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ABSTRACT

This work studies the problem of learning unbiased algorithms
from biased feedback for recommendation. We address this prob-
lem from a novel distribution shift perspective. Recent works in
unbiased recommendation have advanced the state-of-the-art with
various techniques such as re-weighting, multi-task learning, and
meta-learning. Despite their empirical successes, most of them lack
theoretical guarantees, forming non-negligible gaps between theo-
ries and recent algorithms. In this paper, we propose a theoretical
understanding of why existing unbiased learning objectives work
for unbiased recommendation. We establish a close connection
between unbiased recommendation and distribution shift, which
shows that existing unbiased learning objectives implicitly align
biased training and unbiased test distributions. Built upon this
connection, we develop two generalization bounds for existing
unbiased learning methods and analyze their learning behavior.
Besides, as a result of the distribution shift, we further propose a
principled framework, Adversarial Self-Training (AST), for unbi-
ased recommendation. Extensive experiments on real-world and
semi-synthetic datasets demonstrate the effectiveness of AST.
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1 INTRODUCTION

Recommender systems are widely used in many applications such
as e-commerce platforms, social networks, and healthcare. However,
recommender systems learn from logged user-item feedback data
and are subject to selection bias as the training data collected by
the logging policy is observational rather than experimental [17, 38,
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56, 57, 61]. Ideally, the feedback should be collected by randomly
and uniformly exposing items to users. However, in the real world,
exposures are affected by the past recommendation policy, which is
known as model selection bias. For example, users are more likely
to interact with popular items than tail items, and recommender
systems are also more likely to recommend popular items than
others [38, 58, 61]. This model selection bias results in the "rich get
richer" phenomenon, where head contents are getting more and
more exposure while tail contents are rarely discovered. Selection
bias also comes from user self-selection, i.e., users usually interact
and rate items they like and rarely rate items they do not like [31, 38].
Previous studies [37, 38, 48, 55] have theoretically and empirically
shown that directly learning from the biased feedback cannot reflect
user true preferences on items.

Remarkable theoretical advances have been proposed for un-
biased recommendation. Specifically, [38] and [48] provide rigor-
ous generalization bounds under selection bias. On par with their
theoretical findings, there have been rich advances in unbiased
recommendation [37, 38, 48, 61] based on inverse propensity score
(IPS)[33] and doubly robust (DR)[1] in causal inference. Although
IPS and DR can address the selection bias in theory, these solu-
tions typically assume unconfoundedness [59], i.e., the indepen-
dence of user preference over items given the feature of getting
exposed [37, 38, 59], which is impractical and cannot be examined
in many real-world RS. Moreover, they need to estimate the propen-
sity score for re-weighting and suffer from huge variance when the
propensity score is small [36, 42]. Thus, IPS and DR empirically per-
form poorly compared to many recent works [7, 26, 36, 46, 49, 50].

Many unbiased recommendation algorithms have been intro-
duced to conduct debiasing learning using various machine learning
techniques, such as multi-task learning [6, 26], meta-learning 7, 49],
and information bottleneck [50], which achieve promising empiri-
cal performance. However, there is a severe lack of rigorous the-
oretical analysis for these algorithms in the literature, creating a
gap between current theory and many strong empirical methods.
Specifically, most of these methods [6, 7, 26, 49] solve the bias issue
by introducing unbiased uniform data in the training, which is
collected by a random logging policy. Nevertheless, no clear and
unified connection between current theory and these algorithms
has been established. In other words, unbiased learning generaliza-
tion bounds for them have not been derived. Furthermore, there
is no solid theoretical justification for why utilizing unbiased uni-
form data can improve learning performance. Table 1 provides an
overview of the discussed methods and suggests that most of them
lack theoretical guarantees. This significant gap between theory
and practice raises an important question: How to bridge the gap be-
tween theories and recent unbiased learning objectives? Furthermore,
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Table 1: An overview of representative unbiased learning objectives we theoretically discuss in this paper, and how they relate
to one another in terms of unconfoundedness assumption and whether they can work w/o unbiased uniform data, suffer from
the variance issue, or whether the methods can theoretically unify other algorithms.

Learning objectives

w/o unconfoundedness assumption w/o unbiased uniform data w/o variance issue unified framework

Re-weighting [15, 37, 38, 48] X v X X
Information bottleneck [28, 50] X v v X
Multi-task learning [6, 26] X X v X
Meta-learning [7, 49] X X v X
Adversarial self-training 4 4 v 4

could we propose a more effective unbiased learning objective guided
by rigorous theoretical justification?

In this paper, we provide answers to the research question stated
above. We first revisit unbiased recommendation from the perspec-
tive of distribution shift and then present a theoretical analysis
of unbiased learning to provide explicit guidance and explanation
for the current algorithm design. Our analysis shows that many
unbiased learning objectives essentially optimize different terms
in our bound. Unlike existing bounds [38, 48], our bounds explic-
itly suggest accounting for the unobserved confounders, which is
important since the assumption of unobserved confounders may
not hold in the real world (please see details in § 3.2). Our theo-
retical generalization bounds pave the way for us to understand
why and how unbiased uniform data improves unbiased learning
performance. We further provide insights into our theory analysis
and propose a novel unbiased learning algorithm, Adversarial Self-
Training (AST), which effectively minimizes the upper bound of
the error and reduces the unbiased generalization gap. We evaluate
AST on both real-world and semi-synthetic datasets and conduct
ablation studies to analyze its behaviors. Extensive experimental
results validate the effectiveness of AST. The main contributions of
this work can be summarized as follows:

o We reconsider unbiased learning objectives proposed recently for
recommendation from the perspective of distribution shift and
provide a novel theoretical analysis towards explicit guidance
and explanations for algorithm design.

e We provide important insights that our theoretical generalization

bounds allow us to understand why and how unbiased uniform

data helps to improve unbiased learning performance.

Inspired by our theoretical analysis, we propose a novel unbiased

algorithm, AST, which can maintain rigorous theoretical justifi-

cation and address limitations of current algorithms. Extensive
experiments on both semi-synthetic and real-world datasets also
demonstrate the effectiveness of AST.

2 RELATED WORK

2.1 Selection Bias in Recommendation

Unbiased learning algorithms such as IPS [16, 37, 37, 38, 58, 64]
and DR [48, 49] are proposed to theoretically address selection bias.
For example, DR combines propensity score estimation and error
imputation in a theoretically sophisticated manner. However, these
methods heavily rely on accurately estimating the propensity score,
which is often impossible to know in the real world. Furthermore,
previous works [12, 42] have demonstrated that these methods suf-
fer from high variance [35]. It is important to note that these causal
inference methods typically assume unconfoundedness, where the

2765

relevance of user-item pairs is assumed to be independent of ex-
posure given the user and item features [37, 38, 59]. Xu et al. [59]
make similar observations regarding the limitations of the uncon-
foundedness assumption and highlight the inconsistent issues in
supervised learning caused by unknown exposure mechanisms.
However, they do not provide a theoretical framework to explain
existing unbiased learning methods.

Recently, several empirical algorithms have been proposed to
avoid the need for estimating the propensity score, utilizing tech-
niques such as causal embedding [6], knowledge distillation [26, 27],
and transfer learning [25]. These algorithms follow a multi-task
learning scheme, where both unbiased uniform data and biased
data are used, and the difference between the resulting user-item
representations is regularized. Additionally, some algorithms adopt
a meta-learning scheme [7, 49], where unbiased uniform data is
used to supervise the learning of debiasing parameters within a bi-
level optimization framework. Despite their promising performance
in practice, most of these algorithms require additional unbiased
uniform data, which can degrade user experiences, and they lack
sufficient theoretical guarantees. As a result, there is currently a
disconnect between theory and the existing algorithms. This work
primarily focuses on addressing selection bias, with the aim of
bridging the gap between theories and algorithms by proposing a
theoretically motivated framework for unbiased recommendation.

2.2 Domain Adaptation and Self-Training

The unbiased recommendation problem setting can be treated as
a special instantiation of out-of-distribution generalization and is
related to domain adaptation [2, 3, 13, 30]. We discuss the relation-
ships of our problem setting and our model with domain adaptation.
The goal of domain adaptation is to train a predictor that performs
well on a target domain using only labeled source samples and
unlabeled target samples during training. The adversarial feature
adaptation methods [13], inspired by the theoretical analysis of [3],
are most similar to ours. Specifically, in [13], DANN is proposed
to simultaneously minimize source empirical errors and approxi-
mate the divergence between source and target domains [3]. Our
approach further develops this idea for unbiased learning in rec-
ommendation, but our work differs from domain adaptation in :(1)
Our work focuses on the unbiased recommendation scenario where
both selection bias and unobserved confounders exist simultane-
ously, as shown in § 3.2, and (2) we derive two novel generalization
bounds for both multi-task and meta-learning strategies using un-
biased uniform data proposed by recent unbiased recommendation
algorithms [6, 7, 26, 49].

Our work is also related to self-training [4, 14, 51], which is
a popular technique for semi-supervised learning. Self-training
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assigns pseudo-labels to unlabeled samples by using a classifier’s
predictions and jointly re-trains the model with pseudo-labeled and
labeled samples. Instead of focusing on semi-supervised learning, in
this paper, we address the unbiased recommendation problem with
the self-training. There are also some works [9, 22, 29, 62] applying
the self-training for long-tail and cross-domain recommendation.
Several previous works also have explored adversarial training to
improve fairness [53], robustness [52], and accuracy [18, 47] of
recommendation. Different from them, we focus on providing a
theoretical analysis of existing unbiased learning objectives and
addressing the selection bias issue via adversarial self-training.

3 PRELIMINARIES

In this section, we introduce basic notations and formulate the
unbiased recommendation from the distribution shift perspective.

3.1 Notations and Selection Bias

Let x,, € Xq; be the feature vector for useru € {1,...,|U|}, x; €
X7 be the feature vector for item i € {1,...,|7|}. Typically, the
feature vectors can be user/item one-hot encoding, profile or em-
bedding. X¢; and X are the feature spaces, respectively. Following
previous works [37, 59], we let Oy, ; € {0, 1} be the exposure status,
Yu,i € {0, 1} be the feedback such as the click, and R,; € {0,1} be
the true preference of user u on item i. O, ; = 1 if the feedback Yy, ;
is observed and Yy, ; = Oy,; - Ry,; which means that, when item i
has been exposed to u, the true preference should be equal to the
feedback [37, 38]. Let Dp = {xu, X;, Yui|Ou,i = 1} be the logged
feedback and the number of samples is N. The task of unbiased
recommendation is to infer unobserved preference Ry,;. Typically,
the collected feedback follows a generative process [37, 38, 59]:

P(Xus Xi, Yui) = p(xu)p(xi)p(Rui, Oui = 1]Xu, Xi) = (1)
p(xu)P(Xi)p(oui = 1|Xu’ xi)p(Ruiloui =1,xy, Xi) ~ Yui = Oui - Rui,

where the exposure distribution p(Oy; = 1|xy, X;) makes the ob-
served feedback be missing-not-at-random (MNAR). We will drop
=1 for all Oy; in the remainder of the paper for conciseness. The
exposure distribution p(Oy;|xy, X;) is unknown and depends on
user self-selection or the item exposure process by which past-
recommendation policies match users and items. Since we want to
eliminate the influence from the underlying exposure mechanism,
ideally, we are interested in learning with the following unbiased
risk function where the exposure is missing completely at random
(MCAR), ie, Oyi L (Rul', Xu, Xi):

Lo(f) = Lo(f, 9) = Eol(f (xu, xi), g(xu, x1))] @

where Q = p(x,)p(xi)p(Oyi) with p(Oy;) = 1 for all user-item
pairs [38, 59, 60]. f(xy, X;) is the estimated hypothesis. g(xy, x;) =
P(Rui|xy, x;) is the optimal labeling function, depending on the true
preference distribution p(Ry;|xy, X;). Q is called as the marginal
distribution over features. Typically, €(f(xy, Xi), g(Xu, X;)) is the
0-1 loss, which is the probability that f disagrees with g under Q:
Eo[I(f(xu, xi) # g(xu,x;))]. In this paper, we conduct theoretical
analysis based on 0-1 loss. But, in practice, we can use 0-1 log loss
(x,y) = —ylogo(x)—(1—-y)log(l —o(x)) with o(x) = 1/(1+e7%)
which serves as a effective convex proxy for 0-1 loss.

We can notice that the unbiased risk function in Eq. (2) is in-
dependent of the exposure distribution of logged feedback, i.e.,
p(Oyilxy, x;). That is, we average the instance-wise loss over the
uniform exposure distributions of all user-item pairs, P(Oy;) = 1,
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rather than the exposure distribution p(Oy;|xy, X;). This uniform
exposure scenario is ideal because the preference will not be affected
by the previous exposure, thus leading to an unbiased estimation. In
other words, unbiased recommendation wants to learn hypothesis
f which generalizes well for all possible pairs of users and items,
not just the pairs that are frequently exposed. The reason we suffer
from the bias is because of the discrepancy between the exposure
distribution of the logged feedback, and the testing distribution to
which the model will be practically applied:

®3)
O]
Due the this discrepancy, the empirical risk .Zp( f) over logged
feedback Dp is a biased estimate of the ideal risk:
A 1

Lo = 5 D e, varreny (w0 Yur) = Le(f) # Lo (),

where Lp(f) = Lp(f, k) = Ep[(f (xu, xi), k(xy, xi))], (5)
P = p(xu)p(xi)p(Oui = 1|xy,x;) and k(xy, X;) is the optimal la-
beling function depending on distribution p(Ry;|Xy, X;, Oy;) in the

logged feedback. Thus, the learned f will not be approximately
optimal even having sufficiently large training data [38].

Training : P(Xu)P(Xz‘)P(Oui [%u, Xi)p(Rui |Ouis Xu, Xi)
Testing : p(xy,)p(xi)p(Oui)p(Rui|Xu, Xi).

3.2 The Unconfoundedness Assumption

To deal with this selection bias, many de-biasing methods [37, 38,
48] inspired by causal inference algorithms such as IPS and DR have
been proposed. As mentioned by previous works [37, 59], these
algorithms assume that being relevant is independent of getting
exposed given the feature, i.e, Ry; L Oyi|xy, X;:

©)

We notice that this assumption is actually referred to as unconfound-
edness assumption [34] in causal inference: assuming that there
are no other latent variables except the features that affect both the
outcome and the treatment assignment. With this assumption, we
only have the distribution shift with respect to the exposure prob-
ability (see Eq. (4)) and the conditional distribution shift between
P(Ryilxy, x;) and p(Ryi|Oui, Xy, X;) vanishes (i.e., labeling function
g(xy, xi) = k(xy, X;)). Thus, these methods [37, 38, 48, 64] conduct
unbiased estimation by inversely re-weighting logged feedback:

Zu(f) = L (F(kux0). Yar).  (7)

[%u, X;)

P(Rui|Oyi, Xy, Xi) = p(Ryi Xy, X;i).

1
N Z(xu,xi.Yui)er p(Oui

It is straightforward to verify that L, is an unbiased estimation
of ideal risk: [Ep[fw(f)] = Lo(f) with the unconfoundedness
assumption in Eq. (6). Thus, this objective can theoretically correct
for the distribution shift caused by the exposure if p(Oy; = 1|xy, X;)
is known in advance. While this objective has theoretical guaran-
tee [37, 38, 48], there are three crucial directions for improvement:

(1) The unconfoundedness assumption may not be true and can-
not be examined in real recommendation scenarios [11, 59], unless
we can include every single factor that may affect users’ decision-
making process as a feature. However, there are other unobserved
confounders, such as user social influence, item popularity effect,
and public opinions, that cannot be captured through features. For
example, as demonstrated in [23], user ratings exhibit different
distributions when users rate items before or after reading public
opinions. Additionally, due to privacy restrictions, recommender
systems inevitably face unobserved confounders. For instance, user
financial status directly affects feedback but is not measurable in
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many recommender systems. Ignoring such confounders leads to an
over-recommendation of inexpensive items. Nevertheless, current
methods [37, 38, 48] do not consider these unobserved confounders.

(2) The theoretical analysis of this re-weighting objective [37, 38,
48] cannot explain and generalize well to many unbiased algorithms,
especially those [6, 7, 26, 49] that utilize unbiased uniform data.

(3) This objective also requires accurate estimation of the expo-
sure probability, which is usually challenging [36, 59] and suffers
from significant variance. Consequently, it performs poorly in em-
pirical comparison to recent algorithms [7, 26, 50].

4 THEORETICAL ANALYSIS

In this section, we first present our framework for unbiased rec-
ommendation from the distribution shift perspective with feature
adaptation and derive two finite-sample generalization bounds. We
provide a key insight that our theoretical framework is able to unify
a series of recent unbiased learning objectives [6, 7, 26, 28, 49, 50].

4.1 Unbiased Learning via Feature Adaptation

In this subsection, we show how feature adaptation is related
to unbiased recommendation. Recall that we have logged feed-
back Dp from distribution P = p (Oyi|xy, Xi, ) p(Xy )p(x;), where
P £ P(xy,Xj, Oy;) is the training marginal distribution over fea-
tures. Similarly, we have the testing marginal distribution Q =
P(xu)p(xi)p(Oyi) = 1/|U||T|, meaning (xy,x;) is sampled ii.d.
from uniform exposure distribution. Our goal is to learn a function
f (x4, x;) which can approximate the optimal function g(xy, x;)
which depends on preference distribution p(Ry;|xy, X;).

To show how recent unbiased algorithms [6, 7, 26, 50] are related
to feature adaptation, without loss of generality, we further consider
the hypothesis f(xy,x;) , which is composed of a two parts: f =
ho ¢ where ¢ € & C {¢ : X, X X; — Z} is the feature mapping
function and h € H c {h : Z — Y} is the hypothesis of the
classification head. In general, h is a linear or feed-forward network
predictor. Given this, we noticed that Ben-David et al. [3] and Blitzer
et al. [5] proved the following bound on the unbiased risk Lo (ho )

in terms of the empirical biased risk I p(h o $) and the discrepancy
between the training and testing distributions:

Theorem 4.1. [3, 5] Let H be a hypothesis space with VC-dimension
d. P(zy;) (resp. Q(zy,)) is the distribution over Z induced by marginal
distribution P(xy, Xj, Oy;) (resp. Q(Xu, Xi, Oyi)) and ¢. Then, with
probability (w.p) at least 1 - over the natural exponential e, Vh € H :

Lo(ho§) < Lp(ho §)+ Sdpnp(Plrui), Qlzur)

2eN 4
2 + log 5), where

+ M) + \/%(dlog (8)

Apadi(P(zui), Q(zui)) = 25Upp, gt [Ep(y ) [E(h(zui), B (2ui))]
Eo(z, ) [t(h(zui), h’(zui))]l is the HAH -divergence [5] which mea-
sures the discrepancy between two distributions on symmetric differ-
ence hypothesis space and A($) = infpcq(Lp(ho @) + Lo(ho ¢))
is the combined risk of the ideal hypothesis.

Theorem 4.1 shows that the ideal risk Lo (ho¢) depends on three

terms, which include the empirical risk Lp(h o ¢), the divergence
between P(z,;) and Q(zy,;), and the combined risk A(¢). This bound
serves as the theoretical foundation and has inspired the domain
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adaptation methods [13, 39], which simultaneously minimizes the
divergence between P(z,;) and Q(zy;), and loss Zp(h o ¢).

This bound has made influential impacts in domain adaptation
and we find there are two crucial directions to improve it for unbi-
ased recommendation: (1) This bound considers aligning marginal
distribution between P(xy, Xj, Oy;) and Q(xy, Xj, Oy;) by using la-
tent feature adaptation, however it does not theoretically reflect
the unjustifiable unconfoundedness assumption as shown in § 3.2.
This will make the upper bound loose when the unconfoundedness
assumption is violated in the real-world. (2) This bound still can
not give the guidance and explanation for unbiased learning ob-
jectives [6, 7, 26, 49] that utilize unbiased uniform data. In what
follows, we will introduce two generalization bounds based on this
framework to address these two problems.

4.2 Unbiased Multi-Task Learning Bound

In this subsection, we give an unbiased multi-task learning bound
which measures the unconfoundedness assumption. We also demon-
strate that a a series of existing unbiased recommendation algo-
rithms [6, 26, 28, 37, 38, 50] including those using unbiased uniform
data can be partly interpreted by our new bound.

Specifically, some recent algorithms [6, 26] conduct de-biasing
learning via unbiased uniform data, which is collected by a ran-
dom exposure probability Q and can reflect user preferences in an
unbiased way. Thus, besides the biased data Dp, we assume that
we have some unbiased uniform data Dg = {xy, X;, Y,i|O0y,i = 1}
and the number of samples is M. Given the combined biased and
unbiased data, these algorithms [6, 26, 28, 37, 38, 50] generally have
the following empirical multi-task learning objective:

pLp(ho$)+(1~p)Lo(hod)+aR(Pzui). Qzui)).  (9)
where p € [0,1]. p = 1 means that we do not have unbiased
uniform data Do. Thus, this formulation can also unify those al-
gorithms [28, 38, 50] without using unbiased data. R(:,-) is the
regularization function, and ﬁ(zu ;) and Q(zui) are empirical distri-
butions of latent features over P and Q, respectively. « is the hyper-
parameter. Lo(h o $) = 37 Xx, x,. YureDo (h 0 $(xus Xi), Yui) is
the empirical objective under unbiased uniform data Dg. Based on
this, we provide the following generalization bound:

Theorem 4.2. Let H be a hypothesis space with VC-dimension d,
and P(zy;) (resp. Q(zy;) is the probability density functions over Z
induced by P(xy, Xi, Oyi) (resp. Q(Xy, Xi, Oyi)) and ¢. G (resp. k) is
the labeling function over Z induced by g (resp. k) and ¢. Then, w.p.
at least 1 — & over the exponential e, Yh € H:

Lo(ho¢) < pLp(hod)+(1-p) Lo(ho§)+ & dynn(Paur). Qzur))

+ pmin{Ep(, )[19(zui) = k(zui)ll, EQe, ) [19(zui) — k(zui)|1}+
p\/%(dlog ZedN + log %) +(1- p)\/%(dlog ZedM + log %).
Remark. The proof is provided in Appendix B. This bound sug-
gests that the ideal risk depends on the empirical multi-task learn-
ing error, the divergence of feature distributions, and the distance
min{E (s, ) [19(zi)~Fzui) |} Eg(s, ) [19(zut)~k(zui) |1} of labeling
functions, which is essentially the divergence between conditional
distributions p(Ry;|Oyi, Xy, X;) and p(Ryi|xy, x;) [63].

Compared with the bound in Theorem 4.1 and other bounds in
unbiased recommendation [38, 48], the bound in Theorem 4.2 has

(10)
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two key differences: (1) it involves an empirical multi-task learning
objective. When p = 1, the unbiased empirical error is not con-
sidered, with p € [0, 1), we introduce both biased and unbiased
uniform data for de-biasing, and the generalizability of the model
could be improved. This appeals to us since we can theoretically jus-
tify algorithms that employ unbiased data to conduct debiasing. (2)
The term min{E p(,,)[9(z01) ~ K(zai)l]. Ega,  19zui) — kzun) |1}
reflects the unconfoundedness assumption. This bound explicitly
considers this assumption and suggests that if it is violated, i.e.,
P(Ryi|Oui, Xy, Xi) # p(RyilXyu, Xi), the bound will be loose. Thus,
we should guarantee that the conditional distributions are not too
far away from each other for successful unbiased recommendations.

The bound in Theorem 4.2 enables us to interpret many learning
objectives [6, 26, 37, 38, 48, 50] in a unified perspective. Specifically,
we show that they all fall into the multi-task objective in Eq. (9)
and approximately minimize different terms in the bound.

Re-weighting Objectives [37, 38]. These methods fall into the
multi-task learning objective in Eq. (9) with p = 1 and & = 0 since
they do not utilize unbiased uniform data and regularization. They
re-weight the distribution P via w(xy,x;) = 1/p(Oyi|Xy, X;). By
setting ¢ as the identity function, it is easy to verify that the first
term in the bound becomes the re-weighting objective in Eq. (7) and
the third becomes dgyp s (W(xXy, Xi)P(Xy, Xi, Oui), Q(Xu, Xi, Oyi))
which equals to zero. Thus, they essentially minimize the first and
third term in this bound with p = 1 and ¢ being identity function.

Information Bottleneck Objectives [28, 50]. These algorithms
also fall into the multi-learning objective with p = 1 and & # 0. The
regularization term in Eq. (9) is instantiated as the information bot-
tleneck to regularize the model to learn a invariant representation
across training and testing distributions, which makes the diver-
gence dogpg{(P(zy;), Q(zy;)) smaller. Thus, similar to re-weighting
objectives, essentially, information bottleneck objectives also mini-
mize the first and third term in this generalization bound.

Multi-task Objectives [6, 26]. These algorithms utilize unbiased
uniform data and have the regularization term for approximately
reducing the divergence between P(z,;) and Q(zy;), thus p # 1
and a # 0 in Eq. (9). Specifically, R is ||zy; — Zyi||2 in [6] where z,;
and Z,; are sampled from ﬁ(zui) and Q(zui), respectively. [26] de-
signs other strategies for this regularization. Although the specific
regularization may be different, the high-level motivation of them
can be theoretically understood as minimizing the first, second and
approximately reducing the third divergence terms in this bound.

4.3 Unbiased Meta-Learning Bound

As an alternative, there are some algorithms [7, 49] utilizing the
unbiased uniform data via a meta-learning process [40, 54]. Their
objectives are still based on the re-weighting method but they utilize
the unbiased uniform data to train a weight functionw € H’ c {w :
Xy X Xi = W} such that the hypothesis h trained on the biased
data performs well on the unbiased uniform data. Specifically, the
meta-learning can be formulated as a bi-level optimization as:

mhi/n .ZQ(h(w) o @) s.t. h(w) = arg 1’1111(;1 fpw(h o @), (11)

where Py, = w(xy, X;)P(Xy, Xj, Yy,i) stands for a new re-weighted
distribution. Lg(h(w) o ¢) is the upper-level objective under unbi-
ased uniform data. Note that, h(w) is the function of re-weighting
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and its new hypothesis space H’ depends on biased training data
due to the bi-level optimization [40]. Empirically, this objective
perform well on unbiased recommendation as shown by [7, 49]. To
theoretically understand this, we provide the following bound:

Theorem4.3. Let H and H’ be hypothesis spaces with VC-dimension
d and d’, respectively. P(zy;) (resp. Q(zy,;)) is the density functions
over Z induced by P(xy, Xi, Oy;) (resp. Q(Xu, Xi, Oyi)) and ¢. g (resp.
k) is the latent labeling function induced by g (resp. k) and §. Then
w.p. at least 1 — o and natural exponential e, Vh € H, we have:

Lo(hod) < pLp,(hod)+(1-p)Lo(h(w)o $) (12)

4 2eN
+ gd’HA’H(W(Xus X;)P(zyi), Q(zui)) + p\/ﬁ(d log d

+ pmin{Epy,, ) [1§(zui) = kZui) ], EQay ) [1G(2ui) = k(zui) 1}

2(d’log M - log 5))
1/ i .

Remark. We provide the proof in Appendix C. This bound shows
that the ideal risk depends on four non-constant terms: the empir-
ical training errors on biased and unbiased data, the discrepancy
between latent feature distributions, and the distance between the
conditional distribution similar to Theorem 4.2. However, unlike
Theorem 4.2, this empirical error on the unbiased uniform data is
obtained via a meta validation process.

Meta-learning Objectives [7, 49]. With the bound in Theorem 4.3,
we can understand why recent meta-learning approaches for unbi-
ased recommendation can achieve good performance. It is worth
noting that the bi-level meta-learning objectives in [7, 49] exactly
minimizes the first and second terms with ¢ being the identity
function. Unlike re-weighting objectives, w(xy, X;) may not be the
optimal sample weight, i.e., 1/p(Oyi|xy, X;). Thus, the meta learning
objective can not theoretically guarantee that the third divergence
term is small. Moreover, it also neglects the fifth term in the bound
and essentially makes the unconfoundedness assumption.

+ log §)+

d’'log M —log & N
3M

+(1-p)

5 ADVERSARIAL SELF-TRAINING

We have shown how our framework allows us to reinterpret many
learning objectives in unbiased recommendation. With the above
theoretical analysis and insights, we summarize the limitations of
current learning objectives as follows: (1) They all make the uncon-
foundedness assumption, namely they do not account for the term
about the conditional shifts in Theorems 4.2 and 4.3. Nevertheless,
the unconfoundedness assumption is rarely true and can not be
examined in the real-world [59]. (2) Some objectives try to minimize
the HAH divergence between marginal feature distributions via
re-weighting [37, 38] or different regularizers [6, 26, 50]. However
re-weighting suffers from the variance issue [41]. As for the regu-
larizers [6, 26, 50], they are only an approximation of the empirical
H AH-divergence which is hard to optimize. (3) Meta-learning ob-
jectives need to compute the second-order gradient is expensive in
both computational cost and memory [7, 40, 49].

To address these issues, we exploit the theoretic analysis intro-
duced in § 4 to derive a practical algorithm, adversarial self-training,
which can simultaneously alleviate the divergence of feature distri-
butions and approximately account for unobserved confounders.
We optimize a feature mapping such that the conditional distribu-
tion is invariant to the biased training and unbiased testing data.



KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Mapping Hypothesis

Critic

Figure 1: The architecture of AST. D is set of logged feed-
back, and Q is the set of randomly sampled user-item pairs.

5.1 Adversarial Training for Adaptation

Motivated by the discussion in § 4, we need to design a mecha-
nism that enables feature adaptation for minimizing the HAH-
divergence. However it is difficult to optimize it. Thus, we give a
new generalization bound to guide the design of AST.

Theorem 5.1. Let H be a hypothesis space with VC-dimension d.
P(zy;) (resp. Q(zyi)) is the distribution over Z induced by marginal
distribution P(xy, Xj, Oy;i) (resp. Q(Xu, Xi, Oyi)) and ¢. g (resp. k)is
the latent labeling function induced by g (resp. k) and ¢ Then, with
probability at least 1 — & over the natural exponential e, Vh € H :

PV2KL(P(zui) [ Q(zui))

Lo(ho @) < pLphog)+(1-p)Lo(hog)+ ;

+ pmin{Ep,, [16(zui) = k(zui) ], Eog, n[1(2ui) = k(zui)|]}

4 2eM 4 4 2eN 4
+(1—p)\/ﬁ(dlog ] +10g5)+p\/ﬁ(dlog ] +10g5). (13)

Remark. The proof is provided in Appendix D. This bound pro-
vides theoretical justification for the use of KL (Kullback-Leibler)-
divergence to conduct feature adaptation in unbiased recommen-
dation. While the explicit marginal densities of P(z,;) and Q(zy;)
are intractable, we have data samples of them. This motivates us to
leverage adversarial distribution matching strategies [32] to min-
imize KL-divergence through a mini-max game with samples. In
particular, we minimize KL(P(zy;)||Q(zy;)) via the use of a critic
function (the max-step), and then update the feature mapping ¢ ac-
cordingly to reduce the KL-divergence (the min-step). In this paper,
we consider the Fenchel-dual form of the KL-divergence [32], i.e.,

KL(P[IQ) = Ep[log P ~log O] = max{Ep[log v] - Eo[v] +1}.  (14)

To optimize this Fenchel-dual form in practice, we model log v using
another function 6(zy;) as our critic function. This results in the
following adversarial neural estimator of KL(P(zy;)||Q(zyi)):

ZA(¢’ 0) = qun meax [Ezui=¢(xu,xi),(xu,xi)~P(Xu,xi,Oui)[e(zui)]

- [Ezui=</>(xu,xi),(xu,xi)~Q(xu,xi,Oui)[eXp(g(zui))]~ (15)
Compared to HAH-divergence, this objective is much easier to
minimize and can theoretically bound the ideal unbiased risk as
shown in Theorem 5.1.

5.2 Supervised Learning and Self-Training

As suggested by the generalization bound in Theorem 5.1, we also
need to minimize the empirical learning error and the distance
between the optimal labeling functions. For the empirical multi-
task learning error, we can directly minimize it by parameterizing
hypothesis h with function :

Lp($. ¥) = Eupympxa i) (xuxs )0 [ EW zui), Yl (16)
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where D = Dp U Do is the whole set of data, including the bi-
ased data and the unbiased uniform data. Note that our algorithm
can conduct de-biasing learning without unbiased uniform data
when D = Dp. To further minimize the distance between con-
ditional distributions (i.e., the regularizing term on conditional
distributions), we need to search for a feature mapping ¢ such that
the conditional distribution is invariant to training and testing:
Ep[Yuilp(xu,xi)] = Eg[Yuilp(xy, x;)]. If we have a small amount
of unbiased uniform data from Q, we can directly minimize this reg-
ularizing term on conditional distributions by jointly minimizing
Zp (¢, ¥) on both biased data and unbiased uniform data.
However, in some scenarios, collecting unbiased uniform data is
extraordinarily expensive [26, 50]. Thus, directly optimizing this
term Lp(¢, ) with unbiased uniform data becomes inaccessible.
To account for this scenarios, in this paper, we propose to approxi-
mately evaluate and minimize this term by using self-training. Pre-
vious works [8, 51] have theoretically shown that self-training can
learn the invariant predictive distribution, which can yield equally
optimal performance across environments. This matches our goal
of making conditional distribution invariant to the training and
testing. Specifically, we adopt the principle of self-training, which
has shown to be effective in semi-supervised learning [4, 14, 51].
Self-training first trains the feature mapping ¢ and prediction head
Y via L D(¢, ¥) in Eq. (16), and the trained model generates pseudo-
labels for the unlabeled data sampled from Q(xy, x;, Oy;). Then
self-training trains feature mapping with pseudo-labels as:

L5($) = = x ), x0)~ i, Oud) LW (2w Y )l (17)

where Y, = (P(xy, x;)) is the generated soft pseudo-label (it can
be the ground-true label if we have a small amount of unbiased
uniform data). ¢ and ¢ indict that we do not propagate gradients
through computing the pseudo labels. We empirically found that
this self-training can effectively brings conditional distributions
closer even we do not have any unbiased uniform data. In addition,
inspired by the recent work [8] which proves that entropy min-
imization has a similar effect as self-training algorithm, we also
explicitly minimize the entropy on unlabeled uniform data:

-ZE(QS) = [Ezui:;b(xu,xi),(xu,x,-)~Q(xu,xi,Oui)[H(U'('//(Zui))]’ (18)

where H(X) = — X7, p(x;)log p(x;) is the entropy of X. Intuitively,
by minimizing this entropy, we can effectively encourage the pre-
diction to be low-entropy (i.e., high-confidence) on unlabeled data
and the classifier’s decision boundary should not pass through high-
density regions of the data distribution [4]. In summary, the overall

objective function of AST could be formulated as follows:
£ = minmax Lp(g. )+ aLa(@. 0)+ fLs(@) +y Le(g. ). (19)

where a, f and y are trade-off hyper-parameters controlling the
contributions of different losses.

Overall algorithm. Our full algorithm, Adversarial Self-Training
(AST) is illustrated in Figure 1 and given in Algorithm 1. At each it-
eration, we sample mini-batches from biased labeled and unlabeled
unbiased data. We generate the pseudo-labels for the unlabeled un-
biased data by the current model. Then the model is further trained
on the labeled biased data and pseudo-labeled unbiased data. The
critic € is optimized adversarially for minimizing the conditional
shift between biased training and unbiased test distributions.
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Algorithm 1: Adversarial Self-Training (AST)

1 Input: The collected biased data Dp, unbiased data Dy and
parameters a, 5, y. Learning rate n. Maximum steps T.

2 if.Z)Q #:OZDZDPUDQ else: D = Dp

3 Forn=1,---,T do

4 Sample batches of (x4, x;) € Q(xy, Xj, Oy;)

5 Generate pseudo-labels Y,:l. for each sample: (xy,, x;, Yl: l.)

6 (¢ns lﬁri) — (¢n—1s l//rl—l) - U(V¢-£, VWL)

7 9,1 — Gn_l + ﬂV@L

s Return 0,¢, ¢

Complexity. As shown in Figure 1, compared with other unbiased
learning algorithms [26, 36, 50], we introduce only one linear addi-
tional head for the critic which reuses embeddings obtained from
the encoder. This suggests that our AST only introduces very few
parameters and the model complexity is at the same level as other
unbiased learning algorithms [6, 26, 36, 50].

6 EXPERIMENT

In this section, we empirically evaluate the performance of the
proposed AST on both real-world and semi-synthetic datasets.

6.1 Experimental Settings

6.1.1 Datasets. Following previous works [26, 37, 38, 49, 50], we
use two real-world datasets: Yahoo [31] and Coat [38]. These two
datasets are suitable for verifying our theoretical analysis and eval-
uating our AST since they contain both biased and unbiased data,
where unbiased data is formed by randomly assigning items to users
for ratings. Thus they can be used to measure the unbiased general-
ization performance with selection bias. Yahoo!: Its biased training
set has approximately 300,000 five-star ratings of 1,000 songs from
15,400 users. It collects an unbiased test set by asking 5,400 users to
rate 10 randomly displayed songs. Coat?: It has 290 users and 300
items. Each user rates 24 items by themselves forming 6,500 biased
five-star ratings, and is asked to rate 16 uniformly displayed items as
the unbiased set. Since these two real-world datasets are relatively
small, we also generate a relatively large semi-synthetic dataset
based on Goodreads>. It is a book recommendation dataset [45]
and we use the book review subset in history and biography, con-
taining 238,450 users, 302,346 items, and 2,066,193 five-star ratings.

6.1.2  Prepossessing. Following [7, 26, 50]. For all datasets, we treat
rating which is 3 or higher as positive feedback and the others as
negative. For GoodReads, we remove those items and users that
have less than 20 interactions.

6.1.3  Splitting and Simulation Settings. For Coat and Yahoo, follow-
ing [7, 26], we treat all biased Dp data as training set, and split the
unbiased data into three parts: 5% as additional training set Do to
help training, 5% as validation set, and the remaining 90% as test set.
Since Goodreads does not contain an unbiased testing set, we sim-
ulate a semi-synthetic dataset to facilitate ground-truth evaluation

https://webscope.sandbox.yahoo.com/
Zhttps://www.cs.cornell.edu/~schnabts/mnar/
3https://sites.google.com/eng.ucsd.edu/ucsdbookgraph
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against a fully known relevance and exposure parameter. Strictly
following previous works [37, 59], we first hold out the last feedback
of all users in the last time slice as the test data and the feedback
before the last is treated as the validation set. The remaining feed-
back serves as training set. We train a MF model to approximate
the rating matrix by minimizing the mean-squared loss based on
the training set. Then ground-truth preference probability for un-
biased testing is p(Yy,; = 1|0y,;) = 0([AE[Ru,,~ Ou,i] + €r) where
[AE[Ru,i |Oy,:] is the model output and eg is Gaussian noisy control-
ling randomness of preference caused by unobserved confounders.
Then, similar to [37, 59], we utilize another logistic MF predicting if
the rating is observed as the exposure p(Oy, ;) model. The final log-
exposure probability log p(Oy,. ;) = log p(Oy, i) + €0, where ep mea-
sures the extra randomness of exposure by unobserved confounders.
In our experiments, we set €p and €g as five [37]. Following the
generative model in § 3, we generate the biased training feedback
as p(Yu,i = 1) = p(Yu,i = 1|04,i)p(Oy, ;). With this simulation
process, we can obtain the true relevance, exposure parameters and
unobserved confounders for the unbiased evaluation.

6.1.4 Setup. We compare AST with the following learning objec-
tives: direct supervised training (Biased), IPS [37, 38], DRJL [48],
CVIB [50], ACL [59], ATT [36], KD [26], and AutoDebias [7]. Since
our AST is high-level learning approach that is compatible with
almost all existing recommendation models, we consider two repre-
sentative recommendation models: matrix factorization (MF) [21]
and neural collaborative filtering (NCF) [19]. Following previous
works [36, 48, 59], we utilize Hit Ratio (HR)@5 and NDCG@5 to
evaluate the unbiased ranking performance. For all methods, the
hyper-parameter search space is: dropout {0.2, 0.4, 0.6}, learning
rate {0.001, 0.005, 0.01}, weight-decay {le-4, le-5, le-6}, embedding
dimension {64, 128, 256}. Specifically, for AST, we further search a,
B, and y from space {0.2, 0.4, 0.6, 0.8}. For a rigorous and fair com-
parison, we use the grid search to find the best hyperparameters of
the baselines for all methods based on the validation performance.

6.2 Unbiased Learning Performance

Table 2 presents the unbiased learning results of AST and the base-
lines with NCF and MF as backbones, respectively. Observations
from the table are as follows:

o Consistent with our theoretical analysis, AST significantly out-
performs other algorithms, demonstrating its strong generaliza-
tion ability. This is attributed to AST effectively minimizing the
generalization bound of the ideal risk.

Overall, AST consistently outperforms other baselines on all
datasets using both MF and NCF backbones. This indicates the
effectiveness of AST and showcases its flexibility and robustness
across different backbones.

Despite IPS and DR having strong theoretical insights, their em-
pirical performance is poor. In contrast, AST demonstrates em-
pirical effectiveness while maintaining rigorous justification.
AST outperforms baselines on the GOoDREADSs dataset, which
exhibits both selection bias and unobserved exposure factors.
This demonstrates AST’s ability to simultaneously account for
selection bias and the unconfoundedness assumption, resulting
in tighter generalization bounds.


https://webscope.sandbox.yahoo.com/
https://www.cs.cornell.edu/~schnabts/mnar/
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph
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Table 2: Unbiased learning performance of different algorithms with standard deviation over five runs. The best and second
best performance are marked with boldface and underline, respectively.

) Yahoo Coat Goodreads
Algorithms MF NCF MF NCF MF NCF
HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5 HR@5 NDCG@5
Biased 0.6471 0.6542 0.6352 0.6584 0.4338 0.6457 0.4281 0.6257 0.3071 0.1057 0.3214 0.1089
(£0.0035)  (+0.0037)  (+0.0029)  (+0.0017) (£0.0051)  (+0.0072)  (+0.0045)  (+0.0048) (+£0.0024)  (+0.0011)  (+0.0029)  (0.0008)
IPS 0.6598 0.6661 0.6415 0.6663 0.4131 0.6361 0.4255 0.6219 0.3156 0.1108 0.3462 0.1152
(£0.0047)  (£0.0052)  (£0.0038)  (+0.0029) (£0.0064)  (£0.0079)  (£0.0056)  (+0.0050) (£0.0038)  (£0.0027)  (£0.0041)  (+0.0018)
DRJL 0.6632 0.6732 0.6581 0.6716 0.4255 0.6378 0.4391 0.6381 0.3237 0.1255 0.3531 0.1265
(£0.0038)  (£0.0042)  (£0.0033)  (+0.0025) (£0.0040)  (£0.0049)  (£0.0023)  (+0.0027) (£0.0034)  (£0.0021)  (£0.0034)  (£0.0012)
CVIB 0.6756 0.6834 0.6635 0.6873 0.4531 0.6680 0.4487 0.6498 0.3467 0.1397 0.3687 0.1469
(0.0002)  (£0.0047)  (3p.0036) (+0-0027) (£0.0039)  (£0.0034)  (£0.0029)  (+0.0033) (£0.0025)  (£0.0026)  (£0.0038)  (+0.0015)
ATT 0.6635 0.6784 0.6497 0.6829 0.4371 0.6349 0.4357 0.6358 0.3307 0.1209 0.3562 0.1343
(£0.0044)  (£0.0049)  (£0.0037)  (+0.0023) (£0.0040)  (£0.0037)  (£0.0022)  (+0.0024) (£0.0035)  (£0.0026)  (£0.0030)  (+0.0014)
ACL 0.6801 0.6839 0.6522 0.6857 0.4529 0.6721 0.4631 0.6536 0.3587 0.1477 0.3714 0.1498
(£0.0040)  (£0.0045)  (£0.0032)  (0.0022) (*0.0036)  (30.0033) (z0.0021) (*0.0029) (0.0030)  (yo.0025)  (:0.0034)  (x0.0015)
KD 0.6779 0.6781 0.6571 0.6814 0.4561 0.6584 0.4451 0.6471 0.3533 0.1368 0.3669 0.1405
(£0.0043)  (£0.0044)  (£0.0031)  (+0.0024) (£0.0038)  (£0.0036)  (£0.0024)  (+0.0021) (£0.0029)  (£0.0023)  (£0.0035)  (+0.0012)
AutoDebias  0.6835 0.6959 0.6609 0.6925 0.4628 0.6651 0.4568 0.6587 0.3608 0.1428 0.3751 0.1518
(£0.0046)  (£0.0051)  (£0-0035) (g 0028) (x0.0042)  (#0.0037)  (£0.0028) (19 0035) (x0.0041)  (#0.0026)  (30.0038)  (+0.0016)
AST 0.6985 0.7147 0.6813 0.7094 0.4775 0.6819 0.4728 0.6630 0.3712 0.1678 0.3834 0.1655
(+0.0041)  (£0.0046)  (£0.0030)  (+0.0021) (£0.0037)  (£0.0035)  (£0.0023)  (+0.0031) (£0.0036)  (+0.0024)  (£0.0033)  (+0.0012)
Table 3: Ablation study (NDCG@5) with MF backbone. Table 5: Performance (NDCG@5) on implicit feedback.
Methods Coat Yahoo Goodreads Yahoo Coat
MF NCF MF NCF
AST w/o A 0.6628 0.7025 0.1498
(£0.0039)  (£0.0043) (2£0.0039) Biased 0.6914 0.6233 0.5514 0.6373
AST w/o S (96606092%) 0.7114 0.1615 IPS 07011 0.6484 0.5458  0.6144
= (0.0038) (£0.0022) DRJL 0.7025 0.6517 0.5833 0.6181
ASTw/oE 0.6733 0.7104 0.1545
(£0.0041) (£0.0052) (£0.0031) ACL 0.7097 0.6885 0.5921 0.6348
ASTw/oS&E  0.6587  0.6978 0.1317 KD 0.7152 06758 0.5692 06214
(£0.0032)  (0.0039) (20.0025) AutoDebias 0.7195 0.6742 0.5873 0.6388
Biased 0.6457 0.6542 0.1057 AST 0.7248 0.7026 0.6037 0.6631
(£0.0072)  (£0.0037) (+0.0011)
AutoDebias 0.6651 0.6959 0.1428
AST (;06(;013;) (;07'01(2;) (;01‘2072;) self-training (AST w/o S); (iii) AST without entropy minimization
(£0.0035)  (+0.0046) (+0.0024) (AST w/o E) and (iv) AST without both self-training and entropy

Table 4: Performance (NDCG@5) without unbiased data.

Yahoo Coat
MF NCF MF NCF
Biased 0.6533 0.6714 0.6205 0.6330
IPS 0.6661 0.6756 0.6147 0.6440
DRJL 0.6673 0.6789 0.6433 0.6376
ATT 0.6778 0.6788 0.6332 0.6472
CVIB 0.6717 0.6906 0.6529 0.6519
AST 0.6898 0.7004 0.6712 0.6589

As per our theoretical analysis, KD and AutoDebias show perfor-
mance improvements by utilizing unbiased uniform data. How-
ever, as shown in Table 2, Our AST consistently outperforms
them by a significant margin.

6.3 Ablation Study and Parameter Sensitivity

Setup: To conduct a detailed analysis of how different components
impact AST performance, we perform an ablation study and param-
eter sensitivity analysis. We follow the same setup as described in
§ 6.2 and construct the following variants of AST: (i) AST without
the adversarial matching component (AST w/o A); (ii) AST without
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minimization (AST w/o S & E).

Results: The ablation study results are presented in Table 3. We ob-
serve that all the designed components contribute to performance
improvements, and their contributions are complementary to each
other. We also investigate the sensitivity of the hyperparameters
a and f, where a and f§ control the contribution of adversarial
matching and self-training, respectively. As the trend of y is similar
to S, we omit it for brevity. We vary a and f§ as [0.2,0.4,0.6,0.8]
and report the results in Fig. 2. Key findings are as follows: (i)
AST performs better and exhibits stability when « € 0.6,0.8 and
B € 0.2,0.6, simplifying the process of hyperparameter selection.
(ii) By varying a and f, we can achieve a balanced trade-off be-
tween adversarial matching and self-training, leading to improved
generalization performance. This confirms the motivation behind
jointly mitigating selection bias and unobserved confounders, as
finding a suitable trade-off enhances the transferability of biased
embeddings for better unbiased performance.

6.4 Performance on Challenging Scenarios

In this subsection, we consider two more challenging scenarios. The
first scenario is debiasing without any unbiased training data, which
is realistic as collecting unbiased data is typically expensive. We
compare AST with baselines that do not require unbiased training
data. Following the methodology in [7, 26], we treat the biased data
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Figure 3: Generalization performance and training losses.

as the training set and randomly sample 5% of the ratings from the
unbiased test data as the validation set. The results are reported
in Table 4. We observe that AST achieves the best performance
compared to the baselines. In particular, AST outperforms ATT
and CVIB, further demonstrating the effectiveness of adversarial
feature adaptation using the KL-divergence (Theorem 5.1).

The second scenario is implicit feedback. Implicit feedback is
more challenging than explicit feedback since we do not have neg-
ative evidence in the learning process [37, 59]. We evaluate AST
on this scenario as well. To generate implicit feedback, we use the
Yahoo and Coat datasets but remove the negative feedback from the
training data. The results are presented in Table 5. We observe that
AST outperforms all baselines, indicating its ability to effectively
mitigate selection bias in implicit feedback data. This aligns with
our theoretical analysis, as the ideal risk can still be bounded under
the setting of implicit feedback.

6.5 Deeper Understanding of AST

Setup. We conduct a detailed analysis of AST to gain insights into
its behavior. We follow the same setup as described in Section 6.2.

6.5.1 Generalization and Convergence. . To examine the general-
ization and convergence of AST, we plot the training loss curves
of different components and the testing NDCG on two datasets
in Figure 3. We make the following observations: (i) AST exhibits
training stability and consistently improves the unbiased testing
performance as iterations progress. (ii) The NDCG metric shows
a nearly monotonic increase with iterations, suggesting that min-
imizing our loss, which is an upper bound of the ideal loss, is an
effective approach to improve accuracy based on biased feedback.

6.5.2 Unobserved Confounders. . One of the key strengths of AST
is its ability to mitigate both marginal and conditional shifts caused
by unobserved confounders. Therefore, we investigate whether AST
possesses this capability and identify the most important compo-
nent contributing to it. Figure 4 displays the empirically calculated
A-distance [30] and MDD [24] using the learned embeddings of
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Figure 5: Visualization fo embeddings of AST and Biased
method. The blue points correspond to the biased training
data, while red ones correspond to unbiased testing data.

AST. The A-distance measures covariate shift, while MDD quanti-
fies concept shift. Our findings from Figure 4 are as follows: (i) The
A-distance and MDD values of AST embeddings are significantly
smaller than those of vanilla NCF, indicating that AST can more
effectively reduce both covariate and concept distribution shifts.
(ii) AST without the D component exhibits a smaller A-distance
than AST without the A component, while AST without the A com-
ponent has a smaller MDD than AST without the D component.
This observation aligns with our idea that adversarial matching
minimizes covariate shift, while self-training alleviates concept
shift. To gain further intuition about feature adaptation, we visual-
ize the t-SNE embeddings sampled from P(zui) and Q(zui). From
Figure 5, we observe that AST effectively bridges the feature gap
between biased and unbiased data, whereas biased training fails as
the embeddings are separated and have a certain distance.

7 CONCLUSIONS

In this paper, we studied the problem of unbiased recommendation.
We provided a novel perspective on the distribution shift for the un-
biased recommendation problem. We derived several generalization
bounds and presented both theoretical and algorithmic analyses of
current learning algorithms. We also proposed the AST algorithm,
which effectively addresses the issues of selection bias and unob-
served confounders. Extensive experiments on three datasets with
various settings demonstrated the effectiveness of AST. While our
results strongly advocate for considering unobserved confounders
in unbiased recommendation, optimizing them directly in the real
world poses a challenge. Exploring more effective optimization
methods is an interesting topic that requires further investigation.
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A THE LEMMAS

Before we conduct the proof, we first state the following Lemmas:
Lemma A.1. [5]. Let H be a hypothesis space of VC-dimension d, and for any distribution P and Q over Xy, X X;, thenVh,h’ € H:
, 1
[ Lp(h.h') = Lo(h )| < Zdpan(P. Q). (20)

where dgaq((P, Q) = 2 supy_pr e |Ep[E(h(ku, i), h' (%, xi))] = QIE(A(xw, Xi), B (xu, X))

Lemma A.2. [44]. LetS is a arbitrarily data distribution and H be a hypothesis space of VC-dimension d. Then Vh € H,¥5 > 0, wp. at least
1 — & over the a sample size N and natural exponential e:

Ls(h) < fs(h)+\/%(dlog¥ +log %). (21)

B PROOF OF THEOREM 4.2

Proor. Following the definitions in § 3, we have:

ILp(f) = Lo = |Lp(f k) = Lo(f. 9)l, (22)
which has the following upper bound:

|Lp(f k) = Lo(f. 9l =1Lp(f, k) = Lp(f,9) + Lp(f.9) — Lo(f, 9)|
< |Lp(f. k)= Lp(f, 9|+ 1Lp(f,9) — Lo(f. )l
= |Ep[lf(xu,xi) = k(xu, xi)| = | f Geus xi) — g(xu, xi)|]] (23)

+1Lp(f,9) — Lo(f. 9)I < Ep[lk(xu, x;) — g(xu, x:)|] + %dew(P, Q)
where we utilize the triangular inequality and Lemma A.1. Similarly, due to the symmetric property, the following inequality for O holds:
|Lp(f) = Lo(N)I =1Lp(f, k) = Lo(f, 9)| < Eollk(xu, xi) — g(xu, x:)|] + %dew(P, Q). (24)
Combine the inequalities (23) and (24) above, we have:
Lo(f) < Lp(f) + %deM{(P, Q) + min{Ep[[k(xu, xi) = g(xu, xi)|], Eg [[k(xu, Xi) — g(xu, xi)|]}- (25)

Combining Egs. (24), (25) and Lemma A.2, and considering the hypothesis f(xy,x;) is composed of a two parts: f = h o ¢ where h is the
hypothesis and ¢ maps (xy, X;) to zy,;. W.p. at least 1 — §:

Lo(ho§) < Lp(ho §)+ > dpnp(Pzui), Qaui) 26)

2eN

y +log é),

+min{E pig, ) [1k(zu) = §lzui) ] Ea, o [Ik(zui) = Glzun)ll} + \/ g 3

where P(zy;) (resp. Q(zyi)) is the probability density functions over Z induced by P(xy, xj, Oy;) (resp. Q(Xy, Xi, Oy;)) and ¢. The latent label-
ing function induced by gand ¢: § = /¢_1 g(x)p(x)dx/ /¢_1 p(x)dx where x denotes the features [20]. Similarly, k = /¢_1 k(x)p(x)dx/ / g1 p(x)dx.
(z) (z) (z) (2)

With Lemma A.2 and f = h o ¢, we also have, w.p. at least 1 — §:

_ M
Lo(hod) < Lolhog)+ \/:—4(d log 2‘“’7 +log %). (27)

By combining Eq. (27) with Eq. (26) over coefficients p and 1 — p, respectively, we have:

Lo(hog) < pLp(ho@)+(1—p)Lo(ho )+ gdeA‘H(P(Zui)v Qzui)) + pmin{E p(y,, ) [1(2ui) = k(zui)l], Eg(a, ) [1G(zui) = k(zui) |1} +

4 2eN 4 4 2eM 4

which completes the whole proof. O

2774
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C PROOF OF THEOREM 4.3

Proor. We derive the upper bound between the expected error Lo(h) and the empirical error .ZQ(h(w)) via the meta validation.
Specifically, we define €;(h(w)) = Lo(h) = {(h(w)(xy, X;), Yui) for h(w) € H’ and every data sample in (xy, X;, Yui) € Do. Then, we have:
M

Lo(h) — Lo(htw) = 22 3" em(hw)) (29)

m=1

Since Lo(h) € [0,1] and £(h(w)(Xy, xi),y) € [0, 1], we have Lo(h) — £(h(w)(xy, xi),y) € [-1,1], Elem(h(w))?] < 1, and |em(h(w))] < 1.
Based on the Bernstein inequality [43], we have:

M
1 E2M/2
o5 ,,; m(h(w)) > ) < exp(-1572). (30)
Taking the union bound of this inequality over all h(w) € H’ has:
M
1 7 £2M/2
U r— h <M 31
PUnemer mzl em(h(w) > £) < M¥ exp(-1 7). (31)
Let 5§ = M9 ex p(— 1 m § /3 ) Solving the above Inequality (31) for ¢ yields the following result (note that & > 0):
d’log M —logé \/ d’logM —logé ., 2(d’logM —logd) _ d'logM —logé 2(d’ log M — log 6)
= < < .
£ A +4/( N )2 + i < i + i Va+b<+va+Vb. (32)
Thus, for any § > 0, with probability at least 1 — &, for b’ € H’,
- d’logM —logé 2(d’ log M — log 6)
h) < h . 33
Loy < Zolhtw)) + —E-E = (33)
Similar to Eq. (28), by furthering considering the above bound in the latent feature space via ¢ and combining it with Eq. (26) over coefficients
1 — p p and p respectively, we complete the final proof. O

D PROOF OF THEOREM 5.1
Proor. We show that the ideal risk Lo(f) = L, (h) can bounded as (note that we denote P(zy;) (Q(zu;)) as P, (Q) for brevity):

Lo(f) = Lo, (h) = Lo, (h) = Lp,(h.k) + Lp,(h. k) = Lp,(h) + Lp,(h)
< Lp (W) +|Lp,(h) = Lp (hi)| + | Lo, (h) - Lp,(h.K)|
= Lp, () + |Ep,[h(z) - §(2)| - |h(z) - k(2)|]| + | Lo, (h) — Lp, (h k)|
< Lp,(h) + Ep,[14(z) — k()] + | Lo, (h) — Lp, (h. k)|

< Lp,(h) + Ep_[|h(z) - k(z)|] + / Pz = Q| - |h(z) — k(z)|dz
< Lp,(h) + Ep_[l§(z) - k(z)[] + / |P; — Q:ldz " h(z) - k(z) € [0,1]
= Lp_(h) + Ep,[1G(2) = k(2)|] + TV(P||Qz) < Lp_(h) + Ep, [|G(2) - k(2)|] + v2KL(P;[|Q2). (34)

where we used triangular inequality multi-times and the Pinsker’s inequality [10] in the last line. h(z) — k(z) € [0, 1] since our loss is 0-1
binary loss. Due to the the symmetric property, we also have:

Lo, (h) < Lp,(h) + Eg,[1§(2) - k(2)[] + V2KL(P.[|Q2), (35)
Combining Egs. (34), (35) and Lemmas A.2, we have:

—~ 1 . . ~ . ~ 4 2eN 4
£o(ho d) < Zplh o )+ NP T + min{Ep(s 1) ~ Kl Egi 1) ~ K} + |+ d1og 2N +1og £
By summing this bound with Eq. (27) over coefficients p and 1 — p, respectively, we have:

P\/ZKL(P(Zui)”Q(Zui))
2

Lo(hod) < pLphod)+(1-p)Lolhop)+

+ pmin{Ep(y, ) [1§(Zui) = kzui) 1l Eg(a, ) [19(Zui) = k(zud)1} + (1= p)\/—(d log —— M, log < ) + P\/—(d log —— Al log < ) (36)

Thus, the proof is completed. O
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