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ABSTRACT

Recommendation systems play a vital role in many online platforms,
with their primary objective being to satisfy and retain users. As di-
rectly optimizing user retention is challenging, multiple evaluation
metrics are often employed. Current methods often use multi-task
learning to optimize these measures. However, they usually miss
that users have personal preferences for different tasks, which can
change over time. Identifying and tracking the evolution of user
preferences can lead to better user retention. To address this issue,
we introduce the concept of “user lifecycle,” consisting of multiple
stages characterized by users’ varying preferences for different
tasks. We propose a novel Stage-Adaptive Network (STAN) frame-
work for modeling user lifecycle stages. STAN first identifies latent
user lifecycle stages based on learned user preferences and then
employs the stage representation to enhance multi-task learning
performance. Our experimental results using both public and in-
dustrial datasets demonstrate that the proposed model significantly
improves multi-task prediction performance compared to state-of-
the-art methods, highlighting the importance of considering user
lifecycle stages in recommendation systems. Online A/B testing
reveals that our model outperforms the existing model, achieving a
significant improvement of 3.05% in staytime per user and 0.88%
in CVR. We have deployed STAN on all Shopee live-streaming
recommendation services.
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1 INTRODUCTION

In recent years, online recommendation systems (RS) have become
increasingly popular, assisting users in discovering their preferred
items from a vast array of choices on platforms such as e-commerce
and social media. The primary objective of RS is to attract, satisfy,
and retain users. Researchers have proposed various techniques to
achieve these objectives, including multi-task learning methods.

Due to the high dimensionality of RS [21], modeling its objectives
is challenging. Many works represent the objectives through mul-
tiple directly learnable metrics, such as the likelihood of clicking,
forwarding, and staying. Consequently, there has been a growing
trend to apply multi-task learning methods to model the various
aspects of user interests. Some studies [13, 16, 21, 26, 28] suggest
that click-through rate (CTR) and post-click conversion rate (CVR)
are the best indicators of user satisfaction, proposing that clicking
and purchasing actions are the primary drivers of user retention.
Other works [14, 29, 33] consider user feedback (e.g., interactions
like forward, comment, stay) as evaluation metrics, assuming that
more interactions represent stronger user engagement and aiming
to improve all interaction metrics simultaneously.

Nonetheless, these prior works do not fully consider the user
lifecycle [4, 10, 11] and its impact on user satisfaction and retention.
The user lifecycle consists of several stages, each characterized by
user preferences towards different tasks. These preferences change
over time as users evolve, and users may transition between stages
with varying probabilities.

To emphasize the importance of incorporating user lifecycle
stages into RS, consider the experiences of two users, Bob and
Alice, as illustrated in Fig. 1. Typically, a user progresses through
a series of stages since registering on the platform. Note that the
four discrete stages in Fig. 1 are merely examples for visualization
purposes, and the actual stages in our model are represented by
continuous vectors. Bob exhibits wandering behavior, browsing
quickly without intending to purchase items. Traditional multi-task
RS might try to persuade him to buy by presenting top-selling
products. However, this approach could result in his dissatisfaction,
causing him to leave without making a purchase. Conversely, Alice
has recently transitioned to a more committed stage. She previously
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preferred browsing to placing orders, but in her current stage, she is
more likely to purchase without hesitation if the recommendation
suits her preferences. Traditional multi-task RS might persist in
recommending items aimed at prolonging her usage time, but these
attempts may no longer capture her interest. By taking user life-
cycle and stages into account, which can be customized to specific
contexts, the recommendation system can more effectively address
the diverse needs of users at different stages of their interactions
with the platform.

We propose a user lifecycle stage-adaptive framework to address
these issues. It dynamically adjusts its focus on tasks according to
the user’s stage, which is modeled by the representation of their
preferences. As user behavior may exhibit volatility, it is crucial to
account for such instability when modeling preferences. For tasks
not aligned with the user’s preferences, the user behaviors will be
sparse, resulting in actions like clicks and purchases having large
randomness and not accurately reflecting users’ true preferences.
Identifying users’ preferences helps the model prioritize reliable
targets to learn from, leading to improved performance. By incor-
porating user stages in the multi-task learning process, the model
can focus on users’ highest-priority tasks. Our main contributions
can be summarized as follows:

o To the best of our knowledge, this is the first work to inte-
grate the user lifecycle concept into multi-task recommenda-
tion systems. By considering the various stages in the user
lifecycle, we can more effectively capture users’ changing
interests.

e We propose a user stage detection network that represents
user stages using continuous user preferences, enabling the
model to focus dynamically on each user’s preferred tasks.

e We present comprehensive experimental results on both
public and industrial datasets to substantiate our claims.
Additionally, we applied our method to an online system,
achieving significant improvements in online metrics. Visu-
alization results further emphasize the importance of user
lifecycle stages in multi-task recommendation systems.

The rest of the paper is organized as follows: Sec. 2 presents a
preliminary analysis on the importance of user stages; Sec. 3 details
our proposed Stage-Adaptive Network (STAN); Sec. 4 showcases
experiments demonstrating STAN’s effectiveness; Sec. 5 discusses
the model’s expandability and potential; Sec. 6 reviews related work,
and Sec. 7 concludes the paper.

2 PRELIMINARY ANALYSIS

In this section, we first conduct a preliminary analysis of real-
world datasets to show why considering user stage information is
important for RS. We then formally define the notations and give
the problem definition of our work.

2.1 Insights from Real-world Data

In this section, we discuss the e-commerce data used for analysis
throughout this paper. We collected one month of user behavior
data from an e-commerce platform, which records users’ clicks,
staytime, and purchase actions. The behavior data is organized by
user sessions, each of which is defined as a tuple of actions related
to one impressed item. We randomly selected 50,000 users’ actions
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over three days for data analysis. Fig. 2 depicts the user distribution
of the three metrics, i.e., CTR, Staytime, and CVR.

Inspired by previous works [10, 11], we roughly separate users
into four stages by the median of different metrics for a better illus-
tration and explanation. The stages are named New, Wander, Stick
and Loyal, as shown in Fig. 3. Note that one user could not belong
to multiple stages. Each user at stage New are spotted by alow CTR
rate, while their staytime and CVR distribution are the most similar
to the overall distribution of all users. Their CTR value conforms
to a Gaussian-like distribution but in a low-value range. Users at
stage Wander have low staytime length. Their CTR and CVR rates
are relatively high, but their staytime stick to a lower range. Users
at stage Stick could be quickly found by their relatively low CVR
value along with high CTR and staytime, which indicates that they
only dwell on the platform but rarely contribute to purchasing.
Users at stage Loyal show a custom of steadily clicking, staying,
and purchasing on the platform, implying their satisfaction with
the recommendation outcomes and the platform.

According to the stage patterns, we notice that users at different
stages put their focus on specific things that could be manifested
by statistical metrics. If we could discover and suit the user stage
in the multi-task recommendation, we are more likely to improve
model performance.

2.2 Notations and Problem Definition

Our preliminary analysis verifies that users at different stages con-
form to various data distributions. Thus, it would be of great help
to consider adaptive stage information while conducting multiple
recommendation tasks. m

In our cases, we have a dataset D = {{(Ui, Vi, yij)};lil}i:l con-
sisting of m users, each user i exposed to n; items. The U; € R41%42
represents the user feature matrix, V; € R3%ds represents the item
feature matrix. Here, d;, d3 denote the number of user and item
features, respectively, while dz and d4 represent the dimensions of
user and item features, respectively. Note that in the preprocess-
ing phase, each user attribute is embedded into a d3-dimensional

vector. A similar preprocessing is conducted for items. The label
T
collection y;; = [y}j, e yllj] € RX includes measurements for K

concerned tasks, where yf] k =1,...,K corresponds to CTR, stay-
time, and so on. For the overall preference of user i, we compute

Yi = o Z;l;l [yilj, s yg]T € RX. Note that some user features
change over time. In the dataset, the behavior sequence is orga-
nized chronologically for each user, but there is no specific order
for behavior sequences across different users.

Considering K recommendation prediction tasks, our goal is to
develop a framework that can recommend items while taking user
stage information into account to enhance the prediction perfor-
mance for each task.

3 PROPOSED METHOD

In this section, we propose a framework to extract the latent user
stage information for enhancing multi-task recommendation.

!The scale of the y-axis is hidden according to the data sharing policy of the e-commerce
platform.
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Figure 1: A user’s current stage influences his or her preference in real-world recommendation systems. In the data distribution
figures, the x-axis represents the value of CTR/Staytime/CVR, while the y-axis represents the ratio R of users with corresponding
values. Discrete stages in the figure are for illustration purposes; in our model, user stages are modeled as continuous vectors.

o
C
>
o
o
0.02 0.22 0.42 0.62 0.82 200 2200 4200 6200 8200 0.10.20.30.40.50.60.70.80.9
CTR Staytime CVR
Figure 2: User distribution of three metrics.!
025 Newcrr 025 Wandercrr 025 Stickcrr 0.25 Loyalcr
@020 0.20 0.20 0.20
[*)]
g 0.15 0.15 0.15 0.15
Soo 0.10 0.10 0.10
9]
a 0.05 0.05 0.05 0.05
ooor—lmml\c\H Ooovvvvvvw 000<r<r<r<r<r<r<r 0'00<r<r<r<r<r<r<r
2385384 BT -8 IARIRIN IARIRIN
SSsoso Sooscoo Sooscoo Sooscoo
NeWstayti Wanderstayti SticKstayti Loyalstayti
0.25- Staytime Staytime 55 Staytime 5 Yalstaytime
@020 0.20 0.20 0.20
[
g 0.15 0.15 0.15 0.15
So10 0.10 0.10 0.10
jo
Q 0.05 0.05 0.05 0.05
28888332 28888 8882888 288288
NANANNANNNN - mn o M~ ST TS ST TS
NY3RSAS a8 SARIIR SIRII]
ans o8 o9
1.000 Newcyr 1000 Wandercyr Looo Stickcyr 1.000,_LoYalcvr
g0,833 0.833 0.833 0.833
8 0.667 0.667 0.667 0.667
$ 0.500 0.500 0.500 0.500
So333 0333 0333 0333
2 0.167 0.167 0.167 0.167
SosScS8s SosSc88s SoccScS8s SocccSes

Figure 3: Comparison of user behavior distribution at differ-
ent stages. Each row shows one metric (i.e., CTR, Staytime,
and CVR) and each column shows a stage. The x-axis rep-
resents the value of the metric. The y-axis represents the
percentage of the x value at the stage.
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To be more specific, the framework is composed of two parts,
as shown in Fig. 4: (i) a multi-task prediction part that learns the
representation of the input data for different tasks, and (ii) a latent
stage detection part that first grasps user preference. The preference
is then applied to depict the latent user stage. Finally, a loss function
adaptively adjusts the attention paid to tasks based on the learned
user stage. The detailed building blocks and functional meanings
are illustrated in the following subsections.

3.1 Multi-task Prediction Networks

In this subsection, we illustrate the components of the multi-task
prediction module, which aims to learn the embedding from user
and item features by training the backbone network. This network
evaluates the difference between the ground truth and the predicted
value for each task measurement, as shown on the right-hand side
of Fig. 4.

In the literature, many multi-task learning models employ one or
more shared networks, often referred to as "experts," as the founda-
tion for learning common knowledge among different tasks. While
these experts can capture the joint hidden information across tasks,
they may suffer from dependencies among tasks and differences in
data distribution for various tasks.

To address this issue, we follow the approach of [21] and limit
the usage of shared experts in the first step. By doing so, we aim
to alleviate harmful parameter interference, allowing for more ro-
bust learning and better performance in capturing the nuances
of different tasks within our multi-task prediction module. We
use vec(-) to represent matrix vectorizaion?. With input x; i =
[vec(Ul-)T,vec(Vj)T]T € Rdotdady j — q ..,m, j=1,...,n; the

. a c¢ | . - .
2For a matrix A = [ b d ] its vectorization can be written as vec(A) =

QLSO Q
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Figure 4: The architecture of the proposed lifecycle-adaptive learning framework. The stage detection network is used to learn

the user stage-based task preference for the final prediction.

features are extracted by

wg(xij) = Softmax(Wllgxij), (1)
H¥ (xij) = [Exp¥, (xij), Expgp (xi)] 7, ®
g (xij) = wh(xij) © H* (x1)), 3)

where wg is the weighting function in the backbone network which
obtains the weighted vector of task k by a linear layer with the
Softmax activation function, Wg is the trainable parameter matrix
for task k in the backbone, H k(xi ) is the combination of the task-
specific experts Expfp (xij) and shared experts Expgp (x;;). The gg
is the gating network of task k, which acts as the selector to calculate
the weighted sum of the input. The © represents the Hadamard
(element-wise) product.
We could obtain the prediction value of each task k as:

¥ (xij) = R (g8 (xi)), )

where ka denotes the tower network of task k,k = 1,..., K.
Conventionally, the loss function for multi-task learning can be
represented as:

L= 0" Lk, s)
k

where n¥ is a hyperparameter and £¥ denotes the task-specific
loss function. Typically, 7¥ is determined by heuristic rules. How-
ever, using a fixed r]k may not be suitable for every user, as their
preferences for tasks can vary significantly. Furthermore, even for
users whose preferences align with r7k, the fixed r7k might lead

to performance degradation when their preferences change over
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time. To address these issues, we propose the user preference learn-
ing module and latent user stage representation module, which
dynamically adapt to users’ preferences and stages.

3.2 User Preference Learning

In this subsection, we introduce the method for extracting user
preferences to represent latent user stages. Since there are no ex-
plicit criteria to distinguish user stages, we can only infer users’
stage information from their behaviors. As the user stage can be
described by a set of user preferences for all concerned tasks, we
first propose a user preference learning module to represent a user’s
preference.

The module consists of three building blocks: (i) a user feature
extraction network that extracts more representative features from
the input user features U, (ii) a task-specific user representation
learning unit that generates the corresponding embedding con-
taining the hidden user preference for each task, and (iii) a task
measurement prediction unit that utilizes the task-specific embed-
ding to predict the value for each task.

First, the user feature extraction network uses a transformation
f that generates the user representation U],

U; = f(Uy), (6)

where U; € Rledz, i =1,...,n. To capture the relationships be-
tween different user features, we employ a self-attention unit [25]
as function f. The self-attention mechanism excels in modeling
long-range dependencies and recognizing important features in
the input data, which makes it a suitable choice for extracting user
preferences. Specifically, let WoU;, WU, and Wy U; be the query,
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key, and value matrices, where Wo, Wk, and Wy are all d; by dq
weight matrices. Then, the self-attention mechanism can be written
as
£(U0) = Softmax WU (WxU)T | Wyt ()
1
where Softmax(-) is the softmax function®.

Next, another attention unit generates a task-specific user repre-
sentation according to the importance of different features, inspired
by [38]. The attention mechanism effectively captures and empha-
sizes the importance of various features within the user representa-
tion. It allows the model to focus on the most relevant features for
each specific task, ultimately leading to more accurate and tailored
task-specific user representations. For task k, the corresponding

embeddings si.‘, k=1,...,K, are computed as follows,

=U, o Softmax(WK-U})), k=1,..,K, (8)

where the weight matrix Wk e R2%4 for task k is learned during
training.

Finally, the task measurement prediction unit takes in the task-
specific user embedding to produce predicted values g{‘ for each
task. The prediction unit learns to represent the general user pref-
erence irrespective of individual items by training with user inter-
actions across all items the user has encountered.

Single-layer feed-forward networks MLPk(-), k=1,...,K are
used to predict the probability for the user to conduct the corre-
sponding actions. Based on the learned embedding, the output user
preference is defined as:

~k , , ko ks
y; = Sigmoid(MLP" (s;)),i=1,...,mk=1,...,K. )

To account for the volatility in user behavior, we create a pseudo-
label by considering the average behavior value over time for ﬁ:‘
This approach helps the network learn more information while
maintaining greater stability:

if |D| Z y,, (10)

where D; = U;Zl{(Uif, Vj,yi)|i’ < i} is the subset of D contain-
ing only the first i instances. This method incorporates the user’s
preferences from the past few days, ensuring a more accurate rep-
resentation of their recent interests.

Subsequently, the loss can be defined as:

7,1 = Y (F =P (11)
i=1

One advantage of our user preference learning module is that it
can capture user preferences without explicit supervision. More-
over, the learned preference representation could be adjusted dy-
namically as user behaviors change. Thus, the preference modeling
process is of great adaptation to user preferences.

3For vector z = [z1,...,2q4]T € RY, the Jj-th entry of the softmax function is

e

Softmax(z); = W
=
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3.3 Latent User Stage Detection

In this subsection, we develop a latent user stage representation
module, drawing inspiration from prior successful RS applications
[23, 27]. We regard the output of the user preference module, gk k=
., K, as the user’s inclination towards task k. However, when
the number of training samples for a user is limited, the predicted
gk may be less informative. Therefore, we introduce the latent user
stage representation module to adjust gk and generate a reliable
preference, yk , for tasks during subsequent training.
More specifically, based on the initial data analysis in Sec. 2, the
value gk is assumed to follow a Beta distribution, Beta(a, f), i.e.,

i ~ Beta(a¥, pF), (12)

where a* represents the number of trials in which user u per-
forms the concerned action in task k, and ﬁk represents the number
of trials in which user u does not perform the action. For example,
when considering the task of predicting CTR, « corresponds to the
number of clicks, while f represents the number of times the user
did not click on the item.

The parameters o and K can be learned during training. As
shown in Algorithm 1, the learned user preference toward different
tasks will be more reliable as more samples are fed into the latent
user stage representation module. With the refined behavior pref-
erence distribution Beta(a¥, %), the output 7 will be improved
owing to a more robust and reliable preference y*.

Then, the preference measurement y¥ is used to control loss
importance corresponding to user attention at the current stage. For
the task in which the user is less interested, the corresponding loss
will be given less attention in the back-propagation process. It could
reduce the risk of negative transfer or seesaw phenomenon [21]
in the extraction backbone network fB. Thus, the representation
f B(x) could be learned across tasks with a concentration on the
valuable information about the user for the tasks.

Algorithm 1 Process of updating Beta(ak, ﬁk) and sampling yk

Input:
{(Ui,yi)},. Note that a higher index indicates a time closer
to the present.

Output:
v¥: The series of sampling results, the latent stage representa-
tion for task k.

1: forallkin1,...,K, do

2. foralluin 1 ,m, do

3 Initialize a ﬂu =1 yu =c, =0,
4 foralliin1,...,n, do

5: if user id of U; = u then
6: cy —cy+1,

7. ok — ok + ik cy,

5 Bl — B+ (1=5) - cu.
9: end if

10: end for

11: Draw yX from Beta(ak, ).
12z end for

13: end for
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Table 1: Dataset description.

Dataset #User #Train # Valid # Test
Wechat-Video  0.02M 6.71M 0.61M 0.43M
Industrial 75.42M  612.88M  82.47M  407.95M

3.4 Loss Function of STAN

There are two parts of losses in our framework: (i) loss Lf for
multi-task prediction network, and (ii) loss £¥ for stage detection
network. Both of them are with respect to task k, k = 1, ..., K. Thus,
we give the overall objective to minimize as a linear combination
of the losses with task-specific preference y:

K
L@ 755 ) = Y (- Lh R L) )
k=1

where Lf(gk, 1%) is defined in Eq. 11. Let yff € {0,1} be the label
in dataset, the Lf(ﬁk, yk) is defined as:

LE@R g9 = Y (s ogaf + (1 - yh 1o - ). a9

i=1

Note that the losses for user stage detection and multi-task pre-
diction are optimized simultaneously during training. In this way,
the assessment of the user lifecycle stage can be optimized as the
loss L decreases. Improved stage representation can aid in enhanc-
ing the multi-task recommendation.

4 EXPERIMENTS

In this section, we conduct comprehensive offline and online ex-
periments on both large-scale recommendation systems and public
benchmark datasets to evaluate the effectiveness of our proposed
framework. Our experiments aim to address the following research
questions:

RQ1: What is the performance of our proposed method com-
pared with other state-of-art methods?

RQ2: What effect does detecting the user’s stage have on pre-
diction results?

RQ3: Is the proposed framework able to effectively detect user
lifecycle stages?

4.1 Experimental Settings

In this part, we provide an overview of the dataset descriptions,
the baseline methods used for comparison, hyperparameters, and
evaluation metrics employed in our experiments.

4.1.1 Datasets.

e Public dataset*: The Wechat-Video dataset is a publicly avail-
able dataset containing 7.3 million user interaction samples
from the Wechat Channels’ Recommendation System, involv-
ing a total of 20,000 users. Since no existing dataset provides
a comprehensive set of tasks, including CVR, staytime, and

4https://algo.weixin.qq.com/2021/problem-description
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CVR prediction, we utilize the most common user interac-
tions in the Wechat-Video dataset, such as like, click avatar,
and forward.

o Industrial dataset: This dataset was collected from an e-
commerce platform over a month in 2022. It consists of offline
logs from one scenario in the livestreaming recommendation
system and is chronologically divided into training, valida-
tion, and test sets. Since the staytime of users is a continuous
value, we apply equal-frequency binning to the staytime in
the dataset for convenience. Further analysis of the dataset
can be found in Sec. 2.1.

4.1.2  Baseline Methods. We compare our methods with the fol-
lowing competitive baselines:

® MLPs;j,gle [6]: A single-task learning model using a basic
MLP (multi-layer perceptron) for each task.

® MLPgp.red [3]: A shared-bottom model that shares the bot-
tom layer in multi-task learning, implemented by MLP.

e MMOE [12]: Uses a shared Expert module to extract under-
lying feature embeddings and applies different gates for each
task to obtain varying fusing weights in multi-task learning.

o PLE,pilla [21]: PLE (Progressive Layered Extraction) explic-
itly separates task-common and task-specific parameters to
avoid parameter conflicts in multi-task learning using Cus-
tomized Gate Control (CGC) layers. A PLE model consists
of multiple CGC layers.

e AITM [32]: AITM (Adaptive Information Transfer Multi-
task) models the sequential dependence among audience
multi-step conversions using an information transfer module,
focusing on different conversion stages of various audiences.

® PLEgtag: Enhances the PLE structure by integrating stage
information derived from statistical data with existing fea-
tures. PLE is a widely applied baseline in the multi-task
recommendation field, and we use it to evaluate the effect of
incorporating stage information.

To examine the impact of adopting the Beta distribution, we con-
duct experiments on STAN without the latent stage representation
module in Sec. 3.3, named STAN w/o Beta.

4.1.3  Hyper-Parameter. For a fair comparison, we search for opti-
mal parameters on the validation data and evaluate these models
on the test data. To ensure a level playing field, we constrain the
maximum model size for all methods by setting the same upper
bound for the number of hidden units per layer at 1024. For com-
putational efficiency, we assign an embedding dimension of 128
to all methods. We employ ReLU [5] as the activation function
for all models. During training, we set the batch size to 2048. The
Adam optimizer [9] is used with settings f1 = 0.9, B2 = 0.999, and
€ =1X 1075, We set the learning rate at 0.001.

For the user feature learning function f, we adopt a deep neural
network (DNN) structure due to its promising ability to extract
hidden information from embeddings. Our approach and all baseline
methods are implemented using TensorFlow”.

Shttps://www.tensorflow.org/
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4.1.4  Evaluation Metrics. Specifically, we aim to evaluate the pro-
posed work on two fronts: prediction and ranking. For offline ex-
periments, existing works primarily use AUC (Area Under ROC)
as the main ranking metric to gauge model performance. However,
AUC only evaluates the average ranking performance of the model
at all thresholds, disregarding the true user interest for each rec-
ommendation feed. Therefore, we apply Normalized Discounted
Cumulative Gain (NDCG), which is suitable for evaluating whether
users are generally interested in the top recommended items. Due
to the specificity of the industrial dataset, the impression history
of users is relatively short. In many cases, only a minimal number
of impressions are collected. As a result, we use NDCG@1 as the
evaluation metric for the industrial dataset. For the public dataset,
we use NDCG@5 instead.

For comparison, we follow [39] to introduce Relalmpr metric to
measure the relative improvement of a measured model over the
base model. For a random guesser, the value of AUC is 0.5. Hence
Relalmpr for AUC is defined as:

AUC(measured model) — 0.5 _
AUC(base model) — 0.5

For NDCG@k’ (K’ € {1,5} in our experiments), the Relalmpr is
defined as:

Relalmpr = ( 1) X 100%. (15)

NDCG@k’ (measured model)
NDCG@k’ (base model)

Relalmpr = ( - 1) X 100%. (16)

In our experiments, we choose MLPg;pg1. as the base model.

4.2 Performance Evaluation

To answer RQ1, we conduct experiments to compare the proposed
model with the baseline methods. For the public dataset, we con-
sider common actions, including like, click avatar (of the content
creator), and forward. For the industrial dataset, we focus on classi-
cal RS prediction tasks: CTR, staytime, and CVR. The corresponding
results are shown in Table 2 and Table 3, respectively.

Firstly, STAN achieves the most effective results on all tasks
in both metrics and outperforms all the competitive baselines in
the industrial and public datasets. Secondly, the performance of
MLPg;pe1e lags behind all of the multi-task methods, indicating the
benefit of joint optimization for multi-task learning. Thirdly, by
comparing different multi-task learning methods, we observe that
the difficulty of optimizing different tasks can vary significantly.
The MMOE method only controls knowledge learned by shared-
expert layers. Although it improves the MLPg},,..q methods for
some tasks, it suffers from a seesaw phenomenon [21] not only in
different tasks but also in different metrics for the same task. Thanks
to the exploitation of specific-expert layers’ learned knowledge,
the vanilla PLE model outperforms the former models in most
cases. The performance of the AITM method is not consistent
across all datasets, which may result from the characteristics of
the dataset. It can be seen that previous methods may decrease the
NDCG score but increase the AUC score, which would require users
to scroll down more times to discover their favorite items. This
drawback may result from ignoring user stage information, which
overlooks the real needs of the user. Overall, our proposed STAN
model achieves significant improvement compared to several state-
of-the-art methods, demonstrating the efficiency of introducing
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adaptively-learned stage information into the recommendation
system.

In particular, we evaluate the effect of the latent user stage rep-
resentation module. As shown in the result of STAN w/o Beta, if we
apply the predicted § instead of the preference y to the overall loss
update, the performance experiences greater fluctuation. The rea-
son could be the small number of action histories for the majority
of users, as modeling the user’s preference based solely on a few
actions will lead to unstable results.

4.3 In-depth Stage Analysis

To answer RQ2, we conduct an in-depth analysis to uncover the real
impact of incorporating user lifecycle adaptive stage information
into the recommendation process.

0.9 0.9
MLPsingle MLPsingle

Stagesingie Stagesingle

0.8 m— STAN 0.8 - STAN
19}
<D( 0.7 0.
0.6 I 0.6 I
0.5 0.5
CVR

CTR Staytime CTR Staytime CVR

Figure 5: Performance of predictions trained only on subsets
separated by stage information for the industrial dataset.

NDCG@1
~

4.3.1 Benefits of Considering Stages. To assess the benefits of in-
corporating stage information during training, we first divide the
training dataset into three subsets based on user stage information
and then perform separate prediction tasks on each of these subsets.
We refer to this as Stagesiygle- The results are presented in Fig. 5.
Surprisingly, even though the subsets are significantly smaller than
the original training dataset, the performance is nearly the same,
and sometimes even better. In this case, each subset is approxi-
mately 1/3 of the training dataset. This can be attributed to the fact
that stage information helps reduce the number of noisy samples
in the entire dataset. In multi-task learning problems, not every
sample is useful for all tasks. However, conventional multi-task
learning methods train all samples for each task simultaneously,
which inevitably introduces noise for specific tasks. By leverag-
ing stage information, multi-task learning methods can reduce the
noise caused by instances from other stages during training. Con-
sequently, they can learn more accurate representations, leading to
improved performance.

4.3.2  Benefits of Considering Adaptive Stages. Although expert
knowledge can be helpful in creating rule-based stage discrimina-
tion strategies, these designed rules may not be adaptive to various
scenarios in applications, let alone different datasets. Therefore,
we compare the performance of PLEst,ge and STAN in Table 2
and Table 3, representing our framework under conditions of fixed
user stage and adaptive user stage, respectively. Generally, utilizing
rule-based stage information results in inferior model performance
compared to the model that employs adaptive stage information.
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Table 2: Comparison with State-of-the-arts in the public dataset. marks the methods that improve the best baselines, which
are underlined, significantly at p-value < 0.01 over paired samples t-test.

Label Metric Method

MLPgipoe | MLPgpareq MMOE PLE anilla AITM PLEsuge | STAN w/o Beta STAN
AUC 0.8233+0.0003 | 0.8241+0.0007 0.8260+0.0019 0.8317+0.0011  0.8312+0.0009 | 0.8313+0.0011 0.8413+0.0023 0.8419+0.0006*

Like Relalmpr - 0.24% 0.83% 2.59% 2.44% 2.47% 5.58% 5.76%
NDCG@5 | 0.5652+0.0037 | 0.5793£0.0062 0.6042+0.0055 0.6049+0.0065 0.6437+0.0032 | 0.6418+0.0071 0.6645+0.0083 0.6737+0.0053"

Relalmpr - 1.42% 3.90% 3.98% 7.86% 7.67% 9.93% 10.85%
AUC 0.8230+£0.0022 | 0.8279+0.0020 0.8286+0.0018  0.8317+0.0015  0.8442+0.0019 | 0.8471+0.0023 0.8496+0.0074 0.8530+0.0021"

Click avatar Relalmpr - 1.52% 1.73% 2.69% 6.57% 7.47% 8.22% 9.30%
- NDCG@5 | 0.2129+0.0051 | 0.2261+0.0036  0.2295+0.0047  0.2371+0.0053  0.1993+0.0084 | 0.2371+0.0060 0.2474+0.0089 0.2499+0.0044*

Relalmpr - 1.32% 1.67% 2.42% -1.36% 2.42% 3.45% 3.70%
AUC 0.8692+0.0005 | 0.8751+£0.0011 0.8803+0.0010  0.8805+0.0003  0.8698+0.0019 | 0.8837+0.0006 0.8846+0.0040 0.8856+0.0009

Forward Relalmpr - 1.58% 2.99% 3.03% 0.14% 3.90% 4.25% 4.42%
NDCG@5 | 0.1317£0.0011 | 0.1536£0.0017 0.1515+0.0014  0.1405+0.0006  0.1392+0.0015 | 0.1483+0.0016 0.1570+0.0039 0.1581+0.0013"*

Relalmpr - 2.20% 1.99% 0.88% 0.75% 1.67% 2.53% 2.64%

@

Table 3: Comparison with State-of-the-arts in the industrial dataset. marks the methods that improve the best baselines,
which are underlined, significantly at p-value < 0.01 over paired samples t-test.

Label Metric Method

MLPingte | MLPgpared MMOE PLE,4nilla AITM PLEstage | STAN w/o Beta STAN
AUC 0.7891+0.0015 | 0.7938+0.0019 0.8066+0.0016 0.8056+0.0014 0.8071+0.0011 | 0.8089+0.0013 0.8140+0.0038 0.8141+0.0010*

CTR Relalmpr - 1.63% 6.05% 5.71% 6.23% 6.85% 8.61% 8.65%
NDCG@1 | 0.5727+0.0132 | 0.5945+0.0140 0.5895+0.0129 0.5825+0.0122 0.6440+0.0137 | 0.6421+0.0124 0.6739+0.0159 0.6737+0.0128"

Relalmpr - 2.19% 1.68% 0.98% 7.12% 6.94% 10.12% 10.10%
AUC 0.6635+0.0021 | 0.6721+0.0041 0.6770+0.0024 0.6835+£0.0025 0.6801+£0.0023 | 0.6879+0.0028 0.6925+0.0043 0.6937+0.0025*

Staytime Relalmpr - 5.27% 8.26% 12.29% 10.15% 14.92% 17.74% 18.47%
NDCG@1 | 0.8029+0.0018 | 0.8186+0.0010 0.8270+0.0039  0.8170+0.0023  0.7993+0.0021 | 0.8273+0.0016 0.8381+0.0029 0.8399+0.0028*

Relalmpr - 1.58% 2.41% 1.41% -0.36% 2.44% 3.52% 3.70%
AUC 0.7934+£0.0057 | 0.7998+0.0063  0.8090+0.0069 0.8217+0.0073  0.8131+0.0081 | 0.8192+0.0052 0.8267+0.0090 0.8304+0.0075

CVR Relalmpr - 2.19% 5.32% 9.65% 6.71% 8.79% 11.35% 12.62%
NDCG@1 | 0.5617+0.0023 | 0.6125+0.0035 0.6198+0.0025 0.6284+0.0027 0.6026+0.0032 | 0.6250+0.0028 0.6578+0.0041 0.6601+0.0021*

Relalmpr - 5.08% 5.81% 6.67% 4.09% 6.33% 9.61% 9.84%

This can be attributed to the differences in stage sensitivity between
the models. As STAN represents the user stage using a learned vec-
tor instead of a predefined stage number, it can capture subtle
variations in user stages more effectively.

4.4 Case Study

To address RQ3, we visualize the embedding vectors of users at
different stages for both public and industrial datasets. For a clearer
illustration, we create discrete stage labels by clustering the stage
representation vectors.

Figure 6: 2D t-SNE[24] projections of the user embedding

4.4.1 User Stage Visualization. For each dataset, we randomly se- results of STAN and PLE on the public dataset.

lect 1,000 user embeddings from the stages divided by the method
in Sec. 2.1. Each point in Fig. 6 represents a user with embeddings
learned by STAN and PLE, respectively. Each color denotes a type
of user stage; since the public dataset is pre-processed by its issuer,

other compared to those learned by PLE. This demonstrates the
effectiveness of STAN in detecting user stages.

there are no users at Stage New. According to Fig. 6, the user em-
beddings learned by STAN can be more clearly separated from each
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4.4.2  User Stage in Change. A user’s stage may change as he/she
dwells on the platform. The user lifecycle stage detection method
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Day 1 Day 31
New

Wander
+  Stick
Loyal

Figure 7: 2D t-SNE[24] projection for visualizing user stage
shifts over time on the industrial dataset. The black stars ()
denote the user from the same stage on Day 1.

should be adaptive to the shift of user stages as their features change.
To evaluate this ability, we visualize the detected user stages of the
same group of users on the first and last day of our industrial
dataset in Fig. 7. The concerned users are highlighted as stars. We
find that the same user may exhibit very different behaviors at
different times, which indicates different user stages. Take the users
in Fig. 7 as an example. At the start, all of them are at stage New.
However, one month later, one of them transitions to stage Wander,
and the other two transition to stage Stick. The observed user stage
changes indeed highlight the dynamic nature of users’ preferences
and emphasize the importance of tracking these preferences in
multi-task recommendation systems.

4.5 Online A/B Testing and Deployment

We carried out rigorous online A/B testing in our e-commerce live
streaming scenario from 2023-03-15 to 2023-04-04, with a daily av-
erage of millions of users. Our proposed STAN model demonstrated
significant improvements compared to its predecessor, with a CTR
increase of 3.94%, staytime increase of 3.05%, and a CVR increase
0f 0.88%. In the online A/B test, user retention is also improved by
0.2%.

Our model has been fully deployed and serves the main traffic
based on these promising results. During a high-traffic campaign
period, it maintained performance with CTR increased by 2.6% and
staytime increased by 2.2%, despite a slight CVR decrease (-0.5%)
due to users’ predetermined purchases. It is important to highlight
that the promotions may impact users’ decision-making processes
and potentially influence their lifecycle stages. Despite these chal-
lenges, STAN’s performance improvements remained consistent,
further accentuating its effectiveness in managing user preferences
in recommendation systems. These findings underline STAN’s real-
world applicability and suggest potential generalization to similar
datasets.

5 DISCUSSION

In practical applications, it is a widespread industry approach to
develop separate models for active and non-active users, often
referred to as "cold-start users" [17, 20]. The model for non-active
users typically aims to boost engagement, while the model for
active users concentrates on improving their CVR or Staytime.
However, users in the same class can exhibit diverse characteristics.
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For instance, Alice and Bob, both active on the platform, might
have significantly different CVRs, such as 0.7 and 0.2.

Thus, we propose a more nuanced approach to capture their pref-
erences, better distinguishing between such users. This approach
could benefit other recommendation structures, such as session-
based user modeling techniques. Session-based recommendation
approaches often assume that all labels are correct. However, since
the user’s preference is uncertain at some stages, user-generated la-
bels at these stages should not be used as deterministic for modeling.
In this scenario, incorporating our method could help session-based
methods learn from more convincing labels, resulting in a more
accurate representation of users’ preferences and improved recom-
mendations.

The former observation also leads us to another critical aspect
largely overlooked in existing research: the trade-off between mul-
tiple task objectives. As these objectives are optimized globally
for various goals, this approach can result in potential conflicts in
gradient optimization. We argue that reducing the conflicts can
be achieved by identifying the specific tasks that different users
prioritize, allowing for a more tailored recommendation system
that adapts to individual user preferences.

Building upon these insights, we have designed our experiments
to capture the user’s recent preference effectively. In our method’s
overall design, all samples preceding the current sample are used
for calculating the average, which is applied to both public and
industrial datasets. However, in a real online system, considering
a too-long period would lead to higher overhead in storage com-
putation, and behaviors with extended intervals may create per-
turbations to the current behavior and introduce instability, which
is beyond the scope of this paper. Therefore, our online system
focuses on behaviors within a 30-day window to calculate the aver-
age, ensuring a more accurate and manageable representation of
users’ recent preferences.

6 RELATED WORKS

In this section, we review related work in two main areas: (i) multi-
task learning for recommendation systems and (ii) user representa-
tion modeling.

6.1 Interested Tasks on Recommendation
Systems

Existing research on multi-task recommendation systems can be
broadly classified into two categories. The first category focuses
on user conversion rates [1, 14, 26, 28, 32, 34], which yield signif-
icant profits for e-commerce platforms. The most representative
user conversion tasks are the Click-Through Rate (CTR) and Click
Conversion Rate (CVR). Some studies, such as [14, 26, 31], propose
optimizing these tasks concurrently in a multi-task learning model,
aiming to leverage valuable knowledge learned across tasks. How-
ever, the inherent divergence between prediction tasks can lead
to reduced overall performance when optimizing them simulta-
neously. To address this issue, recent work [31, 37] has achieved
notable success by incorporating scenario knowledge into task pre-
diction. For example, Zhang et al. [37] employed a meta-learning
approach to predict tasks across multiple advertising scenarios.
However, scenario information alone is insufficient for providing
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user-specific recommendations. More recently, He et al. [7] pro-
pose a method, MetaBalance, to address the optimization imbalance
problem common in personalized recommendation scenarios.

The second category of research aims to engage users on online
platforms. Common metrics include user feedback, such as clicks,
finishes, and dwell time [21, 30, 35, 40]. Among these, user clicks
and dwell time, or staytime, are the most descriptive metrics [29],
but they are often overlooked in the context of the first category of
work and rarely considered alongside CVR, which is essential for
user conversion on online platforms.

6.2 User Modeling and Representation in
Lifecycle

User modeling is another critical aspect of related work. It has
received significant attention as user behavior variations offer valu-
able insights into user interests, particularly in the context of shift-
ing trends. Some research models users based on their behavior
sequences, using either Markov-chain methodologies [19] or deep
neural networks [8, 22] to implicitly model user state dynamics and
predict resulting behaviors. These methods primarily focus on short-
term user modeling constrained by recent behaviors. To identify
long-term behavior dependencies works such as [15, 18, 36] have
proposed recommendation system models with "lifelong" learning
capacity. However, these models tend to learn long-term user be-
haviors coarsely, overlooking differences between various lifecycle
stages.

Some studies have considered cold-start as a stage of the lifecycle
for recommendation system users [2]. While these cold-start frame-
works excel in serving new users, their performance diminishes as
users mature. Unfortunately, model alteration often leads to user
churn and instability in industrial applications.

7 CONCLUSION

In this paper, we innovatively introduce the concept of user lifecycle
stages to enhance multi-task learning in recommendation systems.
We propose STAN, a user lifecycle stage-adaptive framework that
models latent stage information. STAN first learns user preferences
for various tasks by utilizing user behaviors and then represents
latent user stages based on these learned preferences. By incorporat-
ing latent user stage information into multi-task recommendations,
STAN can identify the most critical task for each user and adjust
accordingly as users’ interests evolve. Experimental results on pub-
lic and industrial datasets and online recommendation services
demonstrate the effectiveness of our proposed framework.

For future work, we plan to explore the application of adaptive
stage information in a broader range of contexts, including online
social networks, advertising, and search systems.
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