
Solar Physics (2023) 298:87
https://doi.org/10.1007/s11207-023-02180-z

RESEARCH

Generating Photospheric Vector Magnetograms of Solar
Active Regions for SOHO/MDI Using SDO/HMI and
BBSO Data with Deep Learning

Haodi Jiang1,2 ·Qin Li1,3 ·Nian Liu1,3 ·Zhihang Hu1 ·Yasser Abduallah1,4 · Ju Jing1,3,5 ·
Yan Xu1,3,5 · Jason T.L. Wang1,4 ·HaiminWang1,3,5

Received: 27 November 2022 / Accepted: 12 June 2023 / Published online: 13 July 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Solar activity is often caused by the evolution of solar magnetic fields. Magnetic field pa-
rameters derived from photospheric vector magnetograms of solar active regions (ARs) have
been used to analyze and forecast eruptive events, such as solar flares and coronal mass
ejections. Unfortunately, the most recent Solar Cycle 24 was relatively weak with few large
flares, though it is the only solar cycle in which consistent time-sequence vector magne-
tograms have been available through theHelioseismic and Magnetic Imager (HMI) on board
the Solar Dynamics Observatory (SDO) since its launch in 2010. In this work, we look into
another major instrument, namely theMichelson Doppler Imager (MDI) on board the Solar
and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI
covers a more active Solar Cycle 23 with many large flares. However, SOHO/MDI only has
line-of-sight (LOS) magnetograms. We propose a new deep learning method, named Mag-
Net, to learn from combined LOS magnetograms, Bx and By , taken by SDO/HMI, along
with Hα observations collected by the Big Bear Solar Observatory (BBSO), and to gener-
ate synthetic vector components B ′

x and B ′
y of ARs. These generated vector components,

together with observational LOS data, would form vector magnetograms for SOHO/MDI.
In this way, we can expand the availability of vector magnetograms to the period from 1996
to present. Experimental results demonstrate the good performance of the MagNet method.
To our knowledge, this is the first time that deep learning has been used to generate photo-
spheric vector magnetograms of ARs for SOHO/MDI using SDO/HMI and Hα data.
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1. Introduction

Photospheric vector magnetograms of solar active regions (ARs) collected by the Helioseis-
mic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO; Scherrer
et al., 2012) play an important role in solar physics. They are used by nonlinear force-
free field extrapolation methods (Wheatland, Sturrock, and Roumeliotis, 2000;Wiegelmann,
2004; Metcalf, Leka, and Mickey, 2005; Schrijver et al., 2008; Sun et al., 2012) to calculate
magnetic energy, which provides crucial information concerning the capability of an AR
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for producing eruptive events including solar flares and coronal mass ejections (CMEs; As-
chwanden, Xu, and Jing, 2014). They are also used to derive magnetic-field parameters, such
as those of Space-weather HMI Active Region Patches (SHARP; Bobra et al., 2014), which
have been used in machine learning-based flare and CME forecasting (Bobra and Couvidat,
2015; Chen et al., 2019; Liu et al., 2019, 2020b; Wang et al., 2020; Abduallah et al., 2021).

Since 2010, consistent time-sequence full-disk photospheric vector magnetograms have
been available through SDO/HMI. This data set covers a relatively weak solar cycle, namely
Cycle 24, which had fewer large eruptive events, and therefore the sampling is not suf-
ficient to understand the initiation of solar eruptions and to make accurate prediction of
eruptive events. Prior to 2010, vector magnetograms were available sporadically for certain
ARs from some observatories, such as Big Bear Solar Observatory (BBSO; Denker et al.,
1999), the Synoptic Optical Long-term Investigations of the Sun (SOLIS; Keller, Harvey,
and Giampapa, 2003) of the National Solar Observatory (NSO), the Imaging Vector Mag-
netograph (IVM; Mickey et al., 1996) and Haleakala Stokes Polarimeter (HSP; Mickey,
1985) at the Mees Solar Observatory (MSO), the National Astronomical Observatory of
Japan (NAOJ; Ichimoto et al., 1991), and the Solar Optical Telescope Spectro-Polarimeter
(SOT-SP; Tsuneta et al., 2008) on board the Hinode spacecraft (Kosugi et al., 2007). How-
ever, these vector magnetograms were not consistently available. On the other hand, prior
to 2010, full-disk line-of-sight (LOS) magnetograms have been consistently available from
another source: the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric
Observatory (SOHO; Scherrer et al., 1995). This motivates us to develop a deep learning
method, named MagNet, to generate consistent time-sequence vector magnetograms of all
ARs from 1996 to 2010, which cover a more active Solar Cycle 23. Our MagNet model is
trained by LOS magnetograms, Bx , By from SDO/HMI, combined with Hα observations
from BBSO. The validation of our approach uses the overlapping data from 1 May 2010 to
11 April 2011 when MDI and HMI obtained data simultaneously. There is a good physical
reason to use Hα as the additional constraint for this research: in the solar atmosphere, mag-
netic fields and flows are at a frozen-in condition, and therefore the Hα fibril structure can
provide the direction of magnetic fields on the horizontal solar surface direction, X and Y

dimensions (Wiegelmann et al., 2008; Jiang et al., 2021).
Deep learning has been widely used in solar physics (Benson et al., 2020; dos Santos

et al., 2020; Jiang et al., 2020; Liu et al., 2021; Jiang et al., 2022). Recently, deep learn-
ing was employed to construct magnetograms and estimate magnetic fields. Kim et al.
(2019) generated farside solar magnetograms from the Solar-Terrestrial Relations Obser-
vatory (STEREO)/Extreme UltraViolet Imager (EUVI) 304 Å images using a conditional
generative adversarial network (cGAN). The authors trained their cGAN model using pairs
of SDO/Atmospheric Imaging Assembly (AIA) 304 Å images and SDO/HMImagnetograms.
Bai et al. (2021) estimated the unsigned radial component of the magnetic field from pho-
tospheric continuum images using a convolutional neural network (CNN). Dhuri et al.
(2022) estimated vector field features of SHARP data using the LOS magnetograms from
space-based SDO/HMI (specifically, the hmi.sharp_cea_720s data series) and ground-based
GONG (Global Oscillations Network Group).

Our work differs from the above approaches in three ways. (1) Our trainedMagNet model
takes as input LOS magnetograms from SOHO/MDI together with Hα images from BBSO
and generates as output magnetic field components Bx and By images, instead of estimat-
ing the SHARP features as done in Dhuri et al. (2022). (2) Our work utilizes BBSO Hα

observations, which none of the above approaches use, to provide the direction information
of magnetic fields in X and Y dimensions. (3) We use the full-disk magnetograms taken
from the mdi.fd_M_96m_lev182, hmi.M_720s, hmi.B_720s data series, and design an al-
gorithm to crop the AR patches from the full-disk magnetograms. The AR patches used in
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our work are different from the ARs of SHARP. The generated/predicted B ′
x and B ′

y com-
ponents along with the LOS components of the magnetic field, which can be treated as Bz

components, of the AR patches create vector magnetograms from 1996 to 2010.
The rest of this article is organized as follows. Section 2 describes solar observations and

our data preparation processes. Section 3 presents details of our MagNet model. Section 4
reports experimental results. Section 5 presents a discussion and concludes the article.

2. Observations and Data Preparation

MDI (Scherrer et al., 1995), which is part of the SOHO satellite, acquired a LOS magne-
togram every 96 minutes during the period from 1995 to 2011, which covers the more active
Solar Cycle 23 with many large flares. The spatial resolution is 4′′ and the full-disk images
are collected on a 1024 × 1024 detector. As a successor of MDI, the HMI instrument, which
is part of the SDO mission, provides continuous coverage of full-disk Doppler velocities,
LOS magnetograms, and continuum proxy images (Scherrer et al., 2012). HMI has been
operational since 1 May 2010, covering Solar Cycle 24. HMI observes the full solar disk at
6173 Å every 12 minutes for a better signal-to-noise ratio. The spatial resolution is 1′′ and
the full-disk images are collected on a 4096 × 4096 detector. Photospheric vector magne-
tograms have been available since the launch of SDO/HMI. BBSO, which is a ground-based
observatory, has provided Hα observations (images) since the 1970s (Denker et al., 1999).
BBSO’s full-disk Hα observations are taken every 1 minute, up to 9 hours for one observing
day at the wavelength of 6563 Å. The spatial resolution is 2′′ and the full-disk images are
collected on a 2048 × 2048 detector. Unlike satellite-based instruments such as MDI and
HMI, the ground-based full-disk telescope at BBSO sometimes has seeing limitations due
to unstable conditions of the Earth’s atmosphere and weather.

In this study, we select full-disk Hα images based on three criteria. First, the selected
images must be intact. Some images are incomplete due to (i) operating problems, such
as incorrect angles of the telescope, loss of focus, sudden shaking of the telescope, etc.,
or (ii) external blocking entities such as birds, airplanes, etc. These incomplete images are
excluded. Second, the selected images must show a clear appearance of the solar disk. Those
images with unbalanced brightness caused by high and thin clouds are excluded. Third,
among the images with a very close appearance, where the identifiable items on the solar
disk do not have observable changes, the clearest one is selected. When items like active
regions and filaments are close to the limb, which is darker than the solar center, we manually
check if the items are clear. The images with a very close appearance and less clear items
are excluded.

In this way, we select full-disk Hα images in the period from 1 May 2010 to 31 De-
cember 2017. For each selected full-disk Hα image, we collect its temporally closest
full-disk MDI LOS magnetogram, full-disk HMI LOS magnetogram, and full-disk HMI
vector magnetograms/components Bx , By , where the difference between the time stamp
of the full-disk Hα image and the time stamp of a collected full-disk magnetogram has
to be less than 6 minutes. We note that the full-disk MDI LOS magnetograms are only
available from 1 May 2010 to 11 April 2011 within the period between 1 May 2010
and 31 December 2017. The full-disk Hα image and the full-disk MDI LOS magne-
togram are linearly interpolated to the same spatial size of the full-disk HMI LOS mag-
netogram and HMI vector magnetograms/components Bx , By using the Interactive Data
Language (IDL). These full-disk MDI LOS magnetograms (HMI LOS magnetograms,
HMI vector magnetograms/components Bx , By , respectively) are taken directly from the
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mdi.fd_M_96m_lev182 (hmi.M_720s, hmi.B_720s respectively) series at the Joint Science
Operations Center (JSOC), accessible at http://jsoc.stanford.edu/.

Because we are mainly interested in solar flares in ARs, we coalign and crop AR patches
of 256 × 256 pixels that might produce flares from the full-disk images using a two-step
coaligning and cropping procedure written in IDL as follows. First, we perform a full-disk
coalignment among the full-disk images. Then, we coalign and crop the AR patches from the
coaligned full-disk images by maximizing the Pearson correlation coefficient (CC, Galton,
1886; Pearson, 1895; Sen and Srivastava, 1990) among the AR patches. The coaligned AR
patches with CC below a threshold are discarded. In the study presented here, the threshold
is set to 0.85. The AR patch size of 256 × 256 is chosen for efficient model training purposes
where the magnetic field strength at the center of each AR patch is greater than or equal to
1500 Gauss. A large AR is segmented into several patches, all of which are included and
used for training. Notice that in cropping the AR patches (square regions) from the full-disk
images/magnetograms, all the cropped AR patches are re-sized to 256 × 256. Some of the
AR patches for training the MagNet model may be from the same active region on different
days.

In preparing the training data, we select 3745 full-disk Hα images from 1 January 2014
to 31 December 2017 and their temporally closest full-disk HMI LOS magnetograms and
full-disk HMI vector magnetograms/components Bx , By . Each time we coalign and crop AR
patches from four full-disk images, namely a full-disk HMI LOS magnetogram, a full-disk
HMI vector magnetogram/component Bx , a full-disk HMI vector magnetogram/component
By , and their temporally closest full-disk Hα image, using the two-step procedure written
by IDL as described above. As a result of this coaligning and cropping process, we obtain
9290 coalignments each containing four AR patches. Both the full-disk HMI vector magne-
tograms Bx , By and the AR patches of Bx , By , cropped from the full-disk magnetograms,
are in the image coordinate system. The 9290 coalignments of AR patches are then stored
in the training set, denoted Train_HMI, which is used to train our MagNet model where all
pixels in the AR patches are used to train the model. The 9290 AR patches of Bx , By in
Train_HMI are used as labels when optimizing the model.

The validation data contain 155 full-disk MDI LOS magnetograms, full-disk HMI LOS
magnetograms, full-disk HMI vector magnetograms/components Bx and By from 1 May
2010 to 11 April 2011, and their temporally closest full-disk Hα images. During this period,
when both MDI data and HMI data are available, we are able to obtain all the five types of
full-disk images. We note that the 155 collections of full-disk images (validation data) are
independent and disjoint from those full-disk images in the training set due to their different
collecting periods.

In processing the validation data, each time we coalign and crop AR patches of 256 ×
256 pixels that might produce flares from five full-disk images, namely a full-disk MDI LOS
magnetogram, a full-disk HMI LOS magnetogram, a full-disk HMI vector component Bx , a
full-disk HMI vector component By , and their temporally closest full-disk Hα image, using
the two-step procedure written in IDL, as described above. We obtain 12 coalignments each
containing five AR patches. We store the 12 coalignments of HMI LOSmagnetograms, HMI
vector component Bx , By , and Hα images in the Validate_HMI set, which is used to vali-
date MagNet-generated B ′

x , B
′
y components of HMI. We store the 12 coalignments of MDI

LOS magnetograms, HMI vector components Bx , By , and Hα images in the Validate_MDI
set, which is used to validate MagNet-generated B ′

x , B ′
y components of MDI. Please note

that our training set (Train_HMI) and validation sets (Validate_HMI and Validate_MDI)
cover different periods, as pointed out above. Thus, the trained MagNet model can make
predictions on data that it has never seen during training.

http://jsoc.stanford.edu/
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3. Methodology

3.1. TheWorkflow of MagNet

Figure 1 illustrates the workflow of MagNet. Collected full-disk images including BBSO
Hα images, HMI LOS magnetograms, and HMI vector components Bx and By are shown in
the gray dashed box, where an AR patch in a full-disk image is highlighted by a small yellow
box. We process these full-disk images by coaligning and cropping the AR patch out of each
full-disk image to produce coaligned AR patches of 256 × 256 pixels enclosed in the blue
dashed box (step 1). During training, pairs of coaligned AR patches of BBSO Hα images
and HMI LOS magnetograms are fed to the MagNet model, where the corresponding AR

Figure 1 The workflow of MagNet. During training, we coalign and crop AR patches of 256 × 256 pixels
from four full-disk images (step 1) and use the coaligned AR patches to train the MagNet model (step 2).
During prediction, a pair of coaligned AR patches of Hα image and HMI/MDI LOS magnetogram is inputted
to the trained Magnet model (step 3), which generates a pair of AR patches of B ′

x and B ′
y that correspond to

the input data (step 4).
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Figure 2 Illustration of the architecture of the MagNet model. The model takes as input a pair of coaligned
AR patches of Hα image and HMI/MDI LOS magnetogram, and generates/predicts as output a pair of AR
patches of B ′

x and B ′
y that correspond to the input data. See text for details of the model architecture.

patches of HMI vector components Bx and By , treated as true Bx and By , are used as labels
(step 2). During prediction, the validation data containing a pair of coaligned AR patches
of BBSO Hα image and HMI/MDI LOS magnetogram, shown in the left red dashed box, is
inputted to the trained MagNet model (step 3). The model predicts (generates) a pair of AR
patches of B ′

x and B ′
y , shown in the right red dashed box, that correspond to the input data

(step 4).

3.2. TheMagNet Model

Generating AR patches of B ′
x and B ′

y amounts to solving a regression problem because the
output of the generating procedure consists of real numbers, i.e., magnetic field strengths.
We employ a deep learning model containing a new CNN with self-attention (Zhao, Jia,
and Koltun, 2020) to solve this regression problem. Self-attention was originally developed
to learn global dependencies of input data and was used in machine translation (Vaswani
et al., 2017). Later, self-attention was applied to many areas such as image recognition,
scene segmentation, and image synthesis, etc. Figure 2 presents the architecture of our deep
learning model.

During training, each pair of coaligned AR patches of BBSO Hα image and HMI LOS
magnetogram taken from the training set, Train_HMI, is in turn fed to the MagNet model.
The input images are first processed by convolutional blocks. Each convolutional block
consists of a convolution layer with batch normalization, followed by a parametric ReLU
(PReLU) activation function (He et al., 2015). The feature maps produced by the convo-
lutional blocks are concatenated and sent to two separate paths, where one path generates
an AR patch of B ′

x and the other path generates an AR patch of B ′
y that correspond to the

input data. Each path starts with a ResNet-like network, specifically ResNet-101 (He et al.,
2016) with dilated convolution (Zhang et al., 2018) as described in Fu et al. (2021). The
output of the ResNet-like network is then sent to two modules: a channel attention module
(CAM) and position attention module (PAM) (Fu et al., 2019). CAM and PAM leverage
the self-attention mechanisms in the modules to better capture and transform a wider range
of contextual information into local features, thus enhancing their representation capability.
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CAM applies the self-attention mechanism to image channels, while PAM focuses on the
calculation of location information. The outputs of CAM and PAM are combined and sent to
convolutional blocks, followed by upsampling blocks that are convolutional blocks with up-
sampling and skip connection, represented as dashed lines in Figure 2 (Falk et al., 2019), to
generate the AR patch of B ′

x (B
′
y , respectively). The AR patches of generated B ′

x and B ′
y are

compared with labels (i.e., the corresponding AR patches of true Bx and By ). The weights
of neurons in the MagNet model are then updated to minimize the error (loss) caused by the
comparison. At the end of the training process, the weights are optimized.

During validation, the trained MagNet model takes as input a pair of coaligned AR
patches of a BBSO Hα image and HMI LOS magnetogram (MDI LOS magnetogram, re-
spectively) taken from the Validate_HMI (Validate_MDI, respectively) set and generates
as output a pair of AR patches of B ′

x and B ′
y that correspond to the input data. The AR

patches of generated B ′
x and B ′

y are evaluated by the corresponding AR patches of HMI
vector components Bx and By , treated as true Bx and By , in Validate_HMI (Validate_MDI,
respectively).

For many of the AR patches used in our study, a large portion of each of them has small
magnetic field strengths (≤ 200 Gauss). Relatively few pixels in an AR patch have large
magnetic field strengths (> 200 Gauss). To tackle this imbalanced problem in our datasets,
we employ a novel weighted Lp

w loss of a pixel p, defined as:

Lp
w(s ′, s) = | s

c
||s ′ − s|. (1)

Here, s ′ represents the MagNet-generated magnetic field strength at p, s represents the true
magnetic field strength at p, and c is a threshold. In the study presented here, the threshold is
set to 0.95. The absolute difference between s ′ and s at p, usually reflected by the L1 loss, is
multiplied by a weight, | s

c
|. This suggests that a pixel p with a larger (smaller, respectively)

magnetic field strength yields a larger (smaller, respectively) Lp
w loss.

The weighted loss between an AR patch, A, of generated B ′
x and the corresponding AR

patch of true Bx , denoted Lw(B ′
x,Bx), is defined as:

Lw(B ′
x,Bx) = 1

N

∑

p∈A

Lp
w(s ′, s), (2)

where N = 256 × 256 = 65,536 is the total number of pixels in A. The weighted loss be-
tween an AR patch of generated B ′

y and the corresponding AR patch of true By , denoted
Lw(B ′

y,By), is defined similarly.
The total loss, denoted LMagNet , is then defined as the sum of Lw(B ′

x,Bx) and
Lw(B ′

y,By), as shown in Equation 3 below:

LMagNet = Lw(B ′
x,Bx) + Lw(B ′

y,By). (3)

The training of MagNet is done by applying the adaptive moment estimation (Adam)
optimizer (Balles and Hennig, 2018) to minimize LMagNet with 100 epochs on an NVIDIA
A100 GPU.
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4. Experiments and Results

4.1. EvaluationMetrics

We adopt three metrics, namely the mean absolute error (MAE; Sen and Srivastava, 1990),
Pearson correlation coefficient (CC; Galton, 1886; Pearson, 1895; Sen and Srivastava, 1990),
and percent agreement (PA; Liu et al., 2020a; Jiang et al., 2022) to quantitatively evaluate
the performance of MagNet. The first metric is defined as:

MAE = 1

N

N∑

i=1

|s ′
i − si |, (4)

where N = 65,536 is the total number of pixels in an AR patch of a vector component, and
si (s ′

i , respectively) denotes the true (generated, respectively) magnetic field strength for the
ith pixel, 1 ≤ i ≤ 65,536, in the vector component. This metric has a unit of Gauss, which
is used to quantitatively assess the dissimilarity (distance) between the true magnetic field
strengths and generated magnetic field strengths in the vector component.

The second metric is defined as:

CC= E[(T − μT )(G − μG)]
σT σG

, (5)

where E(·) is the expectation. T and G denote the true magnetic-field strengths and gen-
erated magnetic-field strengths, respectively, in the vector component. μT and μG denote
the mean of T and G, respectively. σT and σG denote the standard deviation of T and G

respectively. CC, which does not have units, has a value between −1 and 1. When CC is −1
or 1, there is an exact linear relationship between T and G. When CC is 0, there is no linear
dependency between T and G.

The third metric is the percentage count of well-estimated pixels, which is defined as:

PA= M

N
× 100%, (6)

where M denotes the total number of agreement pixels in the vector component. We say
the ith pixel in the vector component is an agreement pixel if |si − s ′

i | is smaller than a
user-specified threshold t. In the study presented here, the threshold t is set to 100 Gauss.
This metric is used to quantitatively assess the similarity between the true magnetic field
strengths and generated magnetic field strengths in the vector component.

4.2. Evaluation of MagNet

Table 1 presents the three evaluation metric values of MagNet based on the data in the
Validate_HMI and Validate_MDI sets. Each triplet in the table consists of three values
where the left one is the minimum value, the middle one is the average value, and the
right one is the maximum value. The row of Validate_HMI(B ′

x ) (Validate_HMI(B ′
y ), re-

spectively) shows the metric values obtained by generating B ′
x (B ′

y , respectively) based on
the data in Validate_HMI. The row of Validate_MDI(B ′

x ) (Validate_MDI(B ′
y ), respectively)

shows the metric values obtained by generating B ′
x (B ′

y , respectively) based on the data in
Validate_MDI. The training data is from Train_HMI.

It can be seen from Table 1 that the generated B ′
x (B

′
y , respectively) components are close

to the true Bx (By , respectively) components with an average MAE being less than 100
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Table 1 Evaluation metric values of MagNet based on validation data (see text).

Validation Data MAE CC PA

Validate_HMI(B ′
x ) (38.63, 58.16, 83.70) (0.77, 0.87, 0.93) (77.7%, 85.5%, 94.3%)

Validate_HMI(B ′
y ) (43.26, 62.77, 91.10) (0.79, 0.86, 0.93) (79.6%, 82.7%, 91.8%)

Validate_MDI(B ′
x ) (70.28, 90.71, 140.34) (0.51, 0.73, 0.85) (56.2%, 70.0%, 78.5%)

Validate_MDI(B ′
y ) (57.52, 90.18, 131.26) (0.62, 0.76, 0.85) (54.4%, 69.3%, 85.8%)

Figure 3 Plots showing how prediction errors of MagNet depend on |LOS| (absolute values of the field
strengths of the LOS magnetograms in a validation set). (a) MAE as a function of |LOS|. (b) MAE/|LOS| as
a function of |LOS|.

Gauss for both HMI and MDI. The average CC is approximately 0.87 for HMI and close to
0.75 for MDI. The average PA is approximately 84% for HMI and 70% for MDI. MagNet
generally performs better for HMI than for MDI. This happens due to several reasons. First,
the MagNet model is trained by HMI data, not MDI data. The spatial resolution of MDI
images is 4′′, which is lower than the resolution, 1′′, of HMI images. Furthermore, due to
the larger cadence (96 minutes) of MDI compared to the cadence (12 minutes) of HMI, the
time gaps between the MDI images and their coaligned Hα images are often larger than the
time gaps between the HMI images and their coaligned Hα images. As a result, the quality
of the coalignments of AR patches for MDI is lower than the quality of the coalignments of
AR patches for HMI.

Figure 3a shows the MAE values of the generated B ′
x and B ′

y components for HMI and
MDI as a function of the absolute values of the magnetic field strengths of the LOS mag-
netograms (which are treated as Bz components), denoted by |LOS|, in the Validate_HMI
and Validate_MDI sets. Here, each MAE value is calculated based on all pixels with the
same field strength across all LOS magnetograms in a validation set. Figure 3b shows the
proportion of MAE to |LOS| in percentage (i.e., relative error) as a function of |LOS|. It can
be seen from Figure 3a that MAE (absolute error) increases as |LOS| increases. This hap-
pens because there are fewer pixels with larger field strengths. Although the absolute errors
of the generated/predicted B ′

x and B ′
y components increase when observed |LOS| values

increase, the relative errors decrease. It is noted from Figure 3b that the relative error (the
ratio MAE/|LOS|) drops to 11% for HMI and 15% for MDI when |LOS| is 1500 Gauss.
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Figure 4 Comparison between the MagNet-generated B ′
x , B

′
y and true Bx , By of AR 11117 on 26 October

2010 at 22:24:00 UT. (a) BBSO Hα, HMI LOS, MDI LOS images inputted to MagNet. (b) True Bx , By ,
predicted B ′

x , B
′
y for HMI and predicted B ′

x , B
′
y for MDI. (c) Scatter plots of the predicted results versus true

data.

4.3. A Case Study

To show how the degradation of the input magnetograms from HMI to MDI affects the pre-
dicted results, we present a case study on NOAA AR 11117 in the validation data. Figure 4
shows the generated B ′

x and B ′
y components for AR 11117 on 26 October 2010 at 22:24:00

UT where the training data is from Train_HMI. Figure 4a displays a coalignment of 256 ×
256 patches of a BBSO Hα image, HMI LOS magnetogram, and MDI LOS magnetogram
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from AR 11117. These images are inputted to the trained MagNet model. In Figure 4b,
the first column shows the AR patches of true Bx and By components, the second column
shows the AR patches of B ′

x and B ′
y components generated/predicted by MagNet using the

BBSO Hα image and HMI LOS magnetogram in Figure 4a as input, and the third column
shows the AR patches of B ′

x and B ′
y components generated/predicted by MagNet using the

BBSO Hα image and MDI LOS magnetogram in Figure 4a as input. Figure 4c presents
scatter plots. In each scatter plot, the X-axis represents the true Bx (By , respectively) and
the Y -axis represents the generated/predicted B ′

x (B
′
y , respectively). The diagonal line in the

scatter plot corresponds to pixels whose generated B ′
x (B

′
y , respectively) values are identical

to the true Bx (By , respectively) values.
It can be seen from Figure 4b that MagNet works well on AR 11117, capable of gener-

ating the vector components that are close to the true components. The predicted B ′
x and B ′

y

for HMI are visually more similar to the true Bx and By than those for MDI. More precisely,
when using the BBSO Hα image and HMI LOS magnetogram as input, we obtain an MAE
of 57.81 Gauss and 59.13 Gauss, a CC of 0.90 and 0.89, and a PA of 85.91% and 84.39% for
Bx and By , respectively. On the other hand, when using the BBSO Hα image and MDI LOS
magnetogram as input, we obtain an MAE of 85.41 Gauss and 87.98 Gauss, a CC of 0.80
and 0.85, and a PA of 72.77% and 69.30% for Bx and By , respectively. Thus, the evaluation
metric values of the predicted B ′

x and B ′
y for MDI are worse than those of the predicted B ′

x

and B ′
y for HMI.

4.4. Magnetic-Field Parameters Derived fromNLFFFs

To demonstrate the usefulness of the magnetograms generated by MagNet, we attempt to
derive magnetic field parameters, such as those in the SHARP dataset (Bobra et al., 2014),
from the generated magnetograms. Notice that the AR patches used in our work are ob-
tained from the cropping algorithm described in Section 2, which are different from the ARs
in SHARP. Thus, it is difficult to directly compare the magnetic field parameters computed
from MagNet-generated vector data with those in the SHARP dataset. Instead, we calculate
and compare magnetic field parameters based on ground truth vector fields and MagNet-
generated vector fields. Specifically, we calculate the parameters of total helicity and mag-
netic free energy using nonlinear force-free field (NLFFF) codes with the magnetograms
as boundary conditions. The NLFFF extrapolation was performed with the weighted opti-
mization method (Wiegelmann, 2004). A preprocessing scheme (Wiegelmann, Inhester, and
Sakurai, 2006) is applied to make the boundary conditions agree to the force-free assump-
tion. Again, we use AR 11117 as a case study and present results for this active region.

Figure 5 shows the distribution of the total helicity of different magnetograms, including
the true magnetograms B from HMI (HMI true NLFFF), the predicted mangetograms B for
HMI (HMI predicted NLFFF), and the predicted magnetograms B for MDI (MDI predicted
NLFFF), on 26 October 2010 at 22:24:00 UT, 27 October 2010 at 22:24:00 UT, 28 October
2010 at 17:36:00 UT, respectively. It can be seen that there is a temporal and spatial consis-
tency in the total helicity maps in Figure 5 with respect to the different input data (MDI or
HMI) when compared to the HMI true data.

Figure 6 shows a temporal consistency of magnetic free energy of NLFFFs extrapolated
with the true magnetograms from HMI (HMI true B), predicted magnetograms for HMI
(HMI predicted B), and predicted magnetograms for MDI (MDI predicted B) as boundary
conditions on 26 October 2010 at 22:24:00 UT, 27 October 2010 at 22:24:00 UT, 28 Oc-
tober 2010 at 17:36:00 UT, respectively. The free energy obtained from the predicted mag-
netograms is close to the free energy obtained from the true magnetograms, with the trends
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Figure 5 Total helicity maps on the photosphere calculated with NLFFF codes using the photospheric mag-
neograms of HMI true B , HMI predicted B , andMDI predicted B as boundary conditions on 26 October 2010
at 22:24:00 UT, 27 October 2010 at 22:24:00 UT, 28 October 2010 at 17:36:00 UT, respectively. The panels
in the left column show the corresponding HMI LOS magnetograms (treated as Bz here). B is comprised of
Bx , By , and Bz components.

Figure 6 Magnetic free energy of NLFFFs extrapolated with the photospheric magnetograms of HMI true
B , HMI predicted B , and MDI predicted B as boundary conditions on 26 October 2010 at 22:24:00 UT, 27
October 2010 at 22:24:00 UT, 28 October 2010 at 17:36:00 UT, respectively. The inset magnifies the variation
by reducing the range on the Y -axis, demonstrating the extent of uncertainty and that the general trends agree
between the true and predicted values.

and details shown in the inset of Figure 6. These results again demonstrate that MagNet-
generated vector magnetograms are reasonably good compared to HMI true vector magne-
tograms.
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5. Discussion and Conclusion

We present a deep learning method (MagNet) for generating photospheric vector magne-
tograms of solar active regions for SOHO/MDI using SDO/HMI and BBSO data. This
method allows us to expand the availability of photospheric vector magnetograms to the
period from 1996 to present, covering Solar Cycles 23 and 24. The vector magnetograms
can be used by physics-based methods to calculate magnetic energy and magnetic field pa-
rameters useful for predicting solar flare activity (Liu et al., 2017, 2019, 2020b).

Our main results are listed below.

i) The experimental results obtained by using BBSO Hα observations and HMI magne-
tograms in the period between 1 January 2014 and 31 December 2017 as training data
demonstrated the good performance of the proposed method. Refer to Table 1. When
using the trained MagNet model to generate vector components B ′

x and B ′
y , based on

BBSO Hα and HMI LOS data, and evaluated by HMI vector components Bx and By ,
we obtain on average MAE ≈ 60 Gauss, CC ≈ 0.87, and PA ≈ 84%. When using the
trained MagNet model to generate vector components B ′

x and B ′
y , based on BBSO Hα

and MDI LOS data, and evaluated by the same HMI vector components Bx and By , we
obtain on average MAE ≈ 90 Gauss, CC ≈ 0.75, and PA ≈ 70%.

ii) When training and validating the MagNet model, we do not impose any threshold on
the data. In other words, all pixels in the original images from the instruments (MDI,
HMI, BBSO) are included. Notice that the HMI vector components Bx and By , treated
as ground truth, in our study are originally obtained as a solution of the inverse prob-
lem using optimization methods (Hoeksema et al., 2014; Liu et al., 2020a; Jiang et al.,
2022). The trained MagNet model inherits issues and limitations of the ground truth.
This implies that disagreements with the ground truth are not necessarily dramatic.

iii) MagNet is trained by HMI data and validated on MDI data. However, HMI and MDI are
two different instruments on different observatories with different temporal and spatial
resolutions. One could use deep learning techniques (Menon et al., 2020; Danier, Zhang,
and Bull, 2022; Rombach et al., 2022) to improve the temporal and spatial resolutions of
the images from the different sources to enhance the performance of MagNet. Transfer
learning could also be helpful in obtaining knowledge from one source and applying the
knowledge to another source (Zhuang et al., 2021).

iv) Our approach depends on the coalignments of AR patches, which are produced by a
two-step coaligning and cropping procedure, written by IDL, as described in Section 2.
We discard coaligned AR patches whose coalignment accuracy (more precisely, Pearson
correlation coefficient or CC) is below a threshold. When the threshold is 0.85, the
performance of MagNet is quantified in Table 1. When the threshold is lower (e.g. 0.8),
the performance of MagNet drops slightly. Consider, for example, AR 11117. When the
threshold is 0.85, the CC obtained in generating HMI vector components B ′

x and B ′
y

is 0.9 and 0.89, respectively. When the threshold is 0.8, the CC obtained in generating
HMI vector components B ′

x and B ′
y is 0.88 and 0.87, respectively. Thus, MagNet is

not very sensitive to the coalignment accuracy provided that the accuracy is sufficiently
large. Coaligning images from different instruments is a challenge. Developing more
accurate coalignment algorithms implemented in OpenCV or IDL may further improve
the performance of MagNet.

v) BBSO’s full-disk Hα observations have been collected every 1 minute since the 1970s.
The observatory is operated approximately 6 hours on average, up to 9 hours when
necessary, each day. Nevertheless, we may miss a portion of the Hα observations due
to unstable conditions of the Earth’s atmosphere and weather. It is estimated that 25%
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of the MDI vector data in Solar Cycle 23, or fewer due to the removal of low-quality
coalignments of MDI LOS magnetograms and Hα images, can be reconstructed with
MagNet. To get full coverage of the ARs in Solar Cycle 23, one would need other
sources of Hα data, particularly from the Global Hα Network (Steinegger et al., 2000).
In fact, the Kanzelhöhe Solar Observatory (KSO; Otruba, 1999; Otruba, Freislich, and
Hanslmeier, 2008) provides quite consistent Hα data. This would increase the avail-
ability of Hα images significantly and make the reconstruction of the majority of MDI
vector magnetograms of solar ARs possible.

In conclusion, MagNet is the first method able to generate photospheric vector mag-
netograms of solar ARs for SOHO/MDI using SDO/HMI and Hα data. According to our
experimental results, the vector components generated by MagNet are reasonably close to
ground truth.
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