zui )) smaller. Thus, similar to re-weighting

objectives, essentially, information bottleneck objectives also mini-

mize the first and third term in this generalization bound.

Multi-task Objectives [6, 26]. These algorithms utilize unbiased

uniform data and have the regularization term for approximately

reducing the divergence between P(zui ) and Q(zui ), thus ρ , 1

and α , 0 in Eq. (9). Specifically, R is ∥zui − ẑui ∥2 in [6] where zui
and ẑui are sampled from P̂(zui ) and Q̂(zui ), respectively. [26] de-
signs other strategies for this regularization. Although the specific

regularization may be different, the high-level motivation of them

can be theoretically understood as minimizing the first, second and

approximately reducing the third divergence terms in this bound.

4.3 Unbiased Meta-Learning Bound
As an alternative, there are some algorithms [7, 49] utilizing the

unbiased uniform data via a meta-learning process [40, 54]. Their

objectives are still based on the re-weightingmethod but they utilize

the unbiased uniform data to train a weight functionw ∈ H ′ ⊂ {w :

Xu × Xi →W} such that the hypothesis h trained on the biased

data performs well on the unbiased uniform data. Specifically, the

meta-learning can be formulated as a bi-level optimization as:

min

w
L̂Q (h(w ) ◦ ϕ) s.t. h(w ) = argmin

h,ϕ
L̂Pw (h ◦ ϕ), (11)

where Pw = w(xu , xi )P(xu , xi ,Yui ) stands for a new re-weighted

distribution. L̂Q (h(w) ◦ ϕ) is the upper-level objective under unbi-
ased uniform data. Note that, h(w) is the function of re-weighting

and its new hypothesis spaceH ′ depends on biased training data

due to the bi-level optimization [40]. Empirically, this objective

perform well on unbiased recommendation as shown by [7, 49]. To

theoretically understand this, we provide the following bound:

Theorem4.3. LetH andH ′ be hypothesis spaces with VC-dimension
d and d ′, respectively. P(zui ) (resp. Q(zui )) is the density functions
overZ induced by P(xu , xi ,Oui ) (resp.Q(xu , xi ,Oui )) and ϕ. д̃ (resp.
˜k) is the latent labeling function induced by д (resp. k) and ϕ. Then
w.p. at least 1 − σ and natural exponential e , ∀h ∈ H , we have:

LQ (h ◦ ϕ) ≤ ρ L̂Pw (h ◦ ϕ) + (1 − ρ)L̂Q (h(w ) ◦ ϕ) (12)

+
ρ
2

dH∆H (w (xu , xi )P (zui ),Q (zui )) + ρ

√
4

N
(d log

2eN
d
+ log

4

δ
)+

+ ρ min{EP (zui )[ |д̃(zui ) −
˜k (zui ) |], EQ (zui )[ |д̃(zui ) −

˜k (zui ) |]}

+ (1 − ρ)(
d ′ logM − log δ

3M
+

√
2(d ′ logM − log δ )

M
).

Remark. We provide the proof in Appendix C. This bound shows

that the ideal risk depends on four non-constant terms: the empir-

ical training errors on biased and unbiased data, the discrepancy

between latent feature distributions, and the distance between the

conditional distribution similar to Theorem 4.2. However, unlike

Theorem 4.2, this empirical error on the unbiased uniform data is

obtained via a meta validation process.

Meta-learning Objectives [7, 49]. With the bound in Theorem 4.3,

we can understand why recent meta-learning approaches for unbi-

ased recommendation can achieve good performance. It is worth

noting that the bi-level meta-learning objectives in [7, 49] exactly

minimizes the first and second terms with ϕ being the identity

function. Unlike re-weighting objectives,w(xu , xi ) may not be the

optimal sampleweight, i.e., 1/p(Oui |xu , xi ). Thus, themeta learning

objective can not theoretically guarantee that the third divergence

term is small. Moreover, it also neglects the fifth term in the bound

and essentially makes the unconfoundedness assumption.

5 ADVERSARIAL SELF-TRAINING
We have shown how our framework allows us to reinterpret many

learning objectives in unbiased recommendation. With the above

theoretical analysis and insights, we summarize the limitations of

current learning objectives as follows: (1) They all make the uncon-

foundedness assumption, namely they do not account for the term

about the conditional shifts in Theorems 4.2 and 4.3. Nevertheless,

the unconfoundedness assumption is rarely true and can not be

examined in the real-world [59]. (2) Some objectives try to minimize

theH∆H divergence between marginal feature distributions via

re-weighting [37, 38] or different regularizers [6, 26, 50]. However

re-weighting suffers from the variance issue [41]. As for the regu-

larizers [6, 26, 50], they are only an approximation of the empirical

H∆H -divergence which is hard to optimize. (3) Meta-learning ob-

jectives need to compute the second-order gradient is expensive in

both computational cost and memory [7, 40, 49].

To address these issues, we exploit the theoretic analysis intro-

duced in § 4 to derive a practical algorithm, adversarial self-training,

which can simultaneously alleviate the divergence of feature distri-

butions and approximately account for unobserved confounders.

We optimize a feature mapping such that the conditional distribu-

tion is invariant to the biased training and unbiased testing data.
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Figure 1: The architecture of AST. D is set of logged feed-
back, and Q is the set of randomly sampled user-item pairs.

5.1 Adversarial Training for Adaptation
Motivated by the discussion in § 4, we need to design a mecha-

nism that enables feature adaptation for minimizing the H∆H -

divergence. However it is difficult to optimize it. Thus, we give a

new generalization bound to guide the design of AST.

Theorem 5.1. Let H be a hypothesis space with VC-dimension d .
P(zui ) (resp. Q(zui )) is the distribution overZ induced by marginal
distribution P(xu , xi ,Oui ) (resp. Q(xu, xi ,Oui )) and ϕ. д̃ (resp. ˜k) is
the latent labeling function induced by д (resp. k) and ϕ Then, with
probability at least 1 − δ over the natural exponential e , ∀h ∈ H :

LQ (h ◦ ϕ) ≤ ρ L̂P (h ◦ ϕ) + (1 − ρ)L̂Q (h ◦ ϕ) +
ρ
√
2KL(P (zui ) ∥Q (zui ))

2

+ ρ min{EP (zui )[ |д̃(zui ) −
˜k (zui ) |], EQ (zui )[ |д̃(zui ) −

˜k (zui ) |]}

+ (1 − ρ)

√
4

M
(d log

2eM
d
+ log

4

δ
) + ρ

√
4

N
(d log

2eN
d
+ log

4

δ
). (13)

Remark. The proof is provided in Appendix D. This bound pro-

vides theoretical justification for the use of KL (Kullback–Leibler)-

divergence to conduct feature adaptation in unbiased recommen-

dation. While the explicit marginal densities of P(zui ) and Q(zui )
are intractable, we have data samples of them. This motivates us to

leverage adversarial distribution matching strategies [32] to min-

imize KL-divergence through a mini-max game with samples. In

particular, we minimize KL(P(zui )∥Q(zui )) via the use of a critic
function (the max-step), and then update the feature mapping ϕ ac-

cordingly to reduce the KL-divergence (the min-step). In this paper,

we consider the Fenchel-dual form of the KL-divergence [32], i.e.,

KL(P ∥Q ) = EP [log P − logQ ] = max

ν>0

{EP [log ν ] − EQ [ν ] + 1}. (14)

To optimize this Fenchel-dual form in practice, wemodel logν using
another function θ (zui ) as our critic function. This results in the

following adversarial neural estimator of KL(P(zui )∥Q(zui )):

L̂A(ϕ , θ ) = min

ϕ
max

θ
Ezui=ϕ (xu ,xi ),(xu ,xi )∼P (xu ,xi ,Oui )[θ (zui )]

− Ezui=ϕ (xu ,xi ),(xu ,xi )∼Q (xu ,xi ,Oui )[exp(θ (zui ))]. (15)

Compared to H∆H -divergence, this objective is much easier to

minimize and can theoretically bound the ideal unbiased risk as

shown in Theorem 5.1.

5.2 Supervised Learning and Self-Training
As suggested by the generalization bound in Theorem 5.1, we also

need to minimize the empirical learning error and the distance

between the optimal labeling functions. For the empirical multi-

task learning error, we can directly minimize it by parameterizing

hypothesis h with functionψ :

L̂D (ϕ ,ψ ) = Ezui=ϕ (xu ,xi ),(xu ,xi ,y)∼D [ℓ(ψ (zui ), Yui )], (16)

where D = DP ∪ DQ is the whole set of data, including the bi-

ased data and the unbiased uniform data. Note that our algorithm

can conduct de-biasing learning without unbiased uniform data

when D = DP . To further minimize the distance between con-

ditional distributions (i.e., the regularizing term on conditional

distributions), we need to search for a feature mapping ϕ such that

the conditional distribution is invariant to training and testing:

EP [Yui |ϕ(xu , xi )] = EQ [Yui |ϕ(xu , xi )]. If we have a small amount

of unbiased uniform data fromQ , we can directly minimize this reg-

ularizing term on conditional distributions by jointly minimizing

L̂D (ϕ,ψ ) on both biased data and unbiased uniform data.

However, in some scenarios, collecting unbiased uniform data is

extraordinarily expensive [26, 50]. Thus, directly optimizing this

term L̂D (ϕ,ψ ) with unbiased uniform data becomes inaccessible.

To account for this scenarios, in this paper, we propose to approxi-

mately evaluate and minimize this term by using self-training. Pre-

vious works [8, 51] have theoretically shown that self-training can

learn the invariant predictive distribution, which can yield equally

optimal performance across environments. This matches our goal

of making conditional distribution invariant to the training and

testing. Specifically, we adopt the principle of self-training, which

has shown to be effective in semi-supervised learning [4, 14, 51].

Self-training first trains the feature mapping ϕ and prediction head

ψ via L̂D (ϕ,ψ ) in Eq. (16), and the trained model generates pseudo-

labels for the unlabeled data sampled from Q(xu , xi ,Oui ). Then
self-training trains feature mapping with pseudo-labels as:

L̂S (ϕ) = Ezui=ϕ (xu ,xi ),(xu ,xi )∼Q (xu ,xi ,Oui )[ℓ(ψ (zui ), Y
′
ui )], (17)

where Y ′ui =
¯ψ ( ¯ϕ(xu , xi )) is the generated soft pseudo-label (it can

be the ground-true label if we have a small amount of unbiased

uniform data).
¯ψ and

¯ϕ indict that we do not propagate gradients

through computing the pseudo labels. We empirically found that

this self-training can effectively brings conditional distributions

closer even we do not have any unbiased uniform data. In addition,

inspired by the recent work [8] which proves that entropy min-

imization has a similar effect as self-training algorithm, we also

explicitly minimize the entropy on unlabeled uniform data:

L̂E (ϕ) = Ezui=ϕ (xu ,xi ),(xu ,xi )∼Q (xu ,xi ,Oui )[H(σ (ψ (zui ))], (18)

whereH(X ) = −
∑n
i=1 p(xi ) logp(xi ) is the entropy ofX . Intuitively,

by minimizing this entropy, we can effectively encourage the pre-

diction to be low-entropy (i.e., high-confidence) on unlabeled data

and the classifier’s decision boundary should not pass through high-

density regions of the data distribution [4]. In summary, the overall

objective function of AST could be formulated as follows:

L = min

ϕ ,ψ
max

θ
L̂D (ϕ ,ψ ) + α L̂A(ϕ , θ ) + β L̂S (ϕ) + γ L̂E (ϕ ,ψ ), (19)

where α , β and γ are trade-off hyper-parameters controlling the

contributions of different losses.

Overall algorithm. Our full algorithm, Adversarial Self-Training

(AST) is illustrated in Figure 1 and given in Algorithm 1. At each it-

eration, we sample mini-batches from biased labeled and unlabeled

unbiased data. We generate the pseudo-labels for the unlabeled un-

biased data by the current model. Then the model is further trained

on the labeled biased data and pseudo-labeled unbiased data. The

critic θ is optimized adversarially for minimizing the conditional

shift between biased training and unbiased test distributions.
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Algorithm 1: Adversarial Self-Training (AST)

1 Input: The collected biased data DP , unbiased data DQ and

parameters α , β , γ . Learning rate η. Maximum steps T .
2 if DQ , ∅: D = DP ∪ DQ else: D = DP
3 For n= 1, · · · , T do
4 Sample batches of (xu , xi ) ∈ Q(xu , xi ,Oui )

5 Generate pseudo-labels Y ′ui for each sample: (xu , xi ,Y ′ui )
6 (ϕn,ψn ) ← (ϕn−1,ψn−1) − η(∇ϕL,∇ψL)

7 θn ← θn−1 + η∇θL

8 Return θ,ψ , ϕ

Complexity. As shown in Figure 1, compared with other unbiased

learning algorithms [26, 36, 50], we introduce only one linear addi-

tional head for the critic which reuses embeddings obtained from

the encoder. This suggests that our AST only introduces very few

parameters and the model complexity is at the same level as other

unbiased learning algorithms [6, 26, 36, 50].

6 EXPERIMENT
In this section, we empirically evaluate the performance of the

proposed AST on both real-world and semi-synthetic datasets.

6.1 Experimental Settings
6.1.1 Datasets. Following previous works [26, 37, 38, 49, 50], we
use two real-world datasets: Yahoo [31] and Coat [38]. These two
datasets are suitable for verifying our theoretical analysis and eval-

uating our AST since they contain both biased and unbiased data,

where unbiased data is formed by randomly assigning items to users

for ratings. Thus they can be used to measure the unbiased general-

ization performance with selection bias. Yahoo1: Its biased training
set has approximately 300,000 five-star ratings of 1,000 songs from

15,400 users. It collects an unbiased test set by asking 5,400 users to

rate 10 randomly displayed songs. Coat2: It has 290 users and 300

items. Each user rates 24 items by themselves forming 6,500 biased

five-star ratings, and is asked to rate 16 uniformly displayed items as

the unbiased set. Since these two real-world datasets are relatively

small, we also generate a relatively large semi-synthetic dataset

based on Goodreads3. It is a book recommendation dataset [45]

and we use the book review subset in history and biography, con-

taining 238,450 users, 302,346 items, and 2,066,193 five-star ratings.

6.1.2 Prepossessing. Following [7, 26, 50]. For all datasets, we treat
rating which is 3 or higher as positive feedback and the others as

negative. For GoodReads, we remove those items and users that

have less than 20 interactions.

6.1.3 Splitting and Simulation Settings. For Coat and Yahoo, follow-
ing [7, 26], we treat all biased DP data as training set, and split the

unbiased data into three parts: 5% as additional training set DQ to

help training, 5% as validation set, and the remaining 90% as test set.

Since Goodreads does not contain an unbiased testing set, we sim-

ulate a semi-synthetic dataset to facilitate ground-truth evaluation

1
https://webscope.sandbox.yahoo.com/

2
https://www.cs.cornell.edu/~schnabts/mnar/

3
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph

against a fully known relevance and exposure parameter. Strictly

following previous works [37, 59], we first hold out the last feedback

of all users in the last time slice as the test data and the feedback

before the last is treated as the validation set. The remaining feed-

back serves as training set. We train a MF model to approximate

the rating matrix by minimizing the mean-squared loss based on

the training set. Then ground-truth preference probability for un-

biased testing is p(Yu ,i = 1|Ou ,i ) := σ ( ˆE[Ru ,i |Ou ,i ] + ϵR ) where
ˆE[Ru ,i |Ou ,i ] is the model output and ϵR is Gaussian noisy control-

ling randomness of preference caused by unobserved confounders.

Then, similar to [37, 59], we utilize another logistic MF predicting if

the rating is observed as the exposure p̂(Ou ,i ) model. The final log-

exposure probability logp(Ou ,i ) = log p̂(Ou ,i )+ϵO , where ϵO mea-

sures the extra randomness of exposure by unobserved confounders.

In our experiments, we set ϵO and ϵR as five [37]. Following the

generative model in § 3, we generate the biased training feedback

as p(Yu ,i = 1) = p(Yu ,i = 1|Ou ,i )p(Ou ,i ). With this simulation

process, we can obtain the true relevance, exposure parameters and

unobserved confounders for the unbiased evaluation.

6.1.4 Setup. We compare AST with the following learning objec-

tives: direct supervised training (Biased), IPS [37, 38], DRJL [48],

CVIB [50], ACL [59], ATT [36], KD [26], and AutoDebias [7]. Since

our AST is high-level learning approach that is compatible with

almost all existing recommendation models, we consider two repre-

sentative recommendation models: matrix factorization (MF) [21]

and neural collaborative filtering (NCF) [19]. Following previous

works [36, 48, 59], we utilize Hit Ratio (HR)@5 and NDCG@5 to

evaluate the unbiased ranking performance. For all methods, the

hyper-parameter search space is: dropout {0.2, 0.4, 0.6}, learning

rate {0.001, 0.005, 0.01}, weight-decay {1e-4, 1e-5, 1e-6}, embedding

dimension {64, 128, 256}. Specifically, for AST, we further search α ,
β , and γ from space {0.2, 0.4, 0.6, 0.8}. For a rigorous and fair com-

parison, we use the grid search to find the best hyperparameters of

the baselines for all methods based on the validation performance.

6.2 Unbiased Learning Performance
Table 2 presents the unbiased learning results of AST and the base-

lines with NCF and MF as backbones, respectively. Observations

from the table are as follows:

• Consistent with our theoretical analysis, AST significantly out-

performs other algorithms, demonstrating its strong generaliza-

tion ability. This is attributed to AST effectively minimizing the

generalization bound of the ideal risk.

• Overall, AST consistently outperforms other baselines on all

datasets using both MF and NCF backbones. This indicates the

effectiveness of AST and showcases its flexibility and robustness

across different backbones.

• Despite IPS and DR having strong theoretical insights, their em-

pirical performance is poor. In contrast, AST demonstrates em-

pirical effectiveness while maintaining rigorous justification.

• AST outperforms baselines on the Goodreads dataset, which

exhibits both selection bias and unobserved exposure factors.

This demonstrates AST’s ability to simultaneously account for

selection bias and the unconfoundedness assumption, resulting

in tighter generalization bounds.
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Table 2: Unbiased learning performance of different algorithms with standard deviation over five runs. The best and second
best performance are marked with boldface and underline, respectively.

Algorithms

Yahoo Coat Goodreads
MF NCF MF NCF MF NCF

HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5

Biased 0.6471
(±0.0035)

0.6542
(±0.0037)

0.6352
(±0.0029)

0.6584
(±0.0017)

0.4338
(±0.0051)

0.6457
(±0.0072)

0.4281
(±0.0045)

0.6257
(±0.0048)

0.3071
(±0.0024)

0.1057
(±0.0011)

0.3214
(±0.0029)

0.1089
(±0.0008)

IPS 0.6598
(±0.0047)

0.6661
(±0.0052)

0.6415
(±0.0038)

0.6663
(±0.0029)

0.4131
(±0.0064)

0.6361
(±0.0079)

0.4255
(±0.0056)

0.6219
(±0.0050)

0.3156
(±0.0038)

0.1108
(±0.0027)

0.3462
(±0.0041)

0.1152
(±0.0018)

DRJL 0.6632
(±0.0038)

0.6732
(±0.0042)

0.6581
(±0.0033)

0.6716
(±0.0025)

0.4255
(±0.0040)

0.6378
(±0.0049)

0.4391
(±0.0023)

0.6381
(±0.0027)

0.3237
(±0.0034)

0.1255
(±0.0021)

0.3531
(±0.0034)

0.1265
(±0.0012)

CVIB 0.6756
(±0.0042)

0.6834
(±0.0047)

0.6635
(±0.0036)

0.6873
(±0.0027)

0.4531
(±0.0039)

0.6680
(±0.0034)

0.4487
(±0.0029)

0.6498
(±0.0033)

0.3467
(±0.0025)

0.1397
(±0.0026)

0.3687
(±0.0038)

0.1469
(±0.0015)

ATT 0.6635
(±0.0044)

0.6784
(±0.0049)

0.6497
(±0.0037)

0.6829
(±0.0023)

0.4371
(±0.0040)

0.6349
(±0.0037)

0.4357
(±0.0022)

0.6358
(±0.0024)

0.3307
(±0.0035)

0.1209
(±0.0026)

0.3562
(±0.0030)

0.1343
(±0.0014)

ACL 0.6801
(±0.0040)

0.6839
(±0.0045)

0.6522
(±0.0032)

0.6857
(±0.0022)

0.4529
(±0.0036)

0.6721
(±0.0033)

0.4631
(±0.0021)

0.6536
(±0.0029)

0.3587
(±0.0030)

0.1477
(±0.0025)

0.3714
(±0.0034)

0.1498
(±0.0015)

KD 0.6779
(±0.0043)

0.6781
(±0.0044)

0.6571
(±0.0031)

0.6814
(±0.0024)

0.4561
(±0.0038)

0.6584
(±0.0036)

0.4451
(±0.0024)

0.6471
(±0.0021)

0.3533
(±0.0029)

0.1368
(±0.0023)

0.3669
(±0.0035)

0.1405
(±0.0012)

AutoDebias 0.6835
(±0.0046)

0.6959
(±0.0051)

0.6609
(±0.0035)

0.6925
(±0.0028)

0.4628
(±0.0042)

0.6651
(±0.0037)

0.4568
(±0.0028)

0.6587
(±0.0035)

0.3608
(±0.0041)

0.1428
(±0.0026)

0.3751
(±0.0038)

0.1518
(±0.0016)

AST 0.6985
(±0.0041)

0.7147
(±0.0046)

0.6813
(±0.0030)

0.7094
(±0.0021)

0.4775
(±0.0037)

0.6819
(±0.0035)

0.4728
(±0.0023)

0.6630
(±0.0031)

0.3712
(±0.0036)

0.1678
(±0.0024)

0.3834
(±0.0033)

0.1655
(±0.0012)

Table 3: Ablation study (NDCG@5) with MF backbone.

Methods Coat Yahoo Goodreads

AST w/o A 0.6628
(±0.0039)

0.7025
(±0.0043)

0.1498
(±0.0039)

AST w/o S 0.6693
(±0.0029)

0.7114
(±0.0038)

0.1615
(±0.0022)

AST w/o E 0.6733
(±0.0041)

0.7104
(±0.0052)

0.1545
(±0.0031)

AST w/o S & E 0.6587
(±0.0032)

0.6978
(±0.0039)

0.1317
(±0.0025)

Biased 0.6457
(±0.0072)

0.6542
(±0.0037)

0.1057
(±0.0011)

AutoDebias 0.6651
(±0.0037)

0.6959
(±0.0051)

0.1428
(±0.0026)

AST 0.6819
(±0.0035)

0.7147
(±0.0046)

0.1678
(±0.0024)

Table 4: Performance (NDCG@5) without unbiased data.

Yahoo Coat
MF NCF MF NCF

Biased 0.6533 0.6714 0.6205 0.6330

IPS 0.6661 0.6756 0.6147 0.6440

DRJL 0.6673 0.6789 0.6433 0.6376

ATT 0.6778 0.6788 0.6332 0.6472

CVIB 0.6717 0.6906 0.6529 0.6519

AST 0.6898 0.7004 0.6712 0.6589

• As per our theoretical analysis, KD and AutoDebias show perfor-

mance improvements by utilizing unbiased uniform data. How-

ever, as shown in Table 2, Our AST consistently outperforms

them by a significant margin.

6.3 Ablation Study and Parameter Sensitivity
Setup: To conduct a detailed analysis of how different components

impact AST performance, we perform an ablation study and param-

eter sensitivity analysis. We follow the same setup as described in

§ 6.2 and construct the following variants of AST: (i) AST without

the adversarial matching component (AST w/o A); (ii) AST without

Table 5: Performance (NDCG@5) on implicit feedback.

Yahoo Coat
MF NCF MF NCF

Biased 0.6914 0.6233 0.5514 0.6373

IPS 0.7011 0.6484 0.5458 0.6144

DRJL 0.7025 0.6517 0.5833 0.6181

ACL 0.7097 0.6885 0.5921 0.6348

KD 0.7152 0.6758 0.5692 0.6214

AutoDebias 0.7195 0.6742 0.5873 0.6388

AST 0.7248 0.7026 0.6037 0.6631

self-training (AST w/o S); (iii) AST without entropy minimization

(AST w/o E) and (iv) AST without both self-training and entropy

minimization (AST w/o S & E).

Results: The ablation study results are presented in Table 3. We ob-

serve that all the designed components contribute to performance

improvements, and their contributions are complementary to each

other. We also investigate the sensitivity of the hyperparameters

α and β , where α and β control the contribution of adversarial

matching and self-training, respectively. As the trend of γ is similar

to β , we omit it for brevity. We vary α and β as [0.2, 0.4, 0.6, 0.8]

and report the results in Fig. 2. Key findings are as follows: (i)
AST performs better and exhibits stability when α ∈ 0.6, 0.8 and
β ∈ 0.2, 0.6, simplifying the process of hyperparameter selection.

(ii) By varying α and β , we can achieve a balanced trade-off be-

tween adversarial matching and self-training, leading to improved

generalization performance. This confirms the motivation behind

jointly mitigating selection bias and unobserved confounders, as

finding a suitable trade-off enhances the transferability of biased

embeddings for better unbiased performance.

6.4 Performance on Challenging Scenarios
In this subsection, we consider two more challenging scenarios. The

first scenario is debiasingwithout any unbiased training data, which

is realistic as collecting unbiased data is typically expensive. We

compare AST with baselines that do not require unbiased training

data. Following the methodology in [7, 26], we treat the biased data
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Figure 2: Sensitivity Analysis (NDCG@5) using MF.
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Figure 3: Generalization performance and training losses.

as the training set and randomly sample 5% of the ratings from the

unbiased test data as the validation set. The results are reported

in Table 4. We observe that AST achieves the best performance

compared to the baselines. In particular, AST outperforms ATT

and CVIB, further demonstrating the effectiveness of adversarial

feature adaptation using the KL-divergence (Theorem 5.1).

The second scenario is implicit feedback. Implicit feedback is

more challenging than explicit feedback since we do not have neg-

ative evidence in the learning process [37, 59]. We evaluate AST

on this scenario as well. To generate implicit feedback, we use the

Yahoo and Coat datasets but remove the negative feedback from the

training data. The results are presented in Table 5. We observe that

AST outperforms all baselines, indicating its ability to effectively

mitigate selection bias in implicit feedback data. This aligns with

our theoretical analysis, as the ideal risk can still be bounded under

the setting of implicit feedback.

6.5 Deeper Understanding of AST
Setup. We conduct a detailed analysis of AST to gain insights into

its behavior. We follow the same setup as described in Section 6.2.

6.5.1 Generalization and Convergence. . To examine the general-

ization and convergence of AST, we plot the training loss curves

of different components and the testing NDCG on two datasets

in Figure 3. We make the following observations: (i) AST exhibits

training stability and consistently improves the unbiased testing

performance as iterations progress. (ii) The NDCG metric shows

a nearly monotonic increase with iterations, suggesting that min-

imizing our loss, which is an upper bound of the ideal loss, is an

effective approach to improve accuracy based on biased feedback.

6.5.2 Unobserved Confounders. . One of the key strengths of AST

is its ability to mitigate both marginal and conditional shifts caused

by unobserved confounders. Therefore, we investigate whether AST

possesses this capability and identify the most important compo-

nent contributing to it. Figure 4 displays the empirically calculated

A-distance [30] and MDD [24] using the learned embeddings of
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Figure 4:Marginal and conditional shifts on Yahoo andCoat.

AST
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Yahoo Coat

Figure 5: Visualization fo embeddings of AST and Biased
method. The blue points correspond to the biased training
data, while red ones correspond to unbiased testing data.

AST. The A-distance measures covariate shift, while MDD quanti-

fies concept shift. Our findings from Figure 4 are as follows: (i) The
A-distance and MDD values of AST embeddings are significantly

smaller than those of vanilla NCF, indicating that AST can more

effectively reduce both covariate and concept distribution shifts.

(ii) AST without the D component exhibits a smaller A-distance

than AST without the A component, while AST without the A com-

ponent has a smaller MDD than AST without the D component.

This observation aligns with our idea that adversarial matching

minimizes covariate shift, while self-training alleviates concept

shift. To gain further intuition about feature adaptation, we visual-

ize the t-SNE embeddings sampled from P(zui) and Q(zui). From
Figure 5, we observe that AST effectively bridges the feature gap

between biased and unbiased data, whereas biased training fails as

the embeddings are separated and have a certain distance.

7 CONCLUSIONS
In this paper, we studied the problem of unbiased recommendation.

We provided a novel perspective on the distribution shift for the un-

biased recommendation problem.We derived several generalization

bounds and presented both theoretical and algorithmic analyses of

current learning algorithms. We also proposed the AST algorithm,

which effectively addresses the issues of selection bias and unob-

served confounders. Extensive experiments on three datasets with

various settings demonstrated the effectiveness of AST. While our

results strongly advocate for considering unobserved confounders

in unbiased recommendation, optimizing them directly in the real

world poses a challenge. Exploring more effective optimization

methods is an interesting topic that requires further investigation.
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A THE LEMMAS
Before we conduct the proof, we first state the following Lemmas:

Lemma A.1. [5]. LetH be a hypothesis space of VC-dimension d, and for any distribution P and Q over Xu × Xi , then ∀h,h′ ∈ H :

|LP (h,h
′) − LQ (h,h

′)| ≤
1

2

dH∆H(P,Q), (20)

where dH∆H(P,Q) = 2 suph,h′∈H |EP [ℓ(h(xu , xi ),h′(xu , xi ))] − Q[ℓ(h(xu , xi ),h′(xu , xi ))].

Lemma A.2. [44]. Let S is a arbitrarily data distribution andH be a hypothesis space of VC-dimension d. Then ∀h ∈ H ,∀δ > 0, w.p. at least
1 − δ over the a sample size N and natural exponential e :

LS (h) ≤ L̂S (h) +

√
4

N
(d log

2eN

d
+ log

4

δ
). (21)

B PROOF OF THEOREM 4.2
Proof. Following the definitions in § 3, we have:

|LP (f ) − LQ (f )| = |LP (f ,k) − LQ (f ,д)|, (22)

which has the following upper bound:

|LP (f ,k) − LQ (f ,д)| = |LP (f ,k) − LP (f ,д) + LP (f ,д) − LQ (f ,д)|

≤ |LP (f ,k) − LP (f ,д)| + |LP (f ,д) − LQ (f ,д)|

= |EP [| f (xu , xi ) − k(xu , xi )| − | f (xu , xi ) − д(xu , xi )|]| (23)

+ |LP (f ,д) − LQ (f ,д)| ≤ EP [|k(xu , xi ) − д(xu , xi )|] +
1

2

dH∆H(P,Q),

where we utilize the triangular inequality and Lemma A.1. Similarly, due to the symmetric property, the following inequality for Q holds:

|LP (f ) − LQ (f )| = |LP (f ,k) − LQ (f ,д)| ≤ EQ [|k(xu , xi ) − д(xu , xi )|] +
1

2

dH∆H(P,Q). (24)

Combine the inequalities (23) and (24) above, we have:

LQ (f ) ≤ LP (f ) +
1

2

dH∆H(P,Q) +min{EP [|k(xu , xi ) − д(xu , xi )|],EQ [|k(xu , xi ) − д(xu , xi )|]}. (25)

Combining Eqs. (24), (25) and Lemma A.2, and considering the hypothesis f (xu , xi ) is composed of a two parts: f = h ◦ ϕ where h is the

hypothesis and ϕ maps (xu , xi ) to zui . W.p. at least 1 − δ :

LQ (h ◦ ϕ) ≤ L̂P (h ◦ ϕ) +
1

2

dH∆H(P(zui ),Q(zui )) (26)

+min{EP (zui )[|
˜k(zu ) − д̃(zui )|],EQ (zui )[| ˜k(zui ) − д̃(zui )|]} +

√
4

N

(
d log

2eN

d
+ log

4

δ

)
,

where P(zui ) (resp.Q(zui )) is the probability density functions overZ induced by P(xu , xi ,Oui ) (resp.Q(xu , xi ,Oui )) and ϕ. The latent label-

ing function induced byд andϕ: д̃ =
∫
ϕ−1
(z)
д(x)p(x)dx/

∫
ϕ−1
(z)

p(x)dx wherex denotes the features [20]. Similarly,
˜k =

∫
ϕ−1
(z)

k(x)p(x)dx/
∫
ϕ−1
(z)

p(x)dx .

With Lemma A.2 and f = h ◦ ϕ, we also have, w.p. at least 1 − δ :

LQ (h ◦ ϕ) ≤ L̂Q (h ◦ ϕ) +

√
4

M
(d log

2eM

d
+ log

4

δ
). (27)

By combining Eq. (27) with Eq. (26) over coefficients ρ and 1 − ρ, respectively, we have:

LQ (h ◦ ϕ) ≤ ρL̂P (h ◦ ϕ) + (1 − ρ)L̂Q (h ◦ ϕ) +
ρ

2

dH∆H(P(zui ),Q(zui )) + ρmin{EP (zui )[|д̃(zui ) − ˜k(zui )|],EQ (zui )[|д̃(zui ) − ˜k(zui )|]}+

ρ

√
4

N
(d log

2eN

d
+ log

4

δ
) + (1 − ρ)

√
4

M
(d log

2eM

d
+ log

4

δ
), (28)

which completes the whole proof. □
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C PROOF OF THEOREM 4.3
Proof. We derive the upper bound between the expected error LQ (h) and the empirical error L̂Q (h(w)) via the meta validation.

Specifically, we define ϵi (h(w)) = LQ (h) − ℓ(h(w)(xu , xi ),Yui ) for h(w) ∈ H ′ and every data sample in (xu , xi ,Yui ) ∈ DQ . Then, we have:

LQ (h) − L̂Q (h(w)) =
1

M

M∑
m=1

ϵm (h(w)). (29)

Since LQ (h) ∈ [0, 1] and ℓ(h(w)(xu , xi ),y) ∈ [0, 1], we have LQ (h) − ℓ(h(w)(xu , xi ),y) ∈ [−1, 1], E[ϵm (h(w))2] ≤ 1, and |ϵm (h(w))| ≤ 1.

Based on the Bernstein inequality [43], we have:

p(
1

M

M∑
m=1

ϵm (h(w)) > ξ ) ≤ exp(−
ξ 2M/2

1 + ξ/3
). (30)

Taking the union bound of this inequality over all h(w) ∈ H ′ has:

p(∪h(w )∈H′
1

M

M∑
m=1

ϵm (h(w)) > ξ ) ≤ Md ′
exp(−

ξ 2M/2

1 + ξ/3
). (31)

Let δ = Md ′
exp(−

ξ 2M/2
1+ξ /3 ). Solving the above Inequality (31) for ξ yields the following result (note that ξ ≥ 0):

ξ =
d ′ logM − logδ

3M
±

√
(
d ′ logM − logδ

3M
)2 +

2(d ′ logM − logδ )

M
≤

d ′ logM − logδ

3M
+

√
2(d ′ logM − logδ )

M
∵
√
a + b ≤

√
a +
√
b . (32)

Thus, for any δ > 0, with probability at least 1 − δ , for h′ ∈ H ′,

LQ (h) ≤ L̂Q (h(w)) +
d ′ logM − logδ

3M
+

√
2(d ′ logM − logδ )

M
. (33)

Similar to Eq. (28), by furthering considering the above bound in the latent feature space via ϕ and combining it with Eq. (26) over coefficients

1 − ρ ρ and ρ respectively, we complete the final proof. □

D PROOF OF THEOREM 5.1
Proof. We show that the ideal risk LQ (f ) = LQz (h) can bounded as (note that we denote P(zui ) (Q(zui )) as Pz (Qz ) for brevity):

LQ (f ) = LQz (h) = LQz (h) − LPz (h,
˜k) + LPz (h,

˜k) − LPz (h) + LPz (h)

≤ LPz (h) + |LPz (h) − LPz (h,
˜k)| + |LQz (h) − LPz (h,

˜k)|

= LPz (h) + |EPz [|h(z) − д̃(z)| − |h(z) −
˜k(z)|]| + |LQz (h) − LPz (h,

˜k)|

≤ LPz (h) + EPz [|д̃(z) −
˜k(z)|] + |LQz (h) − LPz (h,

˜k)|

≤ LPz (h) + EPz [|h(z) −
˜k(z)|] +

∫
|Pz −Qz | · |h(z) − ˜k(z)|dz

≤ LPz (h) + EPz [|д̃(z) −
˜k(z)|] +

∫
|Pz −Qz |dz ∵ h(z) − ˜k(z) ∈ [0, 1]

= LPz (h) + EPz [|д̃(z) −
˜k(z)|] + TV(Pz | |Qz ) ≤ LPz (h) + EPz [|д̃(z) −

˜k(z)|] +
√
2KL(Pz ∥Qz ), (34)

where we used triangular inequality multi-times and the Pinsker’s inequality [10] in the last line. h(z) − ˜k(z) ∈ [0, 1] since our loss is 0-1
binary loss. Due to the the symmetric property, we also have:

LQz (h) ≤ LPz (h) + EQz [|д̃(z) −
˜k(z)|] +

√
2KL(Pz ∥Qz ), (35)

Combining Eqs. (34), (35) and Lemmas A.2, we have:

LQ (h ◦ ϕ) ≤ L̂P (h ◦ ϕ) +
1

2

√
2KL(P(zui )∥Q(zui )) +min{EP (zui )[|д̃(zui ) − ˜k(zui )|],EQ (zui )[|д̃(zui ) − ˜k(zui )|]} +

√
4

N
(d log

2eN

d
+ log

4

δ
)

By summing this bound with Eq. (27) over coefficients ρ and 1 − ρ, respectively, we have:

LQ (h ◦ ϕ) ≤ ρL̂P (h ◦ ϕ) + (1 − ρ)L̂Q (h ◦ ϕ) +
ρ
√
2KL(P(zui )∥Q(zui ))

2

+ ρmin{EP (zui )[|д̃(zui ) − ˜k(zui )|],EQ (zui )[|д̃(zui ) − ˜k(zui )|]} + (1 − ρ)

√
4

M
(d log

2eM

d
+ log

4

δ
) + ρ

√
4

N
(d log

2eN

d
+ log

4

δ
). (36)

Thus, the proof is completed. □
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