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Abstract—Graph neural networks (GNNs) have achieved
great success in various graph problems. However, most GNNs
are Message Passing Neural Networks (MPNNs) based on the
homophily assumption, where nodes with the same label are
connected in graphs. Real-world problems bring us heterophily
problems, where nodes with different labels are connected in
graphs. MPNNs fail to address the heterophily problem because
they mix information from different distributions and are not
good at capturing global patterns. Therefore, we investigate
a novel Graph Memory Networks model on Heterophilous
Graphs (HP-GMN) to the heterophily problem in this paper. In
HP-GMN, local information and global patterns are learned by
local statistics and the memory to facilitate the prediction. We
further propose regularization terms to help the memory learn
global information. We conduct extensive experiments to show
that our method achieves state-of-the-art performance on both
homophilous and heterophilous graphs. The code of this paper
can be found at https://github.com/junjie-xu/HP-GMN.

Index Terms—Data Mining, Graph Neural Networks, Memory
Networks, Heterophily, Node Classification

I. INTRODUCTION

Graph Neural Networks have shown great ability in
various graph tasks such as node classification [1], [2], link
prediction [3], [4], and graph classification [5]. Generally, the
success of GNNs relies on the message-passing mechanism,
where a node representation will be updated by aggregating
the representations of its neighbors. Thus, the learned
node representation captures both node attributes and local
neighborhood information, which facilitates downstream tasks.
The aggregation process of most current GNNs is explicitly or
implicitly designed based on the homophily assumption [6],
i.e., two nodes of similar features or the same label are more
likely to be linked. For example, in GCN, the representations
are smoothed over connected neighbors with the assumption
that the neighbors of a node are likely to have the same class
and similar feature distribution. However, there are many
heterophilous graphs in the real world that do not follow the
homophily assumption. In heterophilous graphs, a node is
also likely to connect to another node with dissimilar features
or different labels. For example, fraudsters tend to contact
normal users instead of other fraudsters in a trading network
[7]; different amino acids are connected to form functional
proteins [6]; interdisciplinary researchers collaborate more
with people from different areas in a citation network.

Message Passing Neural Networks (MPNNs) with
homophily assumption are challenged by heterophilous
graphs. This is mainly because: (i) Since the majority of the

Fig. 1: Learning local statistics and global patterns on heterophilous graph. Color is the
node label, while the number represents the attribute.

neighborhood nodes lie in the same class as the center node
in homophilous graphs, directly mixing the neighbor repre-
sentations by averaging operation can preserve the context
pattern, benefiting the downstream task. However, neighbors
in heterophilous graphs come from different classes and have
different distributions. The aggregation process in current
MPNNs generally ignore the differences between nodes in
different classes and simply mix them together. Therefore, the
pattern of the local context in graphs with heterophily would
not be well-preserved with the current traditional MPNNs;
and (ii) only local context information of nodes is utilized
in the prediction of MPNNs. The MPNNs generally fail to
explicitly capture and utilize the global patterns of the nodes’
local heterophilous context to give more accurate results.

To overcome the shortcomings of MPNNs on heterophilous
graphs, we propose the following two strategies. First, in
heterophilous graphs, though the neighbors of a node can
have dissimilar node attributes and labels with the center
node, we observe that nodes of the same class tend to have
similar neighborhood distributions while nodes of different
classes tend to have dissimilar neighborhoods. For example,
as shown in the toy example in Fig. 1, nodes of “blue”
class have similar node attributes and subgraph structures,
while nodes in the “blue” class and the “yellow” class have
dissimilar attributes and subgraph structures. In addition, as
Fig. 1 shows, neighbors’ labels of blue and yellow nodes are
different and blue nodes are connected to more neighbors.
This indicates that the neighbors’ distributions of “blue” and
“yellow” are different. Thus, instead of simply aggregating
the heterophilous neighbors’ attributes which could result in
noisy representations, we can summarize the local statistics
from various aspects, such as features, the structure, and
distributions of neighbors, to capture more comprehensive
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and discriminative information of the local context, which
facilitates better representations. Second, each class has some
representative and frequent subgraphs. Taking the “blue”
class as an example, we can observe that the blue nodes are
generally connected with green, grey and orange nodes. The
captured global patterns can benefit the prediction on the test
instance by providing global information. However, current
GNNs generally only rely on the representations of the local
subgraph and fail to capture the global patterns of the nodes
and their local context to facilitate the classification task.
One promising method to address this issue is to learn global
information by adopting Memory Networks [8], [9]. Specif-
ically, in memory networks, multiple memory units are used
to store the global patterns of instances in different classes.
The predictions can be given by matching the local patterns
with the learned global patterns, which effectively utilize both
the local context information and the global information.

Therefore, this paper studies a novel problem of capturing
both local and global information for heterophilous graphs.
The main challenges are: (1) How to select local statistics
that are good at capturing characteristics of subgraphs? (2)
How to guarantee the memory stores global information
favorable for the prediction? The memory units are required
to be representative and diverse. Being representative makes
sure that memory units record the most frequent patterns of
the nodes while being diverse means that memory units are
different from each other so that they will not record duplicate
information. How should the update process be regulated
to guarantee the diversity and representativeness of memory
units? To deal with these issues, we propose Graph Memory
Networks for Heterophilous Graphs (HP-GMN). HP-GMN
incorporates local statistics that can effectively capture the
information of nodes in attributes, structures, and neighbor
distributions on graphs with heterophily, and the memory that
can learn global patterns of the graph. To ensure learning
global patterns in high-quality, regularization methods are
deployed to keep the memory units representative and diverse.

In summary, we study the node classification task on
heterophilous graphs, and the main contributions are:
• We develop a novel framework called HP-GMN using

local statistics and the memory to learn local and global
representations for heterophilous graphs.

• We propose regularization methods to encourage the update
process of the memory to capture global information while
keeping it diverse and representative.

• We conduct extensive experiments on real-world datasets
and reveal our memory network outperforms state-of-the-art
GNNs on both homophilous and heterophilous graphs.

II. PRELIMINARIES

A. Notations and Definition

We use G=(V,E ,X) to denote an attributed graph, where
V = {v1,...,vN} is the set of N nodes, and E ⊆V×V is the
set of edges. X= {x1,...,xN} ∈ R|V|×F is the node feature
matrix, where xi is the node features of node vi and F is the

feature dimension. A∈RN×N is the adjacency matrix, where
Aij = 1 if nodes pair {i,j}∈E ; otherwise Aij = 0.

The graph neural networks aim to learn effective node
representations H∈R|V|×F ′

used in downstream tasks, where
F ′ is the dimension of representations. Typically, GNNs use
message passing [10] to learn representations. Each node
aggregates its neighbors’ representations and then combines
them with the ego-representation. Hence, there are two
essential steps in MPNNs:

ak+1
v =AGGREGATEk+1({hk

u :u∈N (v)}), (1)

Hk+1
v =COMBINEk+1(hk

v ,a
k
v), (2)

where hk
v is the representation of node v at layer k and N (v)

is the neighbors of node v. AGGREGATE and COMBINE
are two functions specified by GNNs.

Generally, the homophily degree of a graph can be
measured by node homophily ratio [11].

Definition1 (Node homophily ratio) [11] It is the average
ratio of same-class neighbor nodes to the total neighbor
nodes in a graph.

Hnode=
1

|V |
∑
v∈V

|{u∈N (v) :yv=yu}|
|N (v)|

∈ [0,1] , (3)

where y is the node label. Graphs with higher homophily are
close to 1, and graphs with higher heterophily are close to 0.

B. Intuition and Problem Definition

There are two main reasons leading to the incompatibility
between MPNNs and heterophily. Firstly, AGGREGATE is
usually implemented by a mean or weighted mean function
and COMBINE is to mix a node’s ego- and neighbor-
representations. Because neighbors are from different classes
and have different distributions in the heterophily assumption,
such process can mix representations from different distribu-
tions and make the result of aggregation less discriminative.
This mixture gives us poor node representations, which further
degrades the quality of global patterns learned from each node.
In this case, even MLP can have better performance than GCN
because the structure information is harmful according to
some empirical results [6], [12]. Secondly, in MPNNs, a node
only gathers information from the local neighbors and fails
to get more global information. As a result, MPNNs cannot
learn global patterns from nodes’ local contexts. Therefore,
MPNNs are not good at addressing the heterophily problem.

In a graph, each node has a k-hop subgraph centered on
itself. The characteristics of the subgraph can provide much
information for the node’s local context; therefore, local
statistics can be designed to capture this local information for
downstream classification tasks. Furthermore, for all the nodes
of each class, we can learn the global patterns of the class
by extracting representative information of the nodes’ local
representations. Then each node can learn global information
from similar global patterns. We need to measure the similarity
here because we do not need information from different
distributions. Based on the high-level ideas, we develop
HP-GMN to learn from both local and global information. To
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Fig. 2: The framework of HP-GMN. Informative local statistics {r1, ··· , rt} are
summarized and transformed to obtain local pattern vectors q. As for the memory
network module, it deploys a memory matrix M consisting of memory units to store
global patterns of the nodes in different classes. q will be used to query the memory
matrix to give the value vector v.

measure the performance of our framework, we mainly have
semi-supervised node classification as the downstream task.

Problem1 Given an attributed graph G = (V , E , X)
and a training set VL ⊆ V , with known class labels
YL = {yv,∀v ⊆ VL}, the heterophily ratio of the graph G is
low, we aim to learn a GNN that can infer the unknown class
labels ŶU ={ŷu,∀u⊆VU =(V−VL)}.

III. METHODOLOGY

In this section, we describe our proposed HP-GMN
thoroughly. The overall idea is to utilize local statistics to
capture useful local information and simultaneously deploy
the memory network to extract global patterns. Then, accurate
predictions can be given by combining both their local context
information and the captured global patterns. There are several
challenges in the process: (1) How to design local statistics
that can effectively describe the local context of nodes
in heterophilous graphs? (2) How to obtain representative
and diverse memory units to capture informative global
patterns? In an attempt to address these challenges, node
attributes and diffusion matrix are incorporated into the
local statistics to preserve the local pattern in attribute and
structure information. In addition, label-wise statistics [13]
are also used to describe neighbors’ distributions of center
nodes. To ensure the quality of the memory units, Kpattern
regularization and Entropy regularization are adopted to
guarantee diversity and representativeness. The overall
framework of the proposed HP-GNN is shown in Fig. 2.

A. Local Representation with Local Statistics

It has been observed that the local context of nodes
in heterophilous graphs can differ a lot for nodes are in
different classes, while two nodes in the same class often
exhibit similar node features and local subgraphs [13]. Thus,
we propose the local statistics including node attributes,
neighborhood distributions, and local topology.

1) Node Attributes: As node attributes contains important
information about node labels and similar nodes tend to have
similar attributes, the first local statistic is given by r1v =xv ,
where xv denotes the attributes of node v.

2) Label-wise Statistics: To effectively preserve the
neighborhood distribution, we adopt the label-wise
aggregation, which has been proved to be an effective method
for heterophilous graphs [13] because it aggregates neighbors
from different classes separately and avoids obscuring the
boundaries between classes. In this paper, we use two label-
wise characteristics as local statistics, i.e., label-wise neighbor
class distribution and label-wise neighbor feature distribution.

First, as suggested by [13], we estimate pseudo labels of
the unlabelled nodes, which are used to guide the label-wise
aggregation. Specifically, a label estimator fE is utilized to
obtain the pseudo label of node v: ŷ pseudo

v = fE(xv). Many
classifiers can be used as the estimator fE , such as GCN or
MLP. We adopt MLP in our framework for simplicity. fE is
trained with labelled nodes.

We assume similar nodes to have similar local neighbor
class distributions. Thus, for each node v, label-wise neighbor
class distribution counts the numbers of neighbors of each
class using the pseudo labels:

r2v=
[ ∣∣N1(v)

∣∣ , ∣∣N2(v)
∣∣,···,∣∣N|Y|(v)

∣∣ ], (4)

where Ni(v) = {u : (v,u) ∈ E and ŷu = i} denote the set of
neighbors of v with pseudo label i and | · | is the size of a
set. Hence, |Ni(v)| gives the number of neighbors of node v
with label i.

Similarly, we expect similar nodes in heterophilous graphs
to have similar local neighborhood feature distributions.
Thus, for each node, label-wise neighbor feature distribution
calculates the average features of neighbors from each label as:

r3v=
[ ∑
u∈N1(v)

xu

|N1(v)|

∣∣∣∣∣∣ ··· ∣∣∣∣∣∣ ∑
u∈N|Y|(v)

xu

|N|Y|(v)|

]
, (5)

where ∥ denotes the concatenation operation.
3) Diffusion Matrix: Structure information is essential and

similar nodes often have similar structures in their subgraphs.
We exploit higher-order structural information by utilizing
the diffusion matrix. The diffusion matrix can remove the
restriction of using only the direct 1-hop neighbors through
different powers of the adjacency matrix [14]. It is as:

S=
∞∑
k=0

θkT
k, (6)

where sv is the v-th row of matrix S and T is the transition
matrix. We require that

∑∞
k=0 θk = 1, θk ∈ [0, 1], and the

eigenvalues of T ∈ [0,1] to guarantee the convergence. The
transition matrix T and weighting coefficients θk are defined
in various ways. In this paper, we use the PPR diffusion
matrix [15] due to its good performance and flexibility:

T=AD−1, θk=α(1−α)k, (7)

where teleport probability α∈(0,1).
4) Local Representation: With the above four types of

features capturing different perspectives of the local statistics,
we transform them by MLPs since some local statistics might
be high dimensional, and transformation to the latent space
can reduce the dimension and better reflect their patterns.
Finally, we concatenate them to form the local representation

1265

Authorized licensed use limited to: Penn State University. Downloaded on December 30,2023 at 03:43:38 UTC from IEEE Xplore.  Restrictions apply. 



qv of node v as:

qv=[MLP1(r
1
v)||MLP2(r

2
v)||MLP3(r

3
v)||MLP4(r

4
v)]. (8)

In summary, the advantages of qv are: (i) it avoids
aggregating neighbors of dissimilar features and captures node
attributes and heterophilous local graph information. (ii) it can
be used to query the memory to get better global information.

B. Global Representation Learning with Memory Unit

The global patterns are some representative local graph
patterns that appear most frequently for nodes of each class.
We want to learn them so that nodes can aggregate from
similar patterns instead of dissimilar neighbors. However,
directly learning representative subgraphs is difficult as we
need to consider both graph structure and node attributes.
Thus, we learn representative global vector representations
using a memory module instead. Specifically, the memory
is a matrix M ∈ RK×hidden = [m1,m2,··· ,mK ]T, where K
is the number of memory units and hidden is the feature
dimension of a memory unit. Each row mi is a memory unit
used to learn a global pattern.

To get the global representations, we use the attention scores
to measure the similarity between each node’s local representa-
tion and every global pattern. Then a node gathers information
from each pattern according to the attention scores. Intuitively,
the node get global information by the combinations of the
patterns that can describe the distribution it belongs to. We
follow [16] to query the memory and get attention matrix:

S=Softmax(MQT), (9)

where Q= [q1,q2,···,qn]
T is the query matrix. sij indicates

the importance of the i-th memory to j-th node. Then we
calculate the value matrix V, which is global representation
by weighted average of the memories as:

V=STM. (10)

Eventually, we concatenate the local and global
representation of a node followed by an MLP transformation
to get the final representation hv . Then we can predict the
label distribution of ŷv .

hv=MLP5([qv||vv]), (11)

ŷv=Softmax(hv), (12)

where ŷi is the predicted label probabilities of node vi.
For the training, we minimize the cross-entropy loss as

Lclass=
1

|Vtrain|
∑

v∈Vtrain

l(ŷv,yv), (13)

where Vtrain is the set of labeled nodes, yv is the one-hot-
encoding of v’s label and l(·,·) is the cross entropy loss.

C. Memory Regularization

In order to capture global information effectively, we desire
two properties of the memory units, i.e., representativeness
and diversity. Representativeness is desired because the
memory is expected to capture the most representative
patterns of the distributions of a class. Diversity is also

TABLE I: Statistics of heterophilous and homophilous datasets.

Datasets #Nodes #Edges #Attributes #Classes Hnode

Texas 183 309 1,703 5 0.06
Wisconsin 251 499 1,703 5 0.16

Cornell 183 295 1,703 5 0.11
Chameleon 2,277 36,101 2,325 5 0.25

Squirrel 5,201 217,073 2,089 5 0.22
Crocodile 11,631 360,040 128 5 0.30

Cora 2708 5429 1433 7 0.83
Citeseer 3327 4732 3703 6 0.71
Pubmed 19717 44338 500 3 0.79

required to encourage richer information and avoid much-
duplicated information recorded in memory units. However,
during the training process, memory units are updated by
gradient descent. The learned memory units are likely to lack
the properties we desire. Therefore, we propose Kpattern and
Entropy regularizations to encourage the properties.

Kpattern Regularization. To make the memory represen-
tative, we want each query qv to be at least close to one of the
memory units so that each query can retrieve important global
information. In other words, the memory should be useful
for each node. Thus, we calculate the distances between each
node’s local representation and every memory unit. Then we
choose the memory unit with the smallest distance. We sum
up all the smallest distances over all nodes, and we aim to
learn memory that can minimize the total loss as:

min
M

Lkpattern=min
M

∑
v∈V

min
mi∈M

dist(mi,qv), (14)

where dist can be any function measuring distance between
two vectors. We adopt the Euclidean distance in this paper.
Intuitively, we prefer representative M that makes the total
distance between the memory and the query minimized, which
means the K patterns become representative for the query.

Entropy Regularization. To make the memory diverse, we
want each memory to have similar chances of being selected
globally. In other words, the averaged importance score over
all the nodes for each memory should be similar to each
other. Since sij indicates the importance of i-th memory to
j-th node, the overall importance score of mi can be written
as s′i =

∑N
j=1 sij . Denote the memory importance vector as

s′ ∈RK with s′i as the i-th element of s′ indicating the total
importance of i-th memory unit.

We need the elements in s′ to be equal or similar to
others, i.e., s′ is uniformly distributed, which means all the
memory units are equally important and are used with the
same frequency. Otherwise, if some units have low overall
importance scores than others, there are two possible reasons.
(1) Some memory units are unimportant because they contain
duplicated information from others. As a result, the informa-
tion contained in these units can also be expressed by others.
(2) Some memory units are useless, i.e., not representative.
They do not contain any useful information demanded by
downstream tasks, so they are rarely used. Therefore, we can
achieve uniformly distributed s′ by maximizing the entropy
of it, namely, i.e., minimizing the negative entropy as:

min
M

Lentropy=−H(s′) (15)
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TABLE II: Node classification performance on heterophily. (Accuracy(%) ± Std.)

Methods Texas Wisc. Cornell Cham. Squi. Croco.

MLP 80.8±7.0 85.1±5.6 83.2±6.4 48.3±2.2 33.4±1.1 65.7±1.0
GCN 59.5±7.1 51.4±3.1 56.8±4.5 67.5±2.6 56.6±1.4 71.9±0.9
MixHop 78.7±6.3 83.7±4.6 79.5±6.3 49.3±1.2 49.3±1.2 73.9±1.2
GCN+JK 61.6±7.2 58.4±4.1 59.2±7.0 52.6±1.3 52.6±1.3 71.9±0.8
APPNP 80.5±3.8 84.7±3.9 83.0±7.2 40.4±1.6 40.4±1.6 66.3±1.1
GPRGNN 81.4±5.2 82.8±3.8 77.6±7.1 69.3±1.4 49.6±1.7 68.2±0.8
BMGCN 80.0±5.4 75.3±6.1 74.6±5.0 69.0±1.6 52.7±1.1 64.3±1.1
MMP 77.6±6.0 84.1±4.0 79.5±8.5 66.1±2.2 53.1±10.9 66.2±0.4
HPGMN 85.1±4.2 86.5±3.1 84.1±5.3 79.6±0.8 72.3±2.3 80.8±0.3

D. Final Objective Function of HP-GMN

With hi in Eq.(11) capturing both local and global
information, Lkpattern in Eq.(14) to make the memory
representative and Lentropy in Eq.(15) to make the memory
diverse, the final objective function of HP-GMN is:

min
θ,M

Ltotal=Lclass+αLkpattern+βLentropy, (16)

where α and β are scalars to control the contributions of
Lkpattern and Lentropy . θ is the set of parameters of MLPs.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to
demonstrate the effectiveness of our proposed framework. In
particular, we aim to answer the following research questions:
RQ1 How effective is the Memory Network in the node
classification on heterophilous graphs? RQ2 Can HP-GMN
be extended to homophilous graphs? RQ3 What are the
contributions of each component to the final results?

A. Experimental Settings

1) Baselines: We compare our method with representative
GNNs (MLP, GCN), GNNs incorporating high-order
neighborhood information (MixHop [17], GCN+Jump
Knowledge [18], APPNP [19]), as well as GNNs for
heterophily (BMGCN [20], GPRGNN [21], MMP [22]).

2) Datasets: We utilize six publicly available heterophilous
datasets, including three WebKB datasets (Cornell,
Texas, Wisconsin), and three Wikipedia network datasets
(Chameleon, Squirrel, Crocodile) [11]. We use three
homophilous datasets from citation networks [23] (Cora,
Citeseer, PubMed). The key statistics of the datasets are
summarized in Table I.

3) Implementation Details: The performance on
heterophilous datasets is evaluated on ten train/validation/test
splits. We use five repeated experiments with different
random seeds to evaluate the performance on homophilous
datasets. We use the fixed splits provided by PyG [24] if
available. Otherwise, we conduct experiments on ten random
splits. For HP-GMN, all MLPs are implemented with two
layers. We vary the number of memory unit K among {20,
50, 100, 200, 300, 500} and the hidden number of each
memory unit hidden among {100, 200, 300, 500}. We add
the Frobenius norm of the memory ||M||2F into the loss
to prevent overfitting. Coefficients α and β are set by grid
search in {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}.

TABLE III: Node classification performance on homophily. (Accuracy(%) ± Std.)

Methods Cora Citeseer Pubmed

MLP 53.5±1.5 51.9±1.5 69.9±0.6
GCN 78.5±1.4 67.8±1.0 76.6±1.1
MixHop 77.0±0.7 63.9±0.4 74.3±0.5
GCN+JK 76.7±2.4 64.8±1.4 75.0±0.8
APPNP 83.1±0.5 70.8±0.9 79.9±0.3
HP-GMNGCN 80.3±1.1 69.0±0.9 77.8±0.7
HP-GMNAPPNP 84.7±0.6 73.0±1.0 82.4±1.3

B. Node Classification on Graphs with Hetreophily

To answer RQ1, we conduct node classification on
heterophilous graphs and compare HP-GMN with the
baselines. The average accuracy with standard deviation are
shown as Table II and we have the following observations:
• GCN is a little better than MLP or even no better than MLP

on heterophilous datasets because GCN fails to exploit
the structure information of heterophilous graphs. Our
HP-GMN considers heterophily properties, and the local
statistics can capture heterophilous structures well; thus, it
achieves much better performance than MLP and GCN.

• While methods employing higher-order neighborhood
information improve the performance, the extent is limited
because they aggregate all the higher-order neighbors
regardless the homophily or heterophily. HP-GMN only
aggregates from similar global patterns, which leads to
further improvements in accuracy.

• Methods designed for heterophily have better performance
than general graph methods even without global patterns.
However, HP-GMN takes advantage of global patterns and
outperforms all other baselines significantly.

(a) Texas (b) Squirrel

Fig. 3: Impact of regularization terms on accuracy.

TABLE IV: Impacts of local statistics.

Methods Texas Squirrel

All Local Statistics 85.1±4.2 72.3±2.3
W/O Node Attributes 70.3±5.5 71.7±1.9
W/O Label-wise Class 83.2±6.0 57.8±2.5
W/O Label-wise Feature 79.2±4.0 41.7±3.4
W/O Diffusion Matrix 83.2±5.9 68.4±6.6

C. Node Classification on Graphs with Homophily

To answer RQ2, we aim to demonstrate that HP-GMN can
also work on homophilous datasets. However, the local statis-
tics in III-A are designed for heterophily and do not fit the ho-
mophily problem. In order to show the effectiveness on the ho-
mophilous datasets, we use the representation learned by GCN
or APPNP as the local statistic on graphs with homophily,
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denoted as HP-GMNGCN and HP-GMNAPPNP. We conduct
experiments on three homophilous citation networks. The aver-
age accuracy with the standard deviation is shown in Table III.
From Table III, we observe that the memory not only promotes
the prediction on heterophily but also can facilitate learning on
homophily. That is because homophilous graphs also contain
some global information that is not captured by other methods.

D. Ablation Study

To answer RQ3, we compare the performance of HP-GMN,
HP-GMN without Kpattern regularization (HP-GMN/K), HP-
GMN without Entropy regularization (HP-GMN/E), and
HP-GMN without regularizations (HP-GMN/KE). We report
the performance on Texas and Squirrel in Fig. 3. Then we
show the contribution of local statistics. We remove each
local statistic to get different designs of the query. We observe
the best performance when we use all four local statistics.
It reveals that all of them can collect different aspects of
local information in the graph, and everyone is essential for
describing the local subgraph. Results are shown in Table IV,
where “W/O Node Attributes” denotes that “Node Attributes”
are removed from local statistics.

V. RELATED WORK

Some methods for the heterophily modify the current GNN
framework. H2GCN [6] uses ego and neighbor separation to
encode the ego and neighbor representations separately instead
of mingling them together. CPGNN [25] uses the compatibility
matrix to initialize and guide the propagation of the GNN.
GPRGNN [21] combines intermediate representations and
learn adaptive weights for them using Generalized PageRank.
Some methods try to exploit global information by using
higher-order neighborhoods. MixHop [17] learns higher-order
information by utilizing multiple powers of the adjacency
matrix. GCN-Cheby [26] uses k-order Chebyshev Polynomials
to replace the first order Chebyshev Polynomials in GCN
so that it can learn from up to k-order neighbors. Recently,
[27] also studied the problem of conducting self-supervised
learning for node representation on heterophilous graphs
when task-specific labels are scarce.

VI. CONCLUSION

In this paper, we develop a novel graph memory network to
address the heterophily problem. Local statistics and memory
are utilized to capture local and global information in a graph.
Kpattern and Entropy regularizations are proposed to encour-
age the memory to learn enough global information. Extensive
experiments show that our method can achieve state-of-the-art
performance on heterophilous and homophilous graphs.
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