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ABSTRACT

Graph neural networks have shown great ability in representa-
tion (GNNs) learning on graphs, facilitating various tasks. Despite
their great performance in modeling graphs, recent works show
that GNNs tend to inherit and amplify the bias from training data,
causing concerns of the adoption of GNNs in high-stake scenarios.
Hence, many efforts have been taken for fairness-aware GNNs.
However, most existing fair GNNs learn fair node representations
by adopting statistical fairness notions, which may fail to alleviate
bias in the presence of statistical anomalies. Motivated by causal
theory, there are several attempts utilizing graph counterfactual
fairness to mitigate root causes of unfairness. However, these meth-
ods suffer from non-realistic counterfactuals obtained by pertur-
bation or generation. In this paper, we take a causal view on fair
graph learning problem. Guided by the casual analysis, we propose
a novel framework CAF, which can select counterfactuals from
training data to avoid non-realistic counterfactuals and adopt se-
lected counterfactuals to learn fair node representations for node
classification task. Extensive experiments on synthetic and real-
world datasets show the effectiveness of CAF. Our code is available
at https://github.com/TimeLovercc/CAF-GNN.
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1 INTRODUCTION

Graphs are pervasive in real-world, such as knowledge graphs [22],
social networks [20] and biological networks [23]. Recently, graph
neural networks (GNNs) [18, 35] have shown great ability in mod-
eling graph-structural data. Generally, GNNs adopt the message
passing mechanism, which updates a node’s representation by it-
eratively aggregating its neighbors’ representations. The resulting
representation preserves both node attributes and local graph struc-
ture information, facilitating various downstream tasks such as
node classification [11, 18] and link prediction [44]. Despite their
great performance, recent studies [5, 19, 25] show that GNNs tend
to inherit bias from training data, which may result in biased pre-
dictions towards sensitive attributes, such as age, gender and race.
In addition, the message passing mechanism of GNNs and graph
structure could magnify the bias [5]. For example, in social net-
works, nodes of the same race are more likely to connect to each
other. The message passing of GNNs would make the representa-
tion of linked nodes similar, resulting in a high correlation of node
representation with race, hence the biased prediction. The biased
prediction has raised concerns from ethical and societal perspec-
tives, which severely limits the adoption of GNNs in high-stake
decision-making systems [38], such as job applicants ranking [28]
and criminal prediction [15].

Hence, many efforts have been taken for fair GNNs [5, 19, 25, 29].
However, most existing methods are based on statistical fairness
notions, which aim to make statistically fair predictions for differ-
ent sub-groups or individuals [24]. Several works have pointed out
such fairness notions fail to detect discrimination in the presence
of statistical anomalies [21, 27]. Therefore, there has been a recent
shift toward counterfactual fairness in graph modeling [1, 25]. This
approach aims to eradicate the root causes of bias by mapping the
causal relationships among variables. The identified causal structure
allows for the adjustment of sensitive data to generate counterfactu-
als, ensuring that the prediction remains unaltered by the sensitive
information through the utilization of these counterfactuals. For ex-
ample, NIFTY [1] perturbs sensitive attributes to obtain counterfac-
tuals and maximizes the similarity between original representations
and perturbed representations to make representations invariant to
sensitive attributes. GEAR [25] adopts GraphVAE [17] to generate
counterfactuals and minimizes the discrepancy between original
representations and counterfactual representations to get rid of the
influence of sensitive attributes. Despite their superior performance,
existing graph counterfactual fairness works need to flip sensitive
attributes or generate counterfactuals with GraphVAE, which can
easily result in non-realistic counterfactuals. Such non-realistic
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counterfactuals may disrupt the underlying latent semantic struc-
ture, thereby potentially undermining the model’s performance.
This is because simply flipping sensitive attributes cannot model
the influence on other features or graph structure causally caused
by sensitive attributes [1], and the generative approach lacks super-
vision of real counterfactuals and could be over-complicated [25].
Motivated by the discussion above, in this paper, we investigate
whether one can obtain counterfactuals within the training data.
For example, if a female applicant was rejected by a college, we aim
to find another male applicant who has a similar background as the
counterfactual applicant. Thus, we can get realistic counterfactuals
and avoid the ill-supervised generation process. To achieve our
goal, we are faced with several challenges: (i) Graph data is quite
complex, thus it is infeasible to directly find counterfactuals in the
original data space. Besides, some guidance or rules are needed
to find the counterfactuals. (ii) To achieve graph counterfactual
fairness, learned representation should be invariant to sensitive at-
tributes and information causally influenced by sensitive attributes.
It is critical to design proper supervision to help models get rid of
sensitive information. To tackle the aforementioned challenges, we
propose a casual view of the graph, label and sensitive attribute.
The causal interpretation guides us to find counterfactuals and
learn disentangled representations, where the disentangled content
representations are informative to the labels and invariant to the
sensitive attributes. Guided by the causal analysis, we propose a
novel framework, Counterfactual Augmented Fair GNN (CAF), to
simultaneously learn fair node representations for graph counter-
factual fairness and keep the performance on node classification
tasks. Specifically, based on the causal interpretation, we derive
several constraints to enforce the learned representations being
invariant across different sensitive attributes. To obtain proper
counterfactuals to guide representation learning, we utilize labels
and sensitive attributes as guidance to filter out potential counter-
factuals in representation space. Our main contributions are:

o We provide a causal formulation of the fair graph learning process
and fair node representation learning task.

e We propose a novel framework CAF to learn node representations
for graph counterfactual fairness. Specifically, we find counter-
factuals in representation space and design novel constraints to
learn the content representations.

e We conduct extensive experiments on real-world datasets and
synthetic dataset to show the effectiveness of our model.

2 RELATED WORKS

Graph Neural Networks. Graph neural networks (GNNs) have
dominated various tasks on graph-structured data, such as node
classification [3, 18, 34, 36, 37], graph classification [33] and link
prediction [44, 45]. Existing GNNs can be categorized into spatial-
based GNNs and spectral-based GNNs. Spatial-based GNNs leverage
the graph structure directly, focusing on the relationships between
nodes and their immediate neighbors to inform feature learning.
On the other hand, spectral-based GNNs operate in the spectral
domain defined by the graph Laplacian and its eigenvectors, mak-
ing them better suited to capture global properties of the graph.
The superior performance of GNNs has greatly extended their ap-
plication scenarios [10]. For example, banks may leverage GNNs
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to process transaction networks to detect the abnormal behavior
of users [6]. The applications in critical decision-making systems
place higher requirements for GNNs, such as being fair and inter-
pretable [42]. Despite their extensive utility and efficacy, recent
studies [4, 5, 19] show that GNNs can harbor implicit biases on
different groups, which can lead to skewed or unfair outcomes.
This bias issue is particularly critical when GNNs are deployed
in high-stake scenarios, making it necessary to ensure fairness
in the modeling process [26]. Thus, mitigating bias and promot-
ing fairness in GNNs are active and necessary research areas [6].
The source of bias in Graph Neural Networks (GNNs) primarily
originates from two areas. First, it comes from the inherent bias
in the input data, which may contain unequal representation or
prejudiced information about nodes or connections in the graph.
Second, the bias can stem from the algorithmic design of the GNN
itself, which may unintentionally emphasize certain features or
connections over others during the learning process. Therefore,
there is a trend for the research community to design fairer GNN
models to deal with graph-based tasks [5, 6, 14, 24].

Fairness in GNNss. Fairness is a widely-existed issue of machine
learning systems [26, 28, 30, 46]. Researchers evaluate the fairness
of models with many kinds of fairness notions, including group
fairness [12, 43], individual fairness [8] and counterfactual fair-
ness [21]. The metrics can also be used to measure the fairness
performance of Graph Neural Networks [1, 25]. The commonly
used fairness notions in GNNs are statistical parity [43] and equal
opportunity [12]. FairGNN [5] utilizes adversarial training to es-
tablish fairness in graph-based models, refining its representation
through an adversary tasked with predicting sensitive attributes.
EDITS [7], on the other hand, is a pre-processing technique that
focuses on ensuring fairness in graph learning. It aims to elimi-
nate sensitive information from the graph data by correcting any
inherent biases present within the input network. However, these
methods and their metrics are developed based on correlation [27],
which has been found to be unable to deal with statistical anom-
alies, such as Simpson’s paradox [32]. Based on the causal theory,
counterfactual fairness can model the causal relationships and gets
rid of the correlation-induced abnormal behavior [21, 27]. There is
an increasing interest to apply counterfactual fairness on graphs to
design fairer GNNs [1, 25]. NIFTY [1] perturbs sensitive attributes
for each node to obtain counterfactuals and omits the causal re-
lationships among variables. GEAR [25] uses GraphVAE [17] to
generate the graph structure and node features causally caused
by the sensitive attributes. For more details about counterfactual
learning on graphs, please refer to the survey [9].

Our paper is inherently different from existing work: (i) Unlike
existing works that might generate unrealistic counterfactuals, our
work avoids the generation process and selects counterfactuals
with sensitive attributes and labels as guidance; and (ii) We propose
a causal view to understand the source of bias. Based on the causal
interpretation, we also design several constraints to help our model
learn the fair node representations.

3 PRELIMINARIES

In this section, we start by introducing the necessary notation
and defining the problem at hand. Following this, we employ the
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Structural Causal Model to frame the issue, which will then motivate
our solution - the disentangled fair representation learning method.

3.1 Notations and Problem Definition

Throughout the paper, we use italicized uppercase letters to repre-
sent random variables (e.g., S, E) and use italicized lowercase letters
to denote the specific value of scalars (e.g., s, y;). Non-italicized
bold lowercase and uppercase letters are used to denote specific
values of vectors (e.g., x;) and matrices (e.g., X), respectively.

Let G = (V,8,X) denote an attributed graph, where V =
{01, ....oN} is the set of N nodes, & C V X V is the set of edges,
X € RV*D jg the node attribute matrix. The i-th row of X, i.e., X; is
the feature vector of node v;. A € {0, 1}N*N is the adjacency matrix
of the graph G, where A;; = 1 if nodes v; and v; are connected;
otherwise A;j = 0. We use s € {0, 11VX1 to denote the sensitive
attributes, where s; is the sensitive attribute of v;. Following [25],
we only consider binary sensitive attributes and leave the exten-
sion of multi-category sensitive attributes as future work. We use
y € {1,...,c}V*1 to denote the ground-truth node labels, where y;
is the label of v;. In this paper, we assume that both target labels
and sensitive attributes are binary variables for convenience.

For the semi-supervised node classification task, only part of
nodes Vy € V are labeled for training and the remaining nodes
Vu = V\Vp are unlabeled. The goal is to train a classifier f to
predict the labels of unlabeled nodes, which has satisfied node clas-
sification performance and fairness performance simultaneously.
Given X, A and Yy, the goal of semi-supervised node classification
is to learn a mapping function f to predict the labels of unlabeled
nodes, i.e., f : (A,X) — Yy, where Yy the set of predicted labels
of unlabeled nodes Vy;.

3.2 The Desiderata for Fair Graph Learning

GNNs have shown remarkable capabilities in the realm of semi-
supervised node classification. However, they are not immune to
bias issues, primarily stemming from imbalanced or prejudiced
input data, and potentially from the structural design of the GNNs
themselves, which may inadvertently prioritize certain features or
connections. Therefore, substantial efforts have been directed to-
wards developing fairness-aware methodologies within GNNs. The
majority of these methods strive to ensure correlation-based fair-
ness notions, such as demographic parity or equality of opportunity.
However, these correlation-based fairness notions can be inherently
flawed, particularly in the presence of statistical anomalies, which
calls for more nuanced and robust approaches to achieve fairness
in GNNs. Recent advance [27] shows that causal-based fairness
notions can help resolve this issue. Thus, to help design a fair GNN
classifier, we take a deep causal look under the observed graph.
Without loss of generality, in this work, we focus on the node
classification task and construct a Structural Causal Model [31] in
Figure 1. It presents the causal relationships among five variables:
sensitive attribute S, ground-truth label Y, environment feature E,
content feature C and ego-graph G for each node. Each link denotes
a deterministic causal relationship between two variables. We list
the following explanations for the SCM:

e S — E. The variable E denotes latent environment features that
are determined by the sensitive attribute S. For example, people
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S: sensitive attribute
Y': ground-truth label
E: environment feature
C': content feature

G subgraph

®

Figure 1: Structural Causal Model for model prediction. We
use white color to denote latent variables and use gray color
to denote the observed variables.

of different genders will have different heights or other physical
characteristics, where S is the sensitive attribute of genders and
E is physical characteristics that are causally determined by the
sensitive attribute. This relationship will lead to bias in latent
feature space, which we will explain shortly.

e C — Y. The variable C denotes the content feature that de-
termines ground-truth label Y. Taking the credit scoring as an
example, ideally, we assign credit scores using personal infor-
mation not related to the sensitive attribute, i.e., we use content
feature C instead of E to assign credit score Y.

e E — G « C. The ego-graph G is determined by the content
feature C and the environment feature E, which are two disjoint
parts. E and C are latent features and G is the observed ego-
graph. Considering a one-hop ego-graph, it contains the social
connections of center node and the observed feature of center
node. The causal relationship indicates environment feature E
and content feature C can determine one’s social connections
and personal features (node attributes).

The SCM paves us a way to understand the source of bias and
how to design a fair GNN classifier. Next, we give details about
source of bias and disentangled learning. Our objective is to approx-
imate the content feature C with a content representation denoted
as C, and similarly, approximate the environment feature E with an
environment representation denoted as E. To streamline our discus-
sion, we will slightly abuse notation by also employing the symbols
C and E to signify the corresponding content and environment
representations throughout the remainder of the paper.

3.2.1 Source of Bias. From the causal graph, we can observe that
the sensitive variable S and the label variable Y are independent
with each other, i.e., the only path fromStoY,S - E —» G «
C « Y is blocked by the collider G. However, it is worthy noting
that S and Y are dependent conditioned on G, i.e.,

P(Y,S|G) # P(Y|G)P(S|G). Q)

The conditional dependency of Y and S on G is one major reason
that leads to biased prediction. If we directly learn a GNN model
that aims to predict Y based on G, as Y and S are dependent given
G, the learned label Y will have correlation with S, resulting in the
biased prediction on sensitive attribute S.

Alternatively, we can understand the bias by treating existing
GNNs as composed of a feature extractor g and a classifier c. The
feature extractor g takes the subgraph centered at a node as input
and learns node representation as z = g(G). Then the classifier
c uses the representation z to predict the label as § = ¢(z). As G
is dependent on E and C, the learned representation z is likely to
contain mixed information of both E and C. Hence, the predicted
label 7 is also likely to have correlation with S.
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3.2.2 Disentangled Fair Representation Learning. From the above
analysis motivates, we can observe that in order to have fair pre-
diction, we need to learn disentangled representation E and C to
block the path from S to Y conditioned on G, and only use the
content information C to predict Y, i.e., P(Y|C). As C determines
Y, it contains all the label information to predict Y. Meanwhile,
observing E and C can block the conditional path from S to Y, i.e.,
P(Y,S|E,C,G) = P(Y|C,E,G)P(S|C, E,G). Note that observing C
blocks the path from E to Y and the path from G to Y. Hence, we
have P(Y|C,E,G) = P(Y|C). Observing E blocks the path from S
to G and the path from S to C, thus, we have P(S|C, E,G) = P(S|E).
This gives us

P(Y,S|E,C,G) = P(Y|C)P(S|E). )

The above equation shows that observing E and C would make Y
and S independent and P(Y|C) is unbiased.

Hence, if we can learn disentangled latent representation E and
C, we would be able to use C for fair classification. However, the
main challenge is we do not have ground-truth E and C to help
us train a model that can learn disentangled representation. With
a slight abuse of notation, we also use C to denote the learned
content representation and use E to denote the learned environment
representation. Fortunately, we can use the SCM to derive several
properties of the optimal representation, which would be used to
help learn the latent representation of C and E:

o Invariance: C 1L E. This property can be understood in two
perspectives. That is, the content representations should be in-
dependent to the sensitive attributes and the environment rep-
resentation induced by the sensitive attribute. Meanwhile, the
environment representations should be independent to the labels
and the content representation which is informative to the labels.

o Sufficiency: (C,E) — G. The combined representation can used
to reconstruct the observed graph.

o Informativeness: C — Y. The content representations should
have the capacity to give accurate predictions of labels Y.

4 METHODOLOGY

The causal view suggests us to learn disentangled representation
c and e for node v, with ¢ capturing the content information that
is useful for label prediction and irrelevant to sensitive attributes,
and e capturing the environment information depends on sensitive
attribute only. With the disentanglement, ¢ can be used to give
fair predictions. However, how to effectively disentangle ¢ and e
remains a question given that we do not have ground-truth of dis-
entangled representation. Intuitively, for a node v with sensitive
attribute s, its content representation ¢ should remain the same
when the sensitive attribute is flipped to 1 — s while its environ-
ment representation e should change correspondingly. Hence, if
we know the counterfactual of node v, we will be able to utilize the
counterfactual to help learn disentangled representation for fair
classification; while the counterfactual is not observed. To address
the challenges, we propose a novel framework CAF as shown in
Figure 2 (a), which is composed of: (i) a GNN encoder that takes
ego-graph G of node v to learn disentangled representation ¢ and
e; (ii) the counterfactual augmentation module, which aims to dis-
cover counterfactual for each factual observation and utilize the
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counterfactual to help learn disentangled representation; (iii) a fair
classifier which takes c as input for fair classification. Next, we give
the details of each component.

4.1 Disentangled Representation Learning

For each node v;, the content representation c¢; should capture
the important node attribute and neighborhood information for
predicting the label while the environment representation e; should
capture all important information relevant to sensitive attribute. As
GNNs have shown great ability in modeling graph structured data,
we adopt GNNss to learn c; and e;. Instead of adopting two GNNs
to learn c; and e; separately, to reduce the number of parameters,
we adopt one GNN to learn c; and e;. We empirically found that
using two GNNs and one GNN have similar performance due to
constraints we designed to disentangle ¢; and e;, which will be
introduced later. Specifically, the GNN fy parameterized by 0 takes
G as input and learns representation as:

[Ca E] =H= f|9 (As X)’ (3)

where H € RN*9 i the learned representation matrix with the i-th
row, i.e., h;, as the representation of node v;. We treat the first d,
columns as the content representation matrix C and use the next
de columns as the environment representation matrix E. Note that
d = d¢ + de. In our implementation, we set d; = de. C € RNxde
is the content representation matrix with the i-th row, i.e,, c;, as
the content representation of node v;. Similarly, E € RN Xde s the
environment representation matrix with the i-the row, i.e., e; as the
environment representation of node ;. fy is flexible to be various
GNNs such as GCN [18] and GraphSAGE [11].

To make sure ¢; captures the content information for fair label
prediction, and e; and c; are disentangled, based on the causal
analysis in Section 3, we add following constraints:

Informativeness Constraint. First, the content representation
c; should be informative to the downstream tasks, i.e., C — Y.
Hence, for node v;, we should be able to get accurate label prediction
from c;. Thus, we introduce a classifier f; with model parameter ¢.
It takes c; as input and predicts the class distribution of v; as:

i = fp(ci). (4)
The loss function for training the classifier is given as:
1 .
Lyea = 2 (i) (5)

v, eV

where y; is the one-hot encoding of ground-truth label of v;. £(¥;, y;)
denotes the cross entropy between y; and y;.

Sufficiency Constraint. As shown in our causal view, the repre-
sentation (c; and e;) should be sufficient to reconstruct the observed
factual graph G;. In disentangled representation learning research,
the reconstruction supervision is usually adopted to guide the learn-
ing process [13, 40]. However, existing graph counterfactual fairness
approaches [1, 25] fail to provide supervision to preserve graph
information in the representations. Thus, they put their models
at a risk of being stuck in trivial solutions to merely get spurious
information in the representations, which contradicts the SCM and
is not sufficient to reconstruct the observed graph G; . In our model,
we formalize the sufficiency constraint as a reconstruction of the
graph structure. Specifically, for a pair of nodes (v;,v;), we predict
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Figure 2: An illustration of (a) our proposed framework; (b) intuition of counterfactual augmented learning.

the link existence probability as p;; = a(hih;), where h; = [c;, €;]
is the node representation of node v;. The sufficiency constraint is
1

Lot = 11376

—eijlog pij — (1 - eij) log pij, (6)

(v3,0;)€EUE™
where &7 is the set of sampled negative edges. e;; = 1 if node v;
and v; are connected; otherwise e;; = 0.

Orthogonal Constraint. The above model can help to learn c;
that captures graph information for label prediction, however, it
doesn’t guarantee that ¢; doesn’t contain sensitive attribute infor-
mation. To make sure that ¢; and e; are disentangled, i.e., ¢; doesn’t
contain any environment information relevant to sensitive attribute,
we further impose the orthogonal constraint, i.e., cl.Tei =0.

4.2

As we do not have ground-truth of ¢; and e;, we used several
constraints to implicitly supervise the learning of ¢; and e;. To fully
learn disentangled c; and e;, we propose to learn better e; and c;
that follows the counterfactual constraints. As shown in Figure 2 (b),
generally, for a node v; with observe the factual sensitive attribute
s; and label y;, its content representation c¢; should remain similar
when the sensitive attribute is flipped to 1 — s; but its environment
representation e; should change correspondingly, which forms
the counterfactual subgraph G¢. Similarly, when flip label y; but
keep the sensitive attribute s; unchanged, then v;’s environment
representation e; remain the same, while its content representation
should change accordingly, leading to the counterfactual subgraph
G{. Thus, if we know Gf and Gf, we would be able to use these
counterfactual graphs together with factual graph G; to guide the
learning of ¢; and e;. However, in real-world, we can only observe
factual graphs. To solve this challenge, we propose to find potential
candidate counterfactuals with the observed factual graphs.

The sensitive attribute and label are used to find counterfactuals
in our model. Considering the fair credit scoring problem, when
someone was assigned a low score, straightforward thinking is to
know the results of people who have a similar background to her but
of a different gender. For example, Sarah, a female, got a low credit
score. Then she may ask, what if I were a male, what will my credit
score be? This thinking inspires us to directly find counterfactuals

Counterfactual Augmented Learning
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from the observed node samples instead of performing perturbation
or generating [1, 25]. The advantages of selecting counterfactuals
from the observed node samples are twofold: (1) It avoids making
assumptions about the graph generation process with sensitive
attributes. (2) It does not need additional supervision signal.
Another problem comes: selecting counterfactuals from the orig-
inal data space is also challenging due to the complexity of graph
distance calculation. To get counterfactual Gf, we need to find some
nodes which have different sensitive attribute and the same label.
Similarly, we find some nodes with the same sensitive attribute and
different labels as counterfactual Qlc The task can be formalized as:

G = argmin{m(Gi, Gj) lyi # yj,si = s;}, (7)
ngG

G; = argmin{m(Gi, Gj) lyi = yj.si % s;}, 8
ngG

where G = {Gil|v; € V)} and m(-,-) is a metric of measuring the
distance between a pair of subgraphs. Nevertheless, the problem of
computing the distance of pairs of graphs is inefficient and infeasible
due to the complex graph structure and large search space [45].
As we already have node representations h; = [c;, e;] that capture
the graph structure and node attribute information, we propose to
measure the distance in the latent space, which can greatly reduce
the computation burden. Then the counterfactual graph searching
problem in Eq. (7) and Eq. (8) is converted to the problem below:

hf:argmin{”h,-—hjllg lyi # yj,si =sj}, )
h;jeH
h{ = argmin{||h; - hj||§ lyi = yj,si # sj}, (10)

h;eH

where H = {h;|o; € V} and we use L2 distance to find coun-
terfactuals. A problem is that we only have limited labels in the
training set. So we first pre-train the backbone model. With pre-
trained model, we can obtain the prediction for unlabeled nodes
as pseudo-labels. The pseudo-labels work as the guidance of the
counterfactual searching problem. Note that for each factual in-
put we can also get multiple counterfactuals by selecting a set of
counterfactuals in Eq. (9) and Eq. (10) instead of one. Thus, the coun-
terfactual G; can be naturally extended to a set of K counterfactuals
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{gfk|k = 1,..,K} and G; can be extended to {gfk|k =1,.,K}
We fix K to 10 in our implementation.

We can utilize the counterfactuals to supervise the disentangle-
ment of ¢; and e;. Specifically, as shown in Figure 2 (b), counterfac-
tual gfk shares the same content information with factual graph G;
and has different environment information. Without supervision,
the factual content representation ¢; and the counterfactual content
representation cfk may contain both the content information and
environment information. When we minimize the discrepancy of
the learned representations with dis(c;, ¢;*), fp will tend to merely
keep the content information and squeeze the sensitive informa-
tion out of learned representations. In a similar manner, we can use
dis(e;, efk) to make the environment representation e; be invariant
to the content information stored in c;. Also, we put the orthogonal
constraint here to encourage c; and e; to store different information
in representation space. The invariance constraint is given as:

K
1 . .
Liny = —|(V| X Z Z [dls(ci, ka) +dis(e;, ef")
v; eV k=1

(11)
+yK - | cos(ci )],

where dis(-, -) is a distance metric, such as the cosine distance and L2
distance in our implementation. | cos(-, ) | is the absolute value of
cosine similarity and we optimize this term to approximate ciTei =0.
y is the hyper-parameter to control the orthogonal constraint.

4.3 Final Objective Function of CAF

Putting the disentangled representation learning module and the
counterfactual selection module together, the final objective func-
tion of the proposed CAF framework is:

min £ = Lpred + (X.Cinv + ,B-Lsuf: (12)

0.4
where 6 and ¢ are parameters for the GNN encoder and the predic-
tion head, respectively. « and f are hyper-parameters controlling
the invariance constraint and the sufficiency constraint.

4.4 Training Algorithm

The whole process of CAF is summarized in Algorithm 1. Our
method relies on the counterfactuals in the representation space to
guide the disentanglement. However, the randomly initialized rep-
resentation at the first several epochs may degrade the performance
of our model. Therefore, we first pre-train a plain node represen-
tation learning model Y = gg ¢ (A, X) only with L;eq . Then we
use the optimized parameters ©", ®* = ming ¢ Lpred to initialize
the parameters 0 and ¢ of our model and use the aforementioned
framework to get the desired disentangled representations. We
do not necessarily update the counterfactuals for each epoch. We
update the counterfactuals once for t epochs and ¢ = 10 in our
implementation. As shown in Algorithm 1, we first pre-train gg ¢
and use the optimized parameter to initialize fp and ¢ from line 1
to line 2. Then we iteratively optimize fy and ¢ from line 3 to line
10. In each iteration, we first perform forward propagation to get
node representations in line 4. And then for each t epoch we update
the selected counterfactuals once from line 5 to line 7. Afterwards,
we compute the overall objective and perform backpropagation to
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Algorithm 1: Training Algorithm of CAF.

Input: g =(V,E,X),Yr, t, &, B, y, K and num_epoch
Output: fj and fy
1: Pre-train g ¢ based on Lyeq with Eq. (5)
2: Use the optimized ©" and ®* to initialize fp and f
3: for epoch in range(num_epoch) do
4 Compute representations H and predicted labels Y with f
and fy by Eq. (3) and Eq. (4)
5. if num_epoch % t = 0 then

6: Obtain two sets of counterfactuals {Qlck lk=1,..., K}
and {Qiek |k=1,.. .,K} with Eq. (9) and (10).
7. end if

8:  Compute the overall objective £ with Eq. (12)
9:  Update 6 and ¢ according to the objective £
10: end for

1: return fy and fy

_

optimize the parameters 0 and ¢ from line 8 to line 9. After training,
we obtain the desired fair model fy and f; in line 11.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness
of the proposed method and compare it with state-of-the-art fair
GNN . Specifically, we aim to answer the following questions:

e (RQ 1) How effective is the proposed CAF for fair node classifi-
cation task on both synthetic datasets and real-world datasets?

e (RQ 2) Can the proposed CAF find appropriate counterfactuals?

e (RQ 3) How do the proposed modules work? How can each
regularization term affect the model performance?

5.1 Experiment Settings

5.1.1 Real-World Datasets. We conduct experiments on three widely
used real-world datasets, namely German Credit [2], Credit De-
faulter [41], Bail [16]. The statistics of the datasets can be found in

Table 2. The details of the datasets are as follows:

e German Credit [2]: the nodes in the dataset are clients and two
nodes are connected if they have high similarity of the credit
accounts. The task is to classify the credit risk level as high or
low with the sensitive attribute “gender”.

e Credit Defaulter [41]: the nodes in the dataset are used to
represent the credit card users and the edges are formed based on
the similarity of the payments information. The task is to classify
the default payment method with sensitive attribute “age”.

e Bail [16]: these datasets contain defendants released on bail
during 1990-2009 as nodes. The edges between two nodes are
connected based on the similarity of past criminal records and
demographics. The task is to classify whether defendants are on
bail or not with the sensitive attribute "race".

5.1.2  Synthetic Dataset. Real-world datasets do not offer ground-
truth counterfactuals, prompting us to construct a synthetic dataset
based on the Structural Causal Model (SCM) as depicted in Fig-
ure 1. The primary advantage of a synthetic dataset is that it pro-
vides us with ground-truth counterfactuals for each node, which
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Table 1: Node classification performance and group fairness performance on real-world datasets.

Dataset | Metrics | GCN  GraphSAGE GIN FairGNN EDITS NIFTY GEAR CAF
AUC (1) | 74.00:151 74.54+0.86 72.69+1.02 | 65.85:949  69.76+546 | 72.05:215  65.80+3.00 | 71.87:133
F1(T) | 80.05:1.20 81.1520.97 82.62:155 | 82.29:032  81.04:1.09 | 79.20:1.19  78.04:207 | 82.16:022
German | Agp () | 41.94:552 23.79:6.70 14.85:4.64 7.65:8.07 8.42+735 7.7427.80 8.60:347 | 6.60+1.66
Ao (1) | 31.112440 15.13+5.74 8.26+6.72 4.18+4.86 5.69:2.16 5.17+238 6.34+231 1.58+1.14
AUC (1) | 88.50+1.80 90.502.10 77.30x690 | 88.20:350  89.07:226 | 92.04:0.89 89.60:160 | 91.39:034
F1(T) 78.20+2.30 80.40+3.20 65.60+840 | 78.40:2.10 77.83+379 | 77.81:603  80.00:3.10 | 83.09:0.98
Bail Asp (l) | 7.50:1.40 8.60+3.90 6.50+3.40 7.40+2.60 3.74+354 5.74+0.38 5.80:170 | 2.29:1.06
Ago () | 2.30:1.90 3.90+2.20 4.10+230 4.60+130 4.46+350 4.07+128 1.90:230 | 1.17z0.52
AUC (1) | 68.40:1.90 75.60:1.10 70.60:1.00 | 68.00:210  75.04x0.12 | 72.89:044  74.00:0.80 | 73.42:189
F1(T) | 79.40:270 82.10+0.50 80.50:160 | 78.00:s20 82.41:052 | 82.60:125 83.50:0.80 | 83.63:0.89
Credit Asp () | 10.80:3.10 10.90+3.00 13.00:370 | 18.70:360  11.34:636 | 10.65:165 10.40:130 | 8.63:2.13
Ago (1) | 8.70:3.50 9.40+3.30 12.10+420 | 17.50:350  9.38:539 8.10:1.91 8.60:180 | 6.85:1.55
Avg. (Rank) 5.58 4.42 5.75 5.92 4.67 3.83 4.08 1.75
Table 2: Real-world dataset statistics. procedure. Secondly, the synthetic dataset enables adjustable bias
Dataset German Credit Bail Credit Defaulter levels, providing us control over the extent of bias in our models. As
# Nodes 1,000 18,876 30,000 aresult, we can undertake a comprehensive and detailed evaluation
# Edges 22,242 321,308 1,436,858 of our model’s fairness and prediction quality.
# Attributes 27 18 13
Sens. Gender Race Age 5.1.3 Baselines. To evaluate the effectiveness of CAF, we include
Label Credit status Bail decision Future default representative and state-of-the-art methods, which can be catego-

enables us to assess the quality of the obtained counterfactuals.
In our approach, we consider settings with binary sensitive at-
tributes and binary labels. A graph with 2000 nodes is sampled in
our implementation. To generate the desired counterfactuals, we
maintain the same sampled value of noise variables and use con-
sistent causal relationships for each node. The sensitive attributes
and labels are sampled from two different Bernoulli distributions,
with s; ~ B(p) and y; ~ B(q), respectively. This results in gener-
ating vectors s; = [(s;)xn] and y; = [(yi)xn]. Next, environment
and content features, e; and c;, are sampled from normal distribu-
tions e; ~ N(s;,I) and ¢; ~ N (y;, 1), respectively. These features
are combined to form the overall latent feature z; = [c;, e;]. The
observed feature for each node v;, denoted as x;, is computed as
x; = Wz; +b;, where W;; ~ N(1,1), and W € R%X2d1  with
b; ~ N(0,I) € R%. The adjacency matrix A is defined such that
Ajj =1if o(cos(zi,zj) +€;j) > aand i # j, with ;5 ~ N(0,1), and
A;j = 0 otherwise. Here, o(-) denotes the Sigmoid function, and the
threshold & controls the edge number. We have the freedom to set
sensitive attribute probability p, label probability g, latent feature
dimension 2d1, observed feature dimension dy, node number N, and
threshold « to control the biased graph generation process. Note
that in the SCM we have C — Y instead of Y — C, thus a better
way is to first generate content features and then assign labels to
the features. Intuitively, we argue that when using an optimal clas-
sifier to deal with content features with different means will assign
the same label in our generation process. Therefore, to simplify the
generation process, we use C — Y in our dataset design.

The synthetic dataset comes with notable advantages. Firstly,
it gives us access to exact counterfactuals. After generating the
initial graph, we keep all noise variables and unrelated variables
unchanged, then adjust the sensitive attribute s; or label y; to calcu-
late the precise counterfactual through the same graph generation
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rized into three categories: (1) plain node classification methods:
GCN [18], GraphSAGE [11] and GIN [39]; (2) fair node classification
methods: FairGNN [5], EDITS [7]; (3) graph counterfactual fairness
methods: NIFTY [1] and GEAR [25]. Unless otherwise specified,
we use GraphSAGE as the model backbone except for baseline
GCN and GIN. We use SAGE to denote GraphSAGE. The detailed
descriptions about the datasets are as follows:

e GCN [18]: GCN is a popular spectral GNN, which adopts a local-
ized first-order approximation of spectral graph convolutions.

o GraphSAGE [11]: GraphSAGE is a method for inductive learning
that leverages node feature information to generate unsupervised
embeddings for nodes in large graphs, even if they were not
included in the initial training.

e GIN [39]: Graph Isomorphism Network (GIN) is a graph-based
neural network that can capture different topological structures
by injecting the node’s identity into its aggregation function.

e FairGNN [5]: FairGNN uses adversarial training to achieve fair-
ness on graphs. It trains the learned representation via an adver-
sary which is optimized to predict the sensitive attribute.

e EDITS [7]: EDITS is a pre-processing method for fair graph learn-
ing. It aims to debias the input network to remove the sensitive
information in the graph data.

e NIFTY [1]: It simply performs a flipping on the sensitive attributes
to get counterfactual data. It regularizes the model to be invariant
to both factual and counterfactual data samples.

e GEAR [25]: GEAR is a method for counterfactual fairness on
graphs. It utilizes a variational auto-encoder to synthesize coun-
terfactual samples to achieve counterfactual fairness for graphs.

5.1.4  Evaluation Metrics. We evaluate the model performance from
three perspectives: classification performance, group fairness and
counterfactual fairness. (i) For classification performance, we use
AUC and the F1 score to measure node classification performance.
(ii) For fairness, following [5], we adopt two commonly used group
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fairness metrics, i.e., statistical parity (SP) Agp and equal oppor-
tunity (EO) Ago, which are computed as Asp = |P(§, = 1| s =
0) = P(fu =1 | s = 1)]and Apo = [P(Gu = 1 | yu = Ls =
0) —P(Qy = 1| yy = 1,s = 1)|. The smaller Agp and Agp are,
the fairer the model is. (iii) For counterfactual fairness, as we have
the ground-truth counterfactuals on the synthetic dataset, Follow-
ing [25], we use the counterfactual fairness metric dcr, i.e., Scr =
[P ((J1)ses | X, A)=P ((§1)se_y | X, A) |, wheres,s” € {0,1}N are
the sensitive attributes and s’ = 1 —s. (§;)s is the computed
ground-truth counterfactual label with the same data generation
process as shown in Figure 1. We use subscript S «— s’ to denote
counterfactual computation [31], i.e., keeping the same data gener-
ation process and values of random noise variable. Counterfactual
fairness of the graph is only measured on synthetic dataset.

5.1.5 Setup. For German Credit, Credit Defaulter and Bail , we
follow train/valid/test split in [1]. For the constructed synthetic
dataset, we use a 50/25/25 split for training/validation/testing data.
We randomly initialize the parameters. For each combination of
the hyper-parameters configuration, we run the experiments with
10 random seeds and grid search for the best configuration.

5.2 Performance Comparison

To answer RQ1, we conduct experiments on real-world datasets
and synthetic dataset with comparison to baselines.

5.2.1 Performance on Real-World Datasets. Table 1 shows the aver-
age performance with standard deviation of ten runs on real-world
datasets. The best results are highlighted in bold and the runner-up
results are underlined. From Table 1, we observe:

o CAF can improve the group fairness performance. Across three
datasets, Table 1 shows CAF can make fairer predictions than
other baseline methods. CAF beats all the baselines with respect
to the group fairness metrics.

o There exists a trade-off between group fairness and prediction
performance. Plain node classification methods, such as GCN,
GraphSAGE and GIN, tend to have better prediction performance
and worse group fairness performance. Fair node classification
methods, including FairGNN, EDITS, NIFTY, GEAR and CAF,
tend to suffer from a prediction performance drop and the group
fairness performance is better.

o CAF achieves best performance on the prediction-fairness trade-
off. We use the average rank of two prediction metrics and two
group fairness metrics to know the performance of the trade-
off. Our model ranks 1.75 and the runner-up model ranks 3.83.
Our model outperforms the state-of-the-art node representation
learning methods, which shows the effectiveness of our model.

o Graph counterfactual fairness methods, such as NIFTY, GEAR and
CAF, achieved better performance than other baselines. Correlation-
based counterfactual notions can capture the causal relationships
and help to boost the group fairness performance.

5.2.2  Performance on Synthetic Dataset. Figure 3 reports the per-
formance on the synthetic dataset. On the synthetic dataset, we
have the desired ground-truth counterfactuals, which can be used
to measure the performance of graph counterfactual fairness. We
compare our model with plain node classification models and coun-
terfactual fairness models. The observations are as follows:

676

Zhimeng Guo, Jialiang Li, Teng Xiao, Yao Ma, and Suhang Wang

__110 20

O\O [ GCN 3 NIFTY O\O 3 GCN 3 NIFTY

— 105 [ SAGE 3 GEAR vlS [ SAGE O GEAR

() 1 GIN 3 CAF [ 1 GIN = CAF

(9] (9]

< 100 c

© © 10

€ o5 €

o o 5

5 9 5

T o <, il
AUROC F1 Ocr Asp Aeo

(a) Prediction (b) Fairness

Figure 3: Node classification performance and group fairness
performance on synthetic datasets.
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Figure 4: Comparison of the prediction performance and
fairness performance of different backbones.

o CAF beats all the models with respect to the prediction, group
fairness and counterfactual fairness metrics. We argue that in our
assumed biased generation process, our model can effectively
find invariant, sufficient and informative representations to make
accurate and fair predictions.

o Other graph counterfactual fairness-based methods, including
NIFTY and GEAR, cannot consistently outperform other methods.
These methods design their model without considering mean-
ingful causal relationships. NIFTY simply perturbs the sensitive
attribute and omits the further influence on features and graph
structure. GEAR adopts an GraphVAE to model the causal rela-
tionships, which may fail to generate meaningful counterfactuals.

5.3 Flexibility of CAF for Various Backbones

To show the flexibility of CAF in improving the fairness of various
backbones while maintaining high classification accuracy, other
than GraphSAGE, we also plug our model in GCN and GIN. Figure 4
shows the classification performance and fairness performance on
Bail and Credit. From Figure 4, we observe that compared with the
backbones, CAF can significantly improve the fairness with no or
marginal decrease in classification performance. For example, on
Bail dataset, the prediction performance with GIN backbone drops
by 0.54% on AUROC but the Agp drops by 1.37% and the Agp drops
by 0.86%, which is an improvement on fairness performance. This
demonstrates the flexibility of CAF in benefiting various backbones.

5.4 Quality of Counterfactuals

To answer RQ2, we compare the counterfactuals obtained by CAF
with ground-truth counterfactuals to investigate whether we can
obtain the desired counterfactuals. We conduct experiments on the
synthetic dataset which has ground-truth counterfactuals. We first
use CAF to obtain counterfactuals. To measure the discrepancy of
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Figure 5: Discrepancy between learned counterfactual repre-
sentation and ground-truth counterfactual representation.
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Table 3: Ablation study.

Models

Synthetic Dataset

AUROCT  F17 ocr | Appl  Agol

SAGE 98.40:031  86.89:359 11.76:292 1.87x082 1.85:1.41
CAF 99.57+006  94.58:058  7.12:041  0.65:041  1.66x057
CAF-NA  99.33:027  94.72:215 10.42:198 1.63:041 1.83:074
CAF-NB  98.47:028  88.64:431  8.31:322  0.91:028 1.63:051
CAF-NP 98.36x039  84.72:307 13.47:262 1.37:055 1.96:1.78
CAF-NS 98.81:0.73  91.98:325  9.72:205  1.35:018 1.73:055

the obtained counterfactuals with respect to the feature and struc-
ture in the ego graph, we compare the learned counterfactual rep-
resentations and the ground-truth counterfactual representations.
We compare our model with two graph counterfactual fairness
baselines, i.e., NIFTY [1] and GEAR [25]. NIFTY simply flips the
sensitive attributes to get their counterfactuals. GEAR uses a Graph-
VAE to generate the counterfactuals based on self-perturbation and
neighbor-perturbation. Figure 5 shows the average result for all the
nodes on the synthetic dataset. We show that CAF can find better
counterfactuals than other graph counterfactual fairness models,
i.e., smaller discrepancy to ground-truth counterfactuals. The result
also shows there is still space for existing methods to improve the
performance of getting appropriate counterfactuals.

5.5 Ablation Study

In our model, the pre-trained model can provide pseudo-labels for
the nodes in the unlabeled set. Thus, we can select counterfactuals
from the entire dataset. The model trained from scratch, without any
pre-training, is denoted as CAF-NP. Without pseudo-labels, we can
only select counterfactuals from the training set, which is denoted
as the variant CAF-NS. We evaluate the performance on synthetic
dataset. The results are reported in Table 3. We find the model
CAF-NS performs worse than the CAF but better than CAF-NP.
The result shows the pseudo-labels can also boost the performance
of our model. Usually, the training set is small and the model may
not obtain desired counterfactuals from the limited data points.
Although pseudo-labels may contain some noisy information, they
can also help improve the our model performance.

We further delve into how the constraints impact performance.
When merely setting « = 0 or f = 0, we denote the model as
CAF-NA and CAF-NB, respectively. The models CAF-NA and CAF-
NB outperform SAGE, yet fall short when compared to CAF. This
indicates that both the sufficiency and invariance constraints col-
lectively contribute to the superior performance of our model.
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Figure 6: Hyper-parameter study on German dataset.

5.6 Hyper-Parameter Sensitivity Analysis

There are two important hyperparameters in CAF, i.e., & and S.
a controls the contribution of the invariance regularization L,y
and S controls the contribution of the sufficiency regularization. To
understand the impact of « and f on CAF, we fix f as 5 and vary a
as {0,1,...,18}. Similarly, we fix « as 1 and vary f as {0,1,...,18}.
We report the result on German dataset in Figure 6. From Figure 6,
we have the following observations: there exists a trade-off between
prediction performance and fairness performance. The trend is that
when we increase the « and f, we will get worse prediction per-
formance and better fairness performance. We argue that without
these regularizations, the model may rely on sensitive information.
When we decrease the regularization budget, we can disentangle
content representations. Thus, the prediction performance will get
worse and the fairness performance will be better.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of learning fair node represen-
tations with GNNs. We first formalize the biased graph generation
process with an SCM. Motivated by causal theory, we propose
a novel framework CAF to learn fair node presentations which
meet graph counterfactual fairness criteria and can achieve good
prediction-fairness performance. Specifically, we align the model
design with the data generation process and convert the problem
to learn content representations. We derive several properties of
the optimal content representation from the causal graph, i.e., in-
variance, sufficiency and informativeness. To get appropriate super-
vision for the invariance regularization, we design a counterfactual
selection module. Extensive experiments demonstrate that CAF
can achieve state-of-the-art performance on synthetic dataset and
real-world datasets with respect to the prediction-fairness trade-off.

There are several interesting directions worth exploring. First,
in this paper, we mainly focus on binary classification and binary
sensitive attribute. We will extend the work to multi-class clas-
sification and multi-category sensitive attributes. Second, in this
paper, we focus on static graphs while there are many different
kinds of graphs in real-world. Thus, we aim to extend our model
to more complex graph learning settings, such as dynamic graphs,
multi-value sensitive attributes and labels.
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